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5

Actuators and Sensors

In this chapter, two basic robot components are treated: actuators and sen-
sors. In the first part, the features of an actuating system are presented in
terms of the power supply, power amplifier, servomotor and transmission. In
view of their control versatility, two types of servomotors are used, namely,
electric servomotors for actuating the joints of small and medium size ma-
nipulators, and hydraulic servomotors for actuating the joints of large size
manipulators. The models describing the input/output relationship for such
servomotors are derived, together with the control schemes of the drives. The
electric servomotors are also employed to actuate the wheels of the mobile
robots, which will be dealt with in Chap. 11. Successively, proprioceptive sen-
sors are presented which allow measurement of the quantities characterizing
the internal state of the manipulator, namely, encoders and resolvers for joint
position measurement, tachometers for joint velocity measurement; further,
exteroceptive sensors are presented including force sensors for end-effector
force measurement, distance sensors for detection of objects in the workspace,
and vision sensors for the measurement of the characteristic parameters of
such objects, whenever the manipulator interacts with the environment.

5.1 Joint Actuating System

The motion imposed to a manipulator’s joint is realized by an actuating system
which in general consists of:

• a power supply ,
• a power amplifier ,
• a servomotor ,
• a transmission.

The connection between the various components is illustrated in Fig. 5.1
where the exchanged powers are shown. To this end, recall that power can
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Fig. 5.1. Components of a joint actuating system

always be expressed as the product of a flow and a force quantity, whose
physical context allows the specification of the nature of the power (mechan-
ical, electric, hydraulic, or pneumatic).

In terms of a global input/output relationship, Pc denotes the (usually
electric) power associated with the control law signal, whereas Pu represents
the mechanical power required to the joint to actuate the motion. The in-
termediate connections characterize the supply power Pa of the motor (of
electric, hydraulic, or pneumatic type), the power provided by the primary
source Pp of the same physical nature as that of Pa, and the mechanical power
Pm developed by the motor. Moreover, Pda, Pds and Pdt denote the powers
lost for dissipation in the conversions performed respectively by the amplifier,
motor and transmission.

To choose the components of an actuating system, it is worth starting
from the requirements imposed on the mechanical power Pu by the force and
velocity that describe the joint motion.

5.1.1 Transmissions

The execution of joint motions of a manipulator demands low speeds with
high torques. In general, such requirements do not allow an effective use of the
mechanical features of servomotors, which typically provide high speeds with
low torques in optimal operating conditions. It is then necessary to interpose
a transmission (gear) to optimize the transfer of mechanical power from the
motor (Pm) to the joint (Pu). During this transfer, the power Pdt is dissipated
as a result of friction.

The choice of the transmission depends on the power requirements, the
kind of desired motion, and the allocation of the motor with respect to the
joint. In fact, the transmission allows the outputs of the motor to be trans-
formed both quantitatively (velocity and torque) and qualitatively (a rota-
tional motion about the motor axis into a translational motion of the joint).
Also, it allows the static and dynamic performance of a manipulator to be op-
timized, by reducing the effective loads when the motor is located upstream
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of the joint; for instance, if some motors are mounted to the base of the robot,
the total weight of the manipulator is decreased and the power-to-weight ratio
is increased.

The following transmissions are typically used for industrial robots:

• Spur gears that modify the characteristics of the rotational motion of the
motor by changing the axis of rotation and/or by translating the appli-
cation point; spur gears are usually constructed with wide cross-section
teeth and squat shafts.

• Lead screws that convert rotational motion of the motor into translational
motion, as needed for actuation of prismatic joints; in order to reduce fric-
tion, ball screws are usually employed that are preloaded so as to increase
stiffness and decrease backlash.

• Timing belts and chains which are equivalent from a kinematic viewpoint
and are employed to locate the motor remotely from the axis of the ac-
tuated joint. The stress on timing belts may cause strain, and then these
are used in applications requiring high speeds and low forces. On the other
hand, chains are used in applications requiring low speeds, since their large
mass may induce vibration at high speeds.

On the assumption of rigid transmissions with no backlash, the relation-
ship between input forces (velocities) and output forces (velocities) is purely
proportional.

The mechanical features of the motor used for an actuating system may
sometimes allow a direct connection of the motor to the joint without the use
of any transmission element (direct drive). The drawbacks due to transmis-
sion elasticity and backlash are thus eliminated, although more sophisticated
control algorithms are required, since the absence of reduction gears does not
allow the nonlinear coupling terms in the dynamic model to be neglected.
The use of direct-drive actuating systems is not yet popular for industrial
manipulators, in view of the cost and size of the motors as well as of control
complexity.

5.1.2 Servomotors

Actuation of joint motions is entrusted to motors which allow the realization
of a desired motion for the mechanical system. Concerning the kind of input
power Pa, motors can be classified into three groups:

• Pneumatic motors which utilize the pneumatic energy provided by a com-
pressor and transform it into mechanical energy by means of pistons or
turbines.

• Hydraulic motors which transform the hydraulic energy stored in a reser-
voir into mechanical energy by means of suitable pumps.

• Electric motors whose primary supply is the electric energy available from
the electric distribution system.
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A portion of the input power Pa is converted to output as mechanical
power Pm, and the rest (Pds) is dissipated because of mechanical, electric,
hydraulic, or pneumatic loss.

The motors employed in robotics are the evolution of the motors em-
ployed in industrial automation having powers ranging from about 10 W to
about 10 kW. For the typical performance required, such motors should have
the following requirements with respect to those employed in conventional
applications:

• low inertia and high power-to-weight ratio,
• possibility of overload and delivery of impulse torques,
• capability to develop high accelerations,
• wide velocity range (from 1 to 1000 revolutes/min),
• high positioning accuracy (at least 1/1000 of a circle),
• low torque ripple so as to guarantee continuous rotation even at low speed.

These requirements are enhanced by the good trajectory tracking and
positioning accuracy demanded for an actuating system for robots, and thus
the motor must play the role of a servomotor . In this respect, pneumatic
motors are difficult to control accurately, in view of the unavoidable fluid
compressibility errors. Therefore, they are not widely employed, if not for
the actuation of the typical opening and closing motions of the jaws in a
gripper tool, then for the actuation of simple arms used in applications where
continuous motion control is not of concern.

The most employed motors in robotics applications are electric servomo-
tors. Among them, the most popular are permanent-magnet direct-current
(DC) servomotors and brushless DC servomotors, in view of their good con-
trol flexibility.

The permanent-magnet DC servomotor consists of:

• A stator coil that generates magnetic flux; this generator is always a per-
manent magnet made by ferromagnetic ceramics or rare earths (high fields
in contained space).

• An armature that includes the current-carrying winding that surrounds a
rotary ferromagnetic core (rotor).

• A commutator that provides an electric connection by means of brushes
between the rotating armature winding and the external feed winding,
according to a commutation logic determined by the rotor motion.

The brushless DC servomotor consists of:

• A rotating coil (rotor) that generates magnetic flux; this generator is a
permanent magnet made by ferromagnetic ceramics or rare earths.

• A stationary armature (stator) made by a polyphase winding.
• A static commutator that, on the basis of the signals provided by a posi-

tion sensor located on the motor shaft, generates the feed sequence of the
armature winding phases as a function of the rotor motion.
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With reference to the above details of constructions, a comparison be-
tween the operating principle of a permanent-magnet DC and a brushless DC
servomotor leads to the following considerations.

In the brushless DC motor, by means of the rotor position sensor, the
winding orthogonal to the magnetic field of the coil is found; then, feeding the
winding makes the rotor rotate. As a consequence of rotation, the electronic
control module commutes the feeding on the winding of the various phases in
such a way that the resulting field at the armature is always kept orthogonal to
that of the coil. As regards electromagnetic interaction, such a motor operates
in a way similar to that of a permanent-magnet DC motor where the brushes
are at an angle of π/2 with respect to the direction of the excitation flux. In
fact, feeding the armature coil makes the rotor rotate, and commutation of
brushes from one plate of the commutator to the other allows the rotor to be
maintained in rotation. The role played by the brushes and commutator in
a permanent-magnet DC motor is analogous to that played by the position
sensor and electronic control module in a brushless DC motor.

The main reason for using a brushless DC motor is to eliminate the prob-
lems due to mechanical commutation of the brushes in a permanent-magnet
DC motor. In fact, the presence of the commutator limits the performance
of a permanent-magnet DC motor, since this provokes electric loss due to
voltage drops at the contact between the brushes and plates, and mechani-
cal loss due to friction and arcing during commutation from one plate to the
next one caused by the inductance of the winding. The elimination of the
causes provoking such inconveniences, i.e., the brushes and plates, allows an
improvement of motor performance in terms of higher speeds and less material
wear.

The inversion between the functions of stator and rotor leads to further
advantages. The presence of a winding on the stator instead of the rotor fa-
cilitates heat disposal. The absence of a rotor winding, together with the pos-
sibility of using rare-earth permanent magnets, allows construction of more
compact rotors which are, in turn, characterized by a low moment of iner-
tia. Therefore, the size of a brushless DC motor is smaller than that of a
permanent-magnet DC motor of the same power; an improvement of dynamic
performance can also be obtained by using a brushless DC motor. For the
choice of the most suitable servomotor for a specific application, the cost
factor plays a relevant role.

Not uncommon are also stepper motors. These actuators are controlled
by suitable excitation sequences and their operating principle does not re-
quire measurement of motor shaft angular position. The dynamic behaviour
of stepper motors is greatly influenced by payload, though. Also, they induce
vibration of the mechanical structure of the manipulator. Such inconveniences
confine the use of stepper motors to the field of micromanipulators, for which
low-cost implementation prevails over the need for high dynamic performance.

A certain number of applications features the employment of hydraulic
servomotors, which are based on the simple operating principle of volume
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variation under the action of compressed fluid. From a construction viewpoint,
they are characterized by one or more chambers made by pistons (cylinders
reciprocating in tubular housings). Linear servomotors have a limited range
and are constituted by a single piston. Rotary servomotors have unlimited
range and are constituted by several pistons (usually an odd number) with an
axial or radial disposition with respect to the motor axis of rotation. These
servomotors offer a static and dynamic performance comparable with that
offered by electric servomotors.

The differences between electric and hydraulic servomotors can be funda-
mentally observed from a plant viewpoint. In this respect, electric servomotors
present the following advantages :

• widespread availability of power supply,
• low cost and wide range of products,
• high power conversion efficiency,
• easy maintenance,
• no pollution of working environment.

Instead, they present the following limitations:

• burnout problems at static situations caused by the effect of gravity on
the manipulator; emergency brakes are then required,

• need for special protection when operating in flammable environments.

Hydraulic servomotors present the following drawbacks :

• need for a hydraulic power station,
• high cost, narrow range of products, and difficulty of miniaturization,
• low power conversion efficiency,
• need for operational maintenance,
• pollution of working environment due to oil leakage.

In their favour it is worth pointing out that they:

• do not suffer from burnout in static situations,
• are self-lubricated and the circulating fluid facilitates heat disposal,
• are inherently safe in harmful environments,
• have excellent power-to-weight ratios.

From an operational viewpoint, it can be observed that:

• Both types of servomotors have a good dynamic behaviour, although the
electric servomotor has greater control flexibility. The dynamic behaviour
of a hydraulic servomotor depends on the temperature of the compressed
fluid.

• The electric servomotor is typically characterized by high speeds and low
torques, and as such it requires the use of gear transmissions (causing
elasticity and backlash). On the other hand, the hydraulic servomotor is
capable of generating high torques at low speeds.
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In view of the above remarks, hydraulic servomotors are specifically em-
ployed for manipulators that have to carry heavy payloads; in this case, not
only is the hydraulic servomotor the most suitable actuator, but also the cost
of the plant accounts for a reduced percentage on the total cost of the manip-
ulation system.

5.1.3 Power Amplifiers

The power amplifier has the task of modulating, under the action of a control
signal, the power flow which is provided by the primary supply and has to be
delivered to the actuators for the execution of the desired motion. In other
words, the amplifier takes a fraction of the power available at the source which
is proportional to the control signal; then it transmits this power to the motor
in terms of suitable force and flow quantities.

The inputs to the amplifier are the power taken from the primary source
Pp and the power associated with the control signal Pc. The total power is
partly delivered to the actuator (Pa) and partly lost in dissipation (Pda).

Given the typical use of electric and hydraulic servomotors, the operational
principles of the respective amplifiers are discussed.

To control an electric servomotor , it is necessary to provide it with a
voltage or current of suitable form depending on the kind of servomotor em-
ployed. Voltage (or current) is direct for permanent-magnet DC servomotors,
while it is alternating for brushless DC servomotors. The value of voltage for
permanent-magnet DC servomotors or the values of voltage and frequency for
brushless DC servomotors are determined by the control signal of the ampli-
fier, so as to make the motor execute the desired motion.

For the power ranges typically required by joint motions (of the order
of a few kilowatts), transistor amplifiers are employed which are suitably
switched by using pulse-width modulation (PWM) techniques. They allow the
achievement of a power conversion efficiency Pa/(Pp + Pc) greater than 0.9
and a power gain Pa/Pc of the order of 106. The amplifiers employed to con-
trol permanent-magnet DC servomotors are DC-to-DC converters (choppers),
whereas those employed to control brushless DC servomotors are DC-to-AC
converters (inverters).

Control of a hydraulic servomotor is performed by varying the flow rate of
the compressed fluid delivered to the motor. The task of modulating the flow
rate is typically entrusted to an interface (electro-hydraulic servovalve). This
allows a relationship to be established between the electric control signal and
the position of a distributor which is able to vary the flow rate of the fluid
transferred from the primary source to the motor. The electric control signal
is usually current-amplified and feeds a solenoid which moves (directly or in-
directly) the distributor, whose position is measured by a suitable transducer.
In this way, a position servo on the valve stem is obtained which reduces
occurrence of any stability problem that may arise on motor control. The
magnitude of the control signal determines the flow rate of the compressed

198 5 Actuators and Sensors

fluid through the distributor, according to a characteristic which is possibly
made linear by means of a keen mechanical design.

5.1.4 Power Supply

The task of the power supply is to supply the primary power to the amplifier
which is needed for operation of the actuating system.

In the case of electric servomotors, the power supply consists of a trans-
former and a typically uncontrolled bridge rectifier. These allow the alter-
nating voltage available from the distribution to be converted into a direct
voltage of suitable magnitude which is required to feed the power amplifier.

In the case of hydraulic servomotors, the power supply is obviously more
complex. In fact, a gear or piston pump is employed to compress the fluid
which is driven by a primary motor operating at constant speed, typically a
three-phase nonsynchronous motor. To reduce the unavoidable pressure oscil-
lations provoked by a flow rate demand depending on operational conditions
of the motor, a reservoir is interfaced to store hydraulic energy. Such a reser-
voir, in turn, plays the same role as the filter capacitor used at the output of a
bridge rectifier. The hydraulic power station is completed by the use of various
components (filters, pressure valves, and check valves) that ensure proper op-
eration of the system. Finally, it can be inferred how the presence of complex
hydraulic circuits operating at high pressures (of the order of 100 atm) causes
an appreciable pollution of the working environment.

5.2 Drives

This section presents the operation of the electric drives and the hydraulic
drives for the actuation of a manipulator’s joints. Starting from the math-
ematical models describing the dynamic behaviour, the block schemes are
derived which allow an emphasis on the control features and the effects of the
use of a mechanical transmission.

5.2.1 Electric Drives

From a modelling viewpoint, a permanent-magnet DC motor and a brushless
DC motor provided with the commutation module and position sensor can be
described by the same differential equations. In the domain of the complex
variable s, the electric balance of the armature is described by the equations

Va = (Ra + sLa)Ia + Vg (5.1)

Vg = kvΩm (5.2)

where Va and Ia respectively denote armature voltage and current, Ra and
La are respectively the armature resistance and inductance, and Vg denotes
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Fig. 5.2. Block scheme of an electric drive

the back electromotive force which is proportional to the angular velocity Ωm

through the voltage constant kv that depends on the construction details of
the motor as well as on the magnetic flux of the coil.

The mechanical balance is described by the equations

Cm = (sIm + Fm)Ωm + Cl (5.3)

Cm = ktIa (5.4)

where Cm and Cl respectively denote the driving torque and load reaction
torque, Im and Fm are respectively the moment of inertia and viscous friction
coefficient at the motor shaft, and the torque constant kt is numerically equal
to kv in the SI unit system for a compensated motor.

Concerning the power amplifier, the input/output relationship between
the control voltage Vc and the armature voltage Va is given by the transfer
function

Va

Vc

=
Gv

1 + sTv

(5.5)

where Gv denotes the voltage gain and Tv is a time constant that can be
neglected with respect to the other time constants of the system. In fact, by
using a modulation frequency in the range of 10 to 100 kHz, the time constant
of the amplifier is in the range of 10−5 to 10−4) s.

The block scheme of the servomotor with power amplifier (electric drive)
is illustrated in Fig. 5.2. In such a scheme, besides the blocks corresponding to
the above relations, there is an armature current feedback loop where current
is thought of as measured by a transducer ki between the power amplifier and
the armature winding of the motor. Further, the scheme features a current
regulator Ci(s) as well as an element with a nonlinear saturation characteris-
tic. The aim of such feedback is twofold. On one hand, the voltage V ′c plays
the role of a current reference and thus, by means of a suitable choice of the
regulator Ci(s), the lag between the current Ia and the voltage V ′c can be
reduced with respect to the lag between Ia and Vc. On the other hand, the
introduction of a saturation nonlinearity allows the limitation of the magni-
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Fig. 5.3. Block scheme of an electric drive as a velocity-controlled generator

tude of V ′c , and then it works like a current limit which ensures protection of
the power amplifier whenever abnormal operating conditions occur.

The choice of the regulator Ci(s) of the current loop allows a velocity-
controlled or torque-controlled behaviour to be obtained from the electric
drive, depending on the values attained by the loop gain. In fact, in the case
of ki = 0, recalling that the mechanical viscous friction coefficient is negligible
with respect to the electrical friction coefficient

Fm ≪ kvkt

Ra

, (5.6)

assuming a unit gain constant for Ci(s)
1 and Cl = 0 yields

ωm ≈ Gv

kv

v′c (5.7)

and thus the drive system behaves like a velocity-controlled generator .
Instead, when ki 6= 0, choosing a large loop gain for the current loop

(Kki ≫ Ra) leads at steady state to

cm ≈ kt

ki

(
v′c −

kv

Gv

ωm

)
; (5.8)

the drive behaves like a torque-controlled generator since, in view of the large
value of Gv, the driving torque is practically independent of the angular ve-
locity.

As regards the dynamic behaviour, it is worth considering a reduced-order
model which can be obtained by neglecting the electric time constant La/Ra

with respect to the mechanical time constant Im/Fm, assuming Tv ≈ 0 and
a purely proportional controller. These assumptions, together with ki = 0,
lead to the block scheme in Fig. 5.3 for the velocity-controlled generator. On
the other hand, if it is assumed Kki ≫ Ra and kvΩ/Kki ≈ 0, the resulting
block scheme of the torque-controlled generator is that in Fig. 5.4. From the

1 It is assumed Ci(0) = 1; in the case of presence of an integral action in Ci(s), it
should be lims→0 sC(s) = 1.
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Fig. 5.4. Block scheme of an electric drive as a torque-controlled generator

above schemes, the following input/output relations between control voltage,
reaction torque, and angular velocity can be derived:

Ωm =

1

kv

1 + s
RaIm

kvkt

GvV ′c −

Ra

kvkt

1 + s
RaIm

kvkt

Cl (5.9)

for the velocity-controlled generator, and

Ωm =

kt

kiFm

1 + s
Im

Fm

V ′c −

1

Fm

1 + s
Im

Fm

Cl (5.10)

for the torque-controlled generator. These transfer functions show how, with-
out current feedback, the system has a better rejection of disturbance torques
in terms of both equivalent gain (Ra/kvkt ≪ 1/Fm) and time response
(RaIm/kvkt ≪ Im/Fm).

The relationship between the control input and the actuator position out-
put can be expressed in a unified manner by the transfer function

M(s) =
km

s(1 + sTm)
(5.11)

where

km =
1

kv

Tm =
RaIm

kvkt

(5.12)

for the velocity-controlled generator, while for the torque-controlled generator
it is

km =
kt

kiFm

Tm =
Im

Fm

. (5.13)

Notice how the power amplifier, in the velocity control case, contributes to
the input/output relation with the constant Gv, while in the case of current
control the amplifier, being inside a local feedback loop, does not appear as a
stand alone but rather in the expression of km with a factor 1/ki.

These considerations lead to the following conclusions. In all such appli-
cations where the drive system has to provide high rejection of disturbance
torques (as in the case of independent joint control, see Sect. 8.3) it is not
advisable to have a current feedback in the loop, at least when all quantities
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Fig. 5.5. Block scheme of an electric drive with nonlinear current feedback

are within their nominal values. In this case, the problem of setting a pro-
tection can be solved by introducing a current limit that is not performed by
a saturation on the control signal but it exploits a current feedback with a
dead-zone nonlinearity on the feedback path, as shown in Fig. 5.5. Therefore,
an actual current limit is obtained whose precision is as high as the slope
of the dead zone; it is understood that stability of the current loop is to be
addressed when operating in this way.

As will be shown in Sect. 8.5, centralized control schemes, instead, demand
the drive system to behave as a torque-controlled generator. It is then clear
that a current feedback with a suitable regulator Ci(s) should be used so as
to confer a good static and dynamic behaviour to the current loop. In this
case, servoing of the driving torque is achieved indirectly, since it is based on a
current measurement which is related to the driving torque by means of gain
1/kt.

5.2.2 Hydraulic Drives

No matter how a hydraulic servomotor is constructed, the derivation of its
input/output mathematical model refers to the basic equations describing
the relationship between flow rate and pressure, the relationship between the
fluid and the parts in motion, and the mechanical balance of the parts in
motion. Let Q represent the volume flow rate supplied by the distributor; the
flow rate balance is given by the equation

Q = Qm + Ql + Qc (5.14)

where Qm is the flow rate transferred to the motor, Ql is the flow rate due to
leakage, and Qc is the flow rate related to fluid compressibility. The terms Ql

and Qc are taken into account in view of the high operating pressures (of the
order of 100 atm).

Let P denote the differential pressure of the servomotor due to the load;
then it can be assumed that

Ql = klP . (5.15)

Regarding the loss for compressibility, if V denotes the instantaneous volume
of the fluid, one has

Qc = γV sP (5.16)
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Fig. 5.6. Block scheme of a hydraulic drive

where γ is the uniform compressibility coefficient of the fluid. Notice that the
proportional factor kc = γV between the time derivative of the pressure and
the flow rate due to compressibility depends on the volume of the fluid; there-
fore, in the case of rotary servomotors, kc is a constant, whereas in the case
of a linear servomotor, the volume of fluid varies and thus the characteristic
of the response depends on the operating point.

The volume flow rate transferred to the motor is proportional to the vol-
ume variation in the chambers per time unit; with reference from now on to a
rotary servomotor, such variation is proportional to the angular velocity, and
then

Qm = kqΩm. (5.17)

The mechanical balance of the parts in motion is described by

Cm = (sIm + Fm)Ωm + Cl (5.18)

with obvious meaning of the symbols. Finally, the driving torque is propor-
tional to the differential pressure of the servomotor due to the load, i.e.,

Cm = ktP . (5.19)

Concerning the servovalve, the transfer function between the stem position
X and the control voltage Vc is expressed by

X

Vc

=
Gs

1 + sTs

(5.20)

thanks to the linearizing effect achieved by position feedback; Gs is the equiv-
alent gain of the servovalve, whereas its time constant Ts is of the order of ms
and thus it can be neglected with respect to the other time constants of the
system.

Finally, regarding the distributor, the relationship between the differen-
tial pressure, the flow rate, and the stem displacement is highly nonlinear;
linearization about an operating point leads to the equation

P = kxX − krQ. (5.21)
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Fig. 5.7. Schematic representation of a mechanical gear

By virtue of (5.14)–(5.21), the servovalve/distributor/motor complex (hy-
draulic drive) is represented by the block scheme of Fig. 5.6. A comparison
between the schemes in Figs. 5.2 and 5.6 clearly shows the formal analogy
in the dynamic behaviour of an electric and a hydraulic servomotor. Never-
theless, such analogy should not induce one to believe that it is possible to
make a hydraulic drive play the role of a velocity- or torque-controlled gener-
ator, as for an electric drive. In this case, the pressure feedback loop (formally
analogous to the current feedback loop) is indeed a structural characteristic
of the system and, as such, it cannot be modified but with the introduction
of suitable transducers and the realization of the relative control circuitry.

5.2.3 Transmission Effects

In order to describe quantitatively the effects introduced by the use of a trans-
mission (mechanical gear) between the servomotor and the actuated joint, it
is worth referring to the mechanical coupling realized by a pair of spur gears of
radius rm and r, which is schematically represented in Fig. 5.7; the kinematic
pair is assumed to be ideal (without backlash) and connects the rotation axis
of the servomotor with the axis of the corresponding joint.

With reference to an electric servomotor, it is assumed that the rotor of
the servomotor is characterized by an inertia moment Im about its rotation
axis and a viscous friction coefficient Fm; likewise, I and F denote the inertia
moment and the viscous friction coefficient of the load. The inertia moments
and the friction coefficients of the gears are assumed to have been included
in the corresponding parameters of the motor (for the gear of radius rm) and
of the load (for the gear of radius r). Let cm denote the driving torque of the
motor and cl the reaction torque applied to the load axis. Also let ωm and ϑm

denote the angular velocity and position of the motor axis, while ω and ϑ
denote the corresponding quantities at the load side. Finally, f indicates the
force exchanged at the contact between the teeth of the two gears.2

2 In the case considered, it has been assumed that both the motor and the load
are characterized by revolute motions; if the load should exhibit a translation
motion, the following arguments can be easily extended, with analogous results,
by replacing the angular displacements with linear displacements and the inertia
moments with masses at the load side.
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The gear reduction ratio is defined as

kr =
r

rm

=
ϑm

ϑ
=

ωm

ω
(5.22)

since, in the absence of slipping in the kinematic coupling, it is rmϑm = rϑ.
The gear reduction ratio, in the case when it is representative of the cou-

pling between a servomotor and the joint of a robot manipulator, attains
values much larger than unity (rm ≪ r) — typically from a few tens to a few
hundreds.

The force f exchanged between the two gears generates a reaction torque f ·
rm for the motion at the motor axis and a driving torque f · r for the rotation
motion of the load.

The mechanical balances at the motor side and the load side are respec-
tively:

cm = Imω̇m + Fmωm + frm (5.23)

fr = Iω̇ + Fω + cl. (5.24)

To describe the motion with reference to the motor angular velocity, in view
of (5.22), combining the two equations gives at the motor side

cm = Ieqω̇m + Feqωm +
cl

kr

(5.25)

where

Ieq =

(
Im +

I

k2
r

)
Feq =

(
Fm +

F

k2
r

)
. (5.26)

The expressions (5.25), (5.26) show how, in the case of a gear with large
reduction ratio, the inertia moment and the viscous friction coefficient of the
load are reflected at the motor axis with a reduction of a factor 1/k2

r ; the
reaction torque, instead, is reduced by a factor 1/kr. If this torque depends
on ϑ in a nonlinear fashion, then the presence of a large reduction ratio tends
to linearize the dynamic equation.

Example 5.1

In Fig. 5.8 a rigid pendulum is represented, which is actuated by the torque f · r to
the load axis after the gear. In this case, the dynamic equations of the system are

cm = Imω̇m + Fmωm + frm (5.27)

fr = Iω̇ + Fω + mgℓsin ϑ (5.28)

where I is the inertia moment of the pendulum at the load axis, F is the viscous fric-
tion coefficient, m is the pendulum mass, ℓ its length and g the gravity acceleration.
Reporting (5.28) to the motor axis gives

cm = Ieqω̇m + Feqωm +
(

mgℓ

kr

)
sin

(
ϑm

kr

)
(5.29)
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Fig. 5.8. Pendulum actuated via mechanical gear

from which it is clear how the contribution of the nonlinear term is reduced by the
factor kr.

The example of the pendulum has been considered to represent an n-link
manipulator with revolute joints, for which each link, considered as isolated
from the others, can be considered as a simple rigid pendulum. The connection
with other links introduces, in reality, other nonlinear effects which complicate
the input/output model; in this regard, it is sufficient to notice that, in the
case of a double pendulum, the inertia moment at the motor side of the first
link depends also on the angular position of the second link.

In Chap. 7 the effect introduced by the presence of transmissions in a
generic n-link manipulator structure will be studied in detail. Nevertheless, it
can already be understood how the nonlinear couplings between the motors of
the various links will be reduced by the presence of transmissions with large
reduction ratios.

5.2.4 Position Control

After having examined the modalities to control the angular velocity of an
electric or hydraulic drive, the motion control problem for a link of a generic
manipulator is to be solved. A structure is sought which must be capable of
determining, in an automatic way, the time evolution of the quantity chosen
to control the drive, so that the actuated joint executes the required motion
allowing the end-effector to execute a given task.

Once a trajectory has been specified for the end-effector pose, the solu-
tion of the inverse kinematics problem allows the computation of the desired
trajectories for the various joints, which thus can be considered as available.

Several control techniques can be adopted to control the manipulator mo-
tion; the choice of a particular solution depends on the required dynamic
performance, the kind of motion to execute, the kinematic structure, and the
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Fig. 5.9. General block scheme of electric drive control

choice to utilize either servomotors with transmissions or torque motors with
joint direct drive.

The simplest solution is to consider, at first approximation, the motion
of a joint independent of the motion of the other joints, i.e., the interaction
can be regarded as a disturbance. Assume the reference trajectory ϑr(t) is
available. According to classical automatic control theory, to ensure that the
angular motor position ϑm, properly measured by means of a transducer with
constant kTP , follows ϑr, it is worth resorting to a feedback control system
providing ‘robustness’ with respect to both model uncertainty on the motor
and the load, and the presence of a disturbance. A more detailed treatment
is deferred to Chap. 8, where the most congenial solutions to solve the above
problems will be presented.

In the following, the problem of joint position control is tackled by assum-
ing an electric DC servomotor; the choice is motivated by the diffusion of this
technology, due to the high flexibility of these actuators providing optimal
responses in the large majority of motion control applications.

The choice of a feedback control system to realize a position servo at
the motor axis requires the adoption of a controller ; this device generates
a signal which, applied to the power amplifier, automatically generates the
driving torque producing an axis motion very close to the desired motion ϑr.
Its structure should be so that the error between the reference input and the
measured output is minimized, even in the case of inaccurate knowledge of
the dynamics of the motor, the load, and a disturbance. The rejection action
of the disturbance is the more efficient, the smaller the magnitude of the
disturbance.

On the other hand, according to (5.9), the disturbance is minimized, pro-
vided the drive is velocity-controlled. In this case, in view of (5.6), the reaction
torque influences the motor axis velocity with a coefficient equal to Ra/kvkt

which is much smaller than 1/Fm, which represents instead the weight on
the reaction torque in the case when the drive is torque-controlled. Therefore,
with reference to Fig. 5.3, the general scheme of drive control with position
feedback is illustrated in Fig. 5.9, where the disturbance d represents the load
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Fig. 5.10. Block scheme of drive control with position feedback

torque and the value of the power amplifier gain has been included in the
control action.

Besides reducing the effects of the disturbance on the output, the structure
of the controller must ensure an optimal trade-off between the stability of the
feedback control system and the capability of the output to dynamically track
the reference with a reduced error.

The reduction of the disturbance effects on the output can be achieved
by conferring a large value of the gain before the point of intervention of
the disturbance, without affecting stability. If, at steady state (ϑr = cost,
cl = cost), it is desired to cancel the disturbance effect on the output, the
controller must act an integral action on the error given by the difference
between ϑr and kTP ϑm.

The above requirements suggest the use of a simple controller with an in-
tegral and a proportional action on the error; the proportional action is added
to realize a stabilizing action, which, however, cannot confer to the closed-loop
system a damped transient response with a sufficiently short sampling time.
This behaviour is due to the presence of a double pole at the origin of the
transfer function of the forward path.

The resulting control scheme is illustrated in Fig. 5.10, where km and Tm

are respectively the voltage-to-velocity gain constant and the characteristic
time constant of the motor in (5.12). The parameters of the controller KP

and TP should be keenly chosen so as to ensure stability of the feedback
control system and obtain a good dynamic behaviour.

To improve the transient response, the industrial drives employed for po-
sition servoing may also include a local feedback loop based on the angular
velocity measurement (tachometer feedback). The general scheme with po-
sition and velocity feedback is illustrated in Fig. 5.11; besides the position
transducer, a velocity transducer is used with constant kTV , as well as a sim-
ple proportional controller with gain KP . With the adoption of the tachometer
feedback, the proportional-integral controller with parameters KV and TV is
retained in the internal velocity loop so as to cancel the effects of the distur-
bance on the position ϑm at steady state. The presence of two feedback loops,
in lieu of one, around the intervention point of the disturbance is expected
to lead to a further reduction of the disturbance effects on the output also
during the transients.



5.3 Proprioceptive Sensors 209

Fig. 5.11. Block scheme of drive control with position and velocity feedback

The adoption of tachometer feedback may also improve the transient re-
sponse of the whole control system with respect to the previous case. With
a keen choice of the controller parameters, indeed, it is possible to achieve a
transfer function between ϑm and ϑr with a larger bandwidth and reduced
resonance phenomena. The result is a faster transient response with reduced
oscillations, thus improving the capability of ϑm(t) to track more demanding
reference trajectories ϑr(t).

The above analysis will be further detailed in Sect. 8.3.
The position servo may also utilize a current-controller motor; the schemes

in Figs. 5.9–5.11 can be adopted, provided that the constants in (5.13) are
used in the transfer function (5.11) and the disturbance D is weighed with
the quantity ki/kt in lieu of Ra/kt. In that case, the voltage gain Gv of the
power amplifier will not contribute to the control action.

As a final consideration, the general control structure presented above
may be extended to the case when the motor is coupled to a load via a gear
reduction. In such a case, it is sufficient to account for (5.25) and (5.26), i.e.,
replace Im and Fm with the quantities Ieq and Feq, and scale the disturbance
by the factor 1/kr.

5.3 Proprioceptive Sensors

The adoption of sensors is of crucial importance to achieve high-performance
robotic systems. It is worth classifying sensors into proprioceptive sensors that
measure the internal state of the manipulator, and exteroceptive sensors that
provide the robot with knowledge of the surrounding environment.

In order to guarantee that a coordinated motion of the mechanical struc-
ture is obtained in correspondence of the task planning, suitable parameter
identification and control algorithms are used which require the on-line mea-
surement, by means of proprioceptive sensors, of the quantities characterizing
the internal state of the manipulator, i.e.:
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• joint velocities,
• joint torques.

On the other hand, typical exteroceptive sensors include:

• force sensors,
• tactile sensors,
• proximity sensors,
• range sensors,
• vision sensors.

The goal of such sensors is to extract the features characterizing the in-
teraction of the robot with the objects in the environment, so as to enhance
the degree of autonomy of the system. To this class also belong those sensors
which are specific for the robotic application, such as sound, humidity, smoke,
pressure, and temperature sensors. Fusion of the available sensory data can
be used for (high-level) task planning, which in turn characterizes a robot as
the intelligent connection of perception to action.

In the following, the main features of the proprioceptive sensors are illus-
trated, while those of the exteroceptive sensors will be presented in the next
section.

5.3.1 Position Transducers

The aim of position transducers is to provide an electric signal proportional
to the linear or angular displacement of a mechanical apparatus with respect
to a given reference position. They are mostly utilized for control of machine
tools, and thus their range is wide. Potentiometers, linear variable-differential
transformers (LVDT), and inductosyns may be used to measure linear dis-
placements. Potentiometers, encoders, resolvers and synchros may be used to
measure angular displacements.

Angular displacement transducers are typically employed in robotics ap-
plications since, also for prismatic joints, the servomotor is of a rotary type.
In view of their precision, robustness and reliability, the most common trans-
ducers are the encoders and resolvers, whose operating principles are detailed
in what follows.

On the other hand, linear displacement transducers (LVDT’s and induc-
tosyns) are mainly employed in measuring robots.

Encoder

There are two types of encoder: absolute and incremental. The absolute en-
coder consists of an optical-glass disk on which concentric circles (tracks) are
disposed; each track has an alternating sequence of transparent sectors and
matte sectors obtained by deposit of a metallic film. A light beam is emitted in

• joint positions,
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Fig. 5.12. Schematic representation of an absolute encoder

correspondence of each track which is intercepted by a photodiode or a photo-
transistor located on the opposite side of the disk. By a suitable arrangement
of the transparent and matte sectors, it is possible to convert a finite number
of angular positions into corresponding digital data. The number of tracks
determines the length of the word, and thus the resolution of the encoder.

To avoid problems of incorrect measurement in correspondence of a si-
multaneous multiple transition between matte and transparent sectors, it is
worth utilizing a Gray-code encoder whose schematic representation is given
in Fig. 5.12 with reference to the implementation of 4 tracks that allow the
discrimination of 16 angular positions. It can be noticed that measurement
ambiguity is eliminated, since only one change of contrast occurs at each tran-
sition (Table 5.1). For the typical resolution required for joint control, absolute
encoders with a minimum number of 12 tracks (bits) are employed (resolution
of 1/4096 per circle). Such encoders can provide unambiguous measurements
only in a circle. If a gear reduction is present, a circle at the joint side cor-
responds to several circles at the motor side, and thus a simple electronics is
needed to count and store the number of actual circles.

Table 5.1. Coding table with Gray-code

# Code # Code

0 0000 8 1100
1 0001 9 1101
2 0011 10 1111
3 0010 11 1110
4 0110 12 1010
5 0111 13 1011
6 0101 14 1001
7 0100 15 1000
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Fig. 5.13. Schematic representation of an incremental encoder

Incremental encoders have a wider use than absolute encoders, since they
are simpler from a construction viewpoint and thus cheaper. Like the absolute
one, the incremental encoder consists of an optical disk on which two tracks
are disposed, whose transparent and matte sectors (in equal number on the
two tracks) are mutually in quadrature. The presence of two tracks also allows,
besides the number of transitions associated with any angular rotation, the
detection of the sign of rotation. Often a third track is present with one single
matte sector which allows the definition of an absolute mechanical zero as
a reference for angular position. A schematic representation is illustrated in
Fig. 5.13.

The use of an incremental encoder for a joint actuating system clearly
demands the evaluation of absolute positions. This is performed by means of
suitable counting and storing electronic circuits. To this end, it is worth notic-
ing that the position information is available on volatile memories, and thus
it can be corrupted due to the effect of disturbances acting on the electronic
circuit, or else fluctuations in the supply voltage. Such limitation obviously
does not occur for absolute encoders, since the angular position information
is coded directly on the optical disk.

The optical encoder has its own signal processing electronics inside the
case, which provides direct digital position measurements to be interfaced with
the control computer. If an external circuitry is employed, velocity measure-
ments can be reconstructed from position measurements. In fact, if a pulse
is generated at each transition, a velocity measurement can be obtained in
three possible ways, namely, by using a voltage-to-frequency converter (with
analog output), by (digitally) measuring the frequency of the pulse train, or
by (digitally) measuring the sampling time of the pulse train. Between these
last two techniques, the former is suitable for high-speed measurements while
the latter is suitable for low-speed measurements.
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Fig. 5.14. Electric scheme of a resolver with functional diagram of a tracking-type
RDC

Resolver

The resolver is an electromechanical position transducer which is compact
and robust. Its operating principle is based on the mutual induction between
two electric circuits which allow continuous transmission of angular position
without mechanical limits. The information on the angular position is asso-
ciated with the magnitude of two sinusoidal voltages, which are treated by a
suitable resolver-to-digital converter (RDC) to obtain the digital data corre-
sponding to the position measurement. The electric scheme of a resolver with
the functional diagram of a tracking-type RDC is illustrated in Fig. 5.14.

From a construction viewpoint, the resolver is a small electric machine
with a rotor and a stator; the inductance coil is on the rotor while the stator
has two windings at 90 electrical degrees one from the other. By feeding the
rotor with a sinusoidal voltage V sin ωt (with typical frequencies in the range
of 0.4 to 10 kHz), a voltage is induced on the stator windings whose magni-
tude depends on the rotation angle θ. The two voltages are fed to two digital
multipliers, whose input is α and whose outputs are algebraically summed
to achieve V sinωt sin (θ − α); this signal is then amplified and sent to the
input of a synchronous detector, whose filtered output is proportional to the
quantity sin (θ − α). The resulting signal, after a suitable compensating ac-
tion, is integrated and then sent to the input of a voltage-controlled oscillator
(VCO) (a voltage-to-frequency converter) whose output pulses are input to a
forward-backward counter. Digital data of the quantity α are available on the
output register of the counter, which represent a measurement of the angle θ.

It can be recognized that the converter works according to a feedback
principle. The presence of two integrators (one is represented by the forward-
backward counter) in the loop ensures that the (digital) position and (analog)
velocity measurements are error-free as long as the rotor rotates at constant
speed; actually, a round-off error occurs on the word α and thus affects the
position measurement. The compensating action is needed to confer suitable
stability properties and bandwidth to the system. Whenever digital data are
wished also for velocity measurements, it is necessary to use an analog-to-
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digital converter. Since the resolver is a very precise transducer, a resolution
of 1 bit out of 16 can be obtained at the output of the RDC.

5.3.2 Velocity Transducers

Even though velocity measurements can be reconstructed from position trans-
ducers, it is often preferred to resort to direct measurements of velocity, by
means of suitable transducers. Velocity transducers are employed in a wide
number of applications and are termed tachometers . The most common de-
vices of this kind are based on the operating principles of electric machines.
The two basic types of tachometers are the direct-current (DC) tachometer
and the alternating-current (AC) tachometer .

DC tachometer

The direct-current tachometer is the most used transducer in the applications.
It is a small DC generator whose magnetic field is provided by a permanent
magnet. Special care is paid to its construction, so as to achieve a linear
input/output relationship and to reduce the effects of magnetic hysteresis
and temperature. Since the field flux is constant, when the rotor is set in
rotation, its output voltage is proportional to angular speed according to the
constant characteristic of the machine.

Because of the presence of a commutator, the output voltage has a resid-
ual ripple which cannot be eliminated by proper filtering, since its frequency
depends on angular speed. A linearity range of 0.1 to 1% can be obtained,
whereas the residual ripple coefficient is of 2 to 5% of the mean value of the
output signal.

AC tachometer

In order to avoid the drawbacks caused by the presence of a residual ripple in
the output of a DC tachometer, one may resort to an AC tachometer. While
the DC tachometer is a true DC generator, the AC tachometer differs from a
generator. In fact, if a synchronous generator would be used, the frequency of
the output signal would be proportional to the angular speed.

To obtain an alternating voltage whose magnitude is proportional to speed,
one may resort to an electric machine that is structurally different from the
synchronous generator. The AC tachometer has two windings on the stator
mutually in quadrature and a cup rotor. If one of the windings is fed by a
constant-magnitude sinusoidal voltage, a sinusoidal voltage is induced on the
other winding which has the same frequency, a magnitude proportional to
angular speed, and a phase equal or opposite to that of the input voltage
according to the sign of rotation; the exciting frequency is usually set to
400 Hz. The use of a synchronous detector then yields an analog measurement
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Fig. 5.15. a) Schematic representation of a strain gauge. b) Its insertion in a
Wheatstone bridge

of angular velocity. In this case, the output ripple can be eliminated by a
proper filter, since its fundamental frequency is twice as much as the supply
frequency.

The performance of AC tachometers is comparable to that of DC tachome-
ters. Two further advantages of AC tachometers are the lack of wiping contacts
and the presence of a low moment of inertia, in view of the use of a lightweight
cup rotor. However, a residual voltage occurs, even when the rotor is still, be-
cause of the unavoidable parasitic couplings between the stator coil and the
measurement circuitry.

5.4 Exteroceptive Sensors

5.4.1 Force Sensors

Measurement of a force or torque is usually reduced to measurement of the
strain induced by the force (torque) applied to an extensible element of suit-
able features. Therefore, an indirect measurement of force is obtained by
means of measurements of small displacements. The basic component of a
force sensor is the strain gauge which uses the change of electric resistance of
a wire under strain.

Strain gauge

The strain gauge consists of a wire of low temperature coefficient. The wire is
disposed on an insulated support (Fig. 5.15a) which is glued to the element
subject to strain under the action of a stress. Dimensions of the wire change
and then they cause a change of electric resistance.

The strain gauge is chosen in such a way that the resistance Rs changes
linearly in the range of admissible strain for the extensible element. To trans-
form changes of resistance into an electric signal, the strain gauge is inserted in
one arm of a Wheatstone bridge which is balanced in the absence of stress on
the strain gauge itself. From Fig. 5.15b it can be understood that the voltage
balance in the bridge is described by

Vo =

(
R2

R1 + R2

− Rs

R3 + Rs

)
Vi. (5.30)
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If temperature variations occur, the wire changes its dimension without
application of any external stress. To reduce the effect of temperature varia-
tions on the measurement output, it is worth inserting another strain gauge
in an adjacent arm of the bridge, which is glued on a portion of the extensible
element not subject to strain.

Finally, to increase bridge sensitivity, two strain gauges may be used which
have to be glued on the extensible element in such a way that one strain gauge
is subject to traction and the other to compression; the two strain gauges then
have to be inserted in two adjacent arms of the bridge.

Shaft torque sensor

In order to employ a servomotor as a torque-controlled generator, an indirect
measurement of the driving torque is typically used, e.g., through the mea-
surement of armature current in a permanent-magnet DC servomotor. If it is
desired to guarantee insensitivity to change of parameters relating torque to
the measured physical quantities, it is necessary to resort to a direct torque
measurement.

The torque delivered by the servomotor to the joint can be measured by
strain gauges mounted on an extensible apparatus interposed between the
motor and the joint, e.g., a hollow shafting. Such apparatus must have low
torsional stiffness and high bending stiffness, and it must ensure a proportional
relationship between the applied torque and the induced strain.

By connecting the strain gauges mounted on the hollow shafting (in a
Wheatstone bridge configuration) to a slip ring by means of graphite brushes,
it is possible to feed the bridge and measure the resulting unbalanced signal
which is proportional to the applied torque.

The measured torque is that delivered by the servomotor to the joint, and
thus it does not coincide with the driving torque Cm in the block schemes of
the actuating systems in Fig. 5.2 and in Fig. 5.6. In fact, such measurement
does not account for the inertial and friction torque contributions as well as
for the transmission located upstream of the measurement point.

Wrist force sensor

When the manipulator’s end-effector is in contact with the working environ-
ment, the force sensor allows the measurement of the three components of a
force and the three components of a moment with respect to a frame attached
to it.

As illustrated in Fig. 5.16, the sensor is employed as a connecting apparatus
at the wrist between the outer link of the manipulator and the end-effector.
The connection is made by means of a suitable number of extensible elements
subject to strain under the action of a force and a moment. Strain gauges
are glued on each element which provide strain measurements. The elements
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Fig. 5.16. Use of a force sensor on the outer link of a manipulator

have to be disposed in a keen way so that at least one element is appreciably
deformed for any possible orientation of forces and moments.

Furthermore, the single force component with respect to the frame at-
tached to the sensor should induce the least possible number of deformations,
so as to obtain good structural decoupling of force components. Since a com-
plete decoupling cannot be achieved, the number of significant deformations
to reconstruct the six components of the force and moment vector is greater
than six.

A typical force sensor is that where the extensible elements are disposed as
in a Maltese cross; this is schematically indicated in Fig. 5.17. The elements
connecting the outer link with the end-effector are four bars with a rectangular
parallelepiped shape. On the opposite sides of each bar, a pair of strain gauges
is glued that constitute two arms of a Wheatstone bridge; there is a total of
eight bridges and thus the possibility of measuring eight strains.

The matrix relating strain measurements to the force components ex-
pressed in a Frame s attached to the sensor is termed sensor calibration matrix .
Let wi, for i = 1, . . . , 8, denote the outputs of the eight bridges providing mea-
surement of the strains induced by the applied forces on the bars according
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Fig. 5.17. Schematic representation of a Maltese-cross force sensor

to the directions specified in Fig. 5.17. Then, the calibration matrix is given
by the transformation
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Reconstruction of force measurements through the calibration matrix is en-
trusted to suitable signal processing circuitry available in the sensor.

Typical sensors have a diameter of about 10 cm and a height of about 5 cm,
with a measurement range of 50 to 500 N for the forces and of 5 to 70 N·m for
the torques, and a resolution of the order of 0.1% of the maximum force and
of 0.05% of the maximum torque, respectively; the sampling frequency at the
output of the processing circuitry is of the order of 1 kHz.

Finally, it is worth noticing that force sensor measurements cannot be
directly used by a force/motion control algorithm, since they describe the
equivalent forces acting on the sensors which differ from the forces applied to
the manipulator’s end-effector (Fig. 5.16). It is therefore necessary to trans-
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form those forces from the sensor Frame s into the constraint Frame c; in view
of the transformation in (3.116), one has

[
f c

c

µc
c

]
=

[
Rc

s O

S(rc
cs)R

c
s Rc

s

] [
fs

s

µs
s

]
(5.32)

which requires knowledge of the position rc
cs of the origin of Frame s with

respect to Frame c as well as of the orientation Rc
s of Frame s with respect

to Frame c. Both such quantities are expressed in Frame c, and thus they are
constant only if the end-effector is still, once contact has been achieved.

5.4.2 Range Sensors

The primary function of the exteroceptive sensors is to provide the robot with
the information needed to execute ‘intelligent’ actions in an autonomous way.
To this end, it is crucial to detect the presence of an object in the workspace
and eventually to measure its range from the robot along a given direction.

The former kind of data is provided by the proximity sensors, a simplified
type of range sensors, capable of detecting only the presence of objects nearby
the sensitive part of the sensor, without a physical contact. The distance
within which such sensors detect objects is defined sensitive range.

In the more general case, range sensors are capable of providing structured
data, given by the distance of the measured object and the corresponding
measurement direction, i.e., the position in space of the detected object with
respect to the sensor.

The data provided by the range sensors are used in robotics to avoid
obstacles, build maps of the environment, recognize objects.

The most popular range sensors in robotics applications are those based
on sound propagation through an elastic fluid, the so-called sonars (SOund
NAvigation and Ranging), and those exploiting light propagation features, the
so-called lasers (Light Amplification by Stimulated Emission of Radiation).
In the following, the main features of these two sensors are illustrated.

Sonars

The sonars employ acoustic pulses and their echoes to measure the range to an
object. Since the sound speed is usually known for a given media (air, water),
the range to an object is proportional to the echo travel time, commonly called
time-of-flight , i.e., the time which the acoustic wave takes to cover the distance
sensor-object-sensor. Sonars are widely utilized in robotics, and especially in
mobile and underwater robotics. Their popularity is due to their low cost, light
weight, low power consumption, and low computational effort, compared to
other ranging sensors. In some applications, such as in underwater and low-
visibility environments, the sonar is often the only viable sensing modality.

Despite a few rare examples of sonars operating at audible frequencies
for human ears (about 20 Hz to 20 KHz), the ultrasound frequencies (higher
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Fig. 5.18. Sonar ranging principle

than 20 KHz) are the most widely used to realize this type of sensor. Typical
frequencies in robotics range from 20 KHz to 200 KHz, even though higher
values (of the order of MHz) can be achieved utilizing piezoelectric quartz
crystals. In this range, the energy of the wave emitted by the sonar can be
regarded as concentrated in a conical volume whose beamwidth depends on
the frequency as well as on the transducer diameter. Further to measuring
range, sonars provide qualitative directional data on the object which has
generated the echo. For the most common sensors in robotics, the beamwidth
of the energy beam is typically not smaller than 15 deg. Obviously, for smaller
beamwidths, higher angular resolutions can be obtained.

The main components of a sonar measurement system are a transducer,
which is vibrated and transforms acoustic energy into electric energy and vice
versa, and a circuitry for the excitation of the transducer and the detection of
the reflected signal. Figure 5.18 schematically illustrates the operating prin-
ciple: the pulse I emitted by the transducer, after hitting the object O found
in the emission cone of the sensor, is partly reflected (echo E) towards the
sound source and thus detected. The time-of-flight tv is the time between the
emission of the ultrasound pulse and the reception of the echo. The object
range dO can be computed from tv using the relation

dO =
cstv
2

(5.33)

where cs is sound speed, which in low-humidity air depends on the tempera-
ture T (measured in centigrade) according to the expression

cs ≈ 20.05
√

T + 273.16 m/s. (5.34)

In the scheme of Fig. 5.18 the use of a sole transducer is represented for
the transmission of the pulse and the reception of the echo. This configura-
tion requires that the commutation from transmitter to receiver takes place
after a certain latency time which depends not only on the duration of the
transmitted pulse but also on the mechanical inertia of the transducer.

Despite the low cost and ease of use, however, these sensors have non-
negligible limits with respect to the angular and radial resolution, as well as
to the minimum and maximum measurement range that can be achieved. In
particular, the width of the radiation cone decreases as frequency increases
with improved angular resolution. A higher frequency leads to greater radial
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Fig. 5.19. Reflector models on smooth surfaces: a) non-detected plane. b) non-
detected corner. c) plane with false detection (O real object, Ov virtual object
detected)

resolution and contributes to reducing the minimum range that can be de-
tected by the sonar. Nevertheless, there is a lower limit because of the lapse
time when reception is inhibited to avoid interference with the reflected sig-
nal — in certain cases better performance can be obtained by employing two
distinct transducers for the emission and the detection. On the other hand,
too high frequencies may exasperate absorbtion phenomena, depending on the
features of the surface generating the echo. Such phenomena further reduce
the power of the transmitted signal — decreasing with the square of the range
covered by the ultrasound wave — thus reducing the maximum limit of the
measurement time.

Piezoelectric and electrostatic transducers are the two major types avail-
able that operate in air and can in principle operate both as a transmitter
and receiver.

The piezoelectric transducers exploit the property of some crystal materials
to deform under the action of an electric field and vibrate when a voltage is
applied at the resonant frequency of the crystal. The efficiency of the acoustic
match of these transducers with compressible fluids such as air is rather low.
Often a conical concave horn is mounted on the crystal to match acoustically
the crystal acoustic impedance to that of air. Being of resonant type, these
transducers are characterized by a rather low bandwidth and show a significant
mechanical inertia which severely limits the minimum detectable range, thus
justifying the use of two distinct transducers as transmitter and receiver.

The electrostatic transducers operate as capacitors whose capacitance
varies moving and/or deforming one of its plates. A typical construction con-
sists of a gold-coated plastic foil membrane (mobile plate) stretched across a
round grooved aluminium back plate (fixed plate). When the transducer op-
erates as receiver, the change of capacitance, induced by the deformation of
the membrane under the acoustic pressure, produces a proportional change of
the voltage across the capacitor, assuming that the foil charge is constant. As
a transmitter, the transducer membrane is vibrated by applying a sequence
of electric pulses across the capacitor. The electric oscillations generate, as
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Fig. 5.20. Time-of-flight laser sensor operating principle

a result of the induced electric field, a mechanical force which vibrates the
mobile plate.

Since the electrostatic transducers can operate at different frequencies,
they are characterized by large bandwidth and high sensitivity, low mechan-
ical inertia and rather efficient acoustic match with air. As compared to the
piezoelectric transducers, however, they can operate at lower maximum fre-
quencies (a few hundreds kHz vs a few MHz) and require a bias voltage which
complicates the control electronics. Among the ultrasound measurement sys-
tems with capacitive transducers, it is worth mentioning the Polaroid sonar,
initially developed for autofocus systems and later widely employed as range
sensors in several robotic applications. The 600 series sensor utilizes a ca-
pacitive transducer of the type described above with a diameter of almost
4 cm, operates at 50 kHz frequency and is characterized by a beamwidth of
15 deg, can detect a maximum range of about 10 m and a mimimum range
of about 15 cm with an accuracy of ±1% across the measurement range. The
bias voltage is 200 V with current absorbtion peaks of 2 A in transmission.

Accuracy of ultrasound range sensors depends on the features of the trans-
ducer and the excitation/detection circuitry, as well as on the reflective prop-
erties of the surfaces hit by the acoustic waves.

Smooth surfaces, i.e., those characterized by irregularities of comparable
size to that of the wavelength corresponding to the employed frequency, may
produce a non-detectable echo at the sensor (Figura 5.19a,b) if the incident
angle of the ultrasound beam exceeds a given critical angle which depends
on the operational frequency and the reflective material. In the case of the
Polaroid sensors, this angle is equal to 65 deg, i.e., 25 deg from the normal
to the reflective surface, for a smooth surface in plywood. When operating in
complex environments, such mirror reflections may give rise to multiple reflec-
tions, thus causing range measurement errors or false detection (Fig. 5.19c).

Lasers

In the construction of optical measurement systems, the laser beam is usually
preferred to other light sources for the following reasons:
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• They can easily generate bright beams with lightweight sources.
• The infrared beams can be used unobtrusively.
• They focus well to give narrow beams.
• Single-frequency sources allow easier rejection filtering of unwanted fre-

quencies, and do not disperse from refraction as much as full spectrum
sources.

There are two types of laser-based range sensors in common use: the time-
of-flight sensors and the triangulation sensors.

The time-of-flight sensors compute distance by measuring the time that a
pulse of light takes to travel from the source to the observed target and then to
the detector (usually collocated with the source). The travel time multiplied
by the speed of light (properly adjusted for the air temperature) gives the
distance measurement. The operating principle of a time-of-flight laser sensor
is illustrated in Fig. 5.20.

Limitations on the accuracy of these sensors are based on the minimum
observation time — and thus the minimum distance observable, the temporal
accuracy (or quantization) of the receiver, and the temporal width of the
laser pulse. Such limitations are not only of a technological nature. In many
cases, cost is the limiting factor of these measurement devices. For instance, to
obtain 1 mm resolution, a time accuracy of about 3 ps, which can be achieved
only by using rather expensive technology.

Many time-of-flight sensors used have what is called an ambiguity inter-
val . The sensor emits pulses of light periodically, and computes an average
target distance from the time of the returning pulses. Typically, to simplify
the detection electronics of these sensors, the receiver only accepts signals
that arrive within time ∆t, but this time window might also observe previous
pulses reflected by more distant surfaces. This means that a measurement is
ambiguous to the multiple of 1

2
c∆t, where c is the speed of light. Typical

values of 1

2
c∆t are 20–40 m.

In certain conditions, suitable algorithms can be employed to recover the
true depth by assuming that the distances should be changing smoothly.

The time-of-flight sensors transmit only a single beam, thus range mea-
surements are only obtained from a single surface point. In order to obtain
more information, the range data is usually supplied as a vector of range to
surfaces lying in a plane or as an image. To obtain these denser representa-
tions, the laser beam is swept across the scene. Normally the beam is swept
by a set of mirrors rather than moving the laser and detector themselves —
mirrors are lighter and less prone to motion damage.

Typical time-of-flight sensors suitable for mobile robotics applications have
a range of 5–100 m, an accuracy of 5–10 mm, and a frequency of data acqui-
sition per second of 1000–25000 Hz.
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Fig. 5.21. Triangulation laser sensor operating principle

The operating principle of triangulation laser sensors3 is illustrated in
Fig. 5.21.

The laser beam emitted by a photodiode is projected onto the observed
surface. The reflected beam is focused on a CCD sensor by means of a suitable
lens. Obviously, reflection must be diffused. The position of the focused beam
reflected to the receiver gives rise to a signal which is proportional to the
distance of the transmitter from the object. In fact, from the measurement
of the CCD sensor it is possible to resort to the angle at which the reflected
energy hits the sensor. Once the relative position and orientation of the CCD
sensor with respect to the photodiode are known, as e.g. through a suitable
calibration procedure, it is possible to compute the distance from the object
with simple geometry.

Accuracy can be influenced by certain object surfaces not favouring reflec-
tion, differences or changes of colour. Such occurrences can be mitigated or
even eliminated with modern electronic technology and automatic regulation
of light intensity.

The possibility of controlling the laser beam light brings the following
advantages:

3 The triangulation method is based on the trigonometric properties of triangles
and in particular on the cosine theorem. The method allows the computation
of the distance between two non-directly accessible points, i.e., once two angles
and one side of a triangle are known, it is possible to determine the other two
sides. For the case at issue, one side is given by the distance between the emitter
(laser) and the receiver (the CCD sensor), one angle is given by the orientation
of the emitter with respect to that side and the other angle can be computed
from the position of the laser beam on the image plane. In practice, it is not easy
to compute the above quantities, and suitable calibration techniques are to be
employed which avoid such computation to determine the distance measurement.
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Fig. 5.22. Schematic representation of a vision system

• If the laser beam wavelength is known, e.g. that of the visible red 670 nm,
highly selective filters can be used which are set to the same frequency to
reduce the effects of other light sources.

• The laser beam may be remodelled through lenses and mirrors so as to
create multiple beams or laser strips to measure multiple 3D points simul-
taneously.

• The direction of the laser beam can be controlled directly by the control
system to observe selectively only those portions of the scene of interest.

The main limitations of this type of sensors are the potential eye safety
risks from the power of lasers, particularly when invisible laser frequencies
are used (commonly infrared), as well as the false specular reflections from
metallic and polished objects.

5.4.3 Vision Sensors

The task of a camera as a vision sensor is to measure the intensity of the
light reflected by an object. To this end, a photosensitive element, termed
pixel (or photosite), is employed, which is capable of transforming light energy
into electric energy. Different types of sensors are available depending on the
physical principle exploited to realize the energy transformation. The most
widely used devices are CCD and CMOS sensors based on the photoelectric
effect of semiconductors.

CCD

A CCD (Charge Coupled Device) sensor consists of a rectangular array of pho-
tosites. Due to the photoelectric effect, when a photon hits the semiconductor
surface, a number of free electrons are created, so that each element accumu-
lates a charge depending on the time integral of the incident illumination over
the photosensitive element. This charge is then passed by a transport mech-
anism (similar to an analog shift register) to the output amplifier, while at
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Fig. 5.23. Perspective transformation

the same time the photosite is discharged. The electric signal is to be further
processed in order to produce the real video signal .

CMOS

A CMOS (Complementary Metal Oxide Semiconductor) sensor consists of
a rectangular array of photodiodes. The junction of each photodiode is
precharged and it is discharged when hit by photons. An amplifier integrated
in each pixel can transform this charge into a voltage or current level. The
main difference with the CCD sensor is that the pixels of a CMOS sensor are
non-integrating devices; after being activated they measure throughput, not
volume. In this manner, a saturated pixel will never overflow and influence a
neighboring pixel. This prevents the effect of blooming , which indeed affects
CCD sensors.

Camera

As sketched in Fig. 5.22, a camera is a complex system comprising several
devices other than the photosensitive sensor, i.e., a shutter , a lens and analog
preprocessing electronics. The lens is responsible for focusing the light reflected
by the object on the plane where the photosensitive sensor lies, called the
image plane.

With reference to Fig. 5.23, consider a frame Oc–xcyczc attached to the
camera, whose location with respect to the base frame is identified by the
homogeneous transformation matrix T b

c. Take a point of the object of coor-

dinates pc = [ pc
x pc

y pc
z ]

T
; typically, the centroid of the object is chosen.

Then, the coordinate transformation from the base frame to the camera frame
is described as

p̃
c = T c

bp̃, (5.35)
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where p denotes the object position with respect to the base frame and ho-
mogeneous representations of vectors have been used.

A reference frame can be introduced on the image plane, whose axes X
and Y are parallel to the axes xc and yc of the camera frame, and the origin is
at the intersection of the optical axis with the image plane, termed principal
point. Due to the refraction phenomenon, the point in the camera frame is
transformed into a point in the image plane via the perspective transformation,
i.e.,

Xf = −fpc
x

pc
z

Yf = −
fpc

y

pc
z

where (Xf , Yf ) are the new coordinates in the frame defined on the image
plane, and f is the focal length of the lens. Notice that these coordinates are
expressed in metric units and the above transformation is singular at pc

z = 0.
The presence of the minus sign in the equations of the perspective transfor-

mation is consistent with the fact that the image of an object appears upside
down on the image plane of the camera. Such an effect can be avoided, for
computational ease, by considering a virtual image plane positioned before
the lens, in correspondence of the plane zc = f of the camera frame. In this
way, the model represented in Fig. 5.24 is obtained, which is characterized by
the frontal perspective transformation

Xf =
fpc

x

pc
z

(5.36)

Yf =
fpc

y

pc
z

(5.37)

where, with abuse of notation, the name of the variables on the virtual plane
has not been changed.

These relationships hold only in theory, since the real lenses are always
affected by imperfections, which cause image quality degradation. Two types
of distortions can be recognized, namely, aberrations and geometric distortion.
The former can be reduced by restricting the light rays to a small central
region of the lens; the effects of the latter can be compensated on the basis of
a suitable model whose parameters are to be identified.

A visual information is typically elaborated by a digital processor, and
thus the measurement principle is to transform the light intensity I(X,Y ) of
each point in the image plane into a number. It is clear that a spatial sampling
is needed since an infinite number of points in the image plane exist, as well
as a temporal sampling since the image can change during time. The CCD or
CMOS sensors play the role of spatial samplers, while the shutter in front of
the lens plays the role of the temporal sampler.
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Fig. 5.24. Frontal perspective transformation

The spatial sampling unit is the pixel, and thus the coordinates (X,Y ) of a
point in the image plane are to be expressed in pixels, i.e., (XI , YI). Due to the
photosite finite dimensions, the pixel coordinates of the point are related to
the coordinates in metric units through two scale factors αx and αy, namely,

XI =
αxfpc

x

pc
z

+ X0 (5.38)

YI =
αyfpc

y

pc
z

+ Y0, (5.39)

where X0 and Y0 are the offsets which take into account the position of the
origin of the pixel coordinate system with respect to the optical axis. This
nonlinear transformation can be written in a linear form by resorting to the
homogeneous representation of the point (xI , yI , zI) via the relationships

XI =
xI

λ

YI =
yI

λ

where λ > 0. As a consequence, (5.38), (5.39) can be rewritten as




xI

yI

λ


 = λ




XI

YI

1


 = ΩΠ




pc
x

pc
y

pc
z

1


 (5.40)

where

Ω =




fαx 0 X0

0 fαy Y0

0 0 1


 (5.41)

Π =




1 0 0 0
0 1 0 0
0 0 1 0


 . (5.42)
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At this point, the overall transformation from the Cartesian space of the
observed object to the image space of its image in pixels is characterized by
composing the transformations in (5.35), (5.40) as

Ξ = ΩΠT c
b (5.43)

which represents the so-called camera calibration matrix. It is worth pointing
out that such a matrix contains intrinsic parameters (αx, αy, X0, Y0, f) in Ω

depending on the sensor and lens characteristics as well as extrinsic parame-
ters in T b

c depending on the relative position and orientation of the camera
with respect to the base frame. Several calibration techniques exist to iden-
tify these parameters in order to compute the transformation between the
Cartesian space and the image space as accurately as possible.

If the intrinsic parameters of a camera are known, from a computation-
ally viewpoint, it is convenient to refer to the normalized coordinates (X,Y ),
defined by the normalized perspective transformation

λ




X
Y
1


 = Π




pc
x

pc
y

pc
z

1


 . (5.44)

These coordinates are defined in metrical units and coincide with the coor-
dinates (5.36), (5.37) in the case when f = 1. Comparing (5.40) with (5.44)
yields the invertible transformation




XI

YI

1


 = Ω




X
Y
1


 (5.45)

relating the normalized coordinates to those expressed in pixels through the
matrix of intrinsic parameters.

If a monochrome CCD camera4 is of concern, the output amplifier of the
sensor produces a signal which is processed by a timing analog electronics
in order to generate an electric signal according to one of the existing video
standards, i.e., the CCIR European and Australian standard, or the RS170
American and Japanese standard. In any case, the video signal is a voltage of
1 V peak-to-peak whose amplitude represents sequentially the image intensity.

The entire image is divided into a number of lines (625 for the CCIR
standard and 525 for the RS170 standard) to be sequentially scanned. The
raster scan proceeds horizontally across each line and each line from top to
bottom, but first all the even lines, forming the first field , and then all the odd
lines, forming the second field , so that a frame is composed of two successive

4 Colour cameras are equipped with special CCDs sensitive to three basic colours
(RGB); the most sophisticated cameras have three separate sensors, one per each
basic colour.
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fields. This technique, called interlacing , allows the image to be updated either
at frame rate or at field rate; in the former case the update frequency is that
of the entire frame (25 Hz for the CCIR standard and 30 Hz for the RS170
standard), while in the latter case the update frequency can be doubled as
long as half the vertical resolution can be tolerated.

The last step of the measurement process is to digitize the analog video
signal. The special analog-to-digital converters adopted for video signal acqui-
sition are called frame grabbers. By connecting the output of the camera to the
frame grabber, the video waveform is sampled and quantized and the values
stored in a two-dimensional memory array representing the spatial sample of
the image, known as framestore; this array is then updated at field or frame
rate.

In the case of CMOS cameras (currently available only for monochrome
images), thanks to CMOS technology which allows the integration of the
analog-to-digital converter in each pixel, the output of the camera is directly
a two-dimensional array, whose elements can be accessed randomly. Such ad-
vantage, with respect to CCD cameras, leads to the possibility of higher frame
rates if only parts of the entire frame are accessed.

The sequence of steps from image formation to image acquisition described
above can be classified as a process of low-level vision; this includes the extrac-
tion of elementary image features, e.g., centroid and intensity discontinuities.
On the other hand, a robotic system can be considered really autonomous
only if procedures for emulating cognition are available, e.g., recognizing an
observed object among a set of CAD models stored into a data base. In this
case, the artificial vision process can be referred to as high-level vision.
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5.2. Consider the DC servomotor with the data: Im = 0.0014 kg·m2, Fm =
0.01 N·m·s/rad, La = 2 mH, Ra = 0.2 ohm, kt = 0.2 N·m/A, kv = 0.2 V·s/rad,
CiGv = 1, Tv = 0.1 ms, ki = 0. Perform a computer simulation of the current
and velocity response to a unit step voltage input V ′c . Adopt a sampling time
of 1 ms.

5.3. For the servomotor of the previous problem, design the controller of the
current loop Ci(s) so that the current response to a unit step voltage input
V ′c is characterized by a settling time of 2 ms. Compare the velocity response
with that obtained in Problem 5.2.

5.4. Find the control voltage/output position and reaction torque/output po-
sition transfer functions for the scheme of Fig. 5.6.

5.5. For a Gray-code optical encoder, find the interconversion logic circuit
which yields a binary-coded output word.

5.6. With reference to a contact situation of the kind illustrated in Fig. 5.16,
let

rc
cs = [−0.3 0 0.2 ]T m Rc

s =




0 0 1
0 −1 0
1 0 0




and let the force sensor measurement be

fs
s = [ 20 0 0 ]T N µs

s = [ 0 6 0 ]T N·m.

Compute the equivalent force and moment in the contact frame.

5.7. Consider the SCARA manipulator in Fig. 2.34 with link lengths a1 =
a2 = 0.5 m. Let the base frame be located at the intersection between the
first link and the base link with axis z pointing downward and axis x in
the direction of the first link when ϑ1 = 0. Assume that a CCD camera
is mounted on the wrist so that the camera frame is aligned with the end-
effector frame. The camera parameters are f = 8 mm, αx = 79.2 pixel/mm,
αy = 120.5 pixel/mm, X0 = 250, Y0 = 250. An object is observed by the
camera and is described by the point of coordinates p = [ 0.8 0.5 0.9 ]T m.
Compute the pixel coordinates of the point when the manipulator is at the
configuration q = [ 0 π/4 0.1 0 ]T .

Problems

5.1. Prove (5.7)–(5.10). 6

Control Architecture

This chapter is devoted to presenting a reference model for the functional

architecture of an industrial robot’s control system. The hierarchical structure

and its articulation into functional modules allows the determination of the
requirements and characteristics of the programming environment and the
hardware architecture. The architecture refers to robot manipulators, yet its
articulation in levels also holds for mobile robots.

6.1 Functional Architecture

The control system to supervise the activities of a robotic system should be
endowed with a number of tools providing the following functions:

• capability of moving physical objects in the working environment, i.e.,
manipulation ability;

• capability of obtaining information on the state of the system and working
environment, i.e., sensory ability;

• capability of exploiting information to modify system behaviour in a pre-
programmed manner, i.e., intelligence ability;

• capability of storing, elaborating and providing data on system activity,
i.e., data processing ability.

An effective implementation of these functions can be obtained by means
of a functional architecture which is thought of as the superposition of several
activity levels arranged in a hierarchical structure. The lower levels of the
structure are oriented to physical motion execution, whereas the higher levels
are oriented to logical action planning. The levels are connected by data flows;
those directed towards the higher levels regard measurements and/or results
of actions, while those directed towards the lower levels regard transmission
of directions.

With reference to the control system functions implementing management
of the above listed system activities, in general it is worth allocating three
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functional models at each level. A first module is devoted to sensory data
management (sensory module). A second module is devoted to provide knowl-
edge of the relevant world (modelling module). A third module is devoted to
decide the policy of the action (decision module).

More specifically, the sensory modules acquire, elaborate, correlate and
integrate sensory data in time and space, in order to recognize and measure
the system state and environment characteristic; clearly, the functions of each
module are oriented to the management of the relevant sensory data for that
level.

On the other hand, the modelling modules contain models derived on the
basis of a priori knowledge of system and environment; these models are up-
dated by the information coming from the sensory modules, while the activa-
tion of the required functions is entrusted to the decision modules.

Finally, the decision modules perform breakdown of high-level tasks into
low-level actions; such task breakdown concerns both breakdown in time of
sequential actions and breakdown in space of concurrent actions. Each decision
module is entrusted with the functions concerning management of elementary
action assignments, task planning and execution.

The functions of a decision module characterize the level of the hierarchy
and determine the functions required to the modelling and sensory modules
operating at the same level. This implies that the contents of these two mod-
ules do not uniquely allow the determination of the hierarchical level, since
the same function may be present at more levels depending on the needs of
the decision modules at the relative levels.

The functional architecture needs an operator interface at each level of the
hierarchy, so as to allow an operator to perform supervisory and intervention
functions on the robotic system.

The instructions imparted to the decision module at a certain level may
be provided either by the decision module at the next higher level or by
the operator interface, or else by a combination of the two. Moreover, the
operator, by means of suitable communication tools, can be informed on the
system state and thus can contribute his/her own knowledge and decisions to
the modelling and sensory modules.

In view of the high data flow concerning the exchange of information be-
tween the various levels and modules of the functional architecture, it is worth
allocating a shared global memory which contains the updated estimates on
the state of the whole system and environment.

The structure of the reference model for the functional architecture is
represented in Fig. 6.1, where the four hierarchical levels potentially relevant
for robotic systems in industrial applications are illustrated. Such levels regard
definition of the task , its breakdown into elementary actions, assignment of
primitives to the actions, and implementation of control actions on the servo-
manipulator. In the following, the general functions of the three modules at
each level are described.
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Fig. 6.1. Reference model for a control system functional architecture

At the task level , the user specifies the task which the robotic system
should execute; this specification is performed at a high level of abstraction.
The goal of the desired task is analyzed and broken down into a sequence of
actions which are coordinated in space and time and allow implementation of
the task. The choice of actions is performed on the basis of knowledge models
as well as of the scene of interest for the task. For instance, consider the
application of a robot installed in an assembly line which is required to perform
a specific assembly task. To define the elementary actions that have to be
transmitted to the decision module at the next lower level, the decision module
should consult its knowledge base available in the modelling module, e.g., type
of assembly, components of the object to assembly, assembly sequence, and
choice of tools. This knowledge base should be continuously updated by the
information provided by the sensory module concerning location of the parts
to assembly; such information is available by means of a high-level vision
system operating in a scarcely structured environment, or else by means of
simple sensors detecting the presence of an object in a structured environment.

At the action level , the symbolic commands coming from the task level
are translated into sequences of intermediate configurations which character-
ize a motion path for each elementary action. The choice of the sequences is
performed on the basis of models of the manipulator and environment where
the action is to take place. With reference to one of the actions generated by
the above assembly task, the decision module chooses the most appropriate
coordinate system to compute manipulator’s end-effector poses, by separating
translation from rotation if needed; it decides whether to operate in the joint
or operational space, it computes the path or via points, and for the latter it
defines the interpolation functions. By doing so, the decision module should
compare the sequence of configurations with a model of the manipulator as
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well as with a geometric description of the environment, which are both avail-
able in the modelling model. In this way, action feasibility is ascertained in
terms of obstacle-collision avoidance, motion in the neighbourhood of kine-
matically singular configurations, occurrence of mechanical joint limits, and
eventually utilization of available redundant DOFs. The knowledge base is up-
dated by the information on the portion of scene where the single action takes
place which is provided by the sensory module, e.g., by means of a low-level
vision system or range sensors.

At the primitive level , on the basis of the sequence of configurations re-
ceived by the action level, admissible motion trajectories are computed and
the control strategy is decided. The motion trajectory is interpolated so as to
generate the references for the servo level. The choice of motion and control
primitives is conditioned by the features of the mechanical structure and its
degree of interaction with the environment. Still with reference to the above
case study, the decision module computes the geometric path and the rel-
ative trajectory on the basis of the knowledge of the manipulator dynamic
model available in the modelling module. Moreover, it defines the type of con-
trol algorithm, e.g., decentralized control, centralized control, or interaction
control; it specifies the relative gains; and it performs proper coordinate trans-
formations, e.g., kinematic inversion if needed. The sensory module provides
information on the occurrence of conflicts between motion planning and exe-
cution, by means of, e.g., force sensors, low-level vision systems and proximity
sensors.

At the servo level , on the basis of the motion trajectories and control
strategies imparted by the primitive level, control algorithms are implemented
which provide the driving signals to the joint servomotors. The control algo-
rithm operates on error signals between the reference and the actual values
of the controlled quantities, by utilizing knowledge of manipulator dynamic
model, and of kinematics if needed. In particular, the decision module per-
forms a microinterpolation on the reference trajectory to exploit fully the
dynamic characteristic of the drives; it computes the control law, and it gen-
erates the (voltage or current) signals for controlling the specific drives. The
modelling module elaborates the terms of the control law depending on the
manipulator current configuration and pass them to the decision module; such
terms are computed on the basis of knowledge of manipulator dynamic model.
Finally, the sensory module provides measurements of the proprioceptive sen-
sors (position, velocity and contact force if needed); these measurements are
used by the decision module to compute the servo errors and, if required,
by the modelling module to update the configuration-dependent terms in the
model.

The specification of the functions associated with each level points out that
the implementation of such functions should be performed at different time
rates, in view of their complexity and requirements. On one hand, the func-
tions associated with the higher levels are not subject to demanding real-time
constraints, since they regard planning activities. On the other hand, their
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Fig. 6.2. Hierarchical levels of a functional architecture for industrial robots

complexity is notable, since scheduling, optimization, resource management
and high-level sensory system data processing are required to update complex
models.

At the lowest level, demanding real-time operation prevails in order to
obtain high dynamic performance of the mechanical structure. The above
remarks lead to the conclusion that, at the servo level, it is necessary to
provide the driving commands to the motors and to detect the proprioceptive
sensory data at sampling rates of the order of the millisecond, while sampling
rates of the order of the minute are admissible at the task level.

With respect to this reference model of functional architecture, current
industrial robot’s control systems are not endowed with all the functions il-
lustrated, because of both technology and cost limitations. In this regard,
the task level is not implemented at all since there do not yet exist effective
and reliable application software packages allowing support of the complex
functions required at this level.

It is worth characterizing those functional levels of the reference models
which are typically implemented in advanced industrial robot’s control sys-

tems. The details of Fig. 6.2 show what follows:
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• The modelling and sensory modules are always present at the lowest level,
because of demanding requirements at the servo level for high dynamic
performance robots to be employed even in relatively simple applications.

• At the primitive level, the modelling module is usually present while the
sensory module is present only in a reduced number of applications that
require robot interaction with a less structured environment.

• At the action level, the decision module is present only as an interpreter of
the high-level commands imparted by the operator. All the task breakdown
functions are entrusted to the operator, and thus the modelling and sensory
module are absent at this level. Possible checking of action feasibility is
moved down to the primitive level where a modelling module exists.

In view of the highly-structured reference model of functional architecture
illustrated above, evolution of the control system towards more and more pow-
erful capabilities is possible. In fact, one may foresee that information technol-
ogy progress may allow the addition of hierarchically higher levels than the
task level. These should functionally characterize complex tasks to be bro-
ken down into elementary tasks and yet, at an even higher level, missions to
be broken down into complex tasks. A six-level hierarchical structure of the
above kind has been proposed as the reference model for the functional archi-
tecture of the control system of a service robotic system for space applications
(NASREM). In this framework, one may allocate the functions required to ad-

vanced robotics systems devoted to field or service applications, as discussed
in Sect. 1.4.

6.2 Programming Environment

Programming a robotic system requires definition of a programming environ-

ment supported by suitable languages, which allows the operator imparting
the task directions that the robot should execute. The programming envi-
ronment is entrusted not only with the function of translating statements by
means of a suitable language, but also with the function of checking correct
execution of a task being executed by the robot. Therefore, robot program-
ming environments, besides having some features in common with computer
programming environments, present a number of issues related to the observa-
tion that program execution produces effects on the physical world. In other
words, even if a very accurate description of physical reality is available in
the programming environment, a number of situations will unavoidably occur
which have not been or cannot be predicted.

As a consequence, a robot programming environment should be endowed
with the following features:

• real-time operating system,
• world modelling,
• motion control,
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• sensory data reading,
• interaction with physical system,
• error detection capability,
• recovery of correct operational functions,
• specific language structure.

Therefore, the requirements on a programming environment may natu-
rally stem from the articulation into models of the preceding reference model
of functional architecture. Such an environment will be clearly conditioned
by the level of the architecture at which operator access is allowed. In the
following, the requirements imposed on the programming environment by the
functions respectively characterizing the sensory, modelling and decision mod-
ules are presented with reference to the hierarchical levels of the functional
architecture.

Sensory data handling is the determining factor which qualifies a program-
ming environment. At the servo level, real-time proprioceptive sensory data
conditioning is required. At the primitive level, sensory data have to be ex-
pressed in the relevant reference frames. At the action level, geometric features
of the objects interested to the action have to be extracted by high-level sen-
sory data. At the task level, tools allowing recognition of the objects present
in the scene are required.

The ability of consulting knowledge models is a support for a programming
environment. At the servo level, on-line numerical computation of the models
utilized by control algorithms is to be performed on the basis of sensory data.
At the primitive level, coordinate transformations have to be operated. At
the action level, it is crucial to have tools allowing system simulation and
CAD modelling of elementary objects. At the task level, the programming
environment should assume the functions of an expert system.

Decision functions play a fundamental role in a programming environ-
ment, since they allow the definition of the flow charts. At the servo level,
on-line computation ability is required to generate the driving signals for the
mechanical system. At the primitive level, logic conditioning is to be present.
At the action level, process synchronization options should be available in
order to implement nested loops, parallel computation and interrupt system.
At the task level, the programming environment should allow management of
concurrent processes, and it should be endowed with tools to test for, locate
and remove mistakes from a program (debuggers) at a high-interactive level.

The evolution of programming environments has been conditioned by
technology development of computer science. An analysis of this evolution
leads to finding three generations of environments with respect to their func-
tional characteristics, namely, teaching-by-showing , robot-oriented program-

ming , and object-oriented programming . In the evolution of the environments,
the next generation usually incorporates the functional characteristics of the
previous generation.
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This classification regards those features of the programming environment
relative to the operator interface, and thus it has a direct correspondence
with the hierarchical levels of the reference model of functional architecture.
The functions associated with the servo level lead to understanding that a
programming environment problem does not really exist for the operator.
In fact, low-level programming concerns the use of traditional programming
languages (Assembly, C) for development of real-time systems. The operator
is only left with the possibility of intervening by means of simple command
actuation (point-to-point, reset), reading of proprioceptive sensory data, and
limited editing capability.

6.2.1 Teaching-by-Showing

The first generation has been characterized by programming techniques of
teaching-by-showing type. The operator guides the manipulator manually or
by means of a teach pendant along the desired motion path. During motion
execution, the data read by joint position transducers are stored and thus
they can be utilized later as references for the joint drive servos; in this way,
the mechanical structure is capable of executing (playing back) the motion
taught by a direct acquisition on the spot.

The programming environment does not allow implementation of logic
conditioning and queuing, and thus the associated computational hardware
plays elementary functions. The operator is not required to have special pro-
gramming skill, and thus he/she can be a plant technician. The set-up of a
working program obviously requires the robot to be available to the operator
at the time of teaching, and thus the robot itself has to be taken off produc-
tion. Typical applications that can be solved by this programming technique
include spot welding, spray painting and, in general, simple palletizing.

With regard to the reference model of functional architecture, a program-
ming environment based on the teaching-by-showing technique allows opera-
tor access at the primitive level.

The drawbacks of such an environment may be partially overcome by the
adoption of simple programming languages which allow:

• the acquisition of a meaningful posture by teaching,
• the computation of the end-effector pose with respect to a reference frame,

by means of a direct kinematics transformation,
• the assignment of a motion primitive and the trajectory parameters (usu-

ally, velocity as a percentage of the maximum velocity),
• the computation of the servo references, by means of an inverse kinematics

transformation,
• the teaching sequences to be conditioned to the use of simple external

sensors (presence of an object at the gripper),
• the correction of motion sequences by using simple text editors,
• simple connections to be made between subsets of elementary sequences.
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Providing a teaching-by-showing environment with the the above-listed
functions can be framed as an attempt to develop a structured programming
environment.

6.2.2 Robot-oriented Programming

Following the advent of efficient low-cost computational means, robot-oriented

programming environments have been developed. The need for interaction
of the environment with physical reality has imposed integration of several
functions, typical of high-level programming languages (BASIC, PASCAL),
with those specifically required by robotic applications. In fact, many robot-
oriented languages have retained the teaching-by-showing programming mode,
in view of its natural characteristic of accurate interface with the physical
world.

Since the general framework is that of a computer programming environ-
ment, two alternatives have been considered:

• to develop ad hoc languages for robotic applications,
• to develop robot program libraries supporting standard programming lan-

guages.

The current situation features the existence of numerous new proprietary
languages, whereas it would be desirable to develop either robotic libraries
to be used in the context of consolidated standards, or new general-purpose
languages for industrial automation applications.

Robot-oriented languages are structured programming languages which in-
corporate high-level statements and have the characteristic of an interpreted
language, in order to obtain an interactive environment allowing the pro-
grammer to check the execution of each source program statement before
proceeding to the next one. Common features of such languages are:

• text editor,
• complex data representation structures,
• extensive use of predefined state variable,
• execution of matrix algebra operations,
• extensive use of symbolic representations for coordinate frames,
• possibility to specify the coordinated motion of more frames rigidly at-

tached to objects by means of a single frame,
• inclusion of subroutines with data and parameter exchange,
• use of logic conditioning and queuing by means of flags,
• capability of parallel computing,
• functions of programmable logic controller (PLC).

With respect to the reference model of functional architecture, it can be
recognized that a robot-oriented programming environment allows operator
access at the action level.
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In view of the structured language characteristic, the operator in this case
should be an expert language programmer. Editing an application program
may be performed off line, i.e., without physical availability of the robot to the
operator; off-line programming demands a perfectly structured environment,
though. A robotic system endowed with a robot-oriented programming lan-
guage allows execution of complex applications where the robot is inserted in
a work cell and interacts with other machines and devices to perform complex
tasks, such as part assembly.

Finally, a programming environment that allows access at the task level
of a reference model of functional architecture is characterized by an object-

oriented language. Such an environment should have the capability of specify-
ing a task by means of high-level statements allowing automatic execution of
a number of actions on the objects present in the scene. Robot programming
languages belonging to this generation are currently under development and
thus they are not yet available on the market. They can be framed in the field
of expert systems and artificial intelligence.

6.3 Hardware Architecture

The hierarchical structure of the functional architecture adopted as a refer-
ence model for an industrial robot’s control system, together with its artic-
ulation into different functional modules, suggests hardware implementation
which exploits distributed computational resources interconnected by means
of suitable communication channels. To this end, it is worth recalling that the
functions implemented in current control systems regard the three levels from
servo to action, with a typically limited development of the functions imple-
mented at the action level. At the servo and primitive levels, computational
capabilities are required with demanding real-time constraints.

A general model of the hardware architecture for the control system of
an industrial robot is illustrated in Fig. 6.3. In this figure, proper boards

with autonomous computational capabilities have been associated with the
functions indicated in the reference model of functional architecture of Fig. 9.2.
The boards are connected to a bus, e.g., a VME bus, which allows support of
the communication data flow; the bus bandwidth should be wide enough so
as to satisfy the requirements imposed by real-time constraints.

The system board is typically a CPU endowed with:

• a microprocessor with mathematical coprocessor,
• a bootstrap EPROM memory,
• a local RAM memory,
• a RAM memory shared with the other boards through the bus,
• a number of serial and parallel ports interfacing the bus and the external

world,
• counters, registers and timers,
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Fig. 6.3. General model of the hardware architecture of an industrial robot’s control

system

• an interrupt system.

The following functions are to be implemented in the system board:

• operator interface through teach pendant, keyboard, video and printer,
• interface with an external memory (hard disk) used to store data and

application programs,
• interface with workstations and other control systems by means of a local

communication network, e.g., Ethernet,
• I/O interface with peripheral devices in the working area, e.g., feeders,

conveyors and ON/OFF sensors,
• system bootstrap,
• programming language interpreter,
• bus arbiter.

The other boards facing the bus may be endowed, besides the basic com-
ponents of the system board, with a supplementary or alternative processor
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(DSP, Transputer) for implementation of computationally demanding or ded-
icated functions. With reference to the architecture in Fig. 6.3, the following
functions are implemented in the kinematics board:

• computation of motion primitives,
• computation of direct kinematics, inverse kinematics and Jacobian,
• test for trajectory feasibility,
• handling of kinematic redundancy.

The dynamics board is devoted to

• computation of inverse dynamics.

The servo board has the functions of:

• microinterpolation of references,
• computation of control algorithm,
• digital-to-analog conversion and interface with power amplifiers,
• handling of position and velocity transducer data,
• motion interruption in case of malfunction.

The remaining boards in the figure have been considered for the sake of an
example to illustrate how the use of sensors may require local processing ca-
pabilities to retrieve significant information from the given data which can be
effectively used in the sensory system. The force board performs the following
operations:

• conditioning of data provided by the force sensor,
• representation of forces in a given coordinate frame.

The vision board is in charge of:

• processing data provided by the camera,
• extracting geometric features of the scene,
• localizing objects in given coordinate frames.

Although the boards face the same bus, the frequency at which data are
exchanged needs not to be the same for each board. Those boards connected
to the proprioceptive sensors indeed need to exchange date with the robot at
the highest possible frequency (from 100 to 1000 Hz) to ensure high dynamic
performance to motion control as well as to reveal end-effector contact in a
very short time.

On the other hand, the kinematics and dynamics boards implement mod-
elling functions and, as such, they do not require data update at a rate as high
as that required by the servo board. In fact, manipulator postures do not vary
appreciably in a very short time, at least with respect to typical operational
velocities and/or accelerations of current industrial robots. Common sampling
frequencies are in the range of 10 to 100 Hz.
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Fig. 6.4. Object pick-and-place task

Also the vision board does not require a high update rate, both because the
scene is generally quasi-static, and because processing of interpretive functions
are typically complex. Typical frequencies are in the range of 1 to 10 Hz.

In summary, the board access to the communication bus of a hardware
control architecture may be performed according to a multirate logic which
allows the solution of bus data overflow problems.
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Problems

6.1. With reference to the situation illustrated in Fig. 6.4, describe the se-
quence of actions required from the manipulator to pick up an object at
location A and place it at location B.

6.2. For the situation of Problem 6.1, find the motion primitives in the cases
of given via points and given path points.

6.3. The planar arm indicated in Fig. 6.5 is endowed with a wrist force sensor
which allows the measurement of the relevant force and moment components
for the execution of a peg-in-hole task. Draw the flow chart for writing a
program to execute the described task.

6.4. A palletizing problem is represented in Fig. 6.6. Sixteen equal objects
have to be loaded on the pallet. The manipulator’s end-effector has to pick
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Fig. 6.5. Peg-in-hole task

Fig. 6.6. Palletizing task of objects available on a conveyor

up the objects from a conveyor, whose feeding is commanded by the robot
in such a way that the objects are always found in the same location to be
picked. Write a PASCAL program to execute the task.

7

Dynamics

Derivation of the dynamic model of a manipulator plays an important role
for simulation of motion, analysis of manipulator structures, and design of
control algorithms. Simulating manipulator motion allows control strategies
and motion planning techniques to be tested without the need to use a phys-
ically available system. The analysis of the dynamic model can be helpful for
mechanical design of prototype arms. Computation of the forces and torques
required for the execution of typical motions provides useful information for
designing joints, transmissions and actuators. The goal of this chapter is to
present two methods for derivation of the equations of motion of a manipula-
tor in the joint space. The first method is based on the Lagrange formulation

and is conceptually simple and systematic. The second method is based on the
Newton–Euler formulation and yields the model in a recursive form; it is com-
putationally more efficient since it exploits the typically open structure of the
manipulator kinematic chain. Then, a technique for dynamic parameter iden-

tification is presented. Further, the problems of direct dynamics and inverse

dynamics are formalized, and a technique for trajectory dynamic scaling is in-
troduced, which adapts trajectory planning to the dynamic characteristics of
the manipulator. The chapter ends with the derivation of the dynamic model

of a manipulator in the operational space and the definition of the dynamic

manipulability ellipsoid .

7.1 Lagrange Formulation

The dynamic model of a manipulator provides a description of the relationship
between the joint actuator torques and the motion of the structure.

With Lagrange formulation, the equations of motion can be derived in
a systematic way independently of the reference coordinate frame. Once a
set of variables qi, i = 1, . . . , n, termed generalized coordinates, are chosen
which effectively describe the link positions of an n-DOF manipulator, the
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Lagrangian of the mechanical system can be defined as a function of the
generalized coordinates:

L = T − U (7.1)

where T and U respectively denote the total kinetic energy and potential

energy of the system.
The Lagrange equations are expressed by

d

dt

∂L

∂q̇i

−
∂L

∂qi

= ξi i = 1, . . . , n (7.2)

where ξi is the generalized force associated with the generalized coordinate qi.
Equations (7.2) can be written in compact form as

d

dt

(
∂L

∂q̇

)T

−

(
∂L

∂q

)T

= ξ (7.3)

where, for a manipulator with an open kinematic chain, the generalized coor-
dinates are gathered in the vector of joint variables q. The contributions to
the generalized forces are given by the nonconservative forces, i.e., the joint
actuator torques, the joint friction torques, as well as the joint torques induced
by end-effector forces at the contact with the environment.1

The equations in (7.2) establish the relations existing between the gener-
alized forces applied to the manipulator and the joint positions, velocities and
accelerations. Hence, they allow the derivation of the dynamic model of the
manipulator starting from the determination of kinetic energy and potential
energy of the mechanical system.

Example 7.1

In order to understand the Lagrange formulation technique for deriving the dynamic
model, consider again the simple case of the pendulum in Example 5.1. With ref-
erence to Fig. 5.8, let ϑ denote the angle with respect to the reference position of
the body hanging down (ϑ = 0). By choosing ϑ as the generalized coordinate, the
kinetic energy of the system is given by

T =
1

2
Iϑ̇2 +

1

2
Imk2

r ϑ̇2.

The system potential energy, defined at less than a constant, is expressed by

U = mgℓ(1− cos ϑ).

Therefore, the Lagrangian of the system is

L =
1

2
Iϑ̇2 +

1

2
Imk2

r ϑ̇2
−mgℓ(1− cos ϑ).

1 The term torque is used as a synonym of joint generalized force.
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Substituting this expression in the Lagrange equation in (7.2) yields

(I + Imk2

r)ϑ̈ + mgℓ sin ϑ = ξ.

The generalized force ξ is given by the contributions of the actuation torque τ at
the joint and of the viscous friction torques −Fϑ̇ and −Fmk2

rϑ, where the latter has
been reported to the joint side. Hence, it is

ξ = τ − Fϑ̇− Fmk2

rϑ

leading to the complete dynamic model of the system as the second-order differential
equation

(I + Imk2

r)ϑ̈ + (F + Fmk2

r)ϑ̇ + mgℓ sin ϑ = τ .

It is easy to verify how this equation is equivalent to (5.25) when reported to the
joint side.

7.1.1 Computation of Kinetic Energy

Consider a manipulator with n rigid links. The total kinetic energy is given
by the sum of the contributions relative to the motion of each link and the
contributions relative to the motion of each joint actuator:2

T =

n∑

i=1

(Tℓi
+ Tmi

), (7.4)

where Tℓi
is the kinetic energy of Link i and Tmi

is the kinetic energy of the
motor actuating Joint i.

The kinetic energy contribution of Link i is given by

Tℓi
=

1

2

∫

Vℓi

ṗ∗i
T ṗ∗i ρdV , (7.5)

where ṗ∗i denotes the linear velocity vector and ρ is the density of the elemen-
tary particle of volume dV ; Vℓi

is the volume of Link i.
Consider the position vector p∗i of the elementary particle and the position

vector pCi
of the link centre of mass, both expressed in the base frame. One

has
ri = [ rix riy riz ]T = p∗i − pℓi

(7.6)

with

pℓi
=

1

mℓi

∫

Vℓi

p∗i ρdV (7.7)

2 Link 0 is fixed and thus gives no contribution.
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Fig. 7.1. Kinematic description of Link i for Lagrange formulation

where mℓi
is the link mass. As a consequence, the link point velocity can be

expressed as

ṗ∗i = ṗℓi
+ ωi × ri (7.8)

= ṗℓi
+ S(ωi)ri,

where ṗℓi
is the linear velocity of the centre of mass and ωi is the angular

velocity of the link (Fig. 7.1).
By substituting the velocity expression (7.8) into (7.5), it can be recognized

that the kinetic energy of each link is formed by the following contributions.

Translational

The contribution is

1

2

∫

Vℓi

ṗT
ℓi
ṗℓi

ρdV =
1

2
mℓi

ṗT
ℓi
ṗℓi

. (7.9)

Mutual

The contribution is

2

(
1

2

∫

Vℓi

ṗT
ℓi
S(ωi)riρdV

)
= 2

(
1

2
ṗT

ℓi
S(ωi)

∫

Vℓi

(p∗i − pℓi
)ρdV

)
= 0

since, by virtue of (7.7), it is
∫

Vℓi

p∗i ρdV = pℓi

∫

Vℓi

ρdV .
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Rotational

The contribution is

1

2

∫

Vℓi

rT
i S

T (ωi)S(ωi)riρdV =
1

2
ωT

i

(∫

Vℓi

ST (ri)S(ri)ρdV

)
ωi

where the property S(ωi)ri = −S(ri)ωi has been exploited. In view of the
expression of the matrix operator S(·)

S(ri) =




0 −riz riy

riz 0 −rix

−riy rix 0



 ,

it is
1

2

∫

Vℓi

rT
i S

T (ωi)S(ωi)riρdV =
1

2
ωT

i Iℓi
ωi. (7.10)

The matrix

Iℓi
=





∫
(r2

iy + r2
iz)ρdV −

∫
rixriyρdV −

∫
rixrizρdV

∗
∫

(r2
ix + r2

iz)ρdV −
∫

riyrizρdV

∗ ∗
∫

(r2
ix + r2

iy)ρdV



 (7.11)

=




Iℓixx −Iℓixy −Iℓixz

∗ Iℓiyy −Iℓiyz

∗ ∗ Iℓizz



 .

is symmetric3 and represents the inertia tensor relative to the centre of mass
of Link i when expressed in the base frame. Notice that the position of Link i
depends on the manipulator configuration and thus the inertia tensor, when
expressed in the base frame, is configuration-dependent. If the angular velocity
of Link i is expressed with reference to a frame attached to the link (as in the
Denavit–Hartenberg convention), it is

ωi
i = RT

i ωi

where Ri is the rotation matrix from Link i frame to the base frame. When
referred to the link frame, the inertia tensor is constant. Let Ii

ℓi
denote such

tensor; then it is easy to verify the following relation:

Iℓi
= RiI

i
ℓi
RT

i . (7.12)

If the axes of Link i frame coincide with the central axes of inertia, then the
inertia products are null and the inertia tensor relative to the centre of mass
is a diagonal matrix.

3 The symbol ‘∗’ has been used to avoid rewriting the symmetric elements.
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By summing the translational and rotational contributions (7.9) and (7.10),
the kinetic energy of Link i is

Tℓi
=

1

2
mℓi

ṗT
ℓi
ṗℓi

+
1

2
ωT

i RiI
i
ℓi
RT

i ωi. (7.13)

At this point, it is necessary to express the kinetic energy as a function
of the generalized coordinates of the system, that are the joint variables. To
this end, the geometric method for Jacobian computation can be applied to
the intermediate link other than the end-effector, yielding

ṗℓi
= 

(ℓi)
P1 q̇1 + . . . + 

(ℓi)
Pi q̇i = J

(ℓi)
P q̇ (7.14)

ωi = 
(ℓi)
O1 q̇1 + . . . + 

(ℓi)
Oi q̇i = J

(ℓi)
O q̇, (7.15)

where the contributions of the Jacobian columns relative to the joint velocities
have been taken into account up to current Link i. The Jacobians to consider
are then:

J
(ℓi)
P =

[

(ℓi)
P1 . . . 

(ℓi)
Pi 0 . . . 0

]
(7.16)

J
(ℓi)
O =

[

(ℓi)
O1 . . . 

(ℓi)
Oi 0 . . . 0

]
; (7.17)

the columns of the matrices in (7.16) and (7.17) can be computed according
to (3.30), giving


(ℓi)
Pj =

{
zj−1 for a prismatic joint
zj−1 × (pℓi

− pj−1) for a revolute joint
(7.18)


(ℓi)
Oj =

{
0 for a prismatic joint
zj−1 for a revolute joint.

(7.19)

where pj−1 is the position vector of the origin of Frame j − 1 and zj−1 is the
unit vector of axis z of Frame j − 1. It follows that the kinetic energy of Link
i in (7.13) can be written as

Tℓi
=

1

2
mℓi

q̇TJ
(ℓi)T
P J

(ℓi)
P q̇ +

1

2
q̇TJ

(ℓi)T
O RiI

i
ℓi
RT

i J
(ℓi)
O q̇. (7.20)

The kinetic energy contribution of the motor of Joint i can be computed
in a formally analogous way to that of the link. Consider the typical case of
rotary electric motors (that can actuate both revolute and prismatic joints by
means of suitable transmissions). It can be assumed that the contribution of
the fixed part (stator) is included in that of the link on which such motor is
located, and thus the sole contribution of the rotor is to be computed.

With reference to Fig. 7.2, the motor of Joint i is assumed to be located
on Link i−1. In practice, in the design of the mechanical structure of an open
kinematic chain manipulator one attempts to locate the motors as close as
possible to the base of the manipulator so as to lighten the dynamic load of
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Fig. 7.2. Kinematic description of Motor i

the first joints of the chain. The joint actuator torques are delivered by the
motors by means of mechanical transmissions (gears).4 The contribution of
the gears to the kinetic energy can be suitably included in that of the motor.
It is assumed that no induced motion occurs, i.e., the motion of Joint i does
not actuate the motion of other joints.

The kinetic energy of Rotor i can be written as

Tmi
=

1

2
mmi

ṗT
mi
ṗmi

+
1

2
ωT

mi
Imi

ωmi
, (7.21)

where mmi
is the mass of the rotor, ṗmi

denotes the linear velocity of the
centre of mass of the rotor, Imi

is the inertia tensor of the rotor relative to
its centre of mass, and ωmi

denotes the angular velocity of the rotor.
Let ϑmi

denote the angular position of the rotor. On the assumption of a
rigid transmission, one has

kriq̇i = ϑ̇mi
(7.22)

where kri is the gear reduction ratio. Notice that, in the case of actuation of
a prismatic joint, the gear reduction ratio is a dimensional quantity.

According to the angular velocity composition rule (3.18) and the rela-
tion (7.22), the total angular velocity of the rotor is

ωmi
= ωi−1 + kriq̇izmi

(7.23)

where ωi−1 is the angular velocity of Link i−1 on which the motor is located,
and zmi

denotes the unit vector along the rotor axis.

4 Alternatively, the joints may be actuated by torque motors directly coupled to
the rotation axis without gears.
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To express the rotor kinetic energy as a function of the joint variables, it
is worth expressing the linear velocity of the rotor centre of mass — similarly
to (7.14) — as

ṗmi
= J

(mi)
P q̇. (7.24)

The Jacobian to compute is then

J
(mi)
P =

[

(mi)
P1 . . . 

(mi)
P,i−1 0 . . . 0

]
(7.25)

whose columns are given by


(mi)
Pj =

{
zj−1 for a prismatic joint
zj−1 × (pmi

− pj−1) for a revolute joint
(7.26)

where pj−1 is the position vector of the origin of Frame j − 1. Notice that


(mi)
Pi = 0 in (7.25), since the centre of mass of the rotor has been taken along

its axis of rotation.
The angular velocity in (7.23) can be expressed as a function of the joint

variables, i.e.,

ωmi
= J

(mi)
O q̇. (7.27)

The Jacobian to compute is then

J
(mi)
O =

[

(mi)
O1 . . . 

(mi)
O,i−1 

(mi)
Oi 0 . . . 0

]
(7.28)

whose columns, in view of (7.23), (7.15), are respectively given by


(mi)
Oj =

{

(ℓi)
Oj j = 1, . . . , i− 1

krizmi
j = i.

(7.29)

To compute the second relation in (7.29), it is sufficient to know the compo-
nents of the unit vector of the rotor rotation axis zmi

with respect to the base
frame. Hence, the kinetic energy of Rotor i can be written as

Tmi
=

1

2
mmi

q̇TJ
(mi)T
P J

(mi)
P q̇ +

1

2
q̇TJ

(mi)T
O Rmi

Imi

mi
RT

mi
J

(mi)
O q̇. (7.30)

Finally, by summing the various contributions relative to the single links
(7.20) and single rotors (7.30) as in (7.4), the total kinetic energy of the
manipulator with actuators is given by the quadratic form

T =
1

2

n∑

i=1

n∑

j=1

bij(q)q̇iq̇j =
1

2
q̇TB(q)q̇ (7.31)

where

B(q) =

n∑

i=1

(
mℓi

J
(ℓi)T
P J

(ℓi)
P + J

(ℓi)T
O RiI

i
ℓi
RT

i J
(ℓi)
O (7.32)

+mmi
J

(mi)T
P J

(mi)
P + J

(mi)T
O Rmi

Imi

mi
RT

mi
J

(mi)
O

)

is the (n× n) inertia matrix which is:
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• symmetric,
• positive definite,
• (in general) configuration-dependent .

7.1.2 Computation of Potential Energy

As done for kinetic energy, the potential energy stored in the manipulator is
given by the sum of the contributions relative to each link as well as to each
rotor:

U =

n∑

i=1

(Uℓi
+ Umi

). (7.33)

On the assumption of rigid links, the contribution due only to gravitational
forces5 is expressed by

Uℓi
= −

∫

Vℓi

gT
0 p
∗
i ρdV = −mℓi

gT
0 pℓi

(7.34)

where g0 is the gravity acceleration vector in the base frame (e.g., g0 =
[ 0 0 −g ]T if z is the vertical axis), and (7.7) has been utilized for the
coordinates of the centre of mass of Link i. As regards the contribution of
Rotor i, similarly to (7.34), one has

Umi
= −mmi

gT
0 pmi

. (7.35)

By substituting (7.34), (7.35) into (7.33), the potential energy is given by

U = −

n∑

i=1

(mℓi
gT

0 pℓi
+ mmi

gT
0 pmi

) (7.36)

which reveals that potential energy, through the vectors pℓi
and pmi

is a
function only of the joint variables q, and not of the joint velocities q̇.

7.1.3 Equations of Motion

Having computed the total kinetic and potential energy of the system as
in (7.31), (7.36), the Lagrangian (7.1) for the manipulator can be written as

L(q, q̇) = T (q, q̇)− U(q). (7.37)

Taking the derivatives required by Lagrange equations in (7.3) and recalling
that U does not depend on q̇ yields

B(q)q̈ + n(q, q̇) = ξ (7.38)

5 In the case of link flexibility, one would have an additional contribution due to
elastic forces.
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where

n(q, q̇) = Ḃ(q)q̇ −
1

2

(
∂

∂q

(
q̇TB(q)q̇

))T

+

(
∂U(q)

∂q

)T

.

In detail, noticing that U in (7.36) does not depend on q̇ and accounting
for (7.31) yields

d

dt

(
∂L

∂q̇i

)
=

d

dt

(
∂T

∂q̇i

)
=

n∑

j=1

bij(q)q̈j +

n∑

j=1

dbij(q)

dt
q̇j

=

n∑

j=1

bij(q)q̈j +

n∑

j=1

n∑

k=1

∂bij(q)

∂qk

q̇k q̇j

and
∂T

∂qi

=
1

2

n∑

j=1

n∑

k=1

∂bjk(q)

∂qi

q̇k q̇j

where the indices of summation have been conveniently switched. Further, in
view of (7.14), (7.24), it is

∂U

∂qi

= −

n∑

j=1

(
mℓj

gT
0

∂pℓj

∂qi

+ mmj
gT

0

∂pmj

∂qi

)
(7.39)

= −

n∑

j=1

(
mℓj

gT
0 

(ℓj)
Pi (q) + mmj

gT
0 

(mj)
Pi (q)

)
= gi(q)

where, again, the index of summation has been changed.
As a result, the equations of motion are

n∑

j=1

bij(q)q̈j +

n∑

j=1

n∑

k=1

hijk(q)q̇k q̇j + gi(q) = ξi i = 1, . . . , n. (7.40)

where

hijk =
∂bij

∂qk

−
1

2

∂bjk

∂qi

. (7.41)

A physical interpretation of (7.40) reveals that:

• For the acceleration terms:

– The coefficient bii represents the moment of inertia at Joint i axis,
in the current manipulator configuration, when the other joints are
blocked.

– The coefficient bij accounts for the effect of acceleration of Joint j on
Joint j.

• For the quadratic velocity terms:

– The term hijj q̇
2
j represents the centrifugal effect induced on Joint i by

velocity of Joint j; notice that hiii = 0, since ∂bii/∂qi = 0.
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– The term hijkq̇j q̇k represents the Coriolis effect induced on Joint i by
velocities of Joints j and k.

• For the configuration-dependent terms :

– The term gi represents the moment generated at Joint i axis of the
manipulator, in the current configuration, by the presence of gravity.

Some joint dynamic couplings, e.g., coefficients bij and hijk, may be re-
duced or zeroed when designing the structure, so as to simplify the control
problem.

Regarding the nonconservative forces doing work at the manipulator joints,
these are given by the actuation torques τ minus the viscous friction torques
F vq̇ and the static friction torques fs(q, q̇): F v denotes the (n×n) diagonal
matrix of viscous friction coefficients. As a simplified model of static friction
torques, one may consider the Coulomb friction torques F s sgn (q̇), where F s

is an (n × n) diagonal matrix and sgn (q̇) denotes the (n × 1) vector whose
components are given by the sign functions of the single joint velocities.

If the manipulator’s end-effector is in contact with an environment, a
portion of the actuation torques is used to balance the torques induced at
the joints by the contact forces. According to a relation formally analogous
to (3.111), such torques are given by JT (q)he where he denotes the vector of
force and moment exerted by the end-effector on the environment.

In summary, the equations of motion (7.38) can be rewritten in the com-
pact matrix form which represents the joint space dynamic model :

B(q)q̈ +C(q, q̇)q̇ + F vq̇ + F s sgn (q̇) + g(q) = τ − JT (q)he (7.42)

where C is a suitable (n × n) matrix such that its elements cij satisfy the
equation

n∑

j=1

cij q̇j =
n∑

j=1

n∑

k=1

hijk q̇k q̇j . (7.43)

7.2 Notable Properties of Dynamic Model

In the following, two notable properties of the dynamic model are presented
which will be useful for dynamic parameter identification as well as for deriving
control algorithms.

7.2.1 Skew-symmetry of Matrix Ḃ − 2C

The choice of the matrix C is not unique, since there exist several matri-
ces C whose elements satisfy (7.43). A particular choice can be obtained by
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elaborating the term on the right-hand side of (7.43) and accounting for the
expressions of the coefficients hijk in (7.41). To this end, one has

n∑

j=1

cij q̇j =

n∑

j=1

n∑

k=1

hijkq̇k q̇j

=
n∑

j=1

n∑

k=1

(
∂bij

∂qk

−
1

2

∂bjk

∂qi

)
q̇k q̇j .

Splitting the first term on the right-hand side by an opportune switch of
summation between j and k yields

n∑

j=1

cij q̇j =
1

2

n∑

j=1

n∑

k=1

∂bij

∂qk

q̇k q̇j +
1

2

n∑

j=1

n∑

k=1

(
∂bik

∂qj

−
∂bjk

∂qi

)
q̇kq̇j .

As a consequence, the generic element of C is

cij =
n∑

k=1

cijk q̇k (7.44)

where the coefficients

cijk =
1

2

(
∂bij

∂qk

+
∂bik

∂qj

−
∂bjk

∂qi

)
(7.45)

are termed Christoffel symbols of the first type. Notice that, in view of the
symmetry of B, it is

cijk = cikj . (7.46)

This choice for the matrix C leads to deriving the following notable prop-
erty of the equations of motion (7.42). The matrix

N(q, q̇) = Ḃ(q)− 2C(q, q̇) (7.47)

is skew-symmetric; that is, given any (n× 1) vector w, the following relation
holds:

wTN(q, q̇)w = 0. (7.48)

In fact, substituting the coefficient (7.45) into (7.44) gives

cij =
1

2

n∑

k=1

∂bij

∂qk

q̇k +
1

2

n∑

k=1

(
∂bik

∂qj

−
∂bjk

∂qi

)
q̇k

=
1

2
ḃij +

1

2

n∑

k=1

(
∂bik

∂qj

−
∂bjk

∂qi

)
q̇k

and then the expression of the generic element of the matrix N in (7.47) is

nij = ḃij − 2cij =

n∑

k=1

(
∂bjk

∂qi

−
∂bik

∂qj

)
q̇k.
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The result follows by observing that

nij = −nji.

An interesting property which is a direct implication of the skew-symmetry
of N(q, q̇) is that, by setting w = q̇,

q̇TN(q, q̇)q̇ = 0; (7.49)

notice that (7.49) does not imply (7.48), since N is a function of q̇, too.
It can be shown that (7.49) holds for any choice of the matrix C, since it

is a result of the principle of conservation of energy (Hamilton). By virtue of
this principle, the total time derivative of kinetic energy is balanced by the
power generated by all the forces acting on the manipulator joints. For the
mechanical system at issue, one may write

1

2

d

dt

(
q̇TB(q)q̇

)
= q̇T

(
τ − F vq̇ − F s sgn (q̇)− g(q)− JT (q)he

)
. (7.50)

Taking the derivative on the left-hand side of (7.50) gives

1

2
q̇T Ḃ(q)q̇ + q̇TB(q)q̈

and substituting the expression of B(q)q̈ in (7.42) yields

1

2

d

dt

(
q̇TB(q)q̇

)
=

1

2
q̇T
(
Ḃ(q)− 2C(q, q̇)

)
q̇ (7.51)

+q̇T
(
τ − F vq̇ − F s sgn (q̇)− g(q)− JT (q)he

)
.

A direct comparison of the right-hand sides of (7.50) and (7.51) leads to the
result established by (7.49).

To summarize, the relation (7.49) holds for any choice of the matrix C,
since it is a direct consequence of the physical properties of the system,
whereas the relation (7.48) holds only for the particular choice of the ele-
ments of C as in (7.44), (7.45).

7.2.2 Linearity in the Dynamic Parameters

An important property of the dynamic model is the linearity with respect to
the dynamic parameters characterizing the manipulator links and rotors.

In order to determine such parameters, it is worth associating the kinetic
and potential energy contributions of each rotor with those of the link on
which it is located. Hence, by considering the union of Link i and Rotor i + 1
(augmented Link i), the kinetic energy contribution is given by

Ti = Tℓi
+ Tmi+1

(7.52)
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where

Tℓi
=

1

2
mℓiṗ

T
ℓi
ṗℓi

+
1

2
ωT

i Iℓi
ωi (7.53)

and

Tmi+1
=

1

2
mmi+1

ṗT
mi+1

ṗmi+1
+

1

2
ωT

mi+1
Imi+1

ωmi+1
. (7.54)

With reference to the centre of mass of the augmented link, the linear velocities
of the link and rotor can be expressed according to (3.26) as

ṗℓi
= ṗCi

+ ωi × rCi,ℓi
(7.55)

ṗmi+1
= ṗCi

+ ωi × rCi,mi+1
(7.56)

with

rCi,ℓi
= pℓi

− pCi
(7.57)

rCi,mi+1
= pmi+1

− pCi
, (7.58)

where pCi
denotes the position vector of the centre of mass of augmented

Link i.
Substituting (7.55) into (7.53) gives

Tℓi
=

1

2
mℓiṗ

T
Ci
ṗCi

+ ṗT
Ci
S(ωi)mℓi

rCi,ℓi
(7.59)

+
1

2
mℓi

ωT
i S

T (rCi,ℓi
)S(rCi,ℓi

)ωi +
1

2
ωT

i Iℓi
ωi.

By virtue of Steiner theorem, the matrix

Īℓi
= Iℓi

+ mℓi
ST (rCi,ℓi

)S(rCi,ℓi
) (7.60)

represents the inertia tensor relative to the overall centre of mass pCi
, which

contains an additional contribution due to the translation of the pole with
respect to which the tensor is evaluated, as in (7.57). Therefore, (7.59) can be
written as

Tℓi
=

1

2
mℓiṗ

T
Ci
ṗCi

+ ṗT
Ci
S(ωi)mℓi

rCi,ℓi
+

1

2
ωT

i Īℓi
ωi. (7.61)

In a similar fashion, substituting (7.56) into (7.54) and exploiting (7.23)
yields

Tmi+1
=

1

2
mmi+1

ṗT
Ci
ṗCi

+ ṗT
Ci
S(ωi)mmi+1

rCi,mi+1
+

1

2
ωT

i Īmi+1
ωi(7.62)

+kr,i+1q̇i+1z
T
mi+1

Imi+1
ωi +

1

2
k2

r,i+1q̇
2
i+1z

T
mi+1

Imi+1
zmi+1

,

where
Īmi+1

= Imi+1
+ mmi+1

ST (rCi,mi+1
)S(rCi,mi+1

). (7.63)
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Summing the contributions in (7.61), (7.62) as in (7.52) gives the expres-
sion of the kinetic energy of augmented Link i in the form

Ti =
1

2
miṗ

T
Ci
ṗCi

+
1

2
ωT

i Īiωi + kr,i+1q̇i+1z
T
mi+1

Imi+1
ωi (7.64)

+
1

2
k2

r,i+1q̇
2
i+1z

T
mi+1

Imi+1
zmi+1

,

where mi = mℓi
+ mmi+1

and Īi = Īℓi
+ Īmi+1

are respectively the overall
mass and inertia tensor. In deriving (7.64), the relations in (7.57), (7.58) have
been utilized as well as the following relation between the positions of the
centres of mass:

mℓi
pℓi

+ mmi+1
pmi+1

= mipCi
. (7.65)

Notice that the first two terms on the right-hand side of (7.64) represent
the kinetic energy contribution of the rotor when this is still, whereas the
remaining two terms account for the rotor’s own motion.

On the assumption that the rotor has a symmetric mass distribution about
its axis of rotation, its inertia tensor expressed in a frame Rmi

with origin at
the centre of mass and axis zmi

aligned with the rotation axis can be written
as

Imi

mi
=




Imixx 0 0

0 Imiyy 0
0 0 Imizz



 (7.66)

where Imiyy = Imixx. As a consequence, the inertia tensor is invariant with
respect to any rotation about axis zmi

and is, anyhow, constant when referred
to any frame attached to Link i− 1.

Since the aim is to determine a set of dynamic parameters independent of
the manipulator joint configuration, it is worth referring the inertia tensor of
the link Īi to frame Ri attached to the link and the inertia tensor Imi+1

to
frame Rmi+1

so that it is diagonal. In view of (7.66) one has

Imi+1
zmi+1

= Rmi+1
Imi+1

mi+1
RT

mi+1
zmi+1

= Imi+1
zmi+1

(7.67)

where Imi+1
= Imi+1zz denotes the constant scalar moment of inertia of the

rotor about its rotation axis.
Therefore, the kinetic energy (7.64) becomes

Ti =
1

2
miṗ

iT
Ci
ṗi

Ci
+

1

2
ωiT

i Ī
i

iω
i
i + kr,i+1q̇i+1Imi+1

ziT
mi+1

ωi
i (7.68)

+
1

2
k2

r,i+1q̇
2
i+1Imi+1

.

According to the linear velocity composition rule for Link i in (3.15), one
may write

ṗi
Ci

= ṗi
i + ωi

i × r
i
i,Ci

, (7.69)
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where all the vectors have been referred to Frame i; note that ri
i,Ci

is fixed in
such a frame. Substituting (7.69) into (7.68) gives

Ti =
1

2
miṗ

iT
i ṗi

i + ṗiT
i S(ωi

i)mir
i
i,Ci

+
1

2
ωiT

i Î
i

iω
i
i (7.70)

+kr,i+1q̇i+1Imi+1
ziT

mi+1
ωi

i +
1

2
k2

r,i+1q̇
2
i+1Imi+1

,

where
Î

i

i = Ī
i

i + miS
T (ri

i,Ci
)S(ri

i,Ci
) (7.71)

represents the inertia tensor with respect to the origin of Frame i according
to Steiner theorem.

Let ri
i,Ci

= [ ℓCix ℓCiy ℓCiz ]T . The first moment of inertia is

mir
i
i,Ci

=




miℓCix

miℓCiy

miℓCiz



 . (7.72)

From (7.71) the inertia tensor of augmented Link i is

Î
i

i =




Īixx + mi(ℓ

2
Ciy

+ ℓ2Ciz
) −Īixy −miℓCixℓCiy −Īixz −miℓCixℓCiz

∗ Īiyy + mi(ℓ
2
Cix

+ ℓ2Ciz
) −Īiyz −miℓCiyℓCiz

∗ ∗ Īizz + mi(ℓ
2
Cix

+ ℓ2Ciy
)





=




Îixx −Îixy −Îixz

∗ Îiyy −Îiyz

∗ ∗ Îizz



 . (7.73)

Therefore, the kinetic energy of the augmented link is linear with respect to
the dynamic parameters, namely, the mass, the three components of the first

moment of inertia in (7.72), the six components of the inertia tensor in (7.73),
and the moment of inertia of the rotor .

As regards potential energy, it is worth referring to the centre of mass of
augmented Link i defined as in (7.65), and thus the single contribution of
potential energy can be written as

Ui = −mig
iT
0 pi

Ci
(7.74)

where the vectors have been referred to Frame i. According to the relation

pi
Ci

= pi
i + ri

i,Ci
.

The expression in (7.74) can be rewritten as

Ui = −giT
0 (mip

i
i + mir

i
i,Ci

) (7.75)
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that is, the potential energy of the augmented link is linear with respect to
the mass and the three components of the first moment of inertia in (7.72).

By summing the contributions of kinetic energy and potential energy for
all augmented links, the Lagrangian of the system (7.1) can be expressed in
the form

L =

n∑

i=1

(βT
T i − β

T
Ui)πi (7.76)

where πi is the (11× 1) vector of dynamic parameters

πi = [mi miℓCix miℓCiy miℓCiz Îixx Îixy Îixz Îiyy Îiyz Îizz Imi
]T ,

(7.77)
in which the moment of inertia of Rotor i has been associated with the pa-
rameters of Link i so as to simplify the notation.

In (7.76), βT i and βUi are two (11 × 1) vectors that allow the La-
grangian to be written as a function of πi. Such vectors are a function
of the generalized coordinates of the mechanical system (and also of their
derivatives as regards βT i). In particular, it can be shown that βT i =
βT i(q1, q2, . . . , qi, q̇1, q̇2, . . . , q̇i) and βUi = βUi(q1, q2, . . . , qi), i.e., they do not
depend on the variables of the joints subsequent to Link i.

At this point, it should be observed how the derivations required by the
Lagrange equations in (7.2) do not alter the property of linearity in the pa-
rameters, and then the generalized force at Joint i can be written as

ξi =
n∑

j=1

yT
ijπj (7.78)

where

yij =
d

dt

∂βT j

∂q̇i

−
∂βT j

∂qi

+
∂βUj

∂qi

. (7.79)

Since the partial derivatives of βT j and βUj appearing in (7.79) vanish for
j < i, the following notable result is obtained:





ξ1

ξ2
...

ξn



 =





yT
11 yT

12 . . . yT
1n

0T yT
22 . . . yT

2n

...
...

. . .
...

0T 0T . . . yT
nn









π1

π2

...

πn




(7.80)

which yields the property of linearity of the model of a manipulator with
respect to a suitable set of dynamic parameters.

In the simple case of no contact forces (he = 0), it may be worth including
the viscous friction coefficient Fvi and Coulomb friction coefficient Fsi in the
parameters of the vector πi, thus leading to a total number of 13 parameters
per joint. In summary, (7.80) can be compactly written as

τ = Y (q, q̇, q̈)π (7.81)
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Fig. 7.3. Two-link Cartesian arm

where π is a (p×1) vector of constant parameters and Y is an (n×p) matrix
which is a function of joint positions, velocities and accelerations; this matrix
is usually called regressor . Regarding the dimension of the parameter vector,
notice that p ≤ 13n since not all the thirteen parameters for each joint may
explicitly appear in (7.81).

7.3 Dynamic Model of Simple Manipulator Structures

In the following, three examples of dynamic model computation are illustrated
for simple two-DOF manipulator structures. Two DOFs, in fact, are enough
to understand the physical meaning of all dynamic terms, especially the joint
coupling terms. On the other hand, dynamic model computation for manip-
ulators with more DOFs would be quite tedious and prone to errors, when
carried out by paper and pencil. In those cases, it is advisable to perform it
with the aid of a symbolic programming software package.

7.3.1 Two-link Cartesian Arm

Consider the two-link Cartesian arm in Fig. 7.3, for which the vector of gen-
eralized coordinates is q = [ d1 d2 ]T . Let mℓ1 , mℓ2 be the masses of the two
links, and mm1

, mm2
the masses of the rotors of the two joint motors. Also let

Im1
, Im2

be the moments of inertia with respect to the axes of the two rotors.
It is assumed that pmi

= pi−1 and zmi
= zi−1, for i = 1, 2, i.e., the motors

are located on the joint axes with centres of mass located at the origins of the
respective frames.

With the chosen coordinate frames, computation of the Jacobians in (7.16),
(7.18) yields

J
(ℓ1)
P =




0 0
0 0
1 0



 J
(ℓ2)
P =




0 1
0 0
1 0



 .
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Obviously, in this case there are no angular velocity contributions for both
links.

Computation of the Jacobians in (7.25), (7.26) e (7.28), (7.29) yields

J
(m1)
P =




0 0
0 0
0 0



 J
(m2)
P =




0 0
0 0
1 0





J
(m1)
O =




0 0
0 0

kr1 0



 J
(m2)
O =




0 kr2

0 0
0 0





where kri is the gear reduction ratio of Motor i. It is obvious to see that
z1 = [ 1 0 0 ]T , which greatly simplifies computation of the second term
in (4.34).

From (7.32), the inertia matrix is

B =

[
mℓ1 + mm2

+ k2
r1Im1

+ mℓ2 0
0 mℓ2 + k2

r2Im2

]
.

It is worth observing that B is constant , i.e., it does not depend on the arm
configuration. This implies also that C = O, i.e., there are no contributions
of centrifugal and Coriolis forces. As for the gravitational terms, since g0 =
[ 0 0 −g ]T (g is gravity acceleration), (7.39) with the above Jacobians gives

g1 = (mℓ1 + mm2
+ mℓ2)g g2 = 0.

In the absence of friction and tip contact forces, the resulting equations of
motion are

(mℓ1 + mm2
+ k2

r1Im1
+ mℓ2)d̈1 + (mℓ1 + mm2

+ mℓ2)g = τ1

(mℓ2 + k2
r2Im2

)d̈2 = τ2

where τ1 and τ2 denote the forces applied to the two joints. Notice that a
completely decoupled dynamics has been obtained. This is a consequence not
only of the Cartesian structures but also of the particular geometry; in other
words, if the second joint axis were not at a right angle with the first joint
axis, the resulting inertia matrix would not be diagonal (see Problem 7.1).

7.3.2 Two-link Planar Arm

Consider the two-link planar arm in Fig. 7.4, for which the vector of general-
ized coordinates is q = [ϑ1 ϑ2 ]T . Let ℓ1, ℓ2 be the distances of the centres
of mass of the two links from the respective joint axes. Also let mℓ1 , mℓ2 be
the masses of the two links, and mm1

, mm2
the masses of the rotors of the two

joint motors. Finally, let Im1
, Im2

be the moments of inertia with respect to
the axes of the two rotors, and Iℓ1 , Iℓ2 the moments of inertia relative to the
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Fig. 7.4. Two-link planar arm

centres of mass of the two links, respectively. It is assumed that pmi
= pi−1

and zmi
= zi−1, for i = 1, 2, i.e., the motors are located on the joint axes

with centres of mass located at the origins of the respective frames.
With the chosen coordinate frames, computation of the Jacobians in (7.16),

(7.18) yields

J
(ℓ1)
P =




−ℓ1s1 0
ℓ1c1 0
0 0



 J
(ℓ2)
P =




−a1s1 − ℓ2s12 −ℓ2s12

a1c1 + ℓ2c12 ℓ2c12

0 0



 ,

whereas computation of the Jacobians in (7.17), (7.19) yields

J
(ℓ1)
O =




0 0
0 0
1 0



 J
(ℓ2)
O =




0 0
0 0
1 1



 .

Notice that ωi, for i = 1, 2, is aligned with z0, and thus Ri has no effect. It
is then possible to refer to the scalar moments of inertia Iℓi

.
Computation of the Jacobians in (7.25), (7.26) yields

J
(m1)
P =




0 0
0 0
0 0



 J
(m2)
P =




−a1s1 0
a1c1 0

0 0



 ,

whereas computation of the Jacobians in (7.28), (7.29) yields

J
(m1)
O =




0 0
0 0

kr1 0



 J
(m2)
O =




0 0
0 0
1 kr2





where kri is the gear reduction ratio of Motor i.
From (7.32), the inertia matrix is

B(q) =

[
b11(ϑ2) b12(ϑ2)
b21(ϑ2) b22

]
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b11 = Iℓ1 + mℓ1ℓ
2
1 + k2

r1Im1
+ Iℓ2 + mℓ2(a

2
1 + ℓ22 + 2a1ℓ2c2)

+Im2
+ mm2

a2
1

b12 = b21 = Iℓ2 + mℓ2(ℓ
2
2 + a1ℓ2c2) + kr2Im2

b22 = Iℓ2 + mℓ2ℓ
2
2 + k2

r2Im2
.

Compared to the previous example, the inertia matrix is now configuration-
dependent. Notice that the term kr2Im2

in the off-diagonal term of the inertia
matrix derives from having considered the rotational part of the motor ki-
netic energy as due to the total angular velocity, i.e., its own angular velocity
and that of the preceding link in the kinematic chain. At first approximation,
especially in the case of high values of the gear reduction ratio, this contribu-
tion could be neglected; in the resulting reduced model, motor inertias would
appear uniquely in the elements on the diagonal of the inertia matrix with
terms of the type k2

riImi
.

The computation of Christoffel symbols as in (7.45) gives

c111 =
1

2

∂b11

∂q1
= 0

c112 = c121 =
1

2

∂b11

∂q2
= −mℓ2a1ℓ2s2 = h

c122 =
∂b12

∂q2
−

1

2

∂b22

∂q1
= h

c211 =
∂b21

∂q1
−

1

2

∂b11

∂q2
= −h

c212 = c221 =
1

2

∂b22

∂q1
= 0

c222 =
1

2

∂b22

∂q2
= 0,

leading to the matrix

C(q, q̇) =

[
hϑ̇2 h(ϑ̇1 + ϑ̇2)

−hϑ̇1 0

]
.

Computing the matrix N in (7.47) gives

N(q, q̇) = Ḃ(q)− 2C(q, q̇)

=

[
2hϑ̇2 hϑ̇2

hϑ̇2 0

]
− 2

[
hϑ̇2 h(ϑ̇1 + ϑ̇2)

−hϑ̇1 0

]

=

[
0 −2hϑ̇1 − hϑ̇2

2hϑ̇1 + hϑ̇2 0

]

that allows the verification of the skew-symmetry property expressed by (7.48).
See also Problem 7.2.
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As for the gravitational terms, since g0 = [ 0 −g 0 ]T , (7.39) with the
above Jacobians gives

g1 = (mℓ1ℓ1 + mm2
a1 + mℓ2a1)gc1 + mℓ2ℓ2gc12

g2 = mℓ2ℓ2gc12.

In the absence of friction and tip contact forces, the resulting equations of
motion are

(
Iℓ1 + mℓ1ℓ

2
1 + k2

r1Im1
+ Iℓ2 + mℓ2(a

2
1 + ℓ22 + 2a1ℓ2c2) + Im2

+ mm2
a2
1

)
ϑ̈1

+
(
Iℓ2 + mℓ2(ℓ

2
2 + a1ℓ2c2) + kr2Im2

)
ϑ̈2

−2mℓ2a1ℓ2s2ϑ̇1ϑ̇2 −mℓ2a1ℓ2s2ϑ̇
2
2

+(mℓ1ℓ1 + mm2
a1 + mℓ2a1)gc1 + mℓ2ℓ2gc12 = τ1 (7.82)

(
Iℓ2 + mℓ2(ℓ

2
2 + a1ℓ2c2) + kr2Im2

)
ϑ̈1 +

(
Iℓ2 + mℓ2ℓ

2
2 + k2

r2Im2

)
ϑ̈2

+mℓ2a1ℓ2s2ϑ̇
2
1 + mℓ2ℓ2gc12 = τ2

where τ1 and τ2 denote the torques applied to the joints.
Finally, it is wished to derive a parameterization of the dynamic model

(7.82) according to the relation (7.81). By direct inspection of the expressions
of the joint torques, it is possible to find the following parameter vector:

π = [π1 π2 π3 π4 π5 π6 π7 π8 ]T (7.83)

π1 = m1 = mℓ1 + mm2

π2 = m1ℓC1
= mℓ1(ℓ1 − a1)

π3 = Î1 = Iℓ1 + mℓ1(ℓ1 − a1)
2 + Im2

π4 = Im1

π5 = m2 = mℓ2

π6 = m2ℓC2
= mℓ2(ℓ2 − a2)

π7 = Î2 = Iℓ2 + mℓ2(ℓ2 − a2)
2

π8 = Im2
,

where the parameters for the augmented links have been found according
to (7.77). It can be recognized that the number of non-null parameters is less
than the maximum number of twenty-two parameters allowed in this case.6

The regressor in (7.81) is

Y =

[
y11 y12 y13 y14 y15 y16 y17 y18

y21 y22 y23 y24 y25 y26 y27 y28

]
(7.84)

6 The number of parameters can be further reduced by resorting to a more accurate
inspection, which leads to finding a minimum number of five parameters; those
turn out to be a linear combination of the parameters in (7.83) (see Problem 7.4).
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y11 = a2
1ϑ̈1 + a1gc1

y12 = 2a1ϑ̈1 + gc1

y13 = ϑ̈1

y14 = k2
r1ϑ̈1

y15 = (a2
1 + 2a1a2c2 + a2

2)ϑ̈1 + (a1a2c2 + a2
2)ϑ̈2 − 2a1a2s2ϑ̇1ϑ̇2

−a1a2s2ϑ̇
2
2 + a1gc1 + a2gc12

y16 = (2a1c2 + 2a2)ϑ̈1 + (a1c2 + 2a2)ϑ̈2 − 2a1s2ϑ̇1ϑ̇2 − a1s2ϑ̇
2
2

+gc12

y17 = ϑ̈1 + ϑ̈2

y18 = kr2ϑ̈2

y21 = 0

y22 = 0

y23 = 0

y24 = 0

y25 = (a1a2c2 + a2
2)ϑ̈1 + a2

2ϑ̈2 + a1a2s2ϑ̇
2
1 + a2gc12

y26 = (a1c2 + 2a2)ϑ̈1 + 2a2ϑ̈2 + a1s2ϑ̇
2
1 + gc12

y27 = ϑ̈1 + ϑ̈2

y28 = kr2ϑ̈1 + k2
r2ϑ̈2.

Example 7.2

In order to understand the relative weight of the various torque contributions in the
dynamic model (7.82), consider a two-link planar arm with the following data:

a1 = a2 = 1 m ℓ1 = ℓ2 = 0.5 m mℓ1
= mℓ2

= 50 kg Iℓ1
= Iℓ2

= 10 kg·m2

kr1 = kr2 = 100 mm1
= mm2

= 5kg Im1
= Im2

= 0.01 kg·m2.

The two links have been chosen equal to illustrate better the dynamic interaction
between the two joints.

Figure 7.5 shows the time history of positions, velocities, accelerations and
torques resulting from joint trajectories with typical triangular velocity profile and
equal time duration. The initial arm configuration is so that the tip is located at the
point (0.2, 0) m with a lower elbow posture. Both joints make a rotation of π/2 rad
in a time of 0.5 s.

From the time history of the single torque contributions in Fig. 7.6 it can be
recognized that:
• The inertia torque at Joint 1 due to Joint 1 acceleration follows the time history

of the acceleration.
• The inertia torque at Joint 2 due to Joint 2 acceleration is piecewise constant,

since the inertia moment at Joint 2 axis is constant.
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Fig. 7.5. Time history of positions, velocities, accelerations and torques with joint
trajectories of equal duration
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Fig. 7.6. Time history of torque contributions with joint trajectories of equal du-
ration
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Fig. 7.7. Time history of positions, velocities, accelerations and torques with joint
trajectories of different duration
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Fig. 7.8. Time history of torque contributions with joint trajectories of different
duration
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Fig. 7.9. Time history of tip position, velocity and acceleration with a straight line
tip trajectory along the horizontal axis

• The inertia torques at each joint due to acceleration of the other joint confirm
the symmetry of the inertia matrix, since the acceleration profiles are the same
for both joints.

• The Coriolis effect is present only at Joint 1, since the arm tip moves with respect
to the mobile frame attached to Link 1 but is fixed with respect to the frame
attached to Link 2.

• The centrifugal and Coriolis torques reflect the above symmetry.
Figure 7.7 shows the time history of positions, velocities, accelerations and

torques resulting from joint trajectories with typical trapezoidal velocity profile and
different time duration. The initial configuration is the same as in the previous case.
The two joints make a rotation so as to take the tip to the point (1.8, 0) m. The
acceleration time is 0.15 s and the maximum velocity is 5 rad/s for both joints.
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Fig. 7.10. Time history of joint positions, velocities, accelerations, and torques with
a straight line tip trajectory along the horizontal axis
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Fig. 7.11. Time history of joint torque contributions with a straight line tip tra-
jectory along the horizontal axis
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From the time history of the single torque contributions in Fig. 7.8 it can be
recognized that:
• The inertia torque at Joint 1 due to Joint 2 acceleration is opposite to that at

Joint 2 due to Joint 1 acceleration in that portion of trajectory when the two
accelerations have the same magnitude but opposite sign.

• The different velocity profiles imply that the centrifugal effect induced at Joint
1 by Joint 2 velocity dies out later than the centrifugal effect induced at Joint 2
by Joint 1 velocity.

• The gravitational torque at Joint 2 is practically constant in the first portion
of the trajectory, since Link 2 is almost kept in the same posture. As for the
gravitational torque at Joint 1, instead, the centre of mass of the articulated
system moves away from the origin of the axes.
Finally, Fig. 7.9 shows the time history of tip position, velocity and acceleration

for a trajectory with a trapezoidal velocity profile. Starting from the same initial
posture as above, the arm tip makes a translation of 1.6 m along the horizontal axis;
the acceleration time is 0.15 s and the maximum velocity is 5m/s.

As a result of an inverse kinematics procedure, the time history of joint positions,
velocities and accelerations have been computed which are illustrated in Fig. 7.10,
together with the joint torques that are needed to execute the assigned trajectory.
It can be noticed that the time history of the represented quantities differs from
the corresponding ones in the operational space, in view of the nonlinear effects
introduced by kinematic relations.

For what concerns the time history of the individual torque contributions in
Fig. 7.11, it is possible to make a number of remarks similar to those made above
for trajectories assigned directly in the joint space.

7.3.3 Parallelogram Arm

Consider the parallelogram arm in Fig. 7.12. Because of the presence of the
closed chain, the equivalent tree-structured open-chain arm is initially taken
into account. Let ℓ1′ , ℓ2′ , ℓ3′ and ℓ1′′ be the distances of the centres of mass
of the three links along one branch of the tree, and of the single link along
the other branch, from the respective joint axes. Also let mℓ1′

, mℓ2′
, mℓ3′

and
mℓ1′′

be the masses of the respective links, and Iℓ1′
, Iℓ2′

, Iℓ3′
and Iℓ1′′

the
moments of inertia relative to the centres of mass of the respective links. For
the sake of simplicity, the contributions of the motors are neglected.

With the chosen coordinate frames, computation of the Jacobians in (7.16)
(7.18) yields

J
(ℓ1′ )
P =




−ℓ1′s1′ 0 0
ℓ1′c1′ 0 0

0 0 0



 J
(ℓ2′ )
P =




−a1′s1′ − ℓ2s1′2′ −ℓ2′s1′2′ 0
a1′c1′ + ℓ2′c1′2′ ℓ2c1′2′ 0

0 0 0





J
(ℓ3′ )
P =




−a1′s1′ − a2′s1′2′ − ℓ3′s1′2′3′ −a2′s1′2′ − ℓ3′s1′2′3′ −ℓ3′s1′2′3′

a1′c1′ + a2′c1′2′ + ℓ3′c1′2′3′ a2′c1′2′ + ℓ3′c1′2′3′ ℓ3′c1′2′3′

0 0 0
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Fig. 7.12. Parallelogram arm

and

J
(ℓ1′′ )
P =




−ℓ1′′s1′′

ℓ1′′c1′′

0



 ,

whereas computation of the Jacobians in (7.17), (7.19) yields

J
(ℓ1′ )
O =




0 0 0
0 0 0
1 0 0



 J
(ℓ2′ )
O =




0 0 0
0 0 0
1 1 0



 J
(ℓ3′ )
O =




0 0 0
0 0 0
1 1 1





and

J
(ℓ1′′ )
O =




0
0
1



 .

From (7.32), the inertia matrix of the virtual arm composed of joints ϑ1′ ,
ϑ2′ , ϑ3′ is

B′(q′) =




b1′1′(ϑ2′ , ϑ3′) b1′2′(ϑ2′ , ϑ3′) b1′3′(ϑ2′ , ϑ3′)
b2′1′(ϑ2′ , ϑ3′) b2′2′(ϑ3′) b2′3′(ϑ3′)
b3′1′(ϑ2′ , ϑ3′) b3′2′(ϑ3′) b3′3′





b1′1′ = Iℓ1′
+ mℓ1′

ℓ21′ + Iℓ2′
+ mℓ2′

(a2
1′ + ℓ22′ + 2a1′ℓ2′c2′) + Iℓ3′

+mℓ3′
(a2

1′ + a2
2′ + ℓ23′ + 2a1′a2′c2′ + 2a1′ℓ3′c2′3′ + 2a2′ℓ3′c3′)

b1′2′ = b2′1′ = Iℓ2′
+ mℓ2′

(ℓ22′ + a1′ℓ2′c2′) + Iℓ3′

+mℓ3′
(a2

2′ + ℓ23′ + a1′a2′c2′ + a1′ℓ3′c2′3′ + 2a2′ℓ3′c3′)

b1′3′ = b31 = Iℓ3′
+ mℓ3′

(ℓ23′ + a1′ℓ3′c2′3′ + a2′ℓ3′c3′)

b2′2′ = Iℓ2′
+ mℓ2′

ℓ22′ + Iℓ3′
+ mℓ3′

(a2
2′ + ℓ23′ + 2a2′ℓ3′c3′)

b2′3′ = Iℓ3′
+ mℓ3′

(ℓ23′ + a2′ℓ3′c3′)

b3′3′ = Iℓ3′
+ mℓ3′

ℓ23′
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while the moment of inertia of the virtual arm composed of just joint ϑ1′′ is

b1′′1′′ = Iℓ1′′
+ mℓ1′′

ℓ21′′ .

Therefore, the inertial torque contributions of the two virtual arms are re-
spectively:

τi′ =

3′∑

j′=1′

bi′j′ ϑ̈j′ τ1′′ = b1′′1′′ ϑ̈1′′ .

At this point, in view of (2.64) and (3.121), the inertial torque contribu-
tions at the actuated joints for the closed-chain arm turn out to be

τ a = Baq̈a

where qa = [ϑ1′ ϑ1′′ ]
T
, τ a = [ τa1 τa2 ]

T
and

Ba =

[
ba11 ba12

ba21 ba22

]

ba11 = Iℓ1′
+ mℓ1′

ℓ21′ + mℓ2′
a2
1′ + Iℓ3′

+ mℓ3′
ℓ23′ + mℓ3′

a2
1′

−2a1′mℓ3′
ℓ3′

ba12 = ba21 =
(
a1′mℓ2′

ℓ2′ + a1′′mℓ3′
(a1′ − ℓ3′)

)
cos (ϑ1′′ − ϑ1′)

ba22 = Iℓ1′
+ mℓ1′

ℓ21′ + Iℓ2′
+ mℓ2′

ℓ22′ + mℓ3′
a2
1′′ .

This expression reveals the possibility of obtaining a configuration-independent

and decoupled inertia matrix; to this end it is sufficient to design the four links
of the parallelogram so that

mℓ3′
ℓ̄3′

mℓ2′
ℓ2′

=
a1′

a1′′

where ℓ̄3′ = ℓ3′ − a1′ is the distance of the centre of mass of Link 3′ from the
axis of Joint 4. If this condition is satisfied, then the inertia matrix is diagonal
(ba12 = ba21 = 0) with

ba11 = Iℓ1′
+ mℓ1′

ℓ21′ + mℓ2′
a2
1′

(
1 +

ℓ2′ ℓ̄3′

a1′a1′′

)
+ Iℓ3′

ba22 = Iℓ1′
+ mℓ1′

ℓ21′ + Iℓ2′
+ mℓ2′

ℓ22′

(
1 +

a1′a1′′

ℓ2′ ℓ̄3′

)
.

As a consequence, no contributions of Coriolis and centrifugal torques are
obtained. Such a result could not be achieved with the previous two-link
planar arm, no matter how the design parameters were chosen.
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As for the gravitational terms, since g0 = [ 0 −g 0 ]T , (7.39) with the
above Jacobians gives

g1′ (mℓ1′
ℓ1′ + mℓ2′

a1′ + mℓ3′
a1′)gc1′ + (mℓ2′

ℓ2′ + mℓ3′
a2′)gc1′2′

+mℓ3′
ℓ3′gc1′2′3

g2′ (mℓ2′
ℓ2′ + mℓ3′

a2′)gc1′2′ + mℓ3′
ℓ3′gc1′2′3

g3′ mℓ3′
ℓ3′gc1′2′3

and
g1′′ = mℓ1′′

ℓ1′′gc1′′ .

Composing the various contributions as done above yields

ga =

[
(mℓ1′

ℓ1′ + mℓ2′
a1′ −mℓ3′

ℓ̄3′)gc1′

(mℓ1′′
ℓ1′′ + mℓ2′

ℓ2′ + mℓ3′
a1′′)gc1′′

]

which, together with the inertial torques, completes the derivation of the
sought dynamic model.

A final comment is in order. In spite of its kinematic equivalence with the
two-link planar arm, the dynamic model of the parallelogram is remarkably
lighter. This property is quite advantageous for trajectory planning and con-
trol purposes. For this reason, apart from obvious considerations related to
manipulation of heavy payloads, the adoption of closed kinematic chains in
the design of industrial robots has received a great deal of attention.

7.4 Dynamic Parameter Identification

The use of the dynamic model for solving simulation and control problems de-
mands the knowledge of the values of dynamic parameters of the manipulator
model.

Computing such parameters from the design data of the mechanical struc-
ture is not simple. CAD modelling techniques can be adopted which allow the
computation of the values of the inertial parameters of the various components
(links, actuators and transmissions) on the basis of their geometry and type of
materials employed. Nevertheless, the estimates obtained by such techniques
are inaccurate because of the simplification typically introduced by geometric
modelling; moreover, complex dynamic effects, such as joint friction, cannot
be taken into account.

A heuristic approach could be to dismantle the various components of the
manipulator and perform a series of measurements to evaluate the inertial
parameters. Such technique is not easy to implement and may be troublesome
to measure the relevant quantities.

In order to find accurate estimates of dynamic parameters, it is worth
resorting to identification techniques which conveniently exploit the property

of linearity (7.81) of the manipulator model with respect to a suitable set of
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dynamic parameters. Such techniques allow the computation of the parameter
vector π from the measurements of joint torques τ and of relevant quantities
for the evaluation of the matrix Y , when suitable motion trajectories are
imposed to the manipulator.

On the assumption that the kinematic parameters in the matrix Y are
known with good accuracy, e.g., as a result of a kinematic calibration, mea-
surements of joint positions q, velocities q̇ and accelerations q̈ are required.
Joint positions and velocities can be actually measured while numerical recon-
struction of accelerations is needed; this can be performed on the basis of the
position and velocity values recorded during the execution of the trajectories.
The reconstructing filter does not work in real time and thus it can also be
anti-causal, allowing an accurate reconstruction of the accelerations.

As regards joint torques, in the unusual case of torque sensors at the
joint, these can be measured directly. Otherwise, they can be evaluated from
either wrist force measurements or current measurements in the case of electric
actuators.

If measurements of joint torques, positions, velocities and accelerations
have been obtained at given time instants t1, . . . , tN along a given trajectory,
one may write

τ̄ =




τ (t1)

...
τ (tN )



 =




Y (t1)

...
Y (tN )



π = Ȳ π. (7.85)

The number of time instants sets the number of measurements to perform
and should be large enough (typically Nn ≫ p) so as to avoid ill-conditioning
of matrix Ȳ . Solving (7.85) by a least-squares technique leads to the solution
in the form

π = (Ȳ
T
Ȳ )−1Ȳ

T
τ̄ (7.86)

where (Ȳ
T
Ȳ )−1Ȳ

T
is the left pseudo-inverse matrix of Ȳ .

It should be noticed that, in view of the block triangular structure of
matrix Y in (7.80), computation of parameter estimates could be simplified
by resorting to a sequential procedure. Take the equation τn = yT

nnπn and
solve it for πn by specifying τn and yT

nn for a given trajectory on Joint n.
By iterating the procedure, the manipulator parameters can be identified on
the basis of measurements performed joint by joint from the outer link to the
base. Such procedure, however, may have the inconvenience to accumulate
any error due to ill-conditioning of the matrices involved step by step. It may
then be worth operating with a global procedure by imposing motions on all
manipulator joints at the same time.

Regarding the rank of matrix Ȳ , it is possible to identify only the dynamic
parameters of the manipulator that contribute to the dynamic model. Exam-
ple 7.2 has indeed shown that for the two-link planar arm considered, only
8 out of the 22 possible dynamic parameters appear in the dynamic model.
Hence, there exist some dynamic parameters which, in view of the disposition
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of manipulator links and joints, are non-identifiable, since for any trajectory
assigned to the structure they do not contribute to the equations of motion. A
direct consequence is that the columns of the matrix Y in (7.80) correspond-
ing to such parameters are null and thus they have to be removed from the
matrix itself; e.g., the resulting (2× 8) matrix in (7.84).

Another issue to consider about determination of the effective number
of parameters that can be identified by (7.86) is that some parameters can
be identified in linear combinations whenever they do not appear isolated in
the equations. In such a case, it is necessary, for each linear combination, to
remove as many columns of the matrix Y as the number of parameters in the
linear combination minus one.

For the determination of the minimum number of identifiable parameters
that allow direct application of the least-squares technique based on (7.86),
it is possible to inspect directly the equations of the dynamic model, as long
as the manipulator has few joints. Otherwise, numerical techniques based on
singular value decomposition of matrix Ȳ have to be used. If the matrix Ȳ

resulting from a series of measurements is not full-rank, one has to resort to
a damped least-squares inverse of Ȳ where solution accuracy depends on the
weight of the damping factor.

In the above discussion, the type of trajectory imposed to the manipulator
joints has not been explicitly addressed. It can be generally ascertained that
the choice should be oriented in favor of polynomial type trajectories which are
sufficiently rich to allow an accurate evaluation of the identifiable parameters.

This corresponds to achieving a low condition number of the matrix Ȳ
T
Ȳ

along the trajectory. On the other hand, such trajectories should not excite
any unmodelled dynamic effects such as joint elasticity or link flexibility that
would naturally lead to unreliable estimates of the dynamic parameters to
identify.

Finally, it is worth observing that the technique presented above can also
be extended to the identification of the dynamic parameters of an unknown
payload at the manipulator’s end-effector. In such a case, the payload can be
regarded as a structural modification of the last link and one may proceed to
identify the dynamic parameters of the modified link. To this end, if a force
sensor is available at the manipulator’s wrist, it is possible to characterize
directly the dynamic parameters of the payload starting from force sensor
measurements.

7.5 Newton–Euler Formulation

In the Lagrange formulation, the manipulator dynamic model is derived start-
ing from the total Lagrangian of the system. On the other hand, the Newton–

Euler formulation is based on a balance of all the forces acting on the generic
link of the manipulator. This leads to a set of equations whose structure allows
a recursive type of solution; a forward recursion is performed for propagating
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Fig. 7.13. Characterization of Link i for Newton–Euler formulation

link velocities and accelerations, followed by a backward recursion for propa-
gating forces.

Consider the generic augmented Link i (Link i plus motor of Joint i+1) of
the manipulator kinematic chain (Fig. 7.13). According to what was presented
in Sect. 7.2.2, one can refer to the centre of mass Ci of the augmented link to
characterize the following parameters:

• mi mass of augmented link,
• Īi inertia tensor of augmented link,
• Imi

moment of inertia of rotor,
• ri−1,Ci

vector from origin of Frame (i− 1) to centre of mass Ci,
• ri,Ci

vector from origin of Frame i to centre of mass Ci,
• ri−1,i vector from origin of Frame (i− 1) to origin of Frame i.

The velocities and accelerations to be considered are:

• ṗCi
linear velocity of centre of mass Ci,

• ṗi linear velocity of origin of Frame i,
• ωi angular velocity of link,
• ωmi

angular velocity of rotor,
• p̈Ci

linear acceleration of centre of mass Ci,
• p̈i linear acceleration of origin of Frame i,
• ω̇i angular acceleration of link,
• ω̇mi

angular acceleration of rotor,
• g0 gravity acceleration.

The forces and moments to be considered are:

• f i force exerted by Link i− 1 on Link i,
• −f i+1 force exerted by Link i + 1 on Link i,
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• µi moment exerted by Link i − 1 on Link i with respect to origin of
Frame i− 1,

• −µi+1 moment exerted by Link i + 1 on Link i with respect to origin of
Frame i.

Initially, all the vectors and matrices are assumed to be expressed with
reference to the base frame.

As already anticipated, the Newton–Euler formulation describes the mo-
tion of the link in terms of a balance of forces and moments acting on it.

The Newton equation for the translational motion of the centre of mass
can be written as

f i − f i+1 + mig0 = mip̈Ci
. (7.87)

The Euler equation for the rotational motion of the link (referring mo-
ments to the centre of mass) can be written as

µi + f i × ri−1,Ci
− µi+1 − f i+1 × ri,Ci

=
d

dt
(Īiωi + kr,i+1q̇i+1Imi+1

zmi+1
),

(7.88)
where (7.67) has been used for the angular momentum of the rotor. Notice
that the gravitational force mig0 does not generate any moment, since it is
concentrated at the centre of mass.

As pointed out in the above Lagrange formulation, it is convenient to
express the inertia tensor in the current frame (constant tensor). Hence, ac-

cording to (7.12), one has Īi = RiĪ
i

iR
T
i , where Ri is the rotation matrix from

Frame i to the base frame. Substituting this relation in the first term on the
right-hand side of (7.88) yields

d

dt
(Īiωi) = ṘiĪ

i

iR
T
i ωi +RiĪ

i

iṘ
T

i ωi +RiĪ
i

iR
T
i ω̇i (7.89)

= S(ωi)RiĪ
i

iR
T
i ωi +RiĪ

i

iR
T
i S

T (ωi)ωi +RiĪ
i

iR
T
i ω̇i

= Īiω̇i + ωi × (Īiωi)

where the second term represents the gyroscopic torque induced by the depen-
dence of Īi on link orientation.7 Moreover, by observing that the unit vector
zmi+1

rotates accordingly to Link i, the derivative needed in the second term
on the right-hand side of (7.88) is

d

dt
(q̇i+1Imi+1

zmi+1
) = q̈i+1Imi+1

zmi+1
+ q̇i+1Imi+1

ωi × zmi+1
(7.90)

By substituting (7.89), (7.90) in (7.88), the resulting Euler equation is

µi + f i × ri−1,Ci
−µi+1 − f i+1 × ri,Ci

= Īiω̇i + ωi × (Īiωi) (7.91)

+kr,i+1q̈i+1Imi+1
zmi+1

+ kr,i+1q̇i+1Imi+1
ωi × zmi+1

.

7 In deriving (7.89), the operator S has been introduced to compute the derivative
of Ri, as in (3.8); also, the property ST (ωi)ωi = 0 has been utilized.
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The generalized force at Joint i can be computed by projecting the force
f i for a prismatic joint, or the moment µi for a revolute joint, along the
joint axis. In addition, there is the contribution of the rotor inertia torque
kriImi

ω̇T
mi
zmi

. Hence, the generalized force at Joint i is expressed by

τi =

{
fT

i zi−1 + kriImi
ω̇T

mi
zmi

for a prismatic joint

µT
i zi−1 + kriImi

ω̇T
mi
zmi

for a revolute joint.
(7.92)

7.5.1 Link Accelerations

The Newton–Euler equations in (7.87), (7.91) and the equation in (7.92) re-
quire the computation of linear and angular acceleration of Link i and Rotor
i. This computation can be carried out on the basis of the relations expressing
the linear and angular velocities previously derived. The equations in (3.21),
(3.22), (3.25), (3.26) can be briefly rewritten as

ωi =

{
ωi−1 for a prismatic joint

ωi−1 + ϑ̇izi−1 for a revolute joint
(7.93)

and

ṗi =

{
ṗi−1 + ḋizi−1 + ωi × ri−1,i for a prismatic joint

ṗi−1 + ωi × ri−1,i for a revolute joint.
(7.94)

As for the angular acceleration of the link, it can be seen that, for a
prismatic joint, differentiating (3.21) with respect to time gives

ω̇i = ω̇i−1, (7.95)

whereas, for a revolute joint, differentiating (3.25) with respect to time gives

ω̇i = ω̇i−1 + ϑ̈izi−1 + ϑ̇iωi−1 × zi−1. (7.96)

As for the linear acceleration of the link, for a prismatic joint, differenti-
ating (3.22) with respect to time gives

p̈i = p̈i−1 + d̈izi−1 + ḋiωi−1 × zi−1 + ω̇i × ri−1,i (7.97)

+ωi × ḋizi−1 + ωi × (ωi−1 × ri−1,i)

where the relation ṙi−1,i = ḋizi−1 + ωi−1 × ri−1,i has been used. Hence, in
view of (3.21), the equation in (7.97) can be rewritten as

p̈i = p̈i−1 + d̈izi−1 + 2ḋiωi × zi−1 + ω̇i × ri−1,i +ωi × (ωi × ri−1,i). (7.98)

Also, for a revolute joint, differentiating (3.26) with respect to time gives

p̈i = p̈i−1 + ω̇i × ri−1,i + ωi × (ωi × ri−1,i). (7.99)
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In summary, the equations in (7.95), (7.96), (7.98), (7.99) can be compactly
rewritten as

ω̇i =

{
ω̇i−1 for a prismatic joint

ω̇i−1 + ϑ̈izi−1 + ϑ̇iωi−1 × zi−1 for a revolute joint
(7.100)

and

p̈i=






p̈i−1 + d̈izi−1 + 2ḋiωi × zi−1 for a prismatic joint
+ω̇i × ri−1,i + ωi × (ωi × ri−1,i)

p̈i−1 + ω̇i × ri−1,i for a revolute joint.
+ωi × (ωi × ri−1,i)

(7.101)

The acceleration of the centre of mass of Link i required by the Newton
equation in (7.87) can be derived from (3.15), since ṙi

i,Ci
= 0; by differenti-

ating (3.15) with respect to time, the acceleration of the centre of mass Ci

can be expressed as a function of the velocity and acceleration of the origin
of Frame i, i.e.,

p̈Ci
= p̈i + ω̇i × ri,Ci

+ ωi × (ωi × ri,Ci
). (7.102)

Finally, the angular acceleration of the rotor can be obtained by time
differentiation of (7.23), i.e.,

ω̇mi
= ω̇i−1 + kriq̈izmi

+ kriq̇iωi−1 × zmi
. (7.103)

7.5.2 Recursive Algorithm

It is worth remarking that the resulting Newton–Euler equations of motion
are not in closed form, since the motion of a single link is coupled to the
motion of the other links through the kinematic relationship for velocities
and accelerations.

Once the joint positions, velocities and accelerations are known, one can
compute the link velocities and accelerations, and the Newton–Euler equations
can be utilized to find the forces and moments acting on each link in a recur-
sive fashion, starting from the force and moment applied to the end-effector.
On the other hand, also link and rotor velocities and accelerations can be
computed recursively starting from the velocity and acceleration of the base
link. In summary, a computationally recursive algorithm can be constructed
that features a forward recursion relative to the propagation of velocities and

accelerations and a backward recursion for the propagation of forces and mo-

ments along the structure.
For the forward recursion, once q, q̇, q̈, and the velocity and acceleration

of the base link ω0, p̈0 − g0, ω̇0 are specified, ωi, ω̇i, p̈i, p̈Ci
, ω̇mi

can be
computed using (7.93), (7.100), (7.101), (7.102), (7.103), respectively. Notice
that the linear acceleration has been taken as p̈0−g0 so as to incorporate the
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term −g0 in the computation of the acceleration of the centre of mass p̈Ci

via (7.101), (7.102).
Having computed the velocities and accelerations with the forward recur-

sion from the base link to the end-effector, a backward recursion can be carried
out for the forces. In detail, once he = [fT

n+1 µT
n+1 ]T is given (eventually

he = 0), the Newton equation in (7.87) to be used for the recursion can be
rewritten as

f i = f i+1 + mip̈Ci
(7.104)

since the contribution of gravity acceleration has already been included in
p̈Ci

. Further, the Euler equation gives

µi = −f i × (ri−1,i + ri,Ci
) + µi+1 + f i+1 × ri,Ci

+ Īiω̇i + ωi × (Īiωi)

+kr,i+1q̈i+1Imi+1
zmi+1

+ kr,i+1q̇i+1Imi+1
ωi × zmi+1

(7.105)

which derives from (7.91), where ri−1,Ci
has been expressed as the sum of the

two vectors appearing already in the forward recursion. Finally, the general-
ized forces resulting at the joints can be computed from (7.92) as

τi =






fT
i zi−1 + kriImi

ω̇T
mi
zmi

+Fviḋi+ Fsi sgn (ḋi) for a prismatic joint

µT
i zi−1 + kriImi

ω̇T
mi
zmi

+Fviϑ̇i+ Fsi sgn (ϑ̇i) for a revolute joint,

(7.106)

where joint viscous and Coulomb friction torques have been included.
In the above derivation, it has been assumed that all vectors were referred

to the base frame. To simplify greatly computation, however, the recursion is
computationally more efficient if all vectors are referred to the current frame
on Link i. This implies that all vectors that need to be transformed from
Frame i + 1 into Frame i have to be multiplied by the rotation matrix Ri

i+1,
whereas all vectors that need to be transformed from Frame i−1 into Frame i
have to be multiplied by the rotation matrix Ri−1

i
T . Therefore, the equations

in (7.93), (7.100), (7.101), (7.102), (7.103), (7.104), (7.105), (7.106) can be
rewritten as:

ωi
i =

{
Ri−1

i
Tωi−1

i−1 for a prismatic joint

Ri−1
i

T (ωi−1
i−1 + ϑ̇iz0) for a revolute joint

(7.107)

ω̇i
i =

{
Ri−1

i
T ω̇i−1

i−1 for a prismatic joint

Ri−1
i

T (ω̇i−1
i−1 + ϑ̈iz0 + ϑ̇iω

i−1
i−1 × z0) for a revolute joint

(7.108)

p̈i
i =






Ri−1
i

T (p̈i−1
i−1 + d̈iz0) + 2ḋiω

i
i ×R

i−1
i

Tz0

+ω̇i
i × r

i
i−1,i + ωi

i × (ωi
i × r

i
i−1,i) for a prismatic joint

Ri−1
i

T p̈i−1
i−1 + ω̇i

i × r
i
i−1,i

+ωi
i × (ωi

i × r
i
i−1,i) for a revolute joint

(7.109)
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Fig. 7.14. Computational structure of the Newton–Euler recursive algorithm

p̈i
Ci

= p̈i
i + ω̇i

i × r
i
i,Ci

+ ωi
i × (ωi

i × r
i
i,Ci

) (7.110)

ω̇i−1
mi

= ω̇i−1
i−1 + kriq̈iz

i−1
mi

+ kriq̇iω
i−1
i−1 × z

i−1
mi

(7.111)

f i
i = Ri

i+1f
i+1
i+1 + mip̈

i
Ci

(7.112)

µi
i = −f i

i × (ri
i−1,i+r

i
i,Ci

) +Ri
i+1µ

i+1
i+1 +Ri

i+1f
i+1
i+1 × r

i
i,Ci

(7.113)

+Ī
i

iω̇
i
i + ωi

i × (Ī
i

iω
i
i)

+ωi
i × (Ī

i

iω
i
i) + kr,i+1q̈i+1Imi+1

zi
mi+1

+ kr,i+1q̇i+1Imi+1
ωi

i × z
i
mi+1

τi =






f i
i
TRi−1

i
Tz0 + kriImi

ω̇i−1
mi

Tzi−1
mi

+Fviḋi + Fsi sgn (ḋi) for a prismatic joint

µi
i
TRi−1

i
Tz0 + kriImi

ω̇i−1
mi

Tzi−1
mi

+Fviϑ̇i + Fsi sgn (ϑ̇i) for a revolute joint.

(7.114)

The above equations have the advantage that the quantities Ī
i

i, r
i
i,Ci

, zi−1
mi

are constant ; further, it is z0 = [ 0 0 1 ]T .
To summarize, for given joint positions, velocities and accelerations, the

recursive algorithm is carried out in the following two phases:
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• With known initial conditions ω0
0, p̈

0
0 − g0

0, and ω̇0
0, use (7.107), (7.108),

(7.109), (7.110), (7.111), for i = 1, . . . , n, to compute ωi
i, ω̇

i
i, p̈

i
i, p̈

i
Ci

, ω̇i−1
mi

.

• With known terminal conditions fn+1
n+1 and µn+1

n+1, use (7.112), (7.113), for

i = n, . . . , 1, to compute f i
i, µ

i
i, and then (7.114) to compute τi.

The computational structure of the algorithm is schematically illustrated
in Fig. 7.14.

7.5.3 Example

In the following, an example to illustrate the single steps of the Newton–
Euler algorithm is developed. Consider the two-link planar arm whose dy-
namic model has already been derived in Example 7.2.

Start by imposing the initial conditions for the velocities and accelerations:

p̈0
0 − g

0
0 = [ 0 g 0 ]T ω0

0 = ω̇0
0 = 0,

and the terminal conditions for the forces:

f3
3 = 0 µ3

3 = 0.

All quantities are referred to the current link frame. As a consequence, the
following constant vectors are obtained:

r1
1,C1

=




ℓC1

0
0



 r1
0,1 =




a1

0
0



 r2
2,C2

=




ℓC2

0
0



 r2
1,2 =




a2

0
0





where ℓC1
and ℓC2

are both negative quantities. The rotation matrices needed
for vector transformation from one frame to another are

Ri−1
i =




ci −si 0
si ci 0
0 0 1



 i = 1, 2 R2
3 = I.

Further, it is assumed that the axes of rotation of the two rotors coincide with
the respective joint axes, i.e., zi−1

mi
= z0 = [ 0 0 1 ]T for i = 1, 2.

According to (7.107)–(7.114), the Newton–Euler algorithm requires the
execution of the following steps:

• Forward recursion: Link 1

ω1
1 =




0

0

ϑ̇1
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ω̇1
1 =




0

0

ϑ̈1





p̈1
1 =




−a1ϑ̇

2
1 + gs1

a1ϑ̈1 + gc1

0





p̈1
C1

=




−(ℓC1

+ a1)ϑ̇
2
1 + gs1

(ℓC1
+ a1)ϑ̈1 + gc1

0





ω̇0
m1

=




0

0

kr1ϑ̈1



 .

• Forward recursion: Link 2

ω2
2 =




0

0

ϑ̇1 + ϑ̇2





ω̇2
2 =




0

0

ϑ̈1 + ϑ̈2





p̈2
2 =




a1s2ϑ̈1 − a1c2ϑ̇

2
1 − a2(ϑ̇1 + ϑ̇2)

2 + gs12

a1c2ϑ̈1 + a2(ϑ̈1 + ϑ̈2) + a1s2ϑ̇
2
1 + gc12

0





p̈2
C2

=




a1s2ϑ̈1 − a1c2ϑ̇

2
1 − (ℓC2

+ a2)(ϑ̇1 + ϑ̇2)
2 + gs12

a1c2ϑ̈1 + (ℓC2
+ a2)(ϑ̈1 + ϑ̈2) + a1s2ϑ̇

2
1 + gc12

0





ω̇1
m2

=




0

0

ϑ̈1 + kr2ϑ̈2



 .
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• Backward recursion: Link 2

f2
2 =





m2

(
a1s2ϑ̈1 − a1c2ϑ̇

2
1 − (ℓC2

+ a2)(ϑ̇1 + ϑ̇2)
2 + gs12

)

m2

(
a1c2ϑ̈1 + (ℓC2

+ a2)(ϑ̈1 + ϑ̈2) + a1s2ϑ̇
2
1 + gc12

)

0





µ2
2 =





∗

∗

Ī2zz(ϑ̈1 + ϑ̈2) + m2(ℓC2
+ a2)

2(ϑ̈1 + ϑ̈2) + m2a1(ℓC2
+ a2)c2ϑ̈1

+m2a1(ℓC2
+ a2)s2ϑ̇

2
1 + m2(ℓC2

+ a2)gc12





τ2 =
(
Ī2zz + m2

(
(ℓC2

+ a2)
2 + a1(ℓC2

+ a2)c2

)
+ kr2Im2

)
ϑ̈1

+
(
Ī2zz + m2(ℓC2

+ a2)
2 + k2

r2Im2

)
ϑ̈2

+m2a1(ℓC2
+ a2)s2ϑ̇

2
1 + m2(ℓC2

+ a2)gc12.

• Backward recursion: Link 1

f1
1 =





−m2(ℓC2
+ a2)s2(ϑ̈1 + ϑ̈2)−m1(ℓC1

+ a1)ϑ̇
2
1 −m2a1ϑ̇

2
1

−m2(ℓC2
+ a2)c2(ϑ̇1 + ϑ̇2)

2 + (m1 + m2)gs1

m1(ℓC1
+ a1)ϑ̈1 + m2a1ϑ̈1 + m2(ℓC2

+ a2)c2(ϑ̈1 + ϑ̈2)

−m2(ℓC2
+ a2)s2(ϑ̇1 + ϑ̇2)

2 + (m1 + m2)gc1

0





µ1
1 =





∗

∗

Ī1zzϑ̈1 + m2a
2
1ϑ̈1 + m1(ℓC1

+ a1)
2ϑ̈1 + m2a1(ℓC2

+ a2)c2ϑ̈1

+Ī2zz(ϑ̈1 + ϑ̈2) + m2a1(ℓC2
+ a2)c2(ϑ̈1 + ϑ̈2)

+m2(ℓC2
+ a2)

2(ϑ̈1 + ϑ̈2) + kr2Im2
ϑ̈2

+m2a1(ℓC2
+ a2)s2ϑ̇

2
1 −m2a1(ℓC2

+ a2)s2(ϑ̇1 + ϑ̇2)
2

+m1(ℓC1
+ a1)gc1 + m2a1gc1 + m2(ℓC2

+ a2)gc12





τ1 =
(
Ī1zz + m1(ℓC1

+ a1)
2 + k2

r1Im1
+ Ī2zz

+m2

(
a2
1 + (ℓC2

+ a2)
2 + 2a1(ℓC2

+ a2)c2

))
ϑ̈1

+
(
Ī2zz + m2

(
(ℓC2

+ a2)
2 + a1(ℓC2

+ a2)c2

)
+ kr2Im2

)
ϑ̈2

−2m2a1(ℓC2
+ a2)s2ϑ̇1ϑ̇2 −m2a1(ℓC2

+ a2)s2ϑ̇
2
2

+
(
m1(ℓC1

+ a1) + m2a1

)
gc1 + m2(ℓC2

+ a2)gc12.
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As for the moment components, those marked by the symbol ‘∗’ have not
been computed, since they are not related to the joint torques τ2 and τ1.

Expressing the dynamic parameters in the above torques as a function of
the link and rotor parameters as in (7.83) yields

m1 = mℓ1 + mm2

m1ℓC1
= mℓ1(ℓ1 − a1)

Ī1zz + m1ℓ
2
C1

= Î1 = Iℓ1 + mℓ1(ℓ1 − a1)
2 + Im2

m2 = mℓ2

m2ℓC2
= mℓ2(ℓ2 − a2)

Ī2zz + m2ℓ
2
C2

= Î2 = Iℓ2 + mℓ2(ℓ2 − a2)
2.

On the basis of these relations, it can be verified that the resulting dynamic
model coincides with the model derived in (7.82) with Lagrange formulation.

7.6 Direct Dynamics and Inverse Dynamics

Both Lagrange formulation and Newton–Euler formulation allow the compu-
tation of the relationship between the joint torques — and, if present, the
end-effector forces — and the motion of the structure. A comparison between
the two approaches reveals what follows. The Lagrange formulation has the
following advantages:

• It is systematic and of immediate comprehension.
• It provides the equations of motion in a compact analytical form containing

the inertia matrix, the matrix in the centrifugal and Coriolis forces, and
the vector of gravitational forces. Such a form is advantageous for control

design.
• It is effective if it is wished to include more complex mechanical effects

such as flexible link deformation.

The Newton–Euler formulation has the following fundamental advantage:

• It is an inherently recursive method that is computationally efficient.

In the study of dynamics, it is relevant to find a solution to two kinds of
problems concerning computation of direct dynamics and inverse dynamics.

The direct dynamics problem consists of determining, for t > t0, the joint
accelerations q̈(t) (and thus q̇(t), q(t)) resulting from the given joint torques
τ (t) — and the possible end-effector forces he(t) — once the initial positions
q(t0) and velocities q̇(t0) are known (initial state of the system).

The inverse dynamics problem consists of determining the joint torques
τ (t) which are needed to generate the motion specified by the joint accelera-
tions q̈(t), velocities q̇(t), and positions q(t) — once the possible end-effector
forces he(t) are known.
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Solving the direct dynamics problem is useful for manipulator simulation.
Direct dynamics allows the motion of the real physical system to be described
in terms of the joint accelerations, when a set of assigned joint torques is
applied to the manipulator; joint velocities and positions can be obtained by
integrating the system of nonlinear differential equations.

Since the equations of motion obtained with Lagrange formulation give the
analytical relationship between the joint torques (and the end-effector forces)
and the joint positions, velocities and accelerations, these can be computed
from (7.42) as

q̈ = B−1(q)(τ − τ ′) (7.115)

where

τ ′(q, q̇) = C(q, q̇)q̇ + F vq̇ + F s sgn (q̇) + g(q) + JT (q)he (7.116)

denotes the torque contributions depending on joint positions and velocities.
Therefore, for simulation of manipulator motion, once the state at the time
instant tk is known in terms of the position q(tk) and velocity q̇(tk), the accel-
eration q̈(tk) can be computed by (7.115). Then using a numerical integration
method, e.g., Runge–Kutta, with integration step ∆t, the velocity q̇(tk+1) and
position q(tk+1) at the instant tk+1 = tk + ∆t can be computed.

If the equations of motion are obtained with Newton–Euler formulation,
it is possible to compute direct dynamics by using a computationally more
efficient method. In fact, for given q and q̇, the torques τ ′(q, q̇) in (7.116) can
be computed as the torques given by the algorithm of Fig. 7.14 with q̈ = 0.
Further, column bi of matrix B(q) can be computed as the torque vector
given by the algorithm of Fig. 7.14 with g0 = 0, q̇ = 0, q̈i = 1 and q̈j = 0
for j 6= i; iterating this procedure for i = 1, . . . , n leads to constructing the
matrix B(q). Hence, from the current values of B(q) and τ ′(q, q̇), and the
given τ , the equations in (7.115) can be integrated as illustrated above.

Solving the inverse dynamics problem is useful for manipulator trajectory
planning and control algorithm implementation. Once a joint trajectory is
specified in terms of positions, velocities and accelerations (typically as a re-
sult of an inverse kinematics procedure), and if the end-effector forces are
known, inverse dynamics allows computation of the torques to be applied to
the joints to obtain the desired motion. This computation turns out to be
useful both for verifying feasibility of the imposed trajectory and for com-
pensating nonlinear terms in the dynamic model of a manipulator. To this
end, Newton–Euler formulation provides a computationally efficient recursive
method for on-line computation of inverse dynamics. Nevertheless, it can be
shown that also Lagrange formulation is liable to a computationally efficient
recursive implementation, though with a nonnegligible reformulation effort.

For an n-joint manipulator the number of operations required is:8

8 See Sect. E.1 for the definition of computational complexity of an algorithm.
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• O(n) for computing inverse dynamics.

7.7 Dynamic Scaling of Trajectories

The existence of dynamic constraints to be taken into account for trajectory
generation has been mentioned in Sect. 4.1. In practice, with reference to the
given trajectory time or path shape (segments with high curvature), the tra-
jectories that can be obtained with any of the previously illustrated methods
may impose too severe dynamic performance for the manipulator. A typical
case is that when the required torques to generate the motion are larger than
the maximum torques the actuators can supply. In this case, an infeasible
trajectory has to be suitably time-scaled.

Suppose a trajectory has been generated for all the manipulator joints
as q(t), for t ∈ [0, tf ]. Computing inverse dynamics allows the evaluation of
the time history of the torques τ (t) required for the execution of the given
motion. By comparing the obtained torques with the torque limits available
at the actuators, it is easy to check whether or not the trajectory is actually
executable. The problem is then to seek an automatic trajectory dynamic

scaling technique — avoiding inverse dynamics recomputation — so that the
manipulator can execute the motion on the specified path with a proper timing
law without exceeding the torque limits.

Consider the manipulator dynamic model as given in (7.42) with F v =
O, F s = O and he = 0, for simplicity. The term C(q, q̇) accounting for
centrifugal and Coriolis forces has a quadratic dependence on joint velocities,
and thus it can be formally rewritten as

C(q, q̇)q̇ = Γ (q)[q̇q̇], (7.117)

where [q̇q̇] indicates the symbolic notation of the (n(n + 1)/2× 1) vector

[q̇q̇] = [ q̇2
1 q̇1q̇2 . . . q̇n−1q̇n q̇2

n ]T ;

Γ (q) is a proper (n×n(n+1)/2) matrix that satisfies (7.117). In view of such
position, the manipulator dynamic model can be expressed as

B(q(t))q̈(t) + Γ (q(t))[q̇(t)q̇(t)] + g(q(t)) = τ (t), (7.118)

where the explicit dependence on time t has been shown.
Consider the new variable q̄(r(t)) satisfying the equation

q(t) = q̄(r(t)), (7.119)

where r(t) is a strictly increasing scalar function of time with r(0) = 0 and
r(tf ) = t̄f .

• O(n2) for computing direct dynamics,
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Differentiating (7.119) twice with respect to time provides the following
relations:

q̇ = ṙq̄′(r) (7.120)

q̈ = ṙ2q̄′′(r) + r̈q̄′(r) (7.121)

where the prime denotes the derivative with respect to r. Substituting (7.120),
(7.121) into (7.118) yields

ṙ2
(
B(q̄(r))q̄′′(r) + Γ (q̄(r))[q̄′(r)q̄′(r)]

)
+ r̈B(q̄(r))q̄′(r) + g(q̄(r)) = τ .

(7.122)
In (7.118) it is possible to identify the term

τ s(t) = B(q(t))q̈(t) + Γ (q(t))[q̇(t)q̇(t)], (7.123)

representing the torque contribution that depends on velocities and accelera-
tions. Correspondingly, in (7.122) one can set

τ s(t) = ṙ2
(
B(q̄(r))q̄′′(r) + Γ (q̄(r))[q̄′(r)q̄′(r)]

)
+ r̈B(q̄(r))q̄′(r). (7.124)

By analogy with (7.123), it can be written

τ̄ s(r) = B(q̄(r))q̄′′(r) + Γ (q̄(r))[q̄′(r)q̄′(r)] (7.125)

and then (7.124) becomes

τ s(t) = ṙ2τ̄ s(r) + r̈B(q̄(r))q̄′(r). (7.126)

The expression in (7.126) gives the relationship between the torque contribu-
tions depending on velocities and accelerations required by the manipulator
when this is subject to motions having the same path but different timing
laws, obtained through a time scaling of joint variables as in (7.119).

Gravitational torques have not been considered, since they are a function
of the joint positions only, and thus their contribution is not influenced by
time scaling.

The simplest choice for the scaling function r(t) is certainly the linear

function
r(t) = ct

with c a positive constant. In this case, (7.126) becomes

τ s(t) = c2τ̄ s(ct),

which reveals that a linear time scaling by c causes a scaling of the magnitude
of the torques by the coefficient c2. Let c > 1: (7.119) shows that the trajectory
described by q̄(r(t)), assuming r = ct as the independent variable, has a
duration t̄f > tf to cover the entire path specified by q. Correspondingly, the
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torque contributions τ̄ s(ct) computed as in (7.125) are scaled by the factor c2

with respect to the torque contributions τ s(t) required to execute the original
trajectory q(t).

With the use of a recursive algorithm for inverse dynamics computation,
it is possible to check whether the torques exceed the allowed limits during
trajectory execution; obviously, limit violation should not be caused by the
sole gravity torques. It is necessary to find the joint for which the torque
has exceeded the limit more than the others, and to compute the torque
contribution subject to scaling, which in turn determines the factor c2. It
is then possible to compute the time-scaled trajectory as a function of the
new time variable r = ct which no longer exceeds torque limits. It should be
pointed out, however, that with this kind of linear scaling the entire trajectory
may be penalized, even when a torque limit on a single joint is exceeded only
for a short interval of time.

7.8 Operational Space Dynamic Model

As an alternative to the joint space dynamic model, the equations of motion
of the system can be expressed directly in the operational space; to this end it
is necessary to find a dynamic model which describes the relationship between
the generalized forces acting on the manipulator and the number of minimal
variables chosen to describe the end-effector position and orientation in the
operational space.

Similar to kinematic description of a manipulator in the operational space,
the presence of redundant DOFs and/or kinematic and representation singu-
larities deserves careful attention in the derivation of an operational space
dynamic model.

The determination of the dynamic model with Lagrange formulation using
operational space variables allows a complete description of the system motion
only in the case of a nonredundant manipulator, when the above variables
constitute a set of generalized coordinates in terms of which the kinetic energy,
the potential energy, and the nonconservative forces doing work on them can
be expressed.

This way of proceeding does not provide a complete description of dy-
namics for a redundant manipulator; in this case, in fact, it is reasonable to
expect the occurrence of internal motions of the structure caused by those
joint generalized forces which do not affect the end-effector motion.

To develop an operational space model which can be adopted for both
redundant and nonredundant manipulators, it is then convenient to start from
the joint space model which is in all general. In fact, solving (7.42) for the joint
accelerations, and neglecting the joint friction torques for simplicity, yields

q̈ = −B−1(q)C(q, q̇)q̇ −B−1(q)g(q) +B−1(q)JT (q)(γe − he), (7.127)
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where the joint torques τ have been expressed in terms of the equivalent end-
effector forces γ according to (3.111). It is worth noting that h represents the
contribution of the end-effector forces due to contact with the environment,
whereas γ expresses the contribution of the end-effector forces due to joint
actuation.

On the other hand, the second-order differential kinematics equation
in (3.98) describes the relationship between joint space and operational space
accelerations, i.e.,

ẍe = JA(q)q̈ + J̇A(q, q̇)q̇.

The solution in (7.127) features the geometric Jacobian J , whereas the analyt-
ical Jacobian JA appears in (3.98). For notation uniformity, in view of (3.66),
one can set

T T
A(xe)γe = γA T T

A(xe)he = hA (7.128)

where TA is the transformation matrix between the two Jacobians. Substi-
tuting (7.127) into (3.98) and accounting for (7.128) gives

ẍe = −JAB
−1Cq̇ − JAB

−1g + J̇Aq̇ + JAB
−1JT

A(γA − hA). (7.129)

where the dependence on q and q̇ has been omitted. With the positions

BA = (JAB
−1JT

A)−1 (7.130)

CAẋe = BAJAB
−1Cq̇ −BAJ̇Aq̇ (7.131)

gA = BAJAB
−1g, (7.132)

the expression in (7.129) can be rewritten as

BA(xe)ẍe +CA(xe, ẋe)ẋe + gA(xe) = γA − hA, (7.133)

which is formally analogous to the joint space dynamic model (7.42). Notice
that the matrix JAB

−1JT
A is invertible if and only if JA is full-rank, that is,

in the absence of both kinematic and representation singularities.
For a nonredundant manipulator in a nonsingular configuration, the ex-

pressions in (7.130)–(7.132) become:

BA = J−T
A BJ−1

A (7.134)

CAẋe = J−T
A Cq̇ −BAJ̇Aq̇ (7.135)

gA = J−T
A g. (7.136)

As anticipated above, the main feature of the obtained model is its formal
validity also for a redundant manipulator, even though the variables xe do
not constitute a set of generalized coordinates for the system; in this case, the
matrix BA is representative of a kinetic pseudo-energy .

In the following, the utility of the operational space dynamic model
in (7.133) for solving direct and inverse dynamics problems is investigated. The
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following derivation is meaningful for redundant manipulators; for a nonre-
dundant manipulator, in fact, using (7.133) does not pose specific problems
as long as JA is nonsingular ((7.134)–(7.136)).

With reference to operational space, the direct dynamics problem consists
of determining the resulting end-effector accelerations ẍe(t) (and thus ẋe(t),
xe(t)) from the given joint torques τ (t) and end-effector forces he(t). For a
redundant manipulator, (7.133) cannot be directly used, since (3.111) has a
solution in γe only if τ ∈ R(JT ). It follows that for simulation purposes,
the solution to the problem is naturally obtained in the joint space; in fact,
the expression in (7.42) allows the computation of q, q̇, q̈ which, substituted
into the direct kinematics equations in ((2.82), (3.62), (3.98), give xe, ẋe, ẍe,
respectively.

Formulation of an inverse dynamics problem in the operational space re-
quires the determination of the joint torques τ (t) that are needed to generate
a specific motion assigned in terms of ẍe(t), ẋe(t), xe(t), for given end-effector
forces he(t). A possible way of solution is to solve a complete inverse kinemat-
ics problem for (2.82), (3.62), (3.98), and then compute the required torques
with the joint space inverse dynamics as in (7.42). Hence, for redundant ma-
nipulators, redundancy resolution is performed at kinematic level.

An alternative solution to the inverse dynamics problem consists of com-
puting γA as in (7.133) and the joint torques τ as in (3.111). In this way,
however, the presence of redundant DOFs is not exploited at all, since the
computed torques do not generate internal motions of the structure.

If it is desired to find a formal solution that allows redundancy resolution
at dynamic level, it is necessary to determine those torques corresponding to
the equivalent end-effector forces computed as in (7.133). By analogy with
the differential kinematics solution (3.54), the expression of the torques to be
determined will feature the presence of a minimum-norm term and a homoge-
neous term. Since the joint torques have to be computed, it is convenient to
express the model (7.133) in terms of q, q̇, q̈. By recalling the positions (7.131),
(7.132), the expression in (7.133) becomes

BA(ẍe − J̇Aq̇) +BAJAB
−1Cq̇ +BAJAB

−1g = γA − hA

and, in view of (3.98),

BAJAq̈ +BAJAB
−1Cq̇ +BAJAB

−1g = γA − hA. (7.137)

By setting
J̄A(q) = B−1(q)JT

A(q)BA(q), (7.138)

the expression in (7.137) becomes

J̄
T

A(Bq̈ +Cq̇ + g) = γA − hA. (7.139)

At this point, from the joint space dynamic model in (7.42), it is easy to
recognize that (7.139) can be written as

J̄
T

A(τ − JT
AhA) = γA − hA
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from which
J̄

T

Aτ = γA. (7.140)

The general solution to (7.140) is of the form (see Problem 7.10)

τ = JT
A(q)γA +

(
In − J

T
A(q)J̄

T

A(q)
)
τ 0, (7.141)

that can be derived by observing that JT
A in (7.138) is a right pseudo-inverse

of J̄
T

A weighted by the inverse of the inertia matrix B−1. The (n×1) vector of
arbitrary torques τ 0 in (7.141) does not contribute to the end-effector forces,

since it is projected in the null space of J̄
T

A.
To summarize, for given xe, ẋe, ẍe and hA, the expression in (7.133)

allows the computation of γA. Then, (7.141) gives the torques τ which, besides
executing the assigned end-effector motion, generate internal motions of the
structure to be employed for handling redundancy at dynamic level through
a suitable choice of τ 0.

7.9 Dynamic Manipulability Ellipsoid

The availability of the dynamic model allows formulation of the dynamic ma-

nipulability ellipsoid which provides a useful tool for manipulator dynamic
performance analysis. This can be used for mechanical structure design as
well as for seeking optimal manipulator configurations.

Consider the set of joint torques of constant (unit) norm

τT τ = 1 (7.142)

describing the points on the surface of a sphere. It is desired to describe the
operational space accelerations that can be generated by the given set of joint
torques.

For studying dynamic manipulability, suppose to consider the case of a
manipulator standing still (q̇ = 0), not in contact with the environment (he =
0). The simplified model is

B(q)q̈ + g(q) = τ . (7.143)

The joint accelerations q̈ can be computed from the second-order differen-
tial kinematics that can be obtained by differentiating (3.39), and imposing
successively q̇ = 0, leading to

v̇e = J(q)q̈. (7.144)

Solving for minimum-norm accelerations only, for a nonsingular Jacobian, and
substituting in (7.143) yields the expression of the torques

τ = B(q)J†(q)v̇e + g(q) (7.145)
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Fig. 7.15. Effect of gravity on the dynamic manipulability ellipsoid for a three-link
planar arm

needed to derive the ellipsoid. In fact, substituting (7.145) into (7.142) gives

(
B(q)J†(q)v̇e + g(q)

)T (
B(q)J†(q)v̇e + g(q)

)
= 1.

The vector on the right-hand side of (7.145) can be rewritten as

BJ†v̇e + g = B(J†v̇e +B−1g) (7.146)

= B(J†v̇e +B−1g + J†JB−1g − J†JB−1g)

= B
(
J†v̇e + J†JB−1g + (In − J

†J)B−1g
)
,

where the dependence on q has been omitted. According to what was done
for solving (7.144), one can neglect the contribution of the accelerations given
by B−1g which are in the null space of J and then produce no end-effector
acceleration. Hence, (7.146) becomes

BJ†v̇e + g = BJ†(v̇e + JB−1g) (7.147)

and the dynamic manipulability ellipsoid can be expressed in the form

(v̇e + JB−1g)TJ†TBTBJ†(v̇e + JB−1g) = 1. (7.148)

The core of the quadratic form J†TBTBJ† depends on the geometrical and
inertial characteristics of the manipulator and determines the volume and
principal axes of the ellipsoid. The vector −JB−1g, describing the contribu-
tion of gravity, produces a constant translation of the centre of the ellipsoid
(for each manipulator configuration) with respect to the origin of the reference
frame; see the example in Fig. 7.15 for a three-link planar arm.

The meaning of the dynamic manipulability ellipsoid is conceptually simi-
lar to that of the ellipsoids considered with reference to kineto-statics duality.
In fact, the distance of a point on the surface of the ellipsoid from the end-
effector gives a measure of the accelerations which can be imposed to the
end-effector along the given direction, with respect to the constraint (7.142).
With reference to Fig. 7.15, it is worth noticing how the presence of gravity
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acceleration allows the execution of larger accelerations downward, as natural
to predict.

In the case of a nonredundant manipulator, the ellipsoid reduces to

(v̇e + JB−1g)TJ−TBTBJ−1(v̇e + JB−1g) = 1. (7.149)
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Problems

7.1. Find the dynamic model of a two-link Cartesian arm in the case when
the second joint axis forms an angle of π/4 with the first joint axis; compare
the result with the model of the manipulator in Fig. 7.3.

7.2. For the two-link planar arm of Sect. 7.3.2, prove that with a different
choice of the matrix C, (7.49) holds true while (7.48) does not.
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Fig. 7.16. Two-link planar arm with a prismatic joint and a revolute joint

7.3. Find the dynamic model of the SCARA manipulator in Fig. 2.36.

7.4. For the planar arm of Sect. 7.3.2, find a minimal parameterization of the
dynamic model in (7.82).

7.5. Find the dynamic model of the two-link planar arm with a prismatic
joint and a revolute joint in Fig. 7.16 with the Lagrange formulation. Then,
consider the addition of a concentrated tip payload of mass mL, and express
the resulting model in a linear form with respect to a suitable set of dynamic
parameters as in (7.81).

7.6. For the two-link planar arm of Fig. 7.4, find the dynamic model with
the Lagrange formulation when the absolute angles with respect to the base
frame are chosen as generalized coordinates. Discuss the result in view of a
comparison with the model derived in (7.82).

7.7. Compute the joint torques for the two-link planar arm of Fig. 7.4 with
the data and along the trajectories of Example 7.2, in the case of tip forces
f = [ 500 500 ]T N.

7.8. Find the dynamic model of the two-link planar arm with a prismatic
joint and a revolute joint in Fig. 7.16 by using the recursive Newton–Euler
algorithm.

7.9. Show that for the operational space dynamic model (7.133) a skew-
symmetry property holds which is analogous to (7.48).

7.10. Show how to obtain the general solution to (7.140) in the form (7.141).

7.11. For a nonredundant manipulator, compute the relationship between the
dynamic manipulability measure that can be defined for the dynamic manip-
ulability ellipsoid and the manipulability measure defined in (3.56).

8

Motion Control

In Chap. 4, trajectory planning techniques have been presented which al-
low the generation of the reference inputs to the motion control system. The
problem of controlling a manipulator can be formulated as that to determine
the time history of the generalized forces (forces or torques) to be developed
by the joint actuators, so as to guarantee execution of the commanded task
while satisfying given transient and steady-state requirements. The task may
regard either the execution of specified motions for a manipulator operating
in free space, or the execution of specified motions and contact forces for a
manipulator whose end-effector is constrained by the environment. In view of
problem complexity, the two aspects will be treated separately; first, motion
control in free space, and then control of the interaction with the environ-
ment. The problem of motion control of a manipulator is the topic of this
chapter. A number of joint space control techniques are presented. These can
be distinguished between decentralized control schemes, i.e., when the single
manipulator joint is controlled independently of the others, and centralized
control schemes, i.e., when the dynamic interaction effects between the joints
are taken into account. Finally, as a premise to the interaction control prob-
lem, the basic features of operational space control schemes are illustrated.

8.1 The Control Problem

Several techniques can be employed for controlling a manipulator. The tech-
nique followed, as well as the way it is implemented, may have a significant
influence on the manipulator performance and then on the possible range of
applications. For instance, the need for trajectory tracking control in the op-
erational space may lead to hardware/software implementations, which differ
from those allowing point-to-point control, where only reaching of the final
position is of concern.

On the other hand, the manipulator mechanical design has an influence
on the kind of control scheme utilized. For instance, the control problem of
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Fig. 8.1. General scheme of joint space control

a Cartesian manipulator is substantially different from that of an anthropo-
morphic manipulator.

The driving system of the joints also has an effect on the type of control
strategy used. If a manipulator is actuated by electric motors with reduction
gears of high ratios, the presence of gears tends to linearize system dynam-
ics, and thus to decouple the joints in view of the reduction of nonlinearity
effects. The price to pay, however, is the occurrence of joint friction, elastic-
ity and backlash that may limit system performance more than it is due to
configuration-dependent inertia, Coriolis and centrifugal forces, and so forth.
On the other hand, a robot actuated with direct drives eliminates the draw-
backs due to friction, elasticity and backlash, but the weight of nonlinearities
and couplings between the joints becomes relevant. As a consequence, different
control strategies have to be thought of to obtain high performance.

Without any concern to the specific type of mechanical manipulator, it
is worth remarking that task specification (end-effector motion and forces) is
usually carried out in the operational space, whereas control actions (joint
actuator generalized forces) are performed in the joint space. This fact nat-
urally leads to considering two kinds of general control schemes, namely, a
joint space control scheme (Fig. 8.1) and an operational space control scheme
(Fig. 8.2). In both schemes, the control structure has closed loops to exploit
the good features provided by feedback, i.e., robustness to modelling uncer-
tainties and reduction of disturbance effects. In general terms, the following
considerations should be made.

The joint space control problem is actually articulated in two subprob-
lems. First, manipulator inverse kinematics is solved to transform the motion
requirements xd from the operational space into the corresponding motion qd

in the joint space. Then, a joint space control scheme is designed that allows
the actual motion q to track the reference inputs. However, this solution has
the drawback that a joint space control scheme does not influence the opera-
tional space variables xe which are controlled in an open-loop fashion through
the manipulator mechanical structure. It is then clear that any uncertainty of
the structure (construction tolerance, lack of calibration, gear backlash, elas-
ticity) or any imprecision in the knowledge of the end-effector pose relative
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Fig. 8.2. General scheme of operational space control

to an object to manipulate causes a loss of accuracy on the operational space
variables.

The operational space control problem follows a global approach that re-
quires a greater algorithmic complexity; notice that inverse kinematics is now
embedded into the feedback control loop. Its conceptual advantage regards the
possibility of acting directly on operational space variables; this is somewhat
only a potential advantage, since measurement of operational space variables
is often performed not directly, but through the evaluation of direct kinematics
functions starting from measured joint space variables.

On the above premises, in the following, joint space control schemes for
manipulator motion in the free space are presented first. In the sequel, op-
erational space control schemes will be illustrated which are logically at the
basis of control of the interaction with the environment.

8.2 Joint Space Control

In Chap. 7, it was shown that the equations of motion of a manipulator in
the absence of external end-effector forces and, for simplicity, of static friction
(difficult to model accurately) are described by

B(q)q̈ + C(q, q̇)q̇ + F vq̇ + g(q) = τ (8.1)

with obvious meaning of the symbols. To control the motion of the manipula-
tor in free space means to determine the n components of generalized forces —
torques for revolute joints, forces for prismatic joints — that allow execution
of a motion q(t) so that

q(t) = qd(t),

as closely as possible, where qd(t) denotes the vector of desired joint trajectory
variables.

The generalized forces are supplied by the actuators through proper trans-
missions to transform the motion characteristics. Let qm denote the vector
of joint actuator displacements; the transmissions — assumed to be rigid and
with no backlash — establish the following relationship:

Krq = qm, (8.2)
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Fig. 8.3. Block scheme of the manipulator and drives system as a voltage-controlled
system

where Kr is an (n×n) diagonal matrix, whose elements are defined in (7.22)
and are much greater than unity.1

In view of (8.2), if τm denotes the vector of actuator driving torques, one
can write

τm = K−1

r τ . (8.3)

With reference to (5.1)–(5.4), the n driving systems can be described in
compact matrix form by the equations:

K−1

r τ = Ktia (8.4)

va = Raia + Kvq̇m (8.5)

va = Gvvc. (8.6)

In (8.4), Kt is the diagonal matrix of torque constants and ia is the vector
of armature currents of the n motors; in (8.5), va is the vector of armature
voltages, Ra is the diagonal matrix of armature resistances,2 and Kv is the
diagonal matrix of voltage constants of the n motors; in (8.6), Gv is the
diagonal matrix of gains of the n amplifiers and vc is the vector of control
voltages of the n servomotors.

On reduction of (8.1), (8.2), (8.4), (8.5), (8.6), the dynamic model of the
system given by the manipulator and drives is described by

B(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = u (8.7)

where the following positions have been made:

F = F v + KrKtR
−1

a KvKr (8.8)

u = KrKtR
−1

a Gvvc. (8.9)

From (8.1), (8.7), (8.8), (8.9) it is

KrKtR
−1

a Gvvc = τ + KrKtR
−1

a KvKrq̇ (8.10)

1 Assuming a diagonal Kr leads to excluding the presence of kinematic couplings
in the transmission, that is the motion of each actuator does not induce motion
on a joint other than that actuated.

2 The contribution of the inductance has been neglected.
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Fig. 8.4. Block scheme of the manipulator and drives system as a torque-controlled
system

and thus
τ = KrKtR

−1

a (Gvvc −KvKrq̇). (8.11)

The overall system is then voltage-controlled and the corresponding block
scheme is illustrated in Fig. 8.3. If the following assumptions hold:

• the elements of matrix Kr, characterizing the transmissions, are much
greater than unity;

• the elements of matrix Ra are very small, which is typical in the case of
high-efficiency servomotors;

• the values of the torques τ required for the execution of the desired motions
are not too large;

then it can be assumed that

Gvvc ≈KvKrq̇. (8.12)

The proportionality relationship obtained between q̇ and vc is independent
of the values attained by the manipulator parameters; the smaller the joint
velocities and accelerations, the more valid this assumption. Hence, velocity
(or voltage) control shows an inherent robustness with respect to parameter
variations of the manipulator model, which is enhanced by the values of the
gear reduction ratios.

In this case, the scheme illustrated in Fig. 8.3 can be taken as the reference
structure for the design of the control system. Having assumed that

vc ≈ G−1

v KvKrq̇ (8.13)

implies that the velocity of the i-th joint depends only on the i-th control volt-
age, since the matrix G−1

v KvKr is diagonal. Therefore, the joint position
control system can be designed according to a decentralized control structure,
since each joint can be controlled independently of the others. The results,
evaluated in the terms of the tracking accuracy of the joint variables with
respect to the desired trajectories, are improved in the case of higher gear re-
duction ratios and less demanding values of required speeds and accelerations.

On the other hand, if the desired manipulator motion requires large joint
speeds and/or accelerations, the approximation (8.12) no longer holds, in view
of the magnitude of the required driving torques; this occurrence is even more
evident for direct-drive actuation (Kr = I).
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In this case, by resorting to an inverse dynamics technique, it is possible
to find the joint torques τ (t) needed to track any specified motion in terms of
the joint accelerations q̈(t), velocities q̇(t) and positions q(t). Obviously, this
solution requires the accurate knowledge of the manipulator dynamic model.
The determination of the torques to be generated by the drive system can thus
refer to a centralized control structure, since to compute the torque history at
the i-th joint it is necessary to know the time evolution of the motion of all
the joints. By recalling that

τ = KrKtia, (8.14)

to find a relationship between the torques τ and the control voltages vc,
using (8.5), (8.6) leads to

τ = KrKtR
−1

a Gvvc −KrKtR
−1

a KvKrq̇. (8.15)

If the actuators have to provide torque contributions computed on the basis
of the manipulator dynamic model, the control voltages — to be determined
according to (8.15) — depend on the torque values and also on the joint
velocities; this relationship depends on the matrices Kt, Kv and R−1

a , whose
elements are influenced by the operating conditions of the motors. To reduce
sensitivity to parameter variations, it is worth considering driving systems
characterized by a current control rather than by a voltage control. In this case
the actuators behave as torque-controlled generators; the equation in (8.5)
becomes meaningless and is replaced by

ia = Givc, (8.16)

which gives a proportional relation between the armature currents ia (and
thus the torques τ ) and the control voltages vc established by the constant
matrix Gi. As a consequence, (8.9) becomes

τ = u = KrKtGivc (8.17)

which shows a reduced dependence of u on the motor parameters. The overall
system is now torque-controlled and the resulting block scheme is illustrated
in Fig. 8.4.

The above presentation suggests resorting for the decentralized structure
— where the need for robustness prevails — to feedback control systems, while
for the centralized structure — where the computation of inverse dynamics is
needed — it is necessary to refer to control systems with feedforward actions.
Nevertheless, it should be pointed out that centralized control still requires
the use of error contributions between the desired and the actual trajectory,
no matter whether they are implemented in a feedback or in a feedforward
fashion. This is a consequence of the fact that the considered dynamic model,
even though a quite complex one, is anyhow an idealization of reality which
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does not include effects, such as joint Coulomb friction, gear backlash, di-
mension tolerance, and the simplifying assumptions in the model, e.g., link
rigidity, and so on.

As already pointed out, the drive systems is anyhow inserted into a feed-
back control system. In the case of decentralized control, the drive will be
characterized by the model describing its behaviour as a velocity-controlled
generator. Instead, in the case of centralized control, since the driving torque
is to be computed on a complete or reduced manipulator dynamic model, the
drive will be characterized as a torque-controlled generator.

8.3 Decentralized Control

The simplest control strategy that can be thought of is one that regards the
manipulator as formed by n independent systems (the n joints) and con-
trols each joint axis as a single-input/single-output system. Coupling effects
between joints due to varying configurations during motion are treated as
disturbance inputs.

In order to analyze various control schemes and their performance, it is
worth considering the model of the system manipulator with drives in terms
of mechanical quantities at the motor side; in view of (8.2), (8.3), it is

K−1

r B(q)K−1

r q̈m + K−1

r C(q, q̇)K−1

r q̇m + K−1

r F vK−1

r + K−1

r g(q) = τm.
(8.18)

By observing that the diagonal elements of B(q) are formed by constant terms
and configuration-dependent terms (functions of sine and cosine for revolute
joints), one can set

B(q) = B̄ + ∆B(q) (8.19)

where B̄ is the diagonal matrix whose constant elements represent the result-
ing average inertia at each joint. Substituting (8.19) into (8.1) yields

K−1

r B̄K−1

r q̈m + F mq̇m + d = τm (8.20)

where
F m = K−1

r F vK−1

r (8.21)

represents the matrix of viscous friction coefficients about the motor axes, and

d = K−1

r ∆B(q)K−1

r q̈m + K−1

r C(q, q̇)K−1

r q̇m + K−1

r g(q) (8.22)

represents the contribution depending on the configuration.
As illustrated by the block scheme of Fig. 8.5, the system of manipulator

with drives is actually constituted by two subsystems; one has τm as input
and qm as output, the other has qm, q̇m, q̈m as inputs, and d as output. The
former is linear and decoupled , since each component of τm influences only the
corresponding component of qm. The latter is nonlinear and coupled , since
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Fig. 8.5. Block scheme of the system of manipulator with drives

it accounts for all those nonlinear and coupling terms of manipulator joint
dynamics.

On the basis of the above scheme, several control algorithms can be derived
with reference to the detail of knowledge of the dynamic model. The simplest
approach that can be followed, in case of high-gear reduction ratios and/or
limited performance in terms of required velocities and accelerations, is to
consider the component of the nonlinear interacting term d as a disturbance
for the single joint servo.

The design of the control algorithm leads to a decentralized control struc-
ture, since each joint is considered independently of the others. The joint
controller must guarantee good performance in terms of high disturbance re-
jection and enhanced trajectory tracking capabilities. The resulting control
structure is substantially based on the error between the desired and actual
output, while the input control torque at actuator i depends only on the error
of output i.

Therefore, the system to control is Joint i drive corresponding to the single-
input/single-output system of the decoupled and linear part of the scheme in
Fig. 8.5. The interaction with the other joints is described by component i of
the vector d in (8.22).
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Fig. 8.6. Block scheme of general independent joint control

Assumed that the actuator is a rotary electric DC motor, the general
scheme of drive control is that in Fig. 5.9 where Im is the average inertia
reported to the motor axis (Imi = b̄ii/k2

ri).
3

8.3.1 Independent Joint Control

To guide selection of the controller structure, start noticing that an effective
rejection of the disturbance d on the output ϑm is ensured by:

• a large value of the amplifier gain before the point of intervention of the
disturbance,

• the presence of an integral action in the controller so as to cancel the effect
of the gravitational component on the output at steady state (constant
ϑm).

These requisites clearly suggest the use of a proportional-integral (PI) con-
trol action in the forward path whose transfer function is

C(s) = Kc

1 + sTc

s
; (8.23)

this yields zero error at steady state for a constant disturbance, and the pres-
ence of the real zero at s = −1/Tc offers a stabilizing action. To improve
dynamic performance, it is worth choosing the controller as a cascade of ele-
mentary actions with local feedback loops closed around the disturbance.

Besides closure of a position feedback loop, the most general solution is
obtained by closing inner loops on velocity and acceleration. This leads to
the scheme in Fig. 8.6, where CP (s), CV (s), CA(s) respectively represent
position, velocity , acceleration controllers, and the inmost controller should

3 Subscript i is to be dropped for notation compactness.
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be of PI type as in (8.23) so as to obtain zero error at steady state for a
constant disturbance. Further, kTP , kTV , kTA are the respective transducer
constants, and the amplifier gain Gv has been embedded in the gain of the
inmost controller. In the scheme of Fig. 8.6, notice that ϑr is the reference
input, which is related to the desired output ϑmd as

ϑr = kTP ϑmd.

Further, the disturbance torque D has been suitably transformed into a volt-
age by the factor Ra/kt.

In the following, a number of possible solutions that can be derived from
the general scheme of Fig. 8.6 are presented; at this stage, the issue arising
from possible lack of measurement of physical variables is not considered yet.
Three case studies are considered which differ in the number of active feedback
loops.4

Position feedback

In this case, the control action is characterized by

CP (s) = KP

1 + sTP

s
CV (s) = 1 CA(s) = 1

kTV = kTA = 0.

With these positions, the structure of the control scheme in Fig. 8.6 leads to
the scheme illustrated in Fig. 5.10. From this scheme the transfer function of
the forward path is

P (s) =
kmKP (1 + sTP )

s2(1 + sTm)
,

while that of the return path is

H(s) = kTP .

A root locus analysis can be performed as a function of the gain of the po-
sition loop kmKP kTP TP /Tm. Three situations are illustrated for the poles
of the closed-loop system with reference to the relation between TP and Tm

(Fig. 8.7). Stability of the closed-loop feedback system imposes some con-
straints on the choice of the parameters of the PI controller. If TP < Tm,
the system is inherently unstable (Fig. 8.7a). Then, it must be TP > Tm

(Fig. 8.7b). As TP increases, the absolute value of the real part of the two
roots of the locus tending towards the asymptotes increases too, and the sys-
tem has faster time response. Hence, it is convenient to render TP ≫ Tm

(Fig. 8.7c). In any case, the real part of the dominant poles cannot be less
than −1/2Tm.

4 See Appendix C for a brief brush-up on control of linear single-input/single-output
systems.
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Fig. 8.7. Root loci for the position feedback control scheme

The closed-loop input/output transfer function is

Θm(s)

Θr(s)
=

1

kTP

1 +
s2(1 + sTm)

kmKP kTP (1 + sTP )

, (8.24)

which can be expressed in the form

W (s) =

1

kTP

(1 + sTP )
(

1 +
2ζs

ωn

+
s2

ω2
n

)
(1 + sτ)

,

where ωn and ζ are respectively the natural frequency and damping ratio of
the pair of complex poles and −1/τ locates the real pole. These values are
assigned to define the joint drive dynamics as a function of the constant TP ;
if TP > Tm, then 1/ζωn > TP > τ (Fig. 8.7b); if TP ≫ Tm (Fig. 8.7c), for
large values of the loop gain, then ζωn > 1/τ ≈ 1/TP and the zero at −1/TP

in the transfer function W (s) tends to cancel the effect of the real pole.
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The closed-loop disturbance/output transfer function is

Θm(s)

D(s)
= −

sRa

ktKP kTP (1 + sTP )

1 +
s2(1 + sTm)

kmKP kTP (1 + sTP )

, (8.25)

which shows that it is worth increasing KP to reduce the effect of disturbance
on the output during the transient. The function in (8.25) has two complex

poles (−ζωn,±j
√

1− ζ2ωn), a real pole (−1/τ), and a zero at the origin. The
zero is due to the PI controller and allows the cancellation of the effects of
gravity on the angular position when ϑm is a constant.

In (8.25), it can be recognized that the term KP kTP is the reduction
factor imposed by the feedback gain on the amplitude of the output due to
disturbance; hence, the quantity

XR = KP kTP (8.26)

can be interpreted as the disturbance rejection factor , which in turn is de-
termined by the gain KP . However, it is not advisable to increase KP too
much, because small damping ratios would result leading to unacceptable os-
cillations of the output. An estimate TR of the output recovery time needed
by the control system to recover the effects of the disturbance on the angular
position can be evaluated by analyzing the modes of evolution of (8.25). Since
τ ≈ TP , such estimate is expressed by

TR = max

{
TP ,

1

ζωn

}
. (8.27)

Position and velocity feedback

In this case, the control action is characterized by

CP (s) = KP CV (s) = KV

1 + sTV

s
CA(s) = 1

kTA = 0;

with these positions, the structure of the control scheme in Fig. 8.6 leads to
scheme illustrated in Fig. 5.11. To carry out a root locus analysis as a function
of the velocity feedback loop gain, it is worth reducing the velocity loop in
parallel to the position loop by following the usual rules for moving blocks.
From the scheme in Fig. 5.11 the transfer function of the forward path is

P (s) =
kmKP KV (1 + sTV )

s2(1 + sTm)
,
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Fig. 8.8. Root locus for the position and velocity feedback control scheme

while that of the return path is

H(s) = kTP

(
1 + s

kTV

KP kTP

)
.

The zero of the controller at s = −1/TV can be chosen so as to cancel the
effects of the real pole of the motor at s = −1/Tm. Then, by setting

TV = Tm,

the poles of the closed-loop system move on the root locus as a function of the
loop gain kmKV kTV , as shown in Fig. 8.8. By increasing the position feedback
gain KP , it is possible to confine the closed-loop poles into a region of the
complex plane with large absolute values of the real part. Then, the actual
location can be established by a suitable choice of KV .

The closed-loop input/output transfer function is

Θm(s)

Θr(s)
=

1

kTP

1 +
skTV

KP kTP

+
s2

kmKP kTP KV

, (8.28)

which can be compared with the typical transfer function of a second-order
system

W (s) =

1

kTP

1 +
2ζs

ωn

+
s2

ω2
n

. (8.29)

It can be recognized that, with a suitable choice of the gains, it is possible to
obtain any value of natural frequency ωn and damping ratio ζ. Hence, if ωn

and ζ are given as design requirements, the following relations can be found:

KV kTV =
2ζωn

km

(8.30)
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Fig. 8.9. Block scheme of position, velocity and acceleration feedback control

KP kTP KV =
ω2

n

km

. (8.31)

For given transducer constants kTP and kTV , once KV has been chosen to
satisfy (8.30), the value of KP is obtained from (8.31).

The closed-loop disturbance/output transfer function is

Θm(s)

D(s)
= −

sRa

ktKP kTP KV (1 + sTm)

1 +
skTV

KP kTP

+
s2

kmKP kTP KV

, (8.32)

which shows that the disturbance rejection factor is

XR = KP kTP KV (8.33)

and is fixed, once KP and KV have been chosen via (8.30), (8.31). Concerning
disturbance dynamics, the presence of a zero at the origin introduced by the
PI, of a real pole at s = −1/Tm, and of a pair of complex poles having real
part −ζωn should be noticed. Hence, in this case, an estimate of the output
recovery time is given by the time constant

TR = max

{
Tm,

1

ζωn

}
; (8.34)

which reveals an improvement with respect to the previous case in (8.27),
since Tm ≪ TP and the real part of the dominant poles is not constrained by
the inequality ζωn < 1/2Tm.
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Fig. 8.10. Root locus for the position, velocity and acceleration feedback control
scheme

Position, velocity and acceleration feedback

In this case, the control action is characterized by

CP (s) = KP CV (s) = KV CA(s) = KA

1 + sTA

s
.

After some manipulation, the block scheme of Fig. 8.6 can be reduced to that
of Fig. 8.9 where G′(s) indicates the following transfer function:

G′(s) =
km

(1 + kmKAkTA)


1 +

sTm

(
1 + kmKAkTA

TA

Tm

)

(1 + kmKAkTA)




.

The transfer function of the forward path is

P (s) =
KP KV KA(1 + sTA)

s2
G′(s),

while that of the return path is

H(s) = kTP

(
1 +

skTV

KP kTP

)
.

Also in this case, a suitable pole cancellation is worthy which can be achieved
either by setting

TA = Tm,

or by making
kmKAkTATA ≫ Tm kmKAkTA ≫ 1.
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Fig. 8.11. Block scheme of a first-order filter

The two solutions are equivalent as regards dynamic performance of the con-
trol system. In both cases, the poles of the closed-loop system are constrained
to move on the root locus as a function of the loop gain kmKP KV KA/(1 +
kmKAkTA) (Fig. 8.10). A close analogy with the previous scheme can be
recognized, in that the resulting closed-loop system is again of second-order
type.

The closed-loop input/output transfer function is

Θm(s)

Θr(s)
=

1

kTP

1 +
skTV

KP kTP

+
s2(1 + kmKAkTA)

kmKP kTP KV KA

, (8.35)

while the closed-loop disturbance/output transfer function is

Θm(s)

D(s)
= −

sRa

ktKP kTP KV KA(1 + sTA)

1 +
skTV

KP kTP

+
s2(1 + kmKAkTA)

kmKP kTP KV KA

. (8.36)

The resulting disturbance rejection factor is given by

XR = KP kTP KV KA, (8.37)

while the output recovery time is given by the time constant

TR = max

{
TA,

1

ζωn

}
(8.38)

where TA can be made less than Tm, as pointed out above.
With reference to the transfer function in (8.29), the following relations

can be established for design purposes, once ζ, ωn, XR have been specified:

2KP kTP

kTV

=
ωn

ζ
(8.39)

kmKAkTA =
kmXR

ω2
n

− 1 (8.40)

KP kTP KV KA = XR. (8.41)
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For given kTP , kTV , kTA, KP is chosen to satisfy (8.39), KA is chosen to
satisfy (8.40), and then KV is obtained from (8.41). Notice how admissible
solutions for the controller typically require large values for the rejection fac-
tor XR. Hence, in principle, not only does the acceleration feedback allow the
achievement of any desired dynamic behaviour but, with respect to the pre-
vious case, it also allows the prescription of the disturbance rejection factor
as long as kmXR/ω2

n > 1.
In deriving the above control schemes, the issue of measurement of feed-

back variables was not considered explicitly. With reference to the typical
position control servos that are implemented in industrial practice, there
is no problem of measuring position and velocity, while a direct measure-
ment of acceleration, in general, either is not available or is too expensive to
obtain. Therefore, for the scheme of Fig. 8.9, an indirect measurement can
be obtained by reconstructing acceleration from direct velocity measurement
through a first-order filter (Fig. 8.11). The filter is characterized by a band-
width ω3f = kf . By choosing this bandwidth wide enough, the effects due
to measurement lags are not appreciable, and then it is feasible to take the
acceleration filter output as the quantity to feed back. Some problem may
occur concerning the noise superimposed on the filtered acceleration signal,
though.

Resorting to a filtering technique may be useful when only the direct posi-
tion measurement is available. In this case, by means of a second-order state
variable filter, it is possible to reconstruct velocity and acceleration. However,
the greater lags induced by the use of a second-order filter typically degrade
the performance with respect to the use of a first-order filter, because of lim-
itations imposed on the filter bandwidth by numerical implementation of the
controller and filter.

Notice that the above derivation is based on an ideal dynamic model, i.e.,
when the effects of transmission elasticity as well as those of amplifier and
motor electrical time constants are neglected. This implies that satisfaction
of design requirements imposing large values of feedback gains may not be
verified in practice, since the existence of unmodelled dynamics — such as
electric dynamics, elastic dynamics due to non-perfectly rigid transmissions,
filter dynamics for the third scheme — might lead to degrading the system and
eventually driving it to instability. In summary, the above solutions constitute
design guidelines whose limits should be emphasized with regard to the specific
application.

8.3.2 Decentralized Feedforward Compensation

When the joint control servos are required to track reference trajectories with
high values of speed and acceleration, the tracking capabilities of the scheme in
Fig. 8.6 are unavoidably degraded. The adoption of a decentralized feedforward
compensation allows a reduction of the tracking error. Therefore, in view
of the closed-loop input/output transfer functions in (8.24), (8.28), (8.35),
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Fig. 8.12. Block scheme of position feedback control with decentralized feedforward
compensation

the reference inputs to the three control structures analyzed in the previous
section can be respectively modified into

Θ′r(s) =

(
kTP +

s2(1 + sTm)

kmKP (1 + sTP )

)
Θmd(s) (8.42)

Θ′r(s) =

(
kTP +

skTV

KP

+
s2

kmKP KV

)
Θmd(s) (8.43)

Θ′r(s) =

(
kTP +

skTV

KP

+
s2(1 + kmKAkTA)

kmKP KV KA

)
Θmd(s); (8.44)

in this way, tracking of the desired joint position Θmd(s) is achieved, if not
for the effect of disturbances. Notice that computing time derivatives of the
desired trajectory is not a problem, once ϑmd(t) is known analytically. The
tracking control schemes, resulting from simple manipulation of (8.42), (8.43),
(8.44) are reported respectively in Figs. 8.12, 8.13, 8.14, where M(s) indicates
the motor transfer function in (5.11), with km and Tm as in (5.12).

All the solutions allow the input trajectory to be tracked within the range
of validity and linearity of the models employed. It is worth noticing that, as
the number of nested feedback loops increases, a less accurate knowledge of
the system model is required to perform feedforward compensation. In fact,
Tm and km are required for the scheme of Fig. 8.12, only km is required for
the scheme of Fig. 8.13, and km again — but with reduced weight — for the
scheme of Fig. 8.14.

It is worth recalling that perfect tracking can be obtained only under the
assumption of exact matching of the controller and feedforward compensation
parameters with the process parameters, as well as of exact modelling and
linearity of the physical system. Deviations from the ideal values cause a
performance degradation that should be analyzed case by case.
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Fig. 8.13. Block scheme of position and velocity feedback control with decentralized
feedforward compensation

Fig. 8.14. Block scheme of position, velocity and acceleration feedback control with
decentralized feedforward compensation

The presence of saturation blocks in the schemes of Figs. 8.12, 8.13, 8.14
is to be intended as intentional nonlinearities whose function is to limit rele-
vant physical quantities during transients; the greater the number of feedback
loops, the greater the number of quantities that can be limited (velocity, ac-
celeration, and motor voltage). To this end, notice that trajectory tracking is
obviously lost whenever any of the above quantities saturates. This situation
often occurs for industrial manipulators required to execute point-to-point
motions; in this case, there is less concern about the actual trajectories fol-
lowed, and the actuators are intentionally taken to operate at the current
limits so as to realize the fastest possible motions.

After simple block reduction on the above schemes, it is possible to de-
termine equivalent control structures that utilize position feedback only and
regulators with standard actions. It should be emphasized that the two solu-
tions are equivalent in terms of disturbance rejection and trajectory tracking.
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Fig. 8.15. Equivalent control scheme of PI type

Fig. 8.16. Equivalent control scheme of PID type

However, tuning of regulator parameters is less straightforward, and the elim-
ination of inner feedback loops prevents the possibility of setting saturations
on velocity and/or acceleration. The control structures equivalent to those
of Figs. 8.12, 8.13, 8.14 are illustrated in Figs. 8.15, 8.16, 8.17, respectively;
control actions of PI, PID, PIDD2 type are illustrated which are respectively
equivalent to the cases of: position feedback; position and velocity feedback;
position, velocity and acceleration feedback.

It is worth noticing that the equivalent control structures in Figs. 8.15–8.17
are characterized by the presence of the feedforward action (Tm/km)ϑ̈md +
(1/km)ϑ̇md. If the motor is current-controlled and not voltage-controlled, by
recalling (5.13), the feedforward action is equal to (ki/kt)(Imϑ̈md + Fmϑ̇md).
If ϑ̇m ≈ ϑ̇md, ϑ̈m ≈ ϑ̈md and the disturbance is negligible, the term Imϑ̈d +
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Fig. 8.17. Equivalent control scheme of PIDD2 type

Fmϑ̇d represents the driving torque providing the desired velocity and accel-
eration, as indicated by (5.3). By setting

iad =
1

kt

(Imϑ̈md + Fmϑ̇md),

the feedforward action can be rewritten in the form kiiad. This shows that, in
the case the drive is current-controlled, it is possible to replace the acceleration
and velocity feedforward actions with a current and thus a torque feedforward
action, which is to be properly computed with reference to the desired motion.

This equivalence is illustrated in Fig. 8.18, where M(s) has been replaced
by the block scheme of an electric drive of Fig. 5.2, where the parameters of
the current loop are chosen so as to realize a torque-controlled generator. The
feedforward action represents a reference for the motor current, which im-
poses the generation of the nominal torque to execute the desired motion; the
presence of the position reference allows the closure of a feedback loop which,
in view of the adoption of a standard regulator with transfer function CR(s),
confers robustness to the presented control structure. In summary, the perfor-
mance that can be achieved with velocity and acceleration feedforward actions
and voltage-controlled actuator can be achieved with a current-controlled ac-
tuator and a desired torque feedforward action.

The above schemes can incorporate the typical structure of the controllers
actually implemented in the control architectures of industrial robots. In these
systems it is important to choose the largest possible gains so that model
inaccuracy and coupling terms do not appreciably affect positions of the single
joints. As pointed out above, the upper limit on the gains is imposed by
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Fig. 8.18. Control scheme with current-controlled drive and current feedforward
action

all those factors that have not been modelled, such as implementation of
discrete-time controllers in lieu of the continuous-time controllers analyzed
in theory, presence of finite sampling time, neglected dynamic effects (e.g.,
joint elasticity, structural resonance, finite transducer bandwidth), and sensor
noise. In fact, the influence of such factors in the implementation of the above
controllers may cause a severe system performance degradation for much too
large values of feedback gains.

8.4 Computed Torque Feedforward Control

Define the tracking error e(t) = ϑmd(t) − ϑm(t). With reference to the most
general scheme (Fig. 8.17), the output of the PIDD2 regulator can be written
as

a2ë + a1ė + a0e + a−1

∫ t

e(ς)dς

which describes the time evolution of the error. The constant coefficients
a2, a1, a0, a−1 are determined by the particular solution adopted. Summing
the contribution of the feedforward actions and of the disturbance to this
expression yields

Tm

km

ϑ̈md +
1

km

ϑ̇md −
Ra

kt

d,

where
Tm

km

=
ImRa

kt

km =
1

kv

.

The input to the motor (Fig. 8.6) has then to satisfy the following equation:

a2ë+a1ė+a0e+a−1

∫ t

e(ς)dς +
Tm

km

ϑ̈md +
1

km

ϑ̇md−
Ra

kt

d =
Tm

km

ϑ̈m +
1

km

ϑ̇m.

With a suitable change of coefficients, this can be rewritten as

a′
2
ë + a′

1
ė + a′

0
e + a′−1

∫ t

e(ς)dς =
Ra

kt

d.
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Fig. 8.19. Block scheme of computed torque feedforward control

This equation describes the error dynamics and shows that any physically
executable trajectory is asymptotically tracked only if the disturbance term
d(t) = 0. With the term physically executable it is meant that the saturation
limits on the physical quantities, e.g., current and voltage in electric motors,
are not violated in the execution of the desired trajectory.

The presence of the term d(t) causes a tracking error whose magnitude is
reduced as much as the disturbance frequency content is located off to the left
of the lower limit of the bandwidth of the error system. The disturbance/error
transfer function is given by

E(s)

D(s)
=

Ra

kt

s

a′
2
s3 + a′

1
s2 + a′

0
s + a′−1

,

and thus the adoption of loop gains which are not realizable for the above
discussed reasons is often required.

Nevertheless, even if the term d(t) has been introduced as a disturbance,
its expression is given by (8.22). It is then possible to add a further term to
the previous feedforward actions which is able to compensate the disturbance
itself rather than its effects. In other words, by taking advantage of model
knowledge, the rejection effort of an independent joint control scheme can be
lightened with notable simplification from the implementation viewpoint.

Let qd(t) be the desired joint trajectory and qmd(t) the corresponding
actuator trajectory as in (8.2). By adopting an inverse model strategy, the
feedforward action RaK−1

t dd can be introduced with

dd = K−1

r ∆B(qd)K
−1

r q̈md + K−1

r C(qd, q̇d)K
−1

r q̇md + K−1

r g(qd), (8.45)

where Ra and Kt denote the diagonal matrices of armature resistances and
torque constants of the actuators. This action tends to compensate the actual
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disturbance expressed by (8.22) and in turn allows the control system to
operate in a better condition.

This solution is illustrated in the scheme of Fig. 8.19, which conceptually
describes the control system of a manipulator with computed torque control.
The feedback control system is representative of the n independent joint con-
trol servos; it is decentralized , since controller i elaborates references and mea-
surements that refer to single Joint i. The interactions between the various
joints, expressed by d, are compensated by a centralized action whose function
is to generate a feedforward action that depends on the joint references as well
as on the manipulator dynamic model. This action compensates the nonlinear
coupling terms due to inertial, Coriolis, centrifugal, and gravitational forces
that depend on the structure and, as such, vary during manipulator motion.

Although the residual disturbance term d̃ = dd − d vanishes only in the
ideal case of perfect tracking (q = qd) and exact dynamic modelling, d̃ is
representative of interaction disturbances of considerably reduced magnitude
with respect to d. Hence, the computed torque technique has the advantage to
alleviate the disturbance rejection task for the feedback control structure and
in turn allows limited gains. Notice that expression (8.45) in general imposes a
computationally demanding burden on the centralized part of the controller.
Therefore, in those applications where the desired trajectory is generated in
real time with regard to exteroceptive sensory data and commands from higher
hierarchical levels of the robot control architecture,5 on-line computation of
the centralized feedforward action may require too much time.6

Since the actual controller is to be implemented on a computer with a
finite sampling time, torque computation has to be carried out during this
interval of time; in order not to degrade dynamic system performance, typical
sampling times are of the order of the millisecond.

Therefore, it may be worth performing only a partial feedforward action
so as to compensate those terms of (8.45) that give the most relevant con-
tributions during manipulator motion. Since inertial and gravitational terms
dominate velocity-dependent terms (at operational joint speeds not greater
than a few radians per second), a partial compensation can be achieved by
computing only the gravitational torques and the inertial torques due to the
diagonal elements of the inertia matrix. In this way, only the terms depending
on the global manipulator configuration are compensated while those deriving
from motion interaction with the other joints are not.

Finally, it should be pointed out that, for repetitive trajectories, the above
compensating contributions can be computed off-line and properly stored on
the basis of a trade-off solution between memory capacity and computational
requirements of the control architecture.

5 See also Chap. 6.
6 In this regard, the problem of real-time computation of compensating torques can

be solved by resorting to efficient recursive formulations of manipulator inverse
dynamics, such as the Newton–Euler algorithm presented in Chap. 7.

8.5 Centralized Control 327

8.5 Centralized Control

In the previous sections several techniques have been discussed that allow
the design of independent joint controllers. These are based on a single-
input/single-output approach, since interaction and coupling effects between
the joints have been considered as disturbances acting on each single joint
drive system.

On the other hand, when large operational speeds are required or direct-
drive actuation is employed (Kr = I), the nonlinear coupling terms strongly
influence system performance. Therefore, considering the effects of the com-
ponents of d as a disturbance may generate large tracking errors. In this case,
it is advisable to design control algorithms that take advantage of a detailed
knowledge of manipulator dynamics so as to compensate for the nonlinear
coupling terms of the model. In other words, it is necessary to eliminate the
causes rather than to reduce the effects induced by them; that is, to generate
compensating torques for the nonlinear terms in (8.22). This leads to central-
ized control algorithms that are based on the (partial or complete) knowledge
of the manipulator dynamic model.

Whenever the robot is endowed with the torque sensors at the joint motors
presented in Sect. 5.4.1, those measurements can be conveniently utilized to
generate the compensation action, thus avoiding the on-line computation of
the terms of the dynamic model.

As shown by the dynamic model (8.1), the manipulator is not a set of
n decoupled system but it is a multivariable system with n inputs (joint
torques) and n outputs (joint positions) interacting between them by means
of nonlinear relations.7

In order to follow a methodological approach which is consistent with
control design, it is necessary to treat the control problem in the context of
nonlinear multivariable systems. This approach will obviously account for the
manipulator dynamic model and lead to finding nonlinear centralized control
laws, whose implementation is needed for high manipulator dynamic perfor-
mance. On the other hand, the above computed torque control can be inter-
preted in this framework, since it provides a model-based nonlinear control
term to enhance trajectory tracking performance. Notice, however, that this
action is inherently performed off line, as it is computed on the time history
of the desired trajectory and not of the actual one.

In the following, the problem of the determination of the control law u

ensuring a given performance to the system of manipulator with drives is
tackles. Since (8.17) can be considered as a proportional relationship between
vc and u, the centralized control schemes below refer directly to the generation
of control toques u.

7 See Appendix C for the basic concepts on control of nonlinear mechanical systems.
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8.5.1 PD Control with Gravity Compensation

Let a constant equilibrium posture be assigned for the system as the vector of
desired joint variables qd. It is desired to find the structure of the controller
which ensures global asymptotic stability of the above posture.

The determination of the control input which stabilizes the system around
the equilibrium posture is based on the Lyapunov direct method.

Take the vector [ q̃T
q̇T ]T as the system state, where

q̃ = qd − q (8.46)

represents the error between the desired and the actual posture. Choose the
following positive definite quadratic form as Lyapunov function candidate:

V (q̇, q̃) =
1

2
q̇T B(q)q̇ +

1

2
q̃

T
KP q̃ > 0 ∀q̇, q̃ 6= 0 (8.47)

where KP is an (n× n) symmetric positive definite matrix. An energy-based
interpretation of (8.47) reveals a first term expressing the system kinetic en-
ergy and a second term expressing the potential energy stored in the system
of equivalent stiffness KP provided by the n position feedback loops.

Differentiating (8.47) with respect to time, and recalling that qd is con-
stant, yields

V̇ = q̇T B(q)q̈ +
1

2
q̇T Ḃ(q)q̇ − q̇T KP q̃. (8.48)

Solving (8.7) for Bq̈ and substituting it in (8.48) gives

V̇ =
1

2
q̇T

(
Ḃ(q)− 2C(q, q̇)

)
q̇ − q̇T F q̇ + q̇T

(
u− g(q)−KP q̃

)
. (8.49)

The first term on the right-hand side is null since the matrix N = Ḃ − 2C

satisfies (7.49). The second term is negative definite. Then, the choice

u = g(q) + KP q̃, (8.50)

describing a controller with compensation of gravitational terms and a pro-
portional action, leads to a negative semi-definite V̇ since

V̇ = 0 q̇ = 0,∀q̃.

This result can be obtained also by taking the control law

u = g(q) + KP q̃ −KDq̇, (8.51)

with KD positive definite, corresponding to a nonlinear compensation action
of gravitational terms with a linear proportional-derivative (PD) action. In
fact, substituting (8.51) into (8.49) gives

V̇ = −q̇T (F + KD)q̇, (8.52)
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Fig. 8.20. Block scheme of joint space PD control with gravity compensation

which reveals that the introduction of the derivative term causes an increase
of the absolute values of V̇ along the system trajectories, and then it gives an
improvement of system time response. Notice that the inclusion of a derivative
action in the controller, as in (8.51), is crucial when direct-drive manipulators
are considered. In that case, in fact, mechanical viscous damping is practi-
cally null, and current control does not allow the exploitation of the electrical
viscous damping provided by voltage-controlled actuators.

According to the above, the function candidate V decreases as long as
q̇ 6= 0 for all system trajectories. It can be shown that the system reaches an
equilibrium posture. To find such posture, notice that V̇ ≡ 0 only if q̇ ≡ 0.
System dynamics under control (8.51) is given by

B(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = g(q) + KP q̃ −KDq̇. (8.53)

At the equilibrium (q̇ ≡ 0, q̈ ≡ 0) it is

KP q̃ = 0 (8.54)

and then
q̃ = qd − q ≡ 0

is the sought equilibrium posture. The above derivation rigorously shows that
any manipulator equilibrium posture is globally asymptotically stable under
a controller with a PD linear action and a nonlinear gravity compensating
action. Stability is ensured for any choice of KP and KD, as long as these are
positive definite matrices. The resulting block scheme is shown in Fig. 8.20.

The control law requires the on-line computation of the term g(q). If com-
pensation is imperfect, the above discussion does not lead to the same result;
this aspect will be revisited later with reference to robustness of controllers
performing nonlinear compensation.
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Fig. 8.21. Exact linearization performed by inverse dynamics control

8.5.2 Inverse Dynamics Control

Consider now the problem of tracking a joint space trajectory. The reference
framework is that of control of nonlinear multivariable systems. The dynamic
model of an n-joint manipulator is expressed by (8.7) which can be rewritten
as

B(q)q̈ + n(q, q̇) = u, (8.55)

where for simplicity it has been set

n(q, q̇) = C(q, q̇)q̇ + F q̇ + g(q). (8.56)

The approach that follows is founded on the idea to find a control vector u, as
a function of the system state, which is capable of realizing an input/output
relationship of linear type; in other words, it is desired to perform not an
approximate linearization but an exact linearization of system dynamics ob-
tained by means of a nonlinear state feedback . The possibility of finding such
a linearizing controller is guaranteed by the particular form of system dynam-
ics. In fact, the equation in (8.55) is linear in the control u and has a full-rank
matrix B(q) which can be inverted for any manipulator configuration.

Taking the control u as a function of the manipulator state in the form

u = B(q)y + n(q, q̇), (8.57)

leads to the system described by

q̈ = y

where y represents a new input vector whose expression is to be determined
yet; the resulting block scheme is shown in Fig. 8.21. The nonlinear control
law in (8.57) is termed inverse dynamics control since it is based on the com-
putation of manipulator inverse dynamics. The system under control (8.57)
is linear and decoupled with respect to the new input y. In other words, the
component yi influences, with a double integrator relationship, only the joint
variable qi, independently of the motion of the other joints.
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Fig. 8.22. Block scheme of joint space inverse dynamics control

In view of the choice (8.57), the manipulator control problem is reduced
to that of finding a stabilizing control law y. To this end, the choice

y = −KP q −KDq̇ + r (8.58)

leads to the system of second-order equations

q̈ + KDq̇ + KP q = r (8.59)

which, under the assumption of positive definite matrices KP and KD, is
asymptotically stable. Choosing KP and KD as diagonal matrices of the
type

KP = diag{ω2

n1
, . . . , ω2

nn} KD = diag{2ζ1ωn1, . . . , 2ζnωnn},

gives a decoupled system. The reference component ri influences only the joint
variable qi with a second-order input/output relationship characterized by a
natural frequency ωni and a damping ratio ζi.

Given any desired trajectory qd(t), tracking of this trajectory for the out-
put q(t) is ensured by choosing

r = q̈d + KDq̇d + KP qd. (8.60)

In fact, substituting (8.60) into (8.59) gives the homogeneous second-order
differential equation

¨̃q + KD
˙̃q + KP q̃ = 0 (8.61)

expressing the dynamics of position error (8.46) while tracking the given tra-

jectory. Such error occurs only if q̃(0) and/or ˙̃q(0) are different from zero
and converges to zero with a speed depending on the matrices KP and KD

chosen.
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The resulting block scheme is illustrated in Fig. 8.22, in which two feed-
back loops are represented; an inner loop based on the manipulator dynamic
model, and an outer loop operating on the tracking error. The function of
the inner loop is to obtain a linear and decoupled input/output relationship,
whereas the outer loop is required to stabilize the overall system. The con-
troller design for the outer loop is simplified since it operates on a linear and
time-invariant system. Notice that the implementation of this control scheme
requires computation of the inertia matrix B(q) and of the vector of Coriolis,
centrifugal, gravitational, and damping terms n(q, q̇) in (8.56). Unlike com-
puted torque control, these terms must be computed on-line since control is
now based on nonlinear feedback of the current system state, and thus it is
not possible to precompute the terms off line as for the previous technique.

The above technique of nonlinear compensation and decoupling is very at-
tractive from a control viewpoint since the nonlinear and coupled manipulator
dynamics is replaced with n linear and decoupled second-order subsystems.
Nonetheless, this technique is based on the assumption of perfect cancellation
of dynamic terms, and then it is quite natural to raise questions about sensi-
tivity and robustness problems due to unavoidably imperfect compensation.

Implementation of inverse dynamics control laws indeed requires that pa-
rameters of the system dynamic model are accurately known and the complete
equations of motion are computed in real time. These conditions are difficult
to verify in practice. On one hand, the model is usually known with a certain
degree of uncertainty due to imperfect knowledge of manipulator mechani-
cal parameters, existence of unmodelled dynamics, and model dependence on
end-effector payloads not exactly known and thus not perfectly compensated.
On the other hand, inverse dynamics computation is to be performed at sam-
pling times of the order of a millisecond so as to ensure that the assumption
of operating in the continuous time domain is realistic. This may pose severe
constraints on the hardware/software architecture of the control system. In
such cases, it may be advisable to lighten the computation of inverse dynamics
and compute only the dominant terms.

On the basis of the above remarks, from an implementation viewpoint,
compensation may be imperfect both for model uncertainty and for the ap-
proximations made in on-line computation of inverse dynamics. In the follow-
ing, two control techniques are presented which are aimed at counteracting
the effects of imperfect compensation. The first consists of the introduction of
an additional term to an inverse dynamics controller which provides robust-
ness to the control system by counteracting the effects of the approximations
made in on-line computation of inverse dynamics. The second adapts the pa-
rameters of the model used for inverse dynamics computation to those of the
true manipulator dynamic model.
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8.5.3 Robust Control

In the case of imperfect compensation, it is reasonable to assume in (8.55) a
control vector expressed by

u = B̂(q)y + n̂(q, q̇) (8.62)

where B̂ and n̂ represent the adopted computational model in terms of es-
timates of the terms in the dynamic model. The error on the estimates, i.e.,
the uncertainty , is represented by

B̃ = B̂ −B ñ = n̂− n (8.63)

and is due to imperfect model compensation as well as to intentional simplifi-
cation in inverse dynamics computation. Notice that by setting B̂ = B̄ (where
B̄ is the diagonal matrix of average inertia at the joint axes) and n̂ = 0, the
above decentralized control scheme is recovered where the control action y

can be of the general PID type computed on the error.
Using (8.62) as a nonlinear control law gives

Bq̈ + n = B̂y + n̂ (8.64)

where functional dependence has been omitted. Since the inertia matrix B is
invertible, it is

q̈ = y + (B−1B̂ − I)y + B−1ñ = y − η (8.65)

where
η = (I −B−1B̂)y −B−1ñ. (8.66)

Taking as above

y = q̈d + KD(q̇d − q̇) + KP (qd − q),

leads to
¨̃q + KD

˙̃q + KP q̃ = η. (8.67)

The system described by (8.67) is still nonlinear and coupled, since η is a

nonlinear function of q̃ and ˙̃q; error convergence to zero is not ensured by the
term on the left-hand side only.

To find control laws ensuring error convergence to zero while tracking a
trajectory even in the face of uncertainties, a linear PD control is no longer
sufficient. To this end, the Lyapunov direct method can be utilized again for
the design of an outer feedback loop on the error which should be robust to
the uncertainty η.

Let the desired trajectory qd(t) be assigned in the joint space and let

q̃ = qd − q be the position error. Its first time-derivative is ˙̃q = q̇d − q̇, while
its second time-derivative in view of (8.65) is

¨̃q = q̈d − y + η. (8.68)
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By taking

ξ =

[
q̃

˙̃q

]
, (8.69)

as the system state, the following first-order differential matrix equation is
obtained:

ξ̇ = Hξ + D(q̈d − y + η), (8.70)

where H and D are block matrices of dimensions (2n × 2n) and (2n × n),
respectively:

H =

[
O I

O O

]
D =

[
O

I

]
. (8.71)

Then, the problem of tracking a given trajectory can be regarded as the prob-
lem of finding a control law y which stabilizes the nonlinear time-varying error
system (8.70).

Control design is based on the assumption that, even though the uncer-
tainty η is unknown, an estimate on its range of variation is available. The
sought control law y should guarantee asymptotic stability of (8.70) for any
η varying in the above range. By recalling that η in (8.66) is a function of q,
q̇, q̈d, the following assumptions are made:

supt≥0
‖q̈d‖ < QM < ∞ ∀q̈d (8.72)

‖I −B−1(q)B̂(q)‖ ≤ α ≤ 1 ∀q (8.73)

‖ñ‖ ≤ Φ <∞ ∀q, q̇. (8.74)

Assumption (8.72) is practically satisfied since any planned trajectory cannot
require infinite accelerations.

Regarding assumption (8.73), since B is a positive definite matrix with
upper and lower limited norms, the following inequality holds:

0 < Bm ≤ ‖B−1(q)‖ ≤ BM <∞ ∀q, (8.75)

and then a choice for B̂ always exists which satisfies (8.73). In fact, by setting

B̂ =
2

BM + Bm

I,

from (8.73) it is

‖B−1B̂ − I‖ ≤
BM −Bm

BM + Bm

= α < 1. (8.76)

If B̂ is a more accurate estimate of the inertia matrix, the inequality is satisfied
with values of α that can be made arbitrarily small (in the limit, it is B̂ = B

and α = 0).
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Finally, concerning assumption (8.74), observe that ñ is a function of q and
q̇. For revolute joints a periodical dependence on q is obtained, while for pris-
matic joints a linear dependence is obtained, but the joint ranges are limited
and then the above contribution is also limited. On the other hand, regarding
the dependence on q̇, unbounded velocities for an unstable system may arise
in the limit, but in reality saturations exist on the maximum velocities of the
motors. In summary, assumption (8.74) can be realistically satisfied, too.

With reference to (8.65), choose now

y = q̈d + KD
˙̃q + KP q̃ + w (8.77)

where the PD term ensures stabilization of the error dynamic system matrix,
q̈d provides a feedforward term, and the term w is to be chosen to guarantee
robustness to the effects of uncertainty described by η in (8.66).

Using (8.77) and setting K = [KP KD ] yields

ξ̇ = H̃ξ + D(η −w), (8.78)

where

H̃ = (H −DK) =

[
O I

−KP −KD

]

is a matrix whose eigenvalues all have negative real parts — KP and KD

being positive definite — which allows the desired error system dynamics to
be prescribed. In fact, by choosing KP = diag{ω2

n1
, . . . , ω2

nn} and KD =
diag{2ζ1ωn1, . . . , 2ζnωnn}, n decoupled equations are obtained as regards the
linear part. If the uncertainty term vanishes, it is obviously w = 0 and the
above result with an exact inverse dynamics controller is recovered (B̂ = B

and n̂ = n).
To determine w, consider the following positive definite quadratic form as

Lyapunov function candidate:

V (ξ) = ξT Qξ > 0 ∀ξ 6= 0, (8.79)

where Q is a (2n×2n) positive definite matrix. The derivative of V along the
trajectories of the error system (8.78) is

V̇ = ξ̇
T
Qξ + ξT Qξ̇ (8.80)

= ξT (H̃
T
Q + QH̃)ξ + 2ξT QD(η −w).

Since H̃ has eigenvalues with all negative real parts, it is well-known that for
any symmetric positive definite matrix P , the equation

H̃
T
Q + QH̃ = −P (8.81)

gives a unique solution Q which is symmetric positive definite as well. In view
of this, (8.80) becomes

V̇ = −ξT Pξ + 2ξT QD(η −w). (8.82)
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Fig. 8.23. Block scheme of joint space robust control

The first term on the right-hand side of (8.82) is negative definite and then
the solutions converge if ξ ∈ N (DT Q). If instead ξ 6∈ N (DT Q), the control
w must be chosen so as to render the second term in (8.82) less than or equal
to zero. By setting z = DT Qξ, the second term in (8.82) can be rewritten as
zT (η −w). Adopting the control law

w =
ρ

‖z‖
z ρ > 0 (8.83)

gives8

zT (η −w) = zT η −
ρ

‖z‖
zT z

≤ ‖z‖‖η‖ − ρ‖z‖

= ‖z‖(‖η‖ − ρ). (8.84)

Then, if ρ is chosen so that

ρ ≥ ‖η‖ ∀q, q̇, q̈d, (8.85)

the control (8.83) ensures that V̇ is less than zero along all error system
trajectories.

In order to satisfy (8.85), notice that, in view of the definition of η in (8.66)
and of assumptions (8.72)–(8.74), and being ‖w‖ = ρ, it is

‖η‖ ≤ ‖I −B−1B̂‖
(
‖q̈d‖+ ‖K‖ ‖ξ‖+ ‖w‖

)
+ ‖B−1‖ ‖ñ‖

8 Notice that it is necessary to divide z by the norm of z so as to obtain a linear
dependence on z of the term containing the control zT w, and thus to effectively
counteract, for z → 0, the term containing the uncertainty zT η which is linear
in z.
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≤ αQM + α‖K‖ ‖ξ‖+ αρ + BMΦ. (8.86)

Therefore, setting

ρ ≥
1

1− α
(αQM + α‖K‖‖ξ‖+ BMΦ) (8.87)

gives

V̇ = −ξT Pξ + 2zT

(
η −

ρ

‖z‖
z

)
< 0 ∀ξ 6= 0. (8.88)

The resulting block scheme is illustrated in Fig. 8.23.
To summarize, the presented approach has lead to finding a control law

which is formed by three different contributions:

• The term B̂y+n̂ ensures an approximate compensation of nonlinear effects
and joint decoupling .

• The term q̈d + KD
˙̃q + KP q̃ introduces a linear feedforward action (q̈d +

KDq̇d+KP qd) and linear feedback action (−KDq̇−KP q) which stabilizes
the error system dynamics.

• The term w = (ρ/‖z‖)z represents the robust contribution that counter-

acts the indeterminacy B̃ and ñ in computing the nonlinear terms that
depend on the manipulator state; the greater the uncertainty, the greater
the positive scalar ρ. The resulting control law is of the unit vector type,
since it is described by a vector of magnitude ρ aligned with the unit vector
of z = DT Qξ, ∀ξ.

All the resulting trajectories under the above robust control reach the sub-
space z = DT Qξ = 0 that depends on the matrix Q in the Lyapunov function
V . On this attractive subspace, termed sliding subspace, the control w is ide-
ally commuted at an infinite frequency and all error components tend to zero
with a transient depending on the matrices Q, KP , KD. A characterization
of an error trajectory in the two-dimensional case is given in Fig. 8.24. Notice
that in the case ξ(0) 6= 0, with ξ(0) 6∈ N (DT Q), the trajectory is attracted
on the sliding hyperplane (a line) z = 0 and tends towards the origin of the
error state space with a time evolution governed by ρ.

In reality, the physical limits on the elements employed in the controller
impose a control signal that commutes at a finite frequency, and the trajec-
tories oscillate around the sliding subspace with a magnitude as low as the
frequency is high.

Elimination of these high-frequency components (chattering) can be achie-
ved by adopting a robust control law which, even if it does not guarantee error
convergence to zero, ensures bounded-norm errors. A control law of this type
is

w =





ρ

‖z‖
z per ‖z‖ ≥ ǫ

ρ

ǫ
z per ‖z‖ < ǫ.

(8.89)
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Fig. 8.24. Error trajectory with robust control

In order to provide an intuitive interpretation of this law, notice that (8.89)
gives a null control input when the error is in the null space of matrix DT Q.
On the other hand, (8.83) has an equivalent gain tending to infinity when z

tends to the null vector, thus generating a control input of limited magnitude.
Since these inputs commute at an infinite frequency, they force the error
system dynamics to stay on the sliding subspace. With reference to the above
example, control law (8.89) gives rise to a hyperplane z = 0 which is no
longer attractive, and the error is allowed to vary within a boundary layer
whose thickness depends on ǫ (Fig. 8.25).

The introduction of a contribution based on the computation of a suitable
linear combination of the generalized error confers robustness to a control
scheme based on nonlinear compensation. Even if the manipulator is accu-
rately modeled, indeed, an exact nonlinear compensation may be computa-
tionally demanding, and thus it may require either a sophisticated hardware
architecture or an increase of the sampling time needed to compute the con-
trol law. The solution then becomes weak from an engineering viewpoint, due
either to infeasible costs of the control architecture, or to poor performance
at decreased sampling rates. Therefore, considering a partial knowledge of the
manipulator dynamic model with an accurate, pondered estimate of uncer-
tainty may suggest robust control solutions of the kind presented above. It
is understood that an estimate of the uncertainty should be found so as to
impose control inputs which the mechanical structure can bear.

8.5.4 Adaptive Control

The computational model employed for computing inverse dynamics typically
has the same structure as that of the true manipulator dynamic model, but
parameter estimate uncertainty does exist. In this case, it is possible to devise
solutions that allow an on-line adaptation of the computational model to the
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Fig. 8.25. Error trajectory with robust control and chattering elimination

dynamic model , thus performing a control scheme of the inverse dynamics
type.

The possibility of finding adaptive control laws is ensured by the property
of linearity in the parameters of the dynamic model of a manipulator. In
fact, it is always possible to express the nonlinear equations of motion in a
linear form with respect to a suitable set of constant dynamic parameters as
in (7.81). The equation in (8.7) can then be written as

B(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = Y (q, q̇, q̈)π = u, (8.90)

where π is a (p × 1) vector of constant parameters and Y is an (n × p)
matrix which is a function of joint positions, velocities and accelerations. This
property of linearity in the dynamic parameters is fundamental for deriving
adaptive control laws, among which the technique illustrated below is one of
the simplest.

At first, a control scheme which can be derived through a combined com-
puted torque/inverse dynamics approach is illustrated. The computational
model is assumed to coincide with the dynamic model.

Consider the control law

u = B(q)q̈r + C(q, q̇)q̇r + F q̇r + g(q) + KDσ, (8.91)

with KD a positive definite matrix. The choice

q̇r = q̇d + Λq̃ q̈r = q̈d + Λ ˙̃q, (8.92)

with Λ a positive definite (usually diagonal) matrix, allows the nonlinear com-
pensation and decoupling terms to be expressed as a function of the desired
velocity and acceleration, corrected by the current state (q and q̇) of the ma-
nipulator. In fact, notice that the term q̇r = q̇d + Λq̃ weighs the contribution
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that depends on velocity, not only on the basis of the desired velocity but also
on the basis of the position tracking error. A similar argument also holds for
the acceleration contribution, where a term depending on the velocity tracking
error is considered besides the desired acceleration.

The term KDσ is equivalent to a PD action on the error if σ is taken as

σ = q̇r − q̇ = ˙̃q + Λq̃. (8.93)

Substituting (8.91) into (8.90) and accounting for (8.93) yields

B(q)σ̇ + C(q, q̇)σ + Fσ + KDσ = 0. (8.94)

Consider the Lyapunov function candidate

V (σ, q̃) =
1

2
σT B(q)σ +

1

2
q̃

T
Mq̃ > 0 ∀σ, q̃ 6= 0, (8.95)

where M is an (n × n) symmetric positive definite matrix; the introduction
of the second term in (8.95) is necessary to obtain a Lyapunov function of the

entire system state which vanishes for q̃ = 0 and ˙̃q = 0. The time derivative
of V along the trajectories of system (8.94) is

V̇ = σT B(q)σ̇ +
1

2
σT Ḃ(q)σ + q̃

T
M ˙̃q

= −σT (F + KD)σ + q̃
T
M ˙̃q, (8.96)

where the skew-symmetry propertyv of the matrix N = Ḃ − 2C has been
exploited. In view of the expression of σ in (8.93), with diagonal Λ and KD,
it is convenient to choose M = 2ΛKD; this leads to

V̇ = −σT Fσ − ˙̃q
T
KD

˙̃q − q̃
T
ΛKDΛq̃. (8.97)

This expression shows that the time derivative is negative definite since it
vanishes only if q̃ ≡ 0 and ˙̃q ≡ 0; thus, it follows that the origin of the state
space [ q̃T

σT ]T = 0 is globally asymptotically stable. It is worth noticing
that, unlike the robust control case, the error trajectory tends to the subspace
σ = 0 without the need of a high-frequency control.

On the basis of this notable result, the control law can be made adaptive
with respect to the vector of parameters π.

Suppose that the computational model has the same structure as that of
the manipulator dynamic model, but its parameters are not known exactly.
The control law (8.91) is then modified into

u = B̂(q)q̈r + Ĉ(q, q̇)q̇r + F̂ q̇r + ĝ + KDσ (8.98)

= Y (q, q̇, q̇r, q̈r)π̂ + KDσ,
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where π̂ represents the available estimate on the parameters and, accordingly,
B̂, Ĉ, F̂ , ĝ denote the estimated terms in the dynamic model. Substituting
control (8.98) into (8.90) gives

B(q)σ̇ + C(q, q̇)σ + Fσ + KDσ = −B̃(q)q̈r − C̃(q, q̇)q̇r − F̃ q̇r − g̃(q)

= −Y (q, q̇, q̇r, q̈r)π̃, (8.99)

where the property of linearity in the error parameter vector

π̃ = π̂ − π (8.100)

has been conveniently exploited. In view of (8.63), the modelling error is
characterized by

B̃ = B̂ −B C̃ = Ĉ −C F̃ = F̂ − F g̃ = ĝ − g. (8.101)

It is worth remarking that, in view of position (8.92), the matrix Y does not
depend on the actual joint accelerations but only on their desired values; this
avoids problems due to direct measurement of acceleration.

At this point, modify the Lyapunov function candidate in (8.95) into the
form

V (σ, q̃, π̃) =
1

2
σT B(q)σ + q̃

T
ΛKDq̃ +

1

2
π̃

T
Kππ̃ > 0 ∀σ, q̃, π̃ 6= 0,

(8.102)
which features an additional term accounting for the parameter error (8.100),
with Kπ symmetric positive definite. The time derivative of V along the
trajectories of system (8.99) is

V̇ = −σT Fσ − ˙̃q
T
KD

˙̃q − q̃
T
ΛKDΛq̃ + π̃

T (
Kπ

˙̃π − Y T (q, q̇, q̇r, q̈r)σ
)
.

(8.103)
If the estimate of the parameter vector is updated as in the adaptive law

˙̂π = K−1

π Y T (q, q̇, q̇r, q̈r)σ, (8.104)

the expression in (8.103) becomes

V̇ = −σT Fσ − ˙̃q
T
KD

˙̃q − q̃
T
ΛKDΛq̃

since ˙̂π = ˙̃π — π is constant.
By an argument similar to above, it is not difficult to show that the tra-

jectories of the manipulator described by the model

B(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = u,

under the control law

u = Y (q, q̇, q̇r, q̈r)π̂ + KD( ˙̃q + Λq̃)
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Fig. 8.26. Block scheme of joint space adaptive control

and the parameter adaptive law

˙̂π = K−1

π Y T (q, q̇, q̇r, q̈r)(
˙̃q + Λq̃),

globally asymptotically converge to σ = 0 and q̃ = 0, which implies conver-
gence to zero of q̃, ˙̃q, and boundedness of π̂. The equation in (8.99) shows
that asymptotically it is

Y (q, q̇, q̇r, q̈r)(π̂ − π) = 0. (8.105)

This equation does not imply that π̂ tends to π; indeed, convergence of param-
eters to their true values depends on the structure of the matrix Y (q, q̇, q̇r, q̈r)
and then on the desired and actual trajectories. Nonetheless, the followed ap-
proach is aimed at solving a direct adaptive control problem, i.e., finding a
control law that ensures limited tracking errors, and not at determining the
actual parameters of the system (as in an indirect adaptive control problem).
The resulting block scheme is illustrated in Fig. 8.26. To summarize, the above
control law is formed by three different contributions:

• The term Y π̂ describes a control action of inverse dynamics type which
ensures an approximate compensation of nonlinear effects and joint decou-
pling .

• The term KDσ introduces a stabilizing linear control action of PD type
on the tracking error .

• The vector of parameter estimates π̂ is updated by an adaptive law of
gradient type so as to ensure asymptotic compensation of the terms in the
manipulator dynamic model; the matrix Kπ determines the convergence
rate of parameters to their asymptotic values.

Notice that, with σ ≈ 0, the control law (8.98) is equivalent to a pure
inverse dynamics compensation of the computed torque type on the basis of
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desired velocities and accelerations; this is made possible by the fact that
Y π̂ ≈ Y π.

The control law with parameter adaptation requires the availability of a
complete computational model and it does not feature any action aimed at
reducing the effects of external disturbances. Therefore, a performance degra-
dation is expected whenever unmodelled dynamic effects, e.g., when a reduced
computational model is used, or external disturbances occur. In both cases,
the effects induced on the output variables are attributed by the controller to
parameter estimate mismatching; as a consequence, the control law attempts
to counteract those effects by acting on quantities that did not provoke them
originally.

On the other hand, robust control techniques provide a natural rejection
to external disturbances, although they are sensitive to unmodelled dynamics;
this rejection is provided by a high-frequency commuted control action that
constrains the error trajectories to stay on the sliding subspace. The resulting
inputs to the mechanical structure may be unacceptable. This inconvenience
is in general not observed with the adoption of adaptive control techniques
whose action has a naturally smooth time behaviour.

8.6 Operational Space Control

In all the above control schemes, it was always assumed that the desired tra-
jectory is available in terms of the time sequence of the values of joint position,
velocity and acceleration. Accordingly, the error for the control schemes was
expressed in the joint space.

As often pointed out, motion specifications are usually assigned in the op-
erational space, and then an inverse kinematics algorithm has to be utilized to
transform operational space references into the corresponding joint space ref-
erences. The process of kinematic inversion has an increasing computational
load when, besides inversion of direct kinematics, inversion of first-order and
second-order differential kinematics is also required to transform the desired
time history of end-effector position, velocity and acceleration into the corre-
sponding quantities at the joint level. It is for this reason that current indus-
trial robot control systems compute the joint positions through kinematics
inversion, and then perform a numerical differentiation to compute velocities
and accelerations.

A different approach consists of considering control schemes developed
directly in the operational space. If the motion is specified in terms of opera-
tional space variables, the measured joint space variables can be transformed
into the corresponding operational space variables through direct kinematics
relations. Comparing the desired input with the reconstructed variables allows
the design of feedback control loops where trajectory inversion is replaced with
a suitable coordinate transformation embedded in the feedback loop.
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Fig. 8.27. Block scheme of Jacobian inverse control

All operational space control schemes present considerable computational
requirements, in view of the necessity to perform a number of computations
in the feedback loop which are somewhat representative of inverse kinematics
functions. With reference to a numerical implementation, the presence of a
computationally demanding load requires sampling times that may lead to
degrading the performance of the overall control system.

In the face of the above limitations, it is worth presenting operational
space control schemes, whose utilization becomes necessary when the prob-
lem of controlling interaction between the manipulator and the environment
is of concern. In fact, joint space control schemes suffice only for motion con-
trol in the free space. When the manipulator’s end-effector is constrained by
the environment, e.g., in the case of end-effector in contact with an elastic
environment, it is necessary to control both positions and contact forces and
it is convenient to refer to operational space control schemes. Hence, below
some solutions are presented; these are worked out for motion control, but
they constitute the premise for the force/position control strategies that will
be illustrated in the next chapter.

8.6.1 General Schemes

As pointed out above, operational space control schemes are based on a direct
comparison of the inputs, specifying operational space trajectories, with the
measurements of the corresponding manipulator outputs. It follows that the
control system should incorporate some actions that allow the transformation
from the operational space, in which the error is specified, to the joint space,
in which control generalized forces are developed.

A possible control scheme that can be devised is the so-called Jacobian
inverse control (Fig. 8.27). In this scheme, the end-effector pose in the op-
erational space xe is compared with the corresponding desired quantity xd,
and then an operational space deviation ∆x can be computed. Assumed that
this deviation is sufficiently small for a good control system, ∆x can be trans-
formed into a corresponding joint space deviation ∆q through the inverse of
the manipulator Jacobian. Then, the control input generalized forces can be
computed on the basis of this deviation through a suitable feedback matrix
gain. The result is a presumable reduction of ∆q and in turn of ∆x. In other
words, the Jacobian inverse control leads to an overall system that intuitively
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Fig. 8.28. Block scheme of Jacobian transpose control

behaves like a mechanical system with a generalized n-dimensional spring in
the joint space, whose constant stiffness is determined by the feedback matrix
gain. The role of such system is to take the deviation ∆q to zero. If the matrix
gain is diagonal, the generalized spring corresponds to n independent elastic
elements, one for each joint.

A conceptually analogous scheme is the so-called Jacobian transpose con-
trol (Fig. 8.28). In this case, the operational space error is treated first through
a matrix gain. The output of this block can then be considered as the elas-
tic force generated by a generalized spring whose function in the operational
space is that to reduce or to cancel the position deviation ∆x. In other words,
the resulting force drives the end-effector along a direction so as to reduce ∆x.
This operational space force has then to be transformed into the joint space
generalized forces, through the transpose of the Jacobian, so as to realize the
described behaviour.

Both Jacobian inverse and transpose control schemes have been derived
in an intuitive fashion. Hence, there is no guarantee that such schemes are
effective in terms of stability and trajectory tracking accuracy. These problems
can be faced by presenting two mathematical solutions below, which will be
shown to be substantially equivalent to the above schemes.

8.6.2 PD Control with Gravity Compensation

By analogy with joint space stability analysis, given a constant end-effector
pose xd, it is desired to find the control structure so that the operational space
error

x̃ = xd − xe (8.106)

tends asymptotically to zero. Choose the following positive definite quadratic
form as a Lyapunov function candidate:

V (q̇, x̃) =
1

2
q̇T B(q)q̇ +

1

2
x̃

T
KP x̃ > 0 ∀q̇, x̃ 6= 0, (8.107)

with KP a symmetric positive definite matrix. Differentiating (8.107) with
respect to time gives

V̇ = q̇T B(q)q̈ +
1

2
q̇T Ḃ(q)q̇ + ˙̃x

T
KP x̃.



346 8 Motion Control

Fig. 8.29. Block scheme of operational space PD control with gravity compensation

Since ẋd = 0, in view of (3.62) it is

˙̃x = −JA(q)q̇

and then

V̇ = q̇T B(q)q̈ +
1

2
q̇T Ḃ(q)q̇ − q̇T JT

A(q)KP x̃. (8.108)

By recalling the expression of the joint space manipulator dynamic model
in (8.7) and the property in (7.49), the expression in (8.108) becomes

V̇ = −q̇T F q̇ + q̇T
(
u− g(q)− JT

A(q)KP x̃
)
. (8.109)

This equation suggests the structure of the controller; in fact, by choosing
the control law

u = g(q) + JT
A(q)KP x̃− JT

A(q)KDJA(q)q̇ (8.110)

with KD positive definite, (8.109) becomes

V̇ = −q̇T F q̇ − q̇T JT
A(q)KDJA(q)q̇. (8.111)

As can be seen from Fig. 8.29, the resulting block scheme reveals an anal-
ogy with the scheme of Fig. 8.28. Control law (8.110) performs a nonlin-
ear compensating action of joint space gravitational forces and an operational
space linear PD control action. The last term has been introduced to enhance
system damping; in particular, if measurement of ẋ is deduced from that of
q̇, one can simply choose the derivative term as −KDq̇.

The expression in (8.111) shows that, for any system trajectory, the Lya-
punov function decreases as long as q̇ 6= 0. The system then reaches an equi-
librium posture. By a stability argument similar to that in the joint space
(see (8.52)–(8.54)) this posture is determined by

JT
A(q)KP x̃ = 0. (8.112)
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Fig. 8.30. Block scheme of operational space inverse dynamics control

From (8.112) it can be recognized that, under the assumption of full-rank
Jacobian, it is

x̃ = xd − xe = 0,

i.e., the sought result.
If measurements of xe and ẋe are made directly in the operational space,

k(q) and JA(q) in the scheme of Fig. 8.45 are just indicative of direct kine-
matics functions; it is, however, necessary to measure q to update both JT

A(q)
and g(q) on-line. If measurements of operational space quantities are indirect,
the controller has to compute the direct kinematics functions, too.

8.6.3 Inverse Dynamics Control

Consider now the problem of tracking an operational space trajectory. Recall
the manipulator dynamic model in the form (8.55)

B(q)q̈ + n(q, q̇) = u,

where n is given by (8.56). As in (8.57), the choice of the inverse dynamics
linearizing control

u = B(q)y + n(q, q̇)

leads to the system of double integrators

q̈ = y. (8.113)

The new control input y is to be designed so as to yield tracking of a trajectory
specified by xd(t). To this end, the second-order differential equation in the
form (3.98)

ẍe = JA(q)q̈ + J̇A(q, q̇)q̇
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suggests, for a nonredundant manipulator, the choice of the control law —
formally analogous to (3.102) —

y = J−1

A (q)
(
ẍd + KD

˙̃x + KP x̃− J̇A(q, q̇)q̇
)

(8.114)

with KP and KD positive definite (diagonal) matrices. In fact, substitut-
ing (8.114) into (8.113) gives

¨̃x + KD
˙̃x + KP x̃ = 0 (8.115)

which describes the operational space error dynamics, with KP and KD

determining the error convergence rate to zero. The resulting inverse dynamics
control scheme is reported in Fig. 8.30, which confirms the anticipated analogy
with the scheme of Fig. 8.27. Again in this case, besides xe and ẋe, q and q̇ are
also to be measured. If measurements of xe and ẋe are indirect, the controller
must compute the direct kinematics functions k(q) and JA(q) on-line.

A critical analysis of the schemes in Figs. 8.29, 8.30 reveals that the design
of an operational space controller always requires computation of manipulator
Jacobian. As a consequence, controlling a manipulator in the operational space
is in general more complex than controlling it in the joint space. In fact, the
presence of singularities and/or redundancy influences the Jacobian, and the
induced effects are somewhat difficult to handle with an operational space
controller. For instance, if a singularity occurs for the scheme of Fig. 8.29 and
the error enters the null space of the Jacobian, the manipulator gets stuck
at a different configuration from the desired one. This problem is even more
critical for the scheme of Fig. 8.30 which would require the computation of a
DLS inverse of the Jacobian. Yet, for a redundant manipulator, a joint space
control scheme is naturally transparent to this situation, since redundancy
has already been solved by inverse kinematics, whereas an operational space
control scheme should incorporate a redundancy handling technique inside
the feedback loop.

As a final remark, the above operational space control schemes have been
derived with reference to a minimal description of orientation in terms of
Euler angles. It is understood that, similar to what is presented in Sect. 3.7.3
for inverse kinematics algorithms, it is possible to adopt different definitions
of orientation error, e.g., based on the angle and axis or the unit quaternion.
The advantage is the use of the geometric Jacobian in lieu of the analytical
Jacobian. The price to pay, however, is a more complex analysis of the stability
and convergence characteristics of the closed-loop system. Even the inverse
dynamics control scheme will not lead to a homogeneous error equation, and
a Lyapunov argument should be invoked to ascertain its stability.

8.7 Comparison Among Various Control Schemes 349

8.7 Comparison Among Various Control Schemes

In order to make a comparison between the various control schemes presented,
consider the two-link planar arm with the same data of Example 7.2:

a1 = a2 = 1 m ℓ1 = ℓ2 = 0.5 m mℓ1 = mℓ2 = 50 kg Iℓ1 = Iℓ2 = 10 kg·m2

kr1 = kr2 = 100 mm1 = mm2 = 5 kg Im1 = Im2 = 0.01 kg·m2.

The arm is assumed to be driven by two equal actuators with the following
data:

Fm1 = Fm2 = 0.01 N·m·s/rad Ra1 = Ra2 = 10 ohm

kt1 = kt2 = 2 N·m/A kv1 = kv2 = 2 V·s/rad;

it can be verified that Fmi
≪ kvikti/Rai for i = 1, 2.

The desired tip trajectories have a typical trapezoidal velocity profile, and
thus it is anticipated that sharp torque variations will be induced. The tip path
is a motion of 1.6 m along the horizontal axis, as in the path of Example 7.2. In
the first case (fast trajectory), the acceleration time is 0.6 s and the maximum
velocity is 1 m/s. In the second case (slow trajectory), the acceleration time is
0.6 s and the maximum velocity is 0.25 m/s. The motion of the controlled arm
was simulated on a computer, by adopting a discrete-time implementation of
the controller with a sampling time of 1 ms.

The following control schemes in the joint space and in the operational
space have been utilized; an (analytic) inverse kinematics solution has been im-
plemented to generate the reference inputs to the joint space control schemes:

A. Independent joint control with position and velocity feedback (Fig. 5.11)
with the following data for each joint servo:

KP = 5 KV = 10 kTP = kTV = 1,

corresponding to ωn = 5 rad/s and ζ = 0.5.
B. Independent joint control with position, velocity and acceleration feedback

(Fig. 8.9) with the following data for each joint servo:

KP = 5 KV = 10 KA = 2 kTP = kTV = kTA = 1,

corresponding to ωn = 5 rad/s, ζ = 0.5, XR = 100. To reconstruct accel-
eration, a first-order filter has been utilized (Fig. 8.11) characterized by
ω3f = 100 rad/s.

C. As in scheme A with the addition of a decentralized feedforward action
(Fig. 8.13).

D. As in scheme B with the addition of a decentralized feedforward action
(Fig. 8.14).

E. Joint space computed torque control (Fig. 8.19) with feedforward com-
pensation of the diagonal terms of the inertia matrix and of gravitational
terms, and decentralized feedback controllers as in scheme A.
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F. Joint space PD control with gravity compensation (Fig. 8.20), modified
by the addition of a feedforward velocity term KDq̇d, with the following
data:

KP = 3750I2 KD = 750I2.

G. Joint space inverse dynamics control (Fig. 8.22) with the following data:

KP = 25I2 KD = 5I2.

H. Joint space robust control (Fig. 8.23), under the assumption of constant

inertia (B̂ = B̄) and compensation of friction and gravity (n̂ = F vq̇ +g),
with the following data:

KP = 25I2 KD = 5I2 P = I2 ρ = 70 ǫ = 0.004.

I. As in case H with ǫ = 0.01.
J. Joint space adaptive control (Fig. 8.26) with a parameterization of the

arm dynamic model (7.82) as in (7.83), (7.84). The initial estimate of the
vector π̂ is computed on the basis of the nominal parameters. The arm
is supposed to carry a load which causes the following variations on the
second link parameters:

∆m2 = 10 kg ∆m2ℓC2 = 11 kg·m ∆Î2 = 12.12 kg·m2.

This information is obviously utilized only to update the simulated arm
model. Further, the following data are set:

Λ = 5I2 KD = 750I2 Kπ = 0.01I8.

K. Operational space PD control with gravity compensation (Fig. 8.29), mod-
ified by the addition of a feedforward velocity term KDẋd, with the fol-
lowing data:

KP = 16250I2 KD = 3250I2.

L. Operational space inverse dynamics control (Fig. 8.30) with the following
data:

KP = 25I2 KD = 5I2.

It is worth remarking that the adopted model of the dynamic system of arm
with drives is that described by (8.7). In the decentralized control schemes A–
E, the joints have been voltage-controlled as in the block scheme of Fig. 8.3,
with unit amplifier gains (Gv = I). On the other hand, in the centralized
control schemes F–L, the joints have been current-controlled as in the block
scheme of Fig. 8.4, with unit amplifier gains (Gi = I).

Regarding the parameters of the various controllers, these have been cho-
sen in such a way as to allow a significant comparison of the performance of
each scheme in response to congruent control actions. In particular, it can be
observed that:
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Fig. 8.31. Time history of the joint positions and torques and of the tip position
errors for the fast trajectory with control scheme A
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Fig. 8.32. Time history of the joint torques and of the norm of tip position error
for the fast trajectory; left : with control scheme C, right: with control scheme D
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Fig. 8.33. Time history of the joint torques and of the norm of tip position error
for the fast trajectory with control scheme E
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Fig. 8.34. Time history of the joint positions and torques and of the norm of tip
position error for the fast trajectory with control scheme F

0 1 2 3 4
 500

0

500

1000

1500

[s]

[N
m

]

joint torques

0 1 2 3 4
0

1

2

3

4
x 10

 4

[s]

[m
]

pos error norm

Fig. 8.35. Time history of the joint torques and of the norm of tip position error
for the fast trajectory with control scheme G
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Fig. 8.36. Time history of the joint torques and of the norm of tip position error
for the fast trajectory; left : with control scheme H, right : with control scheme I

• The dynamic behaviour of the joints is the same for schemes A–E.
• The gains of the PD actions in schemes G, H, I and L have been chosen

so as to obtain the same natural frequency and damping ratios as those of
schemes A–E.

The results obtained with the various control schemes are illustrated in
Figs. 8.31–8.39 for the fast trajectory and in Figs. 8.40–8.48 for the slow
trajectory, respectively. In the case of two quantities represented in the same
plot notice that:

• For the joint trajectories, the dashed line indicates the reference trajectory
obtained from the tip trajectory via inverse kinematics, while the solid line
indicates the actual trajectory followed by the arm.

• For the joint torques, the solid line refers to Joint 1 while the dashed line
refers to Joint 2.

• For the tip position error, the solid line indicates the error component along
the horizontal axis while the dashed line indicates the error component
along the vertical axis.

Finally, the representation scales have been made as uniform as possible
in order to allow a more direct comparison of the results.

Regarding performance of the various control schemes for the fast trajec-
tory, the obtained results lead to the following considerations.
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Fig. 8.37. Time history of the norm of tip position error and of the norm of pa-
rameter error vector for the fast trajectory with control scheme J
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Fig. 8.38. Time history of the joint torques and of the norm of tip position error
for the fast trajectory with control scheme K
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Fig. 8.39. Time history of the joint torques and of the norm of tip position error
for the fast trajectory with control scheme L

Deviation of the actual joint trajectories from the desired ones shows that
tracking performance of scheme A is quite poor (Fig. 8.31). It should be
noticed, however, that the largest contribution to the error is caused by a
time lag of the actual trajectory behind the desired one, while the distance
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Fig. 8.40. Time history of the joint positions and torques and of the tip position
errors for the slow trajectory with control scheme A
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Fig. 8.41. Time history of the joint torques and of the norm of tip position error
for the slow trajectory; left : with control scheme C, right : with control scheme D
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Fig. 8.42. Time history of the joint torques and of the norm of tip position error
for the slow trajectory with control scheme E
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Fig. 8.43. Time history of the joint positions and torques and of the norm of tip
position error for the slow trajectory with control scheme F
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Fig. 8.44. Time history of the joint torques and of the norm of tip position error
for the slow trajectory with control scheme G
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Fig. 8.45. Time history of the joint torques and of the norm of tip position error
for the slow trajectory; left : with control scheme H, right : with control scheme I

of the tip from the geometric path is quite contained. Similar results were
obtained with scheme B, and then they have not been reported.

With schemes C and D, an appreciable tracking accuracy improvement is
observed (Fig. 8.32), with better performance for the second scheme, thanks
to the outer acceleration feedback loop that allows a disturbance rejection
factor twice as much as for the first scheme. Notice that the feedforward
action yields a set of torques which are closer to the nominal ones required to
execute the desired trajectory; the torque time history has a discontinuity in
correspondence of the acceleration and deceleration fronts.

The tracking error is further decreased with scheme E (Fig. 8.33), by virtue
of the additional nonlinear feedforward compensation.

Scheme F guarantees stable convergence to the final arm posture with a
tracking performance which is better than that of schemes A and B, thanks to
the presence of a velocity feedforward action, but worse than that of schemes
C–E, in view of lack of an acceleration feedforward action (Fig. 8.34).

As would be logical to expect, the best results are observed with scheme G

for which the tracking error is practically zero, and it is mainly due to numer-
ical discretization of the controller (Fig. 8.35).

It is then worth comparing the performance of schemes H and I (Fig. 8.36).
In fact, the choice of a small threshold value for ǫ (scheme H) induces high-
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Fig. 8.46. Time history of the norm of tip position error and of the norm of pa-
rameter error vector for the slow trajectory with control scheme J
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Fig. 8.47. Time history of the joint torques and of the norm of tip position error
for the slow trajectory with control scheme K
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Fig. 8.48. Time history of the joint torques and of the norm of tip position error
for the slow trajectory with control scheme L

frequency components in Joint 1 torque (see the thick portions of the torque
plot) at the advantage of a very limited tracking error. As the threshold value is
increased (scheme I), the torque assumes a smoother behaviour at the expense
of a doubled norm of tracking error, though.
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For scheme J, a lower tracking error than that of scheme F is observed,
thanks to the effectiveness of the adaptive action on the parameters of the
dynamic model. Nonetheless, the parameters do not converge to their nominal
values, as confirmed by the time history of the norm of the parameter error
vector that reaches a non-null steady-state value (Fig. 8.37).

Finally, the performance of schemes K and L is substantially comparable
to that of corresponding schemes F and G (Figs. 8.38 and 8.39).

Performance of the various control schemes for the slow trajectory is glob-
ally better than that for the fast trajectory. Such improvement is particularly
evident for the decentralized control schemes (Figs. 8.40–8.42), whereas the
tracking error reduction for the centralized control schemes is less dramatic
(Figs. 8.43–8.48), in view of the small order of magnitude of the errors already
obtained for the fast trajectory. In any case, as regards performance of each
single scheme, it is possible to make a number of remarks analogous to those
previously made.
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control accounting for the manipultor nonlinear dynamics are [15, 167, 100],
yet they exploit the notable properties of the dynamic model only to some
extent. The adaptive version of inverse dynamics control is analyzed in [52,
157]. The approach based on the energy properties of the dynamic model has
been proposed in [214] and further analyzed in [218]. An interesting tutorial
on adaptive control is [175].

Operational space control has been proposed in [114], on the basis of the
resolved acceleration control concept [143]. Inverse dynamics control schemes
in the operational space are given in [30]. For the extension to redundant
manipulators see [102].
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Problems

8.1. With reference to the block scheme with position feedback in Fig. 5.10,
find the transfer functions of the forward path, the return path, and the
closed-loop system.

8.2. With reference to the block scheme with position and velocity feedback
in Fig. 5.11, find the transfer functions of the forward path, the return path,
and the closed-loop system.

8.3. With reference to the block scheme with position, velocity and accelera-
tion feedback in Fig. 8.9, find the transfer functions of the forward path, the
return path, and the closed-loop system.

8.4. For a single joint drive system with the data: I = 6 kg·m2, Ra = 0.3 ohm,
kt = 0.5 N·m/A, kv = 0.5 V·s/rad, Fm = 0.001 N·m·s/rad, find the parameters
of the controller with position feedback (unit transducer constant) that yield a
closed-loop response with damping ratio ζ ≥ 0.4. Discuss disturbance rejection
properties.

8.5. For the drive system of Problem 8.4, find the parameters of the controller
with position and velocity feedback (unit transducer constants) that yield
a closed-loop response with damping ratio ζ ≥ 0.4 and natural frequency
ωn = 20 rad/s. Discuss disturbance rejection properties.

8.6. For the drive system of Problem 8.4, find the parameters of the controller
with position, velocity and acceleration feedback (unit transducer constants)
that yield a closed-loop response with damping ratio ζ ≥ 0.4, natural fre-
quency ωn = 20 rad/s and disturbance rejection factor XR = 400. Also, design
a first-order filter that allows acceleration measurement reconstruction.

8.7. Verify that the control schemes in Figs. 8.12, 8.13, 8.14 correspond to
realizing (8.42), (8.43), (8.44), respectively.

8.8. Verify that the standard regulation schemes in Figs. 8.15, 8.16, 8.17 are
equivalent to the schemes in Figs. 8.12, 8.13, 8.14, respectively.

8.9. Prove inequality (8.76).

8.10. For the two-link planar arm with the same data as in Sect. 8.7, design a
joint control of PD type with gravity compensation. By means of a computer
simulation, verify stability for the following postures q = [π/4 −π/2 ]T and
q = [−π −3π/4 ]T , respectively. Implement the control in discrete-time with
a sampling time of 1 ms.

8.11. For the two-link planar arm with the same data as in Sect. 8.7, under
the assumption of a concentrated tip payload of mass mL = 10 kg, design
an independent joint control with feedforward computed torque. Perform a
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computer simulation of the motion of the controlled arm along the joint space
rectilinear path from qi = [ 0 π/4 ]T to qf = [π/2 π/2 ]T with a trapezoidal
velocity profile and a trajectory duration tf = 1 s. Implement the control in
discrete-time with a sampling time of 1 ms.

8.12. For the two-link planar arm of Problem 8.11, design an inverse dynamics
joint control. Perform a computer simulation of the motion of the controlled
arm along the trajectory specified in Problem 8.11. Implement the control in
discrete-time with a sampling time of 1 ms.

8.13. For the two-link planar arm of Problem 8.11, design a robust joint con-
trol. Perform a computer simulation of the motion of the controlled arm along
the trajectory specified in Problem 8.11. Implement the control in discrete-
time with a sampling time of 1 ms.

8.14. For the two-link planar arm of Problem 8.11, design an adaptive joint
control, on the basis of a suitable parameterization of the arm dynamic model.
Perform a computer simulation of the motion of the controlled arm along the
trajectory specified in Problem 8.11. Implement the control in discrete-time
with a sampling time of 1 ms.

8.15. For the two-link planar of Problem 8.11, design a PD control in the
operational space with gravity compensation. By means of a computer sim-
ulation, verify stability for the following postures p = [ 0.5 0.5 ]T and
p = [ 0.6 −0.2 ]T , respectively. Implement the control in discrete-time with
a sampling time of 1 ms.

8.16. For the two-link planar arm of Problem 8.11, design an inverse dynamics
control in the operational space. Perform a computer simulation of the motion
of the controlled arm along the operational space rectlinear path from p(0) =
[ 0.7 0.2 ]T to p(1) = [ 0.1 −0.6 ]T with a trapezoidal velocity profile and a
trajectory duration tf = 1 s. Implement the control in discrete-time with a
sampling time of 1 ms.



Appendices

A

Linear Algebra

Since modelling and control of robot manipulators requires an extensive use
of matrices and vectors as well as of matrix and vector operations, the goal
of this appendix is to provide a brush-up of linear algebra.

A.1 Definitions

A matrix of dimensions (m× n), with m and n positive integers, is an array
of elements aij arranged into m rows and n columns:

A = [aij ] i = 1, . . . , m
j = 1, . . . , n

=




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


 . (A.1)

If m = n, the matrix is said to be square; if m < n, the matrix has more
columns than rows; if m > n the matrix has more rows than columns. Further,
if n = 1, the notation (A.1) is used to represent a (column) vector a of
dimensions (m× 1);1 the elements ai are said to be vector components.

A square matrix A of dimensions (n× n) is said to be upper triangular if
aij = 0 for i > j:

A =




a11 a12 . . . a1n

0 a22 . . . a2n
...

...
. . .

...
0 0 . . . ann


 ;

the matrix is said to be lower triangular if aij = 0 for i < j.

1 According to standard mathematical notation, small boldface is used to denote
vectors while capital boldface is used to denote matrices. Scalars are denoted by
roman characters.
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An (n×n) square matrix A is said to be diagonal if aij = 0 for i 6= j, i.e.,

A =




a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann


 = diag{a11, a22, . . . , ann}.

If an (n× n) diagonal matrix has all unit elements on the diagonal (aii = 1),
the matrix is said to be identity and is denoted by In.2 A matrix is said to be
null if all its elements are null and is denoted by O. The null column vector
is denoted by 0.

The transpose AT of a matrix A of dimensions (m × n) is the matrix of
dimensions (n×m) which is obtained from the original matrix by interchanging
its rows and columns:

AT =




a11 a21 . . . am1

a12 a22 . . . am2
...

...
. . .

...
a1n a2n . . . amn


 . (A.2)

The transpose of a column vector a is the row vector aT .
An (n× n) square matrix A is said to be symmetric if AT = A, and thus

aij = aji:

A =




a11 a12 . . . a1n

a12 a22 . . . a2n
...

...
. . .

...
a1n a2n . . . ann


 .

An (n × n) square matrix A is said to be skew-symmetric if AT = −A, and
thus aij = −aji for i 6= j and aii = 0, leading to

A =




0 a12 . . . a1n

−a12 0 . . . a2n
...

...
. . .

...
−a1n −a2n . . . 0


 .

A partitioned matrix is a matrix whose elements are matrices (blocks) of
proper dimensions:

A =




A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
Am1 Am2 . . . Amn


 .

2 Subscript n is usually omitted if the dimensions are clear from the context.
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A partitioned matrix may be block-triangular or block-diagonal. Special par-
titions of a matrix are that by columns

A = [a1 a2 . . . an ]

and that by rows

A =




aT
1

aT
2

...

aT
m




.

Given a square matrix A of dimensions (n×n), the algebraic complement
A(ij) of element aij is the matrix of dimensions ((n − 1) × (n − 1)) which is
obtained by eliminating row i and column j of matrix A.

A.2 Matrix Operations

The trace of an (n × n) square matrix A is the sum of the elements on the
diagonal:

Tr(A) =
n∑

i=1

aii. (A.3)

Two matrices A and B of the same dimensions (m×n) are equal if aij =
bij . If A and B are two matrices of the same dimensions, their sum is the
matrix

C = A + B (A.4)

whose elements are given by cij = aij + bij . The following properties hold:

A + O = A

A + B = B + A

(A + B) + C = A + (B + C).

Notice that two matrices of the same dimensions and partitioned in the same
way can be summed formally by operating on the blocks in the same position
and treating them like elements.

The product of a scalar α by an (m×n) matrix A is the matrix αA whose
elements are given by αaij . If A is an (n× n) diagonal matrix with all equal
elements on the diagonal (aii = a), it follows that A = aIn.

If A is a square matrix, one may write

A = As + Aa (A.5)

where

As =
1

2
(A + AT ) (A.6)
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is a symmetric matrix representing the symmetric part of A, and

Aa =
1

2
(A−AT ) (A.7)

is a skew-symmetric matrix representing the skew-symmetric part of A.
The row-by-column product of a matrix A of dimensions (m × p) by a

matrix B of dimensions (p× n) is the matrix of dimensions (m× n)

C = AB (A.8)

whose elements are given by cij =
∑p

k=1 aikbkj . The following properties hold:

A = AIp = ImA

A(BC) = (AB)C

A(B + C) = AB + AC

(A + B)C = AC + BC

(AB)T = BT AT .

Notice that, in general, AB 6= BA, and AB = O does not imply that A = O

or B = O; further, notice that AC = BC does not imply that A = B.
If an (m× p) matrix A and a (p× n) matrix B are partitioned in such a

way that the number of blocks for each row of A is equal to the number of
blocks for each column of B, and the blocks Aik and Bkj have dimensions
compatible with product, the matrix product AB can be formally obtained by
operating by rows and columns on the blocks of proper position and treating
them like elements.

For an (n× n) square matrix A, the determinant of A is the scalar given
by the following expression, which holds ∀i = 1, . . . , n:

det(A) =

n∑

j=1

aij(−1)i+jdet
(
A(ij)

)
. (A.9)

The determinant can be computed according to any row i as in (A.9); the
same result is obtained by computing it according to any column j. If n = 1,
then det(a11) = a11. The following property holds:

det(A) = det(AT ).

Moreover, interchanging two generic columns p and q of a matrix A yields

det
(
[a1 . . . ap . . . aq . . . an ]

)
= −det

(
[a1 . . . aq . . . ap . . . an ]

)
.

As a consequence, if a matrix has two equal columns (rows), then its deter-
minant is null. Also, it is det(αA) = αndet(A).

Given an (m×n) matrix A, the determinant of the square block obtained
by selecting an equal number k of rows and columns is said to be k-order minor
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of matrix A. The minors obtained by taking the first k rows and columns of
A are said to be principal minors.

If A and B are square matrices, then

det(AB) = det(A)det(B). (A.10)

If A is an (n× n) triangular matrix (in particular diagonal), then

det(A) =

n∏

i=1

aii.

More generally, if A is block-triangular with m blocks Aii on the diagonal,
then

det(A) =

m∏

i=1

det(Aii).

A square matrix A is said to be singular when det(A) = 0.
The rank ̺(A) of a matrix A of dimensions (m × n) is the maximum

integer r so that at least a non-null minor of order r exists. The following
properties hold:

̺(A) ≤ min{m,n}
̺(A) = ̺(AT )

̺(AT A) = ̺(A)

̺(AB) ≤ min{̺(A), ̺(B)}.

A matrix so that ̺(A) = min{m,n} is said to be full-rank .
The adjoint of a square matrix A is the matrix

AdjA = [(−1)i+jdet(A(ij))]
T

i = 1, . . . , n
j = 1, . . . , n

. (A.11)

An (n × n) square matrix A is said to be invertible if a matrix A−1 exists,
termed inverse of A, so that

A−1A = AA−1 = In.

Since ̺(In) = n, an (n × n) square matrix A is invertible if and only if
̺(A) = n, i.e., det(A) 6= 0 (nonsingular matrix). The inverse of A can be
computed as

A−1 =
1

det(A)
AdjA. (A.12)

The following properties hold:

(A−1)−1 = A

(AT )−1 = (A−1)T .
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If the inverse of a square matrix is equal to its transpose

AT = A−1 (A.13)

then the matrix is said to be orthogonal ; in this case it is

AAT = AT A = I. (A.14)

A square matrix A is said idempotent if

AA = A. (A.15)

If A and B are invertible square matrices of the same dimensions, then

(AB)−1 = B−1A−1. (A.16)

Given n square matrices Aii all invertible, the following expression holds:

(
diag{A11, . . . ,Ann}

)−1
= diag{A−1

11 , . . . ,A−1
nn}.

where diag{A11, . . . ,Ann} denotes the block-diagonal matrix.
If A and C are invertible square matrices of proper dimensions, the fol-

lowing expression holds:

(A + BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1,

where the matrix DA−1B + C−1 must be invertible.
If a block-partitioned matrix is invertible, then its inverse is given by the

general expression

[
A D

C B

]−1

=

[
A−1 + E∆−1F −E∆−1

−∆−1F ∆−1

]
(A.17)

where ∆ = B−CA−1D, E = A−1D and F = CA−1, under the assumption
that the inverses of matrices A and ∆ exist. In the case of a block-triangular
matrix, invertibility of the matrix requires invertibility of the blocks on the
diagonal. The following expressions hold:

[
A O

C B

]−1

=

[
A−1 O

−B−1CA−1 B−1

]

[
A D

O B

]−1

=

[
A−1 −A−1DB−1

O B−1

]
.

The derivative of an (m × n) matrix A(t), whose elements aij(t) are dif-
ferentiable functions, is the matrix

Ȧ(t) =
d

dt
A(t) =

[
d

dt
aij(t)

]

i = 1, . . . , m
j = 1, . . . , n

. (A.18)
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If an (n × n) square matrix A(t) is so that ̺(A(t)) = n ∀t and its elements
aij(t) are differentiable functions, then the derivative of the inverse of A(t)
is given by

d

dt
A−1(t) = −A−1(t)Ȧ(t)A−1(t). (A.19)

Given a scalar function f(x), endowed with partial derivatives with respect
to the elements xi of the (n × 1) vector x, the gradient of function f with
respect to vector x is the (n× 1) column vector

∇xf(x) =

(
∂f(x)

∂x

)T

=

[
∂f(x)

∂x1

∂f(x)

∂x2
. . .

∂f(x)

∂xn

]T

. (A.20)

Further, if x(t) is a differentiable function with respect to t, then

ḟ(x) =
d

dt
f(x(t)) =

∂f

∂x
ẋ = ∇T

xf(x)ẋ. (A.21)

Given a vector function g(x) of dimensions (m × 1), whose elements gi are
differentiable with respect to the vector x of dimensions (n×1), the Jacobian
matrix (or simply Jacobian) of the function is defined as the (m× n) matrix

Jg(x) =
∂g(x)

∂x
=




∂g1(x)

∂x
∂g2(x)

∂x
...

∂gm(x)

∂x




. (A.22)

If x(t) is a differentiable function with respect to t, then

ġ(x) =
d

dt
g(x(t)) =

∂g

∂x
ẋ = Jg(x)ẋ. (A.23)

A.3 Vector Operations

Given n vectors xi of dimensions (m × 1), they are said to be linearly inde-
pendent if the expression

k1x1 + k2x2 + . . . + knxn = 0

holds true only when all the constants ki vanish. A necessary and sufficient
condition for the vectors x1,x2 . . . ,xn to be linearly independent is that the
matrix

A = [x1 x2 . . . xn ]
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has rank n; this implies that a necessary condition for linear independence
is that n ≤ m. If instead ̺(A) = r < n, then only r vectors are linearly
independent and the remaining n − r vectors can be expressed as a linear
combination of the previous ones.

A system of vectors X is a vector space on the field of real numbers IR if
the operations of sum of two vectors of X and product of a scalar by a vector
of X have values in X and the following properties hold:

x + y = y + x ∀x,y ∈ X
(x + y) + z = x + (y + z) ∀x,y,z ∈ X
∃0 ∈ X : x + 0 = x ∀x ∈ X
∀x ∈ X , ∃(−x) ∈ X : x + (−x) = 0

1x = x ∀x ∈ X
α(βx) = (αβ)x ∀α, β ∈ IR ∀x ∈ X
(α + β)x = αx + βx ∀α, β ∈ IR ∀x ∈ X
α(x + y) = αx + αy ∀α ∈ IR ∀x,y ∈ X .

The dimension of the space dim(X ) is the maximum number of linearly inde-
pendent vectors x in the space. A set {x1,x2, . . . ,xn} of linearly independent
vectors is a basis of vector space X , and each vector y in the space can be
uniquely expressed as a linear combination of vectors from the basis

y = c1x1 + c2x2 + . . . + cnxn, (A.24)

where the constants c1, c2, . . . , cn are said to be the components of the vector
y in the basis {x1,x2, . . . ,xn}.

A subset Y of a vector space X is a subspace Y ⊆ X if it is a vector space
with the operations of vector sum and product of a scalar by a vector, i.e.,

αx + βy ∈ Y ∀α, β ∈ IR ∀x,y ∈ Y.

According to a geometric interpretation, a subspace is a hyperplane passing
by the origin (null element) of X .

The scalar product < x,y > of two vectors x and y of dimensions (m ×
1) is the scalar that is obtained by summing the products of the respective
components in a given basis

< x,y >= x1y1 + x2y2 + . . . + xmym = xT y = yT x. (A.25)

Two vectors are said to be orthogonal when their scalar product is null:

xT y = 0. (A.26)

The norm of a vector can be defined as

‖x‖ =
√

xT x. (A.27)
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It is possible to show that both the triangle inequality

‖x + y‖ ≤ ‖x‖+ ‖y‖ (A.28)

and the Schwarz inequality

|xT y| ≤ ‖x‖ ‖y‖. (A.29)

hold. A unit vector x̂ is a vector whose norm is unity, i.e., x̂T x̂ = 1. Given a
vector x, its unit vector is obtained by dividing each component by its norm:

x̂ =
1

‖x‖x. (A.30)

A typical example of vector space is the Euclidean space whose dimension is
3; in this case a basis is constituted by the unit vectors of a coordinate frame.

The vector product of two vectors x and y in the Euclidean space is the
vector

x× y =




x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1



 . (A.31)

The following properties hold:

x× x = 0

x× y = −y × x

x× (y + z) = x× y + x× z.

The vector product of two vectors x and y can be expressed also as the
product of a matrix operator S(x) by the vector y. In fact, by introducing
the skew-symmetric matrix

S(x) =




0 −x3 x2

x3 0 −x1

−x2 x1 0



 (A.32)

obtained with the components of vector x, the vector product x× y is given
by

x× y = S(x)y = −S(y)x (A.33)

as can be easily verified. Moreover, the following properties hold:

S(x)x = ST (x)x = 0

S(αx + βy) = αS(x) + βS(y).

Given three vectors x, y, z in the Euclidean space, the following expres-
sions hold for the scalar triple products:

xT (y × z) = yT (z × x) = zT (x× y). (A.34)

If any two vectors of three are equal, then the scalar triple product is null;
e.g.,

xT (x× y) = 0.
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A.4 Linear Transformation

Consider a vector space X of dimension n and a vector space Y of dimension
m with m ≤ n. The linear transformation (or linear map) between the vectors
x ∈ X and y ∈ Y can be defined as

y = Ax (A.35)

in terms of the matrix A of dimensions (m× n). The range space (or simply
range) of the transformation is the subspace

R(A) = {y : y = Ax, x ∈ X} ⊆ Y, (A.36)

which is the subspace generated by the linearly independent columns of matrix
A taken as a basis of Y. It is easy to recognize that

̺(A) = dim(R(A)). (A.37)

On the other hand, the null space (or simply null) of the transformation is
the subspace

N (A) = {x : Ax = 0, x ∈ X} ⊆ X . (A.38)

Given a matrix A of dimensions (m× n), the notable result holds:

̺(A) + dim(N (A)) = n. (A.39)

Therefore, if ̺(A) = r ≤ min{m,n}, then dim(R(A)) = r and dim(N (A)) =
n− r. It follows that if m < n, then N (A) 6= ∅ independently of the rank of
A; if m = n, then N (A) 6= ∅ only in the case of ̺(A) = r < m.

If x ∈ N (A) and y ∈ R(AT ), then yT x = 0, i.e., the vectors in the null
space of A are orthogonal to each vector in the range space of the transpose
of A. It can be shown that the set of vectors orthogonal to each vector of
the range space of AT coincides with the null space of A, whereas the set of
vectors orthogonal to each vector in the null space of AT coincides with the
range space of A. In symbols:

N (A) ≡ R⊥(AT ) R(A) ≡ N⊥(AT ) (A.40)

where ⊥ denotes the orthogonal complement of a subspace.
If the matrix A in (A.35) is square and idempotent, the matrix represents

the projection of space X into a subspace.
A linear transformation allows the definition of the norm of a matrix A

induced by the norm defined for a vector x as follows. In view of the property

‖Ax‖ ≤ ‖A‖ ‖x‖, (A.41)

the norm of A can be defined as

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ (A.42)
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which can also be computed as

max
‖x‖=1

‖Ax‖.

A direct consequence of (A.41) is the property

‖AB‖ ≤ ‖A‖ ‖B‖. (A.43)

A different norm of a matrix is the Frobenius norm defined as

‖A‖F =
(
Tr(AT A)

)1/2

(A.44)

A.5 Eigenvalues and Eigenvectors

Consider the linear transformation on a vector u established by an (n × n)
square matrix A. If the vector resulting from the transformation has the same
direction of u (with u 6= 0), then

Au = λu. (A.45)

The equation in (A.45) can be rewritten in matrix form as

(λI −A)u = 0. (A.46)

For the homogeneous system of equations in (A.46) to have a solution different
from the trivial one u = 0, it must be

det(λI −A) = 0 (A.47)

which is termed a characteristic equation. Its solutions λ1, . . . , λn are the
eigenvalues of matrix A; they coincide with the eigenvalues of matrix AT . On
the assumption of distinct eigenvalues, the n vectors ui satisfying the equation

(λiI −A)ui = 0 i = 1, . . . , n (A.48)

are said to be the eigenvectors associated with the eigenvalues λi.
The matrix U formed by the column vectors ui is invertible and constitutes

a basis in the space of dimension n. Further, the similarity transformation
established by U

Λ = U−1AU (A.49)

is so that Λ = diag{λ1, . . . , λn}. It follows that det(A) =
∏n

i=1 λi.
If the matrix A is symmetric, its eigenvalues are real and Λ can be written

as
Λ = UT AU ; (A.50)

hence, the eigenvector matrix U is orthogonal.
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A.6 Bilinear Forms and Quadratic Forms

A bilinear form in the variables xi and yj is the scalar

B =

m∑

i=1

n∑

j=1

aijxiyj

which can be written in matrix form

B(x,y) = xT Ay = yT AT x (A.51)

where x = [x1 x2 . . . xm ]T , y = [ y1 y2 . . . yn ]T , and A is the (m×
n) matrix of the coefficients aij representing the core of the form.

A special case of bilinear form is the quadratic form

Q(x) = xT Ax (A.52)

where A is an (n × n) square matrix. Hence, for computation of (A.52), the
matrix A can be replaced with its symmetric part As given by (A.6). It follows
that if A is a skew-symmetric matrix, then

xT Ax = 0 ∀x.

The quadratic form (A.52) is said to be positive definite if

xT Ax > 0 ∀x 6= 0 xT Ax = 0 x = 0. (A.53)

The matrix A core of the form is also said to be positive definite. Analogously,
a quadratic form is said to be negative definite if it can be written as −Q(x) =
−xT Ax where Q(x) is positive definite.

A necessary condition for a square matrix to be positive definite is that
its elements on the diagonal are strictly positive. Further, in view of (A.50),
the eigenvalues of a positive definite matrix are all positive. If the eigenvalues
are not known, a necessary and sufficient condition for a symmetric matrix to
be positive definite is that its principal minors are strictly positive (Sylvester
criterion). It follows that a positive definite matrix is full-rank and thus it is
always invertible.

A symmetric positive definite matrix A can always be decomposed as

A = UT ΛU (A.54)

where U is an orthogonal matrix of eigenvectors (UT U = I) and Λ is the
diagonal matrix of the eigenvalues of A.

Let λmin(A) and λmax(A) respectively denote the smallest and largest
eigenvalues of a positive definite matrix A (λmin, λmax > 0). Then, the
quadratic form in (A.52) satisfies the following inequality:

λmin(A)‖x‖2 ≤ xT Ax ≤ λmax(A)‖x‖2. (A.55)
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An (n× n) square matrix A is said to be positive semi-definite if

xT Ax ≥ 0 ∀x. (A.56)

This definition implies that ̺(A) = r < n, and thus r eigenvalues of A

are positive and n − r are null. Therefore, a positive semi-definite matrix A

has a null space of finite dimension, and specifically the form vanishes when
x ∈ N (A). A typical example of a positive semi-definite matrix is the matrix
A = HT H where H is an (m× n) matrix with m < n. In an analogous way,
a negative semi-definite matrix can be defined.

Given the bilinear form in (A.51), the gradient of the form with respect
to x is given by

∇xB(x,y) =

(
∂B(x,y)

∂x

)T

= Ay, (A.57)

whereas the gradient of B with respect to y is given by

∇yB(x,y) =

(
∂B(x,y)

∂y

)T

= AT x. (A.58)

Given the quadratic form in (A.52) with A symmetric, the gradient of the
form with respect to x is given by

∇xQ(x) =

(
∂Q(x)

∂x

)T

= 2Ax. (A.59)

Further, if x and A are differentiable functions of t, then

Q̇(x) =
d

dt
Q(x(t)) = 2xT Aẋ + xT Ȧx; (A.60)

if A is constant, then the second term obviously vanishes.

A.7 Pseudo-inverse

The inverse of a matrix can be defined only when the matrix is square and
nonsingular. The inverse operation can be extended to the case of non-square
matrices. Consider a matrix A of dimensions (m×n) with ̺(A) = min{m,n}

If m < n, a right inverse of A can be defined as the matrix Ar of dimen-
sions (n×m) so that

AAr = Im.

If instead m > n, a left inverse of A can be defined as the matrix Al of
dimensions (n×m) so that

AlA = In.
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If A has more columns than rows (m < n) and has rank m, a special right
inverse is the matrix

A†
r = AT (AAT )−1 (A.61)

which is termed right pseudo-inverse, since AA†
r = Im. If W r is an (n × n)

positive definite matrix, a weighted right pseudo-inverse is given by

A†
r = W−1

r AT (AW−1
r AT )−1. (A.62)

If A has more rows than columns (m > n) and has rank n, a special left
inverse is the matrix

A
†
l = (AT A)−1AT (A.63)

which is termed left pseudo-inverse, since A
†
l A = In.3 If W l is an (m ×m)

positive definite matrix, a weighted left pseudo-inverse is given by

A
†
l = (AT W lA)−1AT W l. (A.64)

The pseudo-inverse is very useful to invert a linear transformation y = Ax

with A a full-rank matrix. If A is a square nonsingular matrix, then obviously
x = A−1y and then A

†
l = A†

r = A−1.
If A has more columns than rows (m < n) and has rank m, then the

solution x for a given y is not unique; it can be shown that the expression

x = A†y + (I −A†A)k, (A.65)

with k an arbitrary (n × 1) vector and A† as in (A.61), is a solution to the
system of linear equations established by (A.35). The term A†y ∈ N⊥(A) ≡
R(AT ) minimizes the norm of the solution ‖x‖. The term (I −A†A)k is the
projection of k in N (A) and is termed homogeneous solution; as k varies,
all the solutions to the homogeneous equation system Ax = 0 associated
with (A.35) are generated.

On the other hand, if A has more rows than columns (m > n), the equation
in (A.35) has no solution; it can be shown that an approximate solution is given
by

x = A†y (A.66)

where A† as in (A.63) minimizes ‖y−Ax‖. If instead y ∈ R(A), then (A.66)
is a real solution.

Notice that the use of the weighted (left or right) pseudo-inverses in the
solution to the linear equation systems leads to analogous results where the
minimized norms are weighted according to the metrics defined by matrices
W r and W l, respectively.

The results of this section can be easily extended to the case of (square
or nonsquare) matrices A not having full-rank. In particular, the expres-
sion (A.66) (with the pseudo-inverse computed by means of the singular value
decomposition of A) gives the minimum-norm vector among all those mini-
mizing ‖y −Ax‖.
3 Subscripts l and r are usually omitted whenever the use of a left or right pseudo-

inverse is clear from the context.
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A.8 Singular Value Decomposition

For a nonsquare matrix it is not possible to define eigenvalues. An extension
of the eigenvalue concept can be obtained by singular values. Given a matrix
A of dimensions (m × n), the matrix AT A has n nonnegative eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 (ordered from the largest to the smallest) which can
be expressed in the form

λi = σ2
i σi ≥ 0.

The scalars σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 are said to be the singular values of
matrix A. The singular value decomposition (SVD) of matrix A is given by

A = UΣV T (A.67)

where U is an (m×m) orthogonal matrix

U = [u1 u2 . . . um ] , (A.68)

V is an (n× n) orthogonal matrix

V = [v1 v2 . . . vn ] (A.69)

and Σ is an (m× n) matrix

Σ =

[
D O

O O

]
D = diag{σ1, σ2, . . . , σr} (A.70)

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0. The number of non-null singular values is
equal to the rank r of matrix A.

The columns of U are the eigenvectors of the matrix AAT , whereas the
columns of V are the eigenvectors of the matrix AT A. In view of the partitions
of U and V in (A.68), (A.69), it is Avi = σiui, for i = 1, . . . , r and Avi = 0,
for i = r + 1, . . . , n.

Singular value decomposition is useful for analysis of the linear transforma-
tion y = Ax established in (A.35). According to a geometric interpretation,
the matrix A transforms the unit sphere in IRn defined by ‖x‖ = 1 into the set
of vectors y = Ax which define an ellipsoid of dimension r in IRm. The sin-
gular values are the lengths of the various axes of the ellipsoid. The condition
number of the matrix

κ =
σ1

σr

is related to the eccentricity of the ellipsoid and provides a measure of
ill-conditioning (κ ≫ 1) for numerical solution of the system established
by (A.35).

It is worth noticing that the numerical procedure of singular value de-
composition is commonly adopted to compute the (right or left) pseudo-
inverse A†, even in the case of a matrix A not having full rank. In fact,
from (A.67), (A.70) it is

A† = V Σ†UT (A.71)
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with

Σ† =

[
D† O

O O

]
D† = diag

{
1

σ1
,

1

σ2
, . . . ,

1

σr

}
. (A.72)
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B

Rigid-body Mechanics

The goal of this appendix is to recall some fundamental concepts of rigid body
mechanics which are preliminary to the study of manipulator kinematics,
statics and dynamics.

B.1 Kinematics

A rigid body is a system characterized by the constraint that the distance
between any two points is always constant.

Consider a rigid body B moving with respect to an orthonormal reference
frame O–xyz of unit vectors x, y, z, called fixed frame. The rigidity assump-
tion allows the introduction of an orthonormal frame O′–x′y′z′ attached to
the body, called moving frame, with respect to which the position of any point
of B is independent of time. Let x′(t), y′(t), z′(t) be the unit vectors of the
moving frame expressed in the fixed frame at time t.

The orientation of the moving frame O′–x′y′z′ at time t with respect to
the fixed frame O–xyz can be expressed by means of the orthogonal (3 × 3)
matrix

R(t) =




x′T (t)x y′T (t)x z′T (t)x
x′T (t)y y′T (t)y z′T (t)y
x′T (t)z y′T (t)z z′T (t)z



 , (B.1)

which is termed rotation matrix defined in the orthonormal special group
SO(3) of the (3 × 3) matrices with orthonormal columns and determinant
equal to 1. The columns of the matrix in (B.1) represent the components
of the unit vectors of the moving frame when expressed in the fixed frame,
whereas the rows represent the components of the unit vectors of the fixed
frame when expressed in the moving frame.

Let p′ be the constant position vector of a generic point P of B in the
moving frame O′–x′y′z′. The motion of P with respect to the fixed frame
O–xyz is described by the equation

p(t) = pO′(t) + R(t)p′, (B.2)
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where pO′(t) is the position vector of origin O′ of the moving frame with
respect to the fixed frame.

Notice that a position vector is a bound vector since its line of application
and point of application are both prescribed, in addition to its direction; the
point of application typically coincides with the origin of a reference frame.
Therefore, to transform a bound vector from a frame to another, both trans-
lation and rotation between the two frames must be taken into account.

If the positions of the points of B in the moving frame are known, it follows
from (B.2) that the motion of each point of B with respect to the fixed frame
is uniquely determined once the position of the origin and the orientation
of the moving frame with respect to the fixed frame are specified in time.
The origin of the moving frame is determined by three scalar functions of
time. Since the orthonormality conditions impose six constraints on the nine
elements of matrix R(t), the orientation of the moving frame depends only
on three independent scalar functions, three being the minimum number of
parameters to represent SO(3).1

Therefore, a rigid body motion is described by arbitrarily specifying six
scalar functions of time, which describe the body pose (position + orientation).
The resulting rigid motions belong to the special Euclidean group SE(3) =
IR3 × SO(3).

The expression in (B.2) continues to hold if the position vector pO′(t) of
the origin of the moving frame is replaced with the position vector of any
other point of B, i.e.,

p(t) = pQ(t) + R(t)(p′ − p′Q) (B.3)

where pQ(t) and p′Q are the position vectors of a point Q of B in the fixed
and moving frames, respectively.

In the following, for simplicity of notation, the dependence on the time
variable t will be dropped.

Differentiating (B.3) with respect to time gives the known velocity com-
position rule

ṗ = ṗQ + ω × (p− pQ), (B.4)

where ω is the angular velocity of rigid body B. Notice that ω is a free vector
since its point of application is not prescribed. To transform a free vector from
a frame to another, only rotation between the two frames must be taken into
account.

By recalling the definition of the skew-symmetric operator S(·) in (A.32),
the expression in (B.4) can be rewritten as

ṗ = ṗQ + S(ω)(p− pQ)

= ṗQ + S(ω)R(p′ − p′Q).

1 The minimum number of parameters represent a special orthonormal
group SO(m) is equal to m(m− 1)/2.
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Comparing this equation with the formal time derivative of (B.3) leads to the
result

Ṙ = S(ω)R. (B.5)

In view of (B.4), the elementary displacement of a point P of the rigid body
B in the time interval (t, t + dt) is

dp = ṗdt =
(
ṗQ + ω × (p− pQ)

)
dt (B.6)

= dpQ + ωdt× (p− pQ).

Differentiating (B.4) with respect to time yields the following expression
for acceleration:

p̈ = p̈Q + ω̇ × (p− pQ) + ω ×
(
ω × (p− pQ)

)
. (B.7)

B.2 Dynamics

Let ρdV be the mass of an elementary particle of a rigid body B, where ρ
denotes the density of the particle of volume dV . Also let VB be the body
volume and m =

∫
VB

ρdV its total mass assumed to be constant. If p denotes
the position vector of the particle of mass ρdV in the frame O–xyz, the centre
of mass of B is defined as the point C whose position vector is

pC =
1

m

∫

VB

pρdV . (B.8)

In the case when B is the union of n distinct parts of mass m1, . . . , mn and
centres of mass pC1 . . . pCn, the centre of mass of B can be computed as

pC =
1

m

n∑

i=1

mipCi

with m =
∑n

i=1 mi.
Let r be a line passing by O and d(p) the distance from r of the particle

of B of mass ρdV and position vector p. The moment of inertia of body B
with respect to line r is defined as the positive scalar

Ir =

∫

VB

d2(p)ρdV .

Let r denote the unit vector of line r; then, the moment of inertia of B with
respect to line r can be expressed as

Ir = rT

(∫

VB

ST (p)S(p)ρdV

)
r = rT IOr, (B.9)
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where S(·) is the skew-symmetric operator in (A.31), and the symmetric,
positive definite matrix

IO =




∫
VB

(p2
y + p2

z)ρdV −
∫

VB
pxpyρdV −

∫
VB

pxpzρdV

∗
∫

VB
(p2

x + p2
z)ρdV −

∫
VB

pypzρdV

∗ ∗
∫

VB
(p2

x + p2
y)ρdV




=




IOxx −IOxy −IOxz

∗ IOyy −IOyz

∗ ∗ IOzz


 (B.10)

is termed inertia tensor of body B relative to pole O.2 The (positive) elements
IOxx, IOyy, IOzz are the inertia moments with respect to three coordinate axes
of the reference frame, whereas the elements IOxy, IOxz, IOyz (of any sign)
are said to be products of inertia.

The expression of the inertia tensor of a rigid body B depends both on the
pole and the reference frame. If orientation of the reference frame with origin
at O is changed according to a rotation matrix R, the inertia tensor I ′O in
the new frame is related to IO by the relationship

IO = RI ′ORT . (B.11)

The way an inertia tensor is transformed when the pole is changed can be
inferred by the following equation, also known as Steiner theorem or parallel
axis theorem:

IO = IC + mST (pC)S(pC), (B.12)

where IC is the inertia tensor relative to the centre of mass of B, when ex-
pressed in a frame parallel to the frame with origin at O and with origin at
the centre of mass C.

Since the inertia tensor is a symmetric positive definite matrix, there al-
ways exists a reference frame in which the inertia tensor attains a diagonal
form; such a frame is said to be a principal frame (relative to pole O) and
its coordinate axes are said to be principal axes. In the case when pole O
coincides with the centre of mass, the frame is said to be a central frame and
its axes are said to be central axes.

Notice that if the rigid body is moving with respect to the reference frame
with origin at O, then the elements of the inertia tensor IO become a func-
tion of time. With respect to a pole and a reference frame attached to the
body (moving frame), instead, the elements of the inertia tensor represent six
structural constants of the body which are known once the pole and reference
frame have been specified.

2 The symbol ‘∗’ has been used to avoid rewriting the symmetric elements.
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Let ṗ be the velocity of a particle of B of elementary mass ρdV in frame
O–xyz. The linear momentum of body B is defined as the vector

l =

∫

VB

ṗρdV = mṗC . (B.13)

Let Ω be any point in space and pΩ its position vector in frame O–xyz;
then, the angular momentum of body B relative to pole Ω is defined as the
vector

kΩ =

∫

VB

ṗ× (pΩ − p)ρdV .

The pole can be either fixed or moving with respect to the reference frame.
The angular momentum of a rigid body has the following notable expression:

kΩ = ICω + mṗC × (pΩ − pC), (B.14)

where IC is the inertia tensor relative to the centre of mass, when expressed
in a frame parallel to the reference frame with origin at the centre of mass.

The forces acting on a generic system of material particles can be distin-
guished into internal forces and external forces.

The internal forces, exerted by one part of the system on another, have
null linear and angular momentum and thus they do not influence rigid body
motion.

The external forces, exerted on the system by an agency outside the sys-
tem, in the case of a rigid body B are distinguished into active forces and
reaction forces.

The active forces can be either concentrated forces or body forces. The
former are applied to specific points of B, whereas the latter act on all ele-
mentary particles of the body. An example of body force is the gravitational
force which, for any elementary particle of mass ρdV , is equal to g0ρdV where
g0 is the gravity acceleration vector.

The reaction forces are those exerted because of surface contact between
two or more bodies. Such forces can be distributed on the contact surfaces or
they can be assumed to be concentrated.

For a rigid body B subject to gravitational force, as well as to active and
or reaction forces f1 . . . fn concentrated at points p1 . . . pn, the resultant of
the external forces f and the resultant moment µΩ with respect to a pole Ω
are respectively

f =

∫

VB

g0ρdV +

n∑

i=1

f i = mg0 +

n∑

i=1

f i (B.15)

µΩ =

∫

VB

g0 × (pΩ − p)ρdV +

n∑

i=1

f i × (pΩ − pi)

= mg0 × (pΩ − pC) +
n∑

i=1

f i × (pΩ − pi). (B.16)
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In the case when f and µΩ are known and it is desired to compute the
resultant moment with respect to a point Ω′ other than Ω, the following
relation holds:

µΩ′ = µΩ + f × (pΩ′ − pΩ). (B.17)

Consider now a generic system of material particles subject to external
forces of resultant f and resultant moment µΩ . The motion of the system
in a frame O–xyz is established by the following fundamental principles of
dynamics (Newton laws of motion):

f = l̇ (B.18)

µΩ = k̇Ω (B.19)

where Ω is a pole fixed or coincident with the centre of mass C of the system.
These equations hold for any mechanical system and can be used even in the
case of variable mass. For a system with constant mass, computing the time
derivative of the momentum in (B.18) gives Newton equations of motion in
the form

f = mp̈C , (B.20)

where the quantity on the right-hand side represents the resultant of inertia
forces.

If, besides the assumption of constant mass, the assumption of rigid system
holds too, the expression in (B.14) of the angular momentum with (B.19) yield
Euler equations of motion in the form

µΩ = IΩω̇ + ω × (IΩω), (B.21)

where the quantity on the right-hand side represents the resultant moment of
inertia forces.

For a system constituted by a set of rigid bodies, the external forces obvi-
ously do not include the reaction forces exerted between the bodies belonging
to the same system.

B.3 Work and Energy

Given a force f i applied at a point of position pi with respect to frame O–xyz,
the elementary work of the force f i on the displacement dpi = ṗidt is defined
as the scalar

dWi = fT
i dpi.

For a rigid body B subject to a system of forces of resultant f and resultant
moment µQ with respect to any point Q of B, the elementary work on the
rigid displacement (B.6) is given by

dW = (fT ṗQ + µT
Qω)dt = fT dpQ + µT

Qωdt. (B.22)
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The kinetic energy of a body B is defined as the scalar quantity

T =
1

2

∫

VB

ṗT ṗρdV

which, for a rigid body, takes on the notable expression

T =
1

2
mṗT

C ṗC +
1

2
ωT ICω (B.23)

where IC is the inertia tensor relative to the centre of mass expressed in a
frame parallel to the reference frame with origin at the centre of mass.

A system of position forces, i.e., the forces depending only on the positions
of the points of application, is said to be conservative if the work done by each
force is independent of the trajectory described by the point of application of
the force but it depends only on the initial and final positions of the point of
application. In this case, the elementary work of the system of forces is equal
to minus the total differential of a scalar function termed potential energy ,
i.e.,

dW = −dU . (B.24)

An example of a conservative system of forces on a rigid body is the gravita-
tional force, with which is associated the potential energy

U = −
∫

VB

gT
0 pρdV = −mgT

0 pC . (B.25)

B.4 Constrained Systems

Consider a system Br of r rigid bodies and assume that all the elements of Br

can reach any position in space. In order to find uniquely the position of all the
points of the system, it is necessary to assign a vector x = [x1 . . . xp ]T

of 6r = p parameters, termed configuration. These parameters are termed
Lagrange or generalized coordinates of the unconstrained system Br, and p
determines the number of degrees of freedom (DOFs).

Any limitation on the mobility of the system Br is termed constraint . A
constraint acting on Br is said to be holonomic if it is expressed by a system
of equations

h(x, t) = 0, (B.26)

where h is a vector of dimensions (s × 1), with s < m. On the other hand,
a constraint in the form h(x, ẋ, t) = 0 which is nonintegrable is said to
be nonholonomic. For simplicity, only equality (or bilateral) constraints are
considered. If the equations in (B.26) do not explicitly depend on time, the
constraint is said to be scleronomic.

On the assumption that h has continuous and continuously differentiable
components, and its Jacobian ∂h/∂x has full rank, the equations in (B.26)
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allow the elimination of s out of m coordinates of the system Br. With the
remaining n = m − s coordinates it is possible to determine uniquely the
configurations of Br satisfying the constraints (B.26). Such coordinates are
the Lagrange or generalized coordinates and n is the number of degrees of
freedom of the unconstrained system Br.

3

The motion of a system Br with n DOFs and holonomic equality con-
straints can be described by equations of the form

x = x(q(t), t), (B.27)

where q(t) = [ q1(t) . . . qn(t) ]T is a vector of Lagrange coordinates.
The elementary displacement of system (B.27) relative to the interval (t, t+

dt) is defined as

dx =
∂x(q, t)

∂q
q̇dt +

∂x(q, t)

∂t
dt. (B.28)

The virtual displacement of system (B.27) at time t, relative to an increment
δλ, is defined as the quantity

δx =
∂x(q, t)

∂q
δq. (B.29)

The difference between the elementary displacement and the virtual displace-
ment is that the former is relative to an actual motion of the system in an
interval (t, t + dt) which is consistent with the constraints, while the latter is
relative to an imaginary motion of the system when the constraints are made
invariant and equal to those at time t.

For a system with time-invariant constraints, the equations of motion
(B.27) become

x = x(q(t)), (B.30)

and then, by setting δλ = dλ = λ̇dt, the virtual displacements (B.29) coincide
with the elementary displacements (B.28).

To the concept of virtual displacement can be associated that of virtual
work of a system of forces, by considering a virtual displacement instead of
an elementary displacement.

If external forces are distinguished into active forces and reaction forces, a
direct consequence of the principles of dynamics (B.18), (B.19) applied to the
system of rigid bodies Br is that, for each virtual displacement, the following
relation holds:

δWm + δWa + δWh = 0, (B.31)

where δWm, δWa, δWh are the total virtual works done by the inertia, active,
reaction forces, respectively.

3 In general, the Lagrange coordinates of a constrained system have a local validity;
in certain cases, such as the joint variables of a manipulator, they can have a global
validity.
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In the case of frictionless equality constraints, reaction forces are exerted
orthogonally to the contact surfaces and the virtual work is always null. Hence,
(B.31) reduces to

δWm + δWa = 0. (B.32)

For a steady system, inertia forces are identically null. Then the condition
for the equilibrium of system Br is that the virtual work of the active forces
is identically null on any virtual displacement, which gives the fundamental
equation of statics of a constrained system

δWa = 0 (B.33)

known as principle of virtual work . Expressing (B.33) in terms of the incre-
ment δλ of generalized coordinates leads to

δWa = ζT δq = 0 (B.34)

where ζ denotes the (n× 1) vector of active generalized forces.
In the dynamic case, it is worth distinguishing active forces into conserva-

tive (that can be derived from a potential) and nonconservative. The virtual
work of conservative forces is given by

δWc = −∂U
∂q

δq, (B.35)

where U(λ) is the total potential energy of the system. The work of noncon-
servative forces can be expressed in the form

δWnc = ξT δq, (B.36)

where ξ denotes the vector of nonconservative generalized forces. It follows
that the vector of active generalized forces is

ζ = ξ −
(

∂U
∂q

)T

. (B.37)

Moreover, the work of inertia forces can be computed from the total kinetic
energy of system T as

δWm =

(
∂T
∂q

− d

dt

∂T
∂q̇

)
δq. (B.38)

Substituting (B.35), (B.36), (B.38) into (B.32) and observing that (B.32) holds
true for any increment δλ leads to Lagrange equations

d

dt

(
∂L
∂q̇

)T

−
(

∂L
∂q

)T

= ξ, (B.39)

where
L = T − U (B.40)
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is the Lagrangian function of the system. The equations in (B.39) completely
describe the dynamic behaviour of an n-DOF system with holonomic equality
constraints.

The sum of kinetic and potential energy of a system with time-invariant
constraints is termed Hamiltonian function

H = T + U . (B.41)

Conservation of energy dictates that the time derivative of the Hamiltonian
must balance the power generated by the nonconservative forces acting on the
system, i.e.,

dH
dt

= ξT q̇. (B.42)

In view of (B.37), (B.41), the equation in (B.42) becomes

dT
dt

= ζT q̇. (B.43)
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C

Feedback Control

As a premise to the study of manipulator decentralized control and centralized
control, the fundamental principles of feedback control of linear systems are
recalled, and an approach to the determination of control laws for nonlinear
systems based on the use of Lyapunov functions is presented.

C.1 Control of Single-input/Single-output Linear
Systems

According to classical automatic control theory of linear time-invariant single-
input/single-output systems, in order to servo the output y(t) of a system to
a reference r(t), it is worth adopting a negative feedback control structure.
This structure indeed allows the use of approximate mathematical models to
describe the input/output relationship of the system to control, since negative
feedback has a potential for reducing the effects of system parameter variations
and nonmeasurable disturbance inputs d(t) on the output.

This structure can be represented in the domain of complex variable s as in
the block scheme of Fig. C.1, where G(s), H(s) and C(s) are the transfer func-
tions of the system to control, the transducer and the controller, respectively.
From this scheme it is easy to derive

Y (s) = W (s)R(s) + WD(s)D(s), (C.1)

where

W (s) =
C(s)G(s)

1 + C(s)G(s)H(s)
(C.2)

is the closed-loop input/output transfer function and

WD(s) =
G(s)

1 + C(s)G(s)H(s)
(C.3)

is the disturbance/output transfer function.
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Fig. C.1. Feedback control structure

The goal of the controller design is to find a control structure C(s) ensuring
that the output variable Y (s) tracks a reference input R(s). Further, the
controller should guarantee that the effects of the disturbance input D(s) on
the output variable are suitably reduced. The goal is then twofold, namely,
reference tracking and disturbance rejection.

The basic problem for controller design consists of the determination of an
action C(s) which can make the system asymptotically stable. In the absence
of positive or null real part pole/zero and zero/pole cancellation in the open-
loop function F (s) = C(s)G(s)H(s), a necessary and sufficient condition for
asymptotic stability is that the poles of W (s) and WD(s) have all negative
real parts; such poles coincide with the zeros of the rational transfer function
1+F (s). Testing for this condition can be performed by resorting to stability
criteria, thus avoiding computation of the function zeros.

Routh criterion allows the determination of the sign of the real parts of
the zeros of the function 1+F (s) by constructing a table with the coefficients
of the polynomial at the numerator of 1 + F (s) (characteristic polynomial).

Routh criterion is easy to apply for testing stability of a feedback system,
but it does not provide a direct relationship between the open-loop function
and stability of the closed-loop system. It is then worth resorting to Nyquist
criterion which is based on the representation, in the complex plane, of the
open-loop transfer function F (s) evaluated in the domain of real angular fre-
quency (s = jω,−∞ < ω < +∞).

Drawing of Nyquist plot and computation of the number of circles made by
the vector representing the complex number 1 + F (jω) when ω continuously
varies from −∞ to +∞ allows a test on whether or not the closed-loop system
is asymptotically stable. It is also possible to determine the number of positive,
null and negative real part roots of the characteristic polynomial, similarly to
application of Routh criterion. Nonetheless, Nyquist criterion is based on the
plot of the open-loop transfer function, and thus it allows the determination of
a direct relationship between this function and closed-loop system stability. It
is then possible from an examination of the Nyquist plot to draw suggestions
on the controller structure C(s) which ensures closed-loop system asymptotic
stability.
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If the closed-loop system is asymptotically stable, the steady-state response
to a sinusoidal input r(t), with d(t) = 0, is sinusoidal, too. In this case, the
function W (s), evaluated for s = jω, is termed frequency response function;
the frequency response function of a feedback system can be assimilated to
that of a low-pass filter with the possible occurrence of a resonance peak inside
its bandwidth.

As regards the transducer, this should be chosen so that its bandwidth
is much greater than the feedback system bandwidth, in order to ensure
a nearly instantaneous response for any value of ω inside the bandwidth
of W (jω). Therefore, setting H(jω) ≈ H0 and assuming that the loop gain
|C(jω)G(jω)H0| ≫ 1 in the same bandwidth, the expression in (C.1) for
s = jω can be approximated as

Y (jω) ≈ R(jω)

H0
+

D(jω)

C(jω)H0
.

Assuming R(jω) = H0Yd(jω) leads to

Y (jω) ≈ Yd(jω) +
D(jω)

C(jω)H0
; (C.4)

i.e., the output tracks the desired output Yd(jω) and the frequency compo-
nents of the disturbance in the bandwidth of W (jω) produce an effect on the
output which can be reduced by increasing |C(jω)H0|. Furthermore, if the
disturbance input is a constant, the steady-state output is not influenced by
the disturbance as long as C(s) has at least a pole at the origin.

Therefore, a feedback control system is capable of establishing a propor-
tional relationship between the desired output and the actual output, as evi-
denced by (C.4). This equation, however, requires that the frequency content
of the input (desired output) be inside the frequency range for which the loop
gain is much greater than unity.

The previous considerations show the advantage of including a proportional
action and an integral action in the controller C(s), leading to the transfer
function

C(s) = KI
1 + sTI

s
(C.5)

of a proportional-integral controller (PI); TI is the time constant of the integral
action and the quantity KITI is called proportional sensitivity.

The adoption of a PI controller is effective for low-frequency response of
the system, but it may involve a reduction of stability margins and/or a reduc-
tion of closed-loop system bandwidth. To avoid these drawbacks, a derivative
action can be added to the proportional and integral actions, leading to the
transfer function

C(s) = KI
1 + sTI + s2TDTI

s
(C.6)

of a proportional-integral-derivative controller (PID); TD denotes the time
constant of the derivative action. Notice that physical realizability of (C.6)
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demands the introduction of a high-frequency pole which little influences the
input/output relationship in the system bandwidth. The transfer function
in (C.6) is characterized by the presence of two zeros which provide a stabi-
lizing action and an enlargement of the closed-loop system bandwidth. Band-
width enlargement implies shorter response time of the system, in terms of
both variations of the reference signal and recovery action of the feedback
system to output variations induced by the disturbance input.

The parameters of the adopted control structure should be chosen so as
to satisfy requirements on the system behaviour at steady state and during
the transient . Classical tools to determine such parameters are the root locus
in the domain of the complex variable s or the Nichols chart in the domain
of the real angular frequency ω. The two tools are conceptually equivalent.
Their potential is different in that root locus allows a control law to be found
which assigns the exact parameters of the closed-loop system time response,
whereas Nichols chart allows a controller to be specified which confers good
transient and steady-state behaviour to the system response.

A feedback system with strict requirements on the steady-state and tran-
sient behaviour, typically, has a response that can be assimilated to that of a
second-order system. In fact, even for closed-loop functions of greater order,
it is possible to identify a pair of complex conjugate poles whose real part
absolute value is smaller than the real part absolute values of the other poles.
Such a pair of poles is dominant in that its contribution to the transient re-
sponse prevails over that of the other poles. It is then possible to approximate
the input/output relationship with the transfer function

W (s) =
kW

1 +
2ζs

ωn
+

s2

ω2
n

(C.7)

which has to be realized by a proper choice of the controller. Regarding
the values to assign to the parameters characterizing the transfer function
in (C.7), the following remarks are in order. The constant kW represents the
input/output steady-state gain, which is equal to 1/H0 if C(s)G(s)H0 has at
least a pole at the origin. The natural frequency ωn is the modulus of the
complex conjugate poles, whose real part is given by −ζωn where ζ is the
damping ratio of the pair of poles.

The influence of parameters ζ and ωn on the closed-loop frequency re-
sponse can be evaluated in terms of the resonance peak magnitude

Mr =
1

2ζ
√

1− ζ2
,

occurring at the resonant frequency

ωr = ωn

√
1− 2ζ2,
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Fig. C.2. Feedback control structure with feedforward compensation

and of the 3 dB bandwidth

ω3 = ωn

√
1− 2ζ2 +

√
2− 4ζ2 + 4ζ4.

A step input is typically used to characterize the transient response in the
time domain. The influence of parameters ζ and ωn on the step response can
be evaluated in terms of the percentage of overshoot

s% = 100 exp(−πζ/
√

1− ζ2),

of the rise time

tr ≈
1.8

ωn

and of the settling time within 1%

ts =
4.6

ζωn
.

The adoption of a feedforward compensation action represents a feasible
solution both for tracking a time-varying reference input and for enhancing
rejection of the effects of a disturbance on the output. Consider the general
scheme in Fig. C.2. Let R(s) denote a given input reference and Dc(s) de-
note a computed estimate of the disturbance D(s); the introduction of the
feedforward action yields the input/output relationship

Y (s) =

(
C(s)G(s)

1 + C(s)G(s)H(s)
+

F (s)G(s)

1 + C(s)G(s)H(s)

)
R(s) (C.8)

+
G(s)

1 + C(s)G(s)H(s)

(
D(s)−Dc(s)

)
.

By assuming that the desired output is related to the reference input by a
constant factor Kd and regarding the transducer as an instantaneous system
(H(s) ≈ H0 = 1/Kd) for the current operating conditions, the choice

F (s) =
Kd

G(s)
(C.9)
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Fig. C.3. Feedback control structure with inverse model technique

yields the input/output relationship

Y (s) = Yd(s) +
G(s)

1 + C(s)G(s)H0

(
D(s)−Dc(s)

)
. (C.10)

If |C(jω)G(jω)H0| ≫ 1, the effect of the disturbance on the output is further
reduced by means of an accurate estimate of the disturbance.

Feedforward compensation technique may lead to a solution, termed in-
verse model control , illustrated in the scheme of Fig. C.3. It should be re-
marked, however, that such a solution is based on dynamics cancellation,
and thus it can be employed only for a minimum-phase system, i.e., a system
whose poles and zeros have all strictly negative real parts. Further, one should
consider physical realizability issues as well as effects of parameter variations
which prevent perfect cancellation.

C.2 Control of Nonlinear Mechanical Systems

If the system to control does not satisfy the linearity property, the control
design problem becomes more complex. The fact that a system is qualified
as nonlinear , whenever linearity does not hold, leads to understanding how
it is not possible to resort to general techniques for control design, but it is
necessary to face the problem for each class of nonlinear systems which can
be defined through imposition of special properties.

On the above premise, the control design problem of nonlinear systems
described by the dynamic model

H(x)ẍ + h(x, ẋ) = u (C.11)

is considered, where [ xT ẋT ]T denotes the (2n × 1) state vector of the
system, u is the (n × 1) input vector, H(x) is an (n × n) positive definite
(and thus invertible) matrix depending on x, and h(x, ẋ) is an (n× 1) vector
depending on state. Several mechanical systems can be reduced to this class,
including manipulators with rigid links and joints.

The control law can be found through a nonlinear compensating action
obtained by choosing the following nonlinear state feedback law (inverse dy-
namics control):

u = Ĥ(x)v + ĥ(x, ẋ) (C.12)
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where Ĥ(x) and ĥ(x) respectively denote the estimates of the terms H(x)
and h(x), computed on the basis of measures on the system state, and v is a
new control input to be defined later. In general, it is

Ĥ(x) = H(x) + ∆H(x) (C.13)

ĥ(x, ẋ) = h(x, ẋ) + ∆h(x, ẋ) (C.14)

because of the unavoidable modelling approximations or as a consequence of
an intentional simplification in the compensating action. Substituting (C.12)
into (C.11) and accounting for (C.13), (C.14) yields

ẍ = v + z(x, ẋ,v) (C.15)

where
z(x, ẋ,v) = H−1(x)

(
∆H(x)v + ∆h(x, ẋ)

)
.

If tracking of a trajectory (xd(t), ẋd(t), ẍd(t)) is desired, the tracking error
can be defined as

e =

[
xd − x

ẋd − ẋ

]
(C.16)

and it is necessary to derive the error dynamics equation to study convergence
of the actual state to the desired one. To this end, the choice

v = ẍd + w(e), (C.17)

substituted into (C.15), leads to the error equation

ė = Fe−Gw(e)−Gz(e,xd, ẋd, ẍd), (C.18)

where the (2n× 2n) and (2n× n) matrices, respectively,

F =

[
O I

O O

]
G =

[
O

I

]

follow from the error definition in (C.16). Control law design consists of finding
the error function w(e) which makes (C.18) globally asymptotically stable,1

i.e.,
lim

t→∞
e(t) = 0.

In the case of perfect nonlinear compensation (z(·) = 0), the simplest choice
of the control action is the linear one

w(e) = −KP (xd − x)−KD(ẋd − ẋ) (C.19)

= [−KP −KD ] e,

1 Global asymptotic stability is invoked to remark that the equilibrium state is
asymptotically stable for any perturbation.
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where asymptotic stability of the error equation is ensured by choosing positive
definite matrices KP and KD. The error transient behaviour is determined
by the eigenvalues of the matrix

A =

[
O I

−KP −KD

]
(C.20)

characterizing the error dynamics

ė = Ae. (C.21)

If compensation is imperfect , then z(·) cannot be neglected and the error
equation in (C.18) takes on the general form

ė = f(e). (C.22)

It may be worth choosing the control law w(e) as the sum of a nonlinear term
and a linear term of the kind in (C.19); in this case, the error equation can
be written as

ė = Ae + k(e), (C.23)

where A is given by (C.20) and k(e) is available to make the system globally
asymptotically stable. The equations in (C.22), (C.23) express nonlinear dif-
ferential equations of the error. To test for stability and obtain advise on the
choice of suitable control actions, one may resort to Lyapunov direct method
illustrated below.

C.3 Lyapunov Direct Method

The philosophy of the Lyapunov direct method is the same as that of most
methods used in control engineering to study stability, namely, testing for
stability without solving the differential equations describing the dynamic
system.

This method can be presented in short on the basis of the following rea-
soning. If it is possible to associate an energy-based description with a (linear
or nonlinear) autonomous dynamic system and, for each system state with the
exception of the equilibrium state, the time rate of such energy is negative,
then energy decreases along any system trajectory until it attains its mini-
mum at the equilibrium state; this argument justifies an intuitive concept of
stability.

With reference to (C.22), by setting f(0) = 0, the equilibrium state is
e = 0. A scalar function V (e) of the system state, continuous together with
its first derivative, is defined a Lyapunov function if the following properties
hold:

V (e) > 0 ∀e 6= 0

C Feedback Control 597

V (e) = 0 e = 0

V̇ (e) < 0 ∀e 6= 0

V (e) →∞ ‖e‖ → ∞.

The existence of such a function ensures global asymptotic stability of the equi-
librium e = 0. In practice, the equilibrium e = 0 is globally asymptotically
stable if a positive definite, radially unbounded function V (e) is found so that
its time derivative along the system trajectories is negative definite.

If positive definiteness of V (e) is realized by the adoption of a quadratic
form, i.e.,

V (e) = eT Qe (C.24)

with Q a symmetric positive definite matrix, then in view of (C.22) it follows

V̇ (e) = 2eT Qf(e). (C.25)

If f(e) is so as to render the function V̇ (e) negative definite, the function
V (e) is a Lyapunov function, since the choice (C.24) allows system global
asymptotic stability to be proved. If V̇ (e) in (C.25) is not negative definite
for the given V (e), nothing can be inferred on the stability of the system,
since the Lyapunov method gives only a sufficient condition. In such cases
one should resort to different choices of V (e) in order to find, if possible, a
negative definite V̇ (e).

In the case when the property of negative definiteness does not hold, but
V̇ (e) is only negative semi-definite

V̇ (e) ≤ 0,

global asymptotic stability of the equilibrium state is ensured if the only sys-
tem trajectory for which V̇ (e) is identically null (V̇ (e) ≡ 0) is the equilibrium
trajectory e ≡ 0 (a consequence of La Salle theorem).

Finally, consider the stability problem of the nonlinear system in the
form (C.23); under the assumption that k(0) = 0, it is easy to verify that
e = 0 is an equilibrium state for the system. The choice of a Lyapunov func-
tion candidate as in (C.24) leads to the following expression for its derivative:

V̇ (e) = eT (AT Q + QA)e + 2eT Qk(e). (C.26)

By setting
AT Q + QA = −P , (C.27)

the expression in (C.26) becomes

V̇ (e) = −eT Pe + 2eT Qk(e). (C.28)

The matrix equation in (C.27) is said to be a Lyapunov equation; for any
choice of a symmetric positive definite matrix P , the solution matrix Q exists
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and is symmetric positive definite if and only if the eigenvalues of A have
all negative real parts. Since matrix A in (C.20) verifies such condition, it
is always possible to assign a positive definite matrix P and find a positive
definite matrix solution Q to (C.27). It follows that the first term on the
right-hand side of (C.28) is negative definite and the stability problem is
reduced to searching a control law so that k(e) renders the total V̇ (e) negative
(semi-)definite.

It should be underlined that La Salle theorem does not hold for time-
varying systems (also termed non-autonomous) in the form

ė = f(e, t).

In this case, a conceptually analogous result which might be useful is the
following, typically referred to as Barbalat lemma — of which it is indeed a
consequence. Given a scalar function V (e, t) so that

1. V (e, t) is lower bounded
2. V̇ (e, t) ≤ 0
3. V̇ (e, t) is uniformly continuous

then it is lim t→∞ V̇ (e, t) = 0. Conditions 1 and 2 imply that V (e, t) has a
bounded limit for t →∞. Since it is not easy to verify the property of uniform
continuity from the definition, Condition 3 is usually replaced by

3’. V̈ (e, t) is bounded

which is sufficient to guarantee validity of Condition 3. Barbalat lemma can
obviously be used for time-invariant (autonomous) dynamic systems as an
alternative to La Salle theorem, with respect to which some conditions are
relaxed; in particular, V (e) needs not necessarily be positive definite.
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D

Differential Geometry

The analysis of mechanical systems subject to nonholonomic constraints, such
as wheeled mobile robots, requires some basic concepts of differential geometry
and nonlinear controllability theory, that are briefly recalled in this appendix.

D.1 Vector Fields and Lie Brackets

For simplicity, the case of vectors x ∈ IRn is considered. The tangent space
at x (intuitively, the space of velocities of trajectories passing through x) is
hence denoted by Tx(IRn). The presented notions are however valid in the
more general case in which a differentiable manifold (i.e., a space that is
locally diffeomorphic to IRn) is considered in place of a Euclidean space.

A vector field g : IRn 7→ Tx(IRn) is a mapping that assigns to each point
x ∈ IRn a tangent vector g(x) ∈ Tx(IRn). In the following it is always assumed
that vector fields are smooth, i.e., such that the associated mappings are of
class C∞.

If the vector field g(x) is used to define a differential equation as in

ẋ = g(x), (D.1)

the flow φ
g
t (x) of g is the mapping that associates to each point x the value

at time t of the solution of (D.1) evolving from x at time 0, or

d

dt
φ

g
t (x) = g(φ

g
t (x)). (D.2)

The family of mappings {φg
t
} is a one-parameter (i.e., t) group under the

composition operator
φ

g
t1
◦φ

g
t2

= φ
g
t1+t2

.

For example, for time-invariant linear systems it is g(x) = Ax and the flow

is the linear operator φ
g
t

= eAt.
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Fig. D.1. The net displacement of system (D.4) under the input sequence (D.5) is
directed as the Lie bracket of the two vector fields g1 and g2

Given two vector fields g1 and g2, the composition of their flows is non-
commutative in general:

φ
g

1

t
◦ φ

g
2

s 6= φ
g

2

s ◦ φ
g

1

t
.

The vector field [g1, g2] defined as

[g1, g2](x) =
∂g2

∂x
g1(x)− ∂g1

∂x
g2(x) (D.3)

is called Lie bracket of g1 and g2. The two vector field g1 and g2 commute if
[g1, g2] = 0.

The Lie bracket operation has an interesting interpretation. Consider the
driftless dynamic system

ẋ = g1(x)u1 + g2(x)u2 (D.4)

associated with the vector fields g1 and g2. If the inputs u1 and u2 are never
active simultaneously, the solution of the differential equation (D.4) can be
obtained by composing the flows of g1 and g2. In particular, consider the
following input sequence:

u(t) =






u1(t) = +1, u2(t) = 0 t ∈ [0, ε)
u1(t) = 0, u2(t) = +1 t ∈ [ε, 2ε)
u1(t) = −1, u2(t) = 0 t ∈ [2ε, 3ε)
u1(t) = 0, u2(t) = −1 t ∈ [3ε, 4ε),

(D.5)

where ε is an infinitesimal time interval. The solution of (D.4) at time t = 4ε
can be obtained by following first the flow of g1, then of g2, then of −g1, and
finally of −g2 (see Fig. D.1). By computing x(ε) through a series expansion
at x0 = x(0) along g1, then x(2ε) as a series expansion at x(ε) along g2, and
so on, one obtains

x(4ε) = φ
−g

2

ε ◦ φ
−g

1

ε ◦ φ
g

2

ε ◦ φ
g

1

ε (x0)

= x0 + ε2

(
∂g2

∂x
g1(x0)−

∂g1

∂x
g2(x0)

)
+ O(ε3).
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If g1 and g2 commute, the net displacement resulting from the input se-
quence (D.5) is zero.

The above expression shows that, at each point x, infinitesimal motion
of the driftless system (D.4) is possible not only in the directions belonging
to the linear span of g1(x) and g2(x), but also in the direction of their Lie
bracket [g1, g2](x). It can be proven that more complicated input sequences
can be used to generate motion in the direction of higher-order Lie brackets,
such as [g1, [g1, g2]].

Similar constructive procedures can be given for systems with a drift1

vector field, such as the following:

ẋ = f(x) + g1(x)u1 + g2(x)u2. (D.6)

Using appropriate input sequences, it is possible to generate motion in the
direction of Lie brackets involving the vector field f as well as gj , j = 1, 2.

Example D.1

For a single-input linear system

ẋ = A x + b u,

the drift and input vector fields are f (x) = Ax and g(x) = b, respectively. The
following Lie brackets:

−[f , g] = Ab

[f , [f , g]] = A
2
b

− [f , [f , [f , g]]] = A
3
b

...

represent well-known directions in which it is possible to move the system.

The Lie derivative of the scalar function α : IRn 7→ IR along vector field g

is defined as

Lg α(x) =
∂α

∂x
g(x). (D.7)

The following properties of Lie brackets are useful in computation:

[f , g] = −[g,f ] (skew-symmetry)
[f , [g,h]] + [h, [f , g]] + [g, [h,f ]] = 0 (Jacobi identity)
[αf , βg] = αβ[f , g] + α(Lfβ)g − β(Lgα)f (chain rule)

1 This term emphasizes how the presence of f will in general force the system to
move (ẋ 6= 0) even in the absence of inputs.
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with α, β: IRn 7→ IR. The vector space V(IRn) of smooth vector fields on IRn,
equipped with the Lie bracket operation, is a Lie algebra.

The distribution ∆ associated with the m vector fields {g1, . . . , gm} is the
mapping that assigns to each point x ∈ IRn the subspace of Tx(IRn) defined
as

∆(x) = span{g1(x), . . . , gm(x)}. (D.8)

Often, a shorthand notation is used:

∆ = span{g1, . . . , gm}.

The distribution ∆ is nonsingular if dim∆(x) = r, with r constant for all
x. In this case, r is called the dimension of the distribution. Moreover, ∆ is
called involutive if it is closed under the Lie bracket operation:

[gi, gj ] ∈ ∆ ∀ gi, gj ∈ ∆.

The involutive closure ∆̄ of a distribution ∆ is its closure under the Lie bracket
operation. Hence, ∆ is involutive if and only if ∆̄ = ∆. Note that the distri-
bution ∆ = span{g} associated with a single vector field is always involutive,
because [g, g](x) = 0.

Example D.2

The distribution

∆ = span{g1, g2} = span

{[
cos x3

sin x3

0

]
,

(

0
0
1

)}

is nonsingular and has dimension 2. It is not involutive, because the Lie bracket

[g1, g2](x) =

[

sin x3

−cos x3

0

]

is always linearly independent of g1(x) and g2(x). Its involutive closure is therefore

∆̄ = span{g1, g2, [g1, g2]}.
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D.2 Nonlinear Controllability

Consider a nonlinear dynamic system of the form

ẋ = f(x) +

m
∑

j=1

gj(x)uj , (D.9)

that is called affine in the inputs uj . The state x takes values in IRn, while
each component uj of the control input u ∈ IRm takes values in the class U
of piecewise-constant functions.

Denote by x(t, 0,x0,u) the solution of (D.9) at time t ≥ 0, corresponding
to an input u: [0, t] → U and an initial condition x(0) = x0. Such a solution
exists and is unique provided that the drift vector field f and the input vector
fields gj are of class C∞. System (D.9) is said to be controllable if, for any
choice of x1, x2 in IRn, there exists a time instant T and an input u: [0, T ] → U
such that x(T, 0,x1,u) = x2.

The accessibility algebra A of system (D.9) is the smallest subalgebra of
V(IRn) that contains f , g1, . . . , gm. By definition, all the Lie brackets that can
be generated using these vector fields belong to A. The accessibility distribu-
tion ∆A of system (D.9) is defined as

∆A = span{v|v ∈ A}. (D.10)

In other words, ∆A is the involutive closure of ∆ = span{f , g1, . . . , gm}.
The computation of ∆A may be organized as an iterative procedure

∆A = span {v|v ∈ ∆i,∀i ≥ 1} ,

with

∆1 = ∆ = span{f , g1, . . . , gm}
∆i = ∆i−1 + span{[g,v]| g ∈ ∆1,v ∈ ∆i−1}, i ≥ 2.

This procedure stops after κ steps, where κ is the smallest integer such that
∆κ+1 = ∆κ = ∆A. This number is called the nonholonomy degree of the
system and is related to the ‘level’ of Lie brackets that must be included in
∆A. Since dim∆A ≤ n, it is κ ≤ n−m necessarily.

If system (D.9) is driftless

ẋ =
m
∑

i=1

gi(x)ui, (D.11)

the accessibility distribution ∆A associated with vector fields g1, . . . , gm char-
acterizes its controllability. In particular, system (D.11) is controllable if and
only if the following accessibility rank condition holds:

dim ∆A(x) = n. (D.12)
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Note that for driftless systems the iterative procedure for building ∆A starts
with ∆1 = ∆ = span{g1, . . . , gm}, and therefore κ ≤ n−m + 1.

For systems in the general form (D.9), condition (D.12) is only necessary
for controllability. There are, however, two notable exceptions:

• If system (D.11) is controllable, the system with drift obtained by per-
forming a dynamic extension of (D.11)

ẋ =
m
∑

i=1

gi(x)vi (D.13)

v̇i = ui, i = 1, . . . , m, (D.14)

i.e., by adding an integrator on each input channel, is also controllable.
• For a linear system

ẋ = Ax +

m
∑

j=1

bjuj = Ax + Bu

(D.12) becomes

̺ ([B AB A2B . . . An−1B ]) = n, (D.15)

i.e., the well-known necessary and sufficient condition for controllability
due to Kalman.

Bibliography

The concepts briefly recalled in this appendix can be studied in detail in
various tests of differential geometry [94, 20] and nonlinear control theory [104,
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direct, 298
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theorem, 476
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algorithm, 132
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analytical, 128
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joint
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differential, 105
direct, 58
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inverse, 90
inverse differential, 123
parallelogram arm, 70
spherical arm, 72, 95
spherical wrist, 75
Stanford manipulator, 76
three-link planar arm, 69

kineto-statics duality, 148

La Salle
theorem, 507, 597

Lagrange
coordinates, 585
equations, 587
formulation, 247, 292
function, 588
multipliers, 124, 485

level
action, 235
gray, 410
hierarchical, 234
primitive, 236
servo, 236
task, 235

Lie
bracket, 600
derivative, 601

link
acceleration, 285
centre of mass, 249
inertia, 251
velocity, 108

local
minima, 550, 551
planner, 542

Lyapunov
direct method, 596
equation, 597
function, 135, 328, 335, 340, 341, 345,

368, 431, 446, 449, 452, 506, 513,
596

manipulability
dynamic, 299
ellipsoid, 152
measure, 126, 153

manipulability ellipsoid
dynamic, 299
force, 156
velocity, 153

manipulator
anthropomorphic, 8
Cartesian, 4
cylindrical, 5
DLR, 79
end-effector, 4
humanoid, 81
joint, 58
joints, 4
link, 58
links, 4
mechanical structure, 4
mobile, 14
parallel, 9
posture, 58
redundant, 4, 87, 124, 134, 142, 296
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SCARA, 7
spherical, 6
Stanford, 76, 115
with spherical wrist, 94
wrist, 4

matrix
adjoint, 567
algebraic complement, 565
block-partitioned, 564
calibration, 217, 229
compliance, 366
condition number, 577
damped least-squares, 127
damped least-squares inverse, 282
derivative, 568
determinant, 566
diagonal, 564
eigenvalues, 573
eigenvectors, 573
essential, 434
homogeneous transformation, 56
idempotent, 568
identity, 564
inertia, 254
interaction, 424
inverse, 567
Jacobian, 569
left pseudo-inverse, 90, 281, 386, 428,

431, 452, 576
minor, 566
negative definite, 574
negative semi-definite, 575
norm, 572
null, 564
operations, 565
orthogonal, 568, 579
positive definite, 255, 574, 582
positive semi-definite, 575
product, 566
product of scalar by, 565
projection, 389, 572
right pseudo-inverse, 125, 299, 576
rotation, 40, 579
selection, 389
singular value decomposition, 577
skew-symmetric, 257, 564
square, 563
stiffness, 366
sum, 565

symmetric, 251, 255, 564
trace, 565
transpose, 564
triangular, 563

mobile robot
car-like, 13, 482
control, 502
differential drive, 12, 479
dynamic model, 486
kinematic model, 476
legged, 11
mechanical structure, 10
omnidirectional, 13
path planning, 492
planning, 489
second-order kinematic model, 488
synchro drive, 12, 479
trajectory planning, 498
tricycle-like, 12, 482
wheeled, 10, 469

moment
image, 416
inertia, 262, 581
inertia first, 262
resultant, 583

motion
constrained, 363, 384
control, 303
equations, 255
internal, 296
planning, 523
point-to-point, 163
primitives, 545
through a sequence of points, 168

motion planning
canonical problem, 523
multiple-query, 535
off-line, 524
on-line, 524
probabilistic, 541
query, 535
reactive, 551
sampling-based, 541
single-query, 543
via artificial potentials, 546
via cell decomposition, 536
via retraction, 532

motor
electric, 193
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hydraulic, 193
pneumatic, 193

navigation function, 553
Newton–Euler

equations, 584
formulation, 282, 292
recursive algorithm, 286

nonholonomy, 469

octree, 541
odometric localization, 514
operational

space, 84, 445
operator

Laplacian, 415
Roberts, 414
Sobel, 414

orientation
absolute, 436
end-effector, 187
error, 137
minimal representation, 49
rigid body, 40
trajectory, 187

parameters
Denavit–Hartenberg, 63
dynamic, 259
extrinsic, 229, 440
intrinsic, 229, 440
uncertainty, 332, 444

path
circular, 183
geometrically admissible, 490
minimum, 607
primitive, 181
rectilinear, 182

plane
epipolar, 435
osculating, 181

points
feature, 417
path, 169
via, 186, 539
virtual, 173

polynomial
cubic, 164, 169
interpolating, 169

sequence, 170, 172, 175
Pontryagin

minimum principle, 499
pose

estimation, 418
regulation, 345
rigid body, 39

position
control, 206, 312
end-effector, 184
feedback, 312, 314, 317
rigid body, 39
trajectory, 184
transducer, 210

posture
manipulator, 58
regulation, 328, 503, 512

potential
artificial, 546
attractive, 546
repulsive, 547
total, 549

power
amplifier, 197
supply, 198

principle
conservation of energy, 259
virtual work, 147, 385, 587

PRM (Probabilistic Roadmap), 541
programming

environment, 238
language, 238
object-oriented, 242
robot-oriented, 241
teaching-by-showing, 240

quadtree, 540

range
sensor, 219

reciprocity, 387
redundancy

kinematic, 121
analysis, 121
kinematic, 87
resolution, 123, 298

Reeds–Shepp
curves, 501

regulation
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Cartesian, 511
discontinuous and/or time-varying,

514
pose, 345
posture, 328, 503, 512

Remote Centre of Compliance (RCC),
366

resolver, 213
retraction, 534
rigid body

angular momentum, 583
angular velocity, 580
inertia moment, 581
inertia product, 582
inertia tensor, 582
kinematics, 579
linear momentum, 583
mass, 581
orientation, 40
pose, 39, 580
position, 39
potential energy, 585

roadmap, 532
robot

applications, 18
field, 26
industrial, 17
manipulator, 4
mobile, 10
origin, 1
service, 27

robotics
advanced, 25
definition, 2
fundamental laws, 2
industrial, 15

rotation
elementary, 41
instantaneous centre, 480
matrix, 40, 579
vector, 44

rotation matrix
composition, 45
derivative, 106

RRT (Rapidly-exploring Random Tree),
543

segmentation
binary, 412

image, 411
sensor

exteroceptive, 3, 215, 517
laser, 222
proprioceptive, 3, 209, 516
range, 219
shaft torque, 216
sonar, 219
vision, 225
wrist force, 216

servomotor
brushless DC, 194
electric, 193
hydraulic, 195
permanent-magnet DC, 194

simulation
force control, 382
hybrid visual servoing, 464
impedance control, 376
inverse dynamics, 269
inverse kinematics algorithms, 143
motion control schemes, 349
pose estimation, 432
regulation for mobile robots, 514
trajectory tracking for mobile robots,

508
visual control schemes, 453
visual servoing, 453

singularity
arm, 119
classification, 116
decoupling, 117
kinematic, 116, 127
representation, 130
wrist, 119

space
configuration, 470
joint, 83, 84, 162
null, 122, 149
operational, 83, 84, 296, 343
projection, 572
range, 122, 149, 572
vector, 570
work, 85

special group
Euclidean, 57, 580
orthonormal, 41, 49, 579

stability, 133, 135, 141, 328, 368, 446,
447, 452, 590, 595, 596

Index 631

statics, 147, 587
Steiner

theorem, 260, 582
stiffness

matrix, 366

tachometer, 214
torque

actuating, 257
computed, 324
controlled generator, 200
driving, 199, 203
friction, 257
joint, 147, 248
limit, 294
reaction, 199
sensor, 216

tracking
error, 504
reference, 590
trajectory, 503, 595
via input/output linearization, 507
via linear control, 505
via nonlinear control, 506

trajectory
dynamic scaling, 294
joint space, 162
operational space, 179
orientation, 187
planning, 161, 179
position, 184
tracking, 503

transducer
position, 210
velocity, 214

transformation
coordinate, 56
force, 151
homogeneous, 56
linear, 572
matrix, 56
perspective, 227
similarity, 573
velocity, 149

transmission, 192
triangulation, 435

unicycle
chained-form transformation, 484

dynamic model, 488
flat outputs, 491
kinematic model, 478
minimum-time trajectories, 500
optimal trajectories, 499
second-order kinematic model, 489

unit quaternion, 54, 140
unit vector

approach, 59
binormal, 181
control, 337
normal, 59, 181
sliding, 59
tangent, 181

vector
basis, 570
bound, 580
column, 563
components, 570
feature, 418
field, 599
homogeneous representation, 56
linear independence, 569
norm, 570
null, 564
operations, 569
product, 571
product of scalar by, 570
representation, 42
rotation, 44
scalar product, 570
scalar triple product, 571
space, 570
subspace, 570
sum, 570
unit, 571

velocity
controlled generator, 200
controlled subspace, 387
feedback, 314, 317
link, 108
transducer, 214
transformation, 149
trapezoidal profile, 165
triangular profile, 167

vision
sensor, 225
stereo, 409, 433
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visual servoing
hybrid, 460
image-based, 449
PD with gravity compensation, 446,

449
position-based, 445
resolved-velocity, 447, 451

Voronoi
generalized diagram, 533

wheel
caster, 11

fixed, 11

Mecanum, 13

steerable, 11

work

elementary, 584

virtual, 147, 385, 586

workspace, 4, 14

wrist

force sensor, 216

singularity, 119

spherical, 75, 99


