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1

Introduction

Robotics is concerned with the study of those machines that can replace hu-
man beings in the execution of a task, as regards both physical activity and
decision making. The goal of the introductory chapter is to point out the
problems related to the use of robots in industrial applications, as well as the
perspectives offered by advanced robotics. A classification of the most common
mechanical structures of robot manipulators and mobile robots is presented.
Topics of modelling , planning and control are introduced which will be ex-
amined in the following chapters. The chapter ends with a list of references
dealing with subjects both of specific interest and of related interest to those
covered by this textbook.

1.1 Robotics

Robotics has profound cultural roots. Over the course of centuries, human be-
ings have constantly attempted to seek substitutes that would be able to mimic
their behaviour in the various instances of interaction with the surrounding
environment. Several motivations have inspired this continuous search refer-
ring to philosophical, economic, social and scientific principles.

One of human beings’ greatest ambitions has been to give life to their
artifacts. The legend of the Titan Prometheus, who molded humankind from
clay, as well as that of the giant Talus, the bronze slave forged by Hephaestus,
testify how Greek mythology was influenced by that ambition, which has been
revisited in the tale of Frankenstein in modern times.

Just as the giant Talus was entrusted with the task of protecting the
island of Crete from invaders, in the Industrial Age a mechanical creature
(automaton) has been entrusted with the task of substituting a human being
in subordinate labor duties. This concept was introduced by the Czech play-
wright Karel Čapek who wrote the play Rossum’s Universal Robots (R.U.R.)
in 1920. On that occasion he coined the term robot — derived from the term
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robota that means executive labour in Slav languages — to denote the au-
tomaton built by Rossum who ends up by rising up against humankind in the
science fiction tale.

In the subsequent years, in view of the development of science fiction, the
behaviour conceived for the robot has often been conditioned by feelings. This
has contributed to rendering the robot more and more similar to its creator.

It is worth noticing how Rossum’s robots were represented as creatures
made with organic material. The image of the robot as a mechanical artifact
starts in the 1940s when the Russian Isaac Asimov, the well-known science
fiction writer, conceived the robot as an automaton of human appearance but
devoid of feelings. Its behaviour was dictated by a “positronic” brain pro-
grammed by a human being in such a way as to satisfy certain rules of ethical
conduct. The term robotics was then introduced by Asimov as the science
devoted to the study of robots which was based on the three fundamental
laws:

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given by human beings, except when such
orders would conflict with the first law.

3. A robot must protect its own existence, as long as such protection does
not conflict with the first or second law.

These laws established rules of behaviour to consider as specifications for
the design of a robot, which since then has attained the connotation of an
industrial product designed by engineers or specialized technicians.

Science fiction has influenced the man and the woman in the street that
continue to imagine the robot as a humanoid who can speak, walk, see, and
hear, with an appearance very much like that presented by the robots of the
movie Metropolis, a precursor of modern cinematography on robots, with Star
Wars and more recently with I, Robot inspired by Asimov’s novels.

According to a scientific interpretation of the science-fiction scenario, the
robot is seen as a machine that, independently of its exterior, is able to modify
the environment in which it operates. This is accomplished by carrying out
actions that are conditioned by certain rules of behaviour intrinsic in the
machine as well as by some data the robot acquires on its status and on the
environment. In fact, robotics is commonly defined as the science studying the
intelligent connection between perception and action.

With reference to this definition, a robotic system is in reality a complex
system, functionally represented by multiple subsystems (Fig. 1.1).

The essential component of a robot is the mechanical system endowed, in
general, with a locomotion apparatus (wheels, crawlers, mechanical legs) and
a manipulation apparatus (mechanical arms, end-effectors, artificial hands).
As an example, the mechanical system in Fig. 1.1 consists of two mechanical
arms (manipulation apparatus), each of which is carried by a mobile vehicle
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Fig. 1.1. Components of a robotic system

(locomotion apparatus). The realization of such a system refers to the context
of design of articulated mechanical systems and choice of materials.

The capability to exert an action, both locomotion and manipulation, is
provided by an actuation system which animates the mechanical components
of the robot. The concept of such a system refers to the context of motion
control , dealing with servomotors, drives and transmissions.

The capability for perception is entrusted to a sensory system which can
acquire data on the internal status of the mechanical system (proprioceptive
sensors, such as position transducers) as well as on the external status of
the environment (exteroceptive sensors, such as force sensors and cameras).
The realization of such a system refers to the context of materials properties,
signal conditioning, data processing, and information retrieval.

The capability for connecting action to perception in an intelligent fash-
ion is provided by a control system which can command the execution of the
action in respect to the goals set by a task planning technique, as well as
of the constraints imposed by the robot and the environment. The realiza-
tion of such a system follows the same feedback principle devoted to control
of human body functions, possibly exploiting the description of the robotic
system’s components (modelling). The context is that of cybernetics, dealing
with control and supervision of robot motions, artificial intelligence and expert
systems, the computational architecture and programming environment.

Therefore, it can be recognized that robotics is an interdisciplinary subject
concerning the cultural areas of mechanics, control , computers, and electron-
ics.

1.2 Robot Mechanical Structure

The key feature of a robot is its mechanical structure. Robots can be classified
as those with a fixed base, robot manipulators, and those with a mobile base,
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mobile robots. In the following, the geometrical features of the two classes are
presented.

1.2.1 Robot Manipulators

The mechanical structure of a robot manipulator consists of a sequence of rigid
bodies (links) interconnected by means of articulations (joints); a manipulator
is characterized by an arm that ensures mobility, a wrist that confers dexterity,
and an end-effector that performs the task required of the robot.

The fundamental structure of a manipulator is the serial or open kinematic
chain. From a topological viewpoint, a kinematic chain is termed open when
there is only one sequence of links connecting the two ends of the chain. Al-
ternatively, a manipulator contains a closed kinematic chain when a sequence
of links forms a loop.

A manipulator’s mobility is ensured by the presence of joints. The artic-
ulation between two consecutive links can be realized by means of either a
prismatic or a revolute joint. In an open kinematic chain, each prismatic or
revolute joint provides the structure with a single degree of freedom (DOF). A
prismatic joint creates a relative translational motion between the two links,
whereas a revolute joint creates a relative rotational motion between the two
links. Revolute joints are usually preferred to prismatic joints in view of their
compactness and reliability. On the other hand, in a closed kinematic chain,
the number of DOFs is less than the number of joints in view of the constraints
imposed by the loop.

The degrees of freedom should be properly distributed along the mechan-
ical structure in order to have a sufficient number to execute a given task.
In the most general case of a task consisting of arbitrarily positioning and
orienting an object in three-dimensional (3D) space, six DOFs are required,
three for positioning a point on the object and three for orienting the object
with respect to a reference coordinate frame. If more DOFs than task vari-
ables are available, the manipulator is said to be redundant from a kinematic
viewpoint.

The workspace represents that portion of the environment the manipula-
tor’s end-effector can access. Its shape and volume depend on the manipulator
structure as well as on the presence of mechanical joint limits.

The task required of the arm is to position the wrist which then is required
to orient the end-effector. The type and sequence of the arm’s DOFs, start-
ing from the base joint, allows a classification of manipulators as Cartesian,
cylindrical , spherical , SCARA, and anthropomorphic.

Cartesian geometry is realized by three prismatic joints whose axes typ-
ically are mutually orthogonal (Fig. 1.2). In view of the simple geometry,
each DOF corresponds to a Cartesian space variable and thus it is natu-
ral to perform straight motions in space. The Cartesian structure offers very
good mechanical stiffness. Wrist positioning accuracy is constant everywhere
in the workspace. This is the volume enclosed by a rectangular parallel-piped
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Fig. 1.2. Cartesian manipulator and its workspace

Fig. 1.3. Gantry manipulator

(Fig. 1.2). As opposed to high accuracy, the structure has low dexterity since
all the joints are prismatic. The direction of approach in order to manipu-
late an object is from the side. On the other hand, if it is desired to ap-
proach an object from the top, the Cartesian manipulator can be realized by
a gantry structure as illustrated in Fig. 1.3. Such a structure makes available
a workspace with a large volume and enables the manipulation of objects of
large dimensions and heavy weight. Cartesian manipulators are employed for
material handling and assembly. The motors actuating the joints of a Carte-
sian manipulator are typically electric and occasionally pneumatic.

Cylindrical geometry differs from Cartesian in that the first prismatic joint
is replaced with a revolute joint (Fig. 1.4). If the task is described in cylindri-
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Fig. 1.4. Cylindrical manipulator and its workspace

Fig. 1.5. Spherical manipulator and its workspace

cal coordinates, in this case each DOF also corresponds to a Cartesian space
variable. The cylindrical structure offers good mechanical stiffness. Wrist posi-
tioning accuracy decreases as the horizontal stroke increases. The workspace is
a portion of a hollow cylinder (Fig. 1.4). The horizontal prismatic joint makes
the wrist of a cylindrical manipulator suitable to access horizontal cavities.
Cylindrical manipulators are mainly employed for carrying objects even of
large dimensions; in such a case the use of hydraulic motors is to be preferred
to that of electric motors.

Spherical geometry differs from cylindrical in that the second prismatic
joint is replaced with a revolute joint (Fig. 1.5). Each DOF corresponds to a
Cartesian space variable provided that the task is described in spherical coor-
dinates. Mechanical stiffness is lower than the above two geometries and me-
chanical construction is more complex. Wrist positioning accuracy decreases
as the radial stroke increases. The workspace is a portion of a hollow sphere
(Fig. 1.5); it can also include the supporting base of the manipulator and thus
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Fig. 1.6. SCARA manipulator and its workspace

Fig. 1.7. Anthropomorphic manipulator and its workspace

it can allow manipulation of objects on the floor. Spherical manipulators are
mainly employed for machining. Electric motors are typically used to actuate
the joints.

A special geometry is SCARA geometry that can be realized by disposing
two revolute joints and one prismatic joint in such a way that all the axes
of motion are parallel (Fig. 1.6). The acronym SCARA stands for Selective
Compliance Assembly Robot Arm and characterizes the mechanical features
of a structure offering high stiffness to vertical loads and compliance to hori-
zontal loads. As such, the SCARA structure is well-suited to vertical assembly
tasks. The correspondence between the DOFs and Cartesian space variables
is maintained only for the vertical component of a task described in Carte-
sian coordinates. Wrist positioning accuracy decreases as the distance of the
wrist from the first joint axis increases. The typical workspace is illustrated
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Fig. 1.8. Manipulator with parallelogram

Fig. 1.9. Parallel manipulator

in Fig. 1.6. The SCARA manipulator is suitable for manipulation of small
objects; joints are actuated by electric motors.

Anthropomorphic geometry is realized by three revolute joints; the revolute
axis of the first joint is orthogonal to the axes of the other two which are
parallel (Fig. 1.7). By virtue of its similarity with the human arm, the second
joint is called the shoulder joint and the third joint the elbow joint since
it connects the “arm” with the “forearm.” The anthropomorphic structure
is the most dexterous one, since all the joints are revolute. On the other
hand, the correspondence between the DOFs and the Cartesian space variables
is lost, and wrist positioning accuracy varies inside the workspace. This is
approximately a portion of a sphere (Fig. 1.7) and its volume is large compared
to manipulator encumbrance. Joints are typically actuated by electric motors.
The range of industrial applications of anthropomorphic manipulators is wide.
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Fig. 1.10. Hybrid parallel-serial manipulator

According to the latest report by the International Federation of Robotics
(IFR), up to 2005, 59% of installed robot manipulators worldwide has an-
thropomorphic geometry, 20% has Cartesian geometry, 12% has cylindrical
geometry, and 8% has SCARA geometry.

All the previous manipulators have an open kinematic chain. Whenever
larger payloads are required, the mechanical structure will have higher stiffness
to guarantee comparable positioning accuracy. In such a case, resorting to
a closed kinematic chain is advised. For instance, for an anthropomorphic
structure, parallelogram geometry between the shoulder and elbow joints can
be adopted, so as to create a closed kinematic chain (Fig. 1.8).

An interesting closed-chain geometry is parallel geometry (Fig. 1.9) which
has multiple kinematic chains connecting the base to the end-effector. The
fundamental advantage is seen in the high structural stiffness, with respect to
open-chain manipulators, and thus the possibility to achieve high operational
speeds; the drawback is that of having a reduced workspace.

The geometry illustrated in Fig. 1.10 is of hybrid type, since it consists
of a parallel arm and a serial kinematic chain. This structure is suitable for
the execution of manipulation tasks requiring large values of force along the
vertical direction.

The manipulator structures presented above are required to position the
wrist which is then required to orient the manipulator’s end-effector. If arbi-
trary orientation in 3D space is desired, the wrist must possess at least three
DOFs provided by revolute joints. Since the wrist constitutes the terminal
part of the manipulator, it has to be compact; this often complicates its me-
chanical design. Without entering into construction details, the realization
endowing the wrist with the highest dexterity is one where the three revolute
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Fig. 1.11. Spherical wrist

axes intersect at a single point. In such a case, the wrist is called a spherical
wrist , as represented in Fig. 1.11. The key feature of a spherical wrist is the
decoupling between position and orientation of the end-effector; the arm is en-
trusted with the task of positioning the above point of intersection, whereas
the wrist determines the end-effector orientation. Those realizations where the
wrist is not spherical are simpler from a mechanical viewpoint, but position
and orientation are coupled, and this complicates the coordination between
the motion of the arm and that of the wrist to perform a given task.

The end-effector is specified according to the task the robot should ex-
ecute. For material handling tasks, the end-effector consists of a gripper
of proper shape and dimensions determined by the object to be grasped
(Fig. 1.11). For machining and assembly tasks, the end-effector is a tool or
a specialized device, e.g., a welding torch, a spray gun, a mill, a drill, or a
screwdriver.

The versatility and flexibility of a robot manipulator should not induce
the conviction that all mechanical structures are equivalent for the execution
of a given task. The choice of a robot is indeed conditioned by the application
which sets constraints on the workspace dimensions and shape, the maximum
payload, positioning accuracy, and dynamic performance of the manipulator.

1.2.2 Mobile Robots

The main feature of mobile robots is the presence of a mobile base which
allows the robot to move freely in the environment. Unlike manipulators, such
robots are mostly used in service applications, where extensive, autonomous
motion capabilities are required. From a mechanical viewpoint, a mobile robot
consists of one or more rigid bodies equipped with a locomotion system. This
description includes the following two main classes of mobile robots:1

• Wheeled mobile robots typically consist of a rigid body (base or chassis)
and a system of wheels which provide motion with respect to the ground.

1 Other types of mechanical locomotion systems are not considered here. Among
these, it is worth mentioning tracked locomotion, very effective on uneven terrain,
and undulatory locomotion, inspired by snake gaits, which can be achieved with-
out specific devices. There also exist types of locomotion that are not constrained
to the ground, such as flying and navigation.
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Fig. 1.12. The three types of conventional wheels with their respective icons

Other rigid bodies (trailers), also equipped with wheels, may be connected
to the base by means of revolute joints.

• Legged mobile robots are made of multiple rigid bodies, interconnected by
prismatic joints or, more often, by revolute joints. Some of these bodies
form lower limbs, whose extremities (feet) periodically come in contact
with the ground to realize locomotion. There is a large variety of mechan-
ical structures in this class, whose design is often inspired by the study of
living organisms (biomimetic robotics): they range from biped humanoids
to hexapod robots aimed at replicating the biomechanical efficiency of
insects.

Only wheeled vehicles are considered in the following, as they represent
the vast majority of mobile robots actually used in applications. The basic
mechanical element of such robots is indeed the wheel. Three types of con-
ventional wheels exist, which are shown in Fig. 1.12 together with the icons
that will be used to represent them:

• The fixed wheel can rotate about an axis that goes through the center
of the wheel and is orthogonal to the wheel plane. The wheel is rigidly
attached to the chassis, whose orientation with respect to the wheel is
therefore constant.

• The steerable wheel has two axes of rotation. The first is the same as a
fixed wheel, while the second is vertical and goes through the center of the
wheel. This allows the wheel to change its orientation with respect to the
chassis.

• The caster wheel has two axes of rotation, but the vertical axis does not
pass through the center of the wheel, from which it is displaced by a con-
stant offset . Such an arrangement causes the wheel to swivel automatically,
rapidly aligning with the direction of motion of the chassis. This type of
wheel is therefore introduced to provide a supporting point for static bal-
ance without affecting the mobility of the base; for instance, caster wheels
are commonly used in shopping carts as well as in chairs with wheels.
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Fig. 1.13. A differential-drive mobile robot

Fig. 1.14. A synchro-drive mobile robot

The variety of kinematic structures that can be obtained by combining
the three conventional wheels is wide. In the following, the most relevant
arrangements are briefly examined.

In a differential-drive vehicle there are two fixed wheels with a common
axis of rotation, and one or more caster wheels, typically smaller, whose func-
tion is to keep the robot statically balanced (Fig. 1.13). The two fixed wheels
are separately controlled, in that different values of angular velocity may be
arbitrarily imposed, while the caster wheel is passive. Such a robot can rotate
on the spot (i.e., without moving the midpoint between the wheels), provided
that the angular velocities of the two wheels are equal and opposite.

A vehicle with similar mobility is obtained using a synchro-drive kinematic
arrangement (Fig. 1.14). This robot has three aligned steerable wheels which
are synchronously driven by only two motors through a mechanical coupling,
e.g., a chain or a transmission belt. The first motor controls the rotation of the
wheels around the horizontal axis, thus providing the driving force (traction)
to the vehicle. The second motor controls the rotation of the wheels around
the vertical axis, hence affecting their orientation. Note that the heading of
the chassis does not change during the motion. Often, a third motor is used
in this type of robot to rotate independently the upper part of the chassis (a
turret) with respect to the lower part. This may be useful to orient arbitrarily
a directional sensor (e.g., a camera) or in any case to recover an orientation
error.

In a tricycle vehicle (Fig. 1.15) there are two fixed wheels mounted on a
rear axle and a steerable wheel in front. The fixed wheels are driven by a single
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Fig. 1.15. A tricycle mobile robot

Fig. 1.16. A car-like mobile robot

motor which controls their traction,2 while the steerable wheel is driven by
another motor which changes its orientation, acting then as a steering device.
Alternatively, the two rear wheels may be passive and the front wheel may
provide traction as well as steering.

A car-like vehicle has two fixed wheels mounted on a rear axle and two
steerable wheels mounted on a front axle, as shown in Fig. 1.16. As in the
previous case, one motor provides (front or rear) traction while the other
changes the orientation of the front wheels with respect to the vehicle. It is
worth pointing out that, to avoid slippage, the two front wheels must have a
different orientation when the vehicle moves along a curve; in particular, the
internal wheel is slightly more steered with respect to the external one. This
is guaranteed by the use of a specific device called Ackermann steering .

Finally, consider the robot in Fig. 1.17, which has three caster wheels
usually arranged in a symmetric pattern. The traction velocities of the three
wheels are independently driven. Unlike the previous cases, this vehicle is om-
nidirectional : in fact, it can move instantaneously in any Cartesian direction,
as well as re-orient itself on the spot.

In addition to the above conventional wheels, there exist other special
types of wheels, among which is notably the Mecanum (or Swedish) wheel ,
shown in Fig. 1.18. This is a fixed wheel with passive rollers placed along the
external rim; the axis of rotation of each roller is typically inclined by 45◦ with
respect to the plane of the wheel. A vehicle equipped with four such wheels
mounted in pairs on two parallel axles is also omnidirectional.

2 The distribution of the traction torque on the two wheels must take into account
the fact that in general they move with different speeds. The mechanism which
equally distributes traction is the differential .
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Fig. 1.17. An omnidirectional mobile robot with three independently driven caster
wheels

Fig. 1.18. A Mecanum (or Swedish) wheel

In the design of a wheeled robot, the mechanical balance of the structure
does not represent a problem in general. In particular, a three-wheel robot is
statically balanced as long as its center of mass falls inside the support triangle,
which is defined by the contact points between the wheels and ground. Robots
with more than three wheels have a support polygon, and thus it is typically
easier to guarantee the above balance condition. It should be noted, however,
that when the robot moves on uneven terrain a suspension system is needed
to maintain the contact between each wheel and the ground.

Unlike the case of manipulators, the workspace of a mobile robot (defined
as the portion of the surrounding environment that the robot can access) is po-
tentially unlimited. Nevertheless, the local mobility of a non-omnidirectional
mobile robot is always reduced; for instance, the tricycle robot in Fig. 1.15
cannot move instantaneously in a direction parallel to the rear wheel axle.
Despite this fact, the tricycle can be manoeuvered so as to obtain, at the end
of the motion, a net displacement in that direction. In other words, many
mobile robots are subject to constraints on the admissible instantaneous mo-
tions, without actually preventing the possibility of attaining any position and
orientation in the workspace. This also implies that the number of DOFs of
the robot (meant as the number of admissible instantaneous motions) is lower
than the number of its configuration variables.

It is obviously possible to merge the mechanical structure of a manipulator
with that of a mobile vehicle by mounting the former on the latter. Such
a robot is called a mobile manipulator and combines the dexterity of the
articulated arm with the unlimited mobility of the base. An example of such
a mechanical structure is shown in Fig. 1.19. However, the design of a mobile
manipulator involves additional difficulties related, for instance, to the static
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Fig. 1.19. A mobile manipulator obtained by mounting an anthropomorphic arm
on a differential-drive vehicle

and dynamic mechanical balance of the robot, as well as to the actuation of
the two systems.

1.3 Industrial Robotics

Industrial robotics is the discipline concerning robot design, control and ap-
plications in industry, and its products have by now reached the level of a
mature technology. The connotation of a robot for industrial applications is
that of operating in a structured environment whose geometrical or physical
characteristics are mostly known a priori. Hence, limited autonomy is required.

The early industrial robots were developed in the 1960s, at the confluence
of two technologies: numerical control machines for precise manufacturing,
and teleoperators for remote radioactive material handling. Compared to its
precursors, the first robot manipulators were characterized by:

• versatility, in view of the employment of different end-effectors at the tip
of the manipulator,

• adaptability to a priori unknown situations, in view of the use of sensors,
• positioning accuracy, in view of the adoption of feedback control tech-

niques,
• execution repeatability, in view of the programmability of various opera-

tions.

During the subsequent decades, industrial robots have gained a wide popu-
larity as essential components for the realization of automated manufacturing
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Fig. 1.20. Yearly installations of industrial robots worldwide

systems. The main factors having determined the spread of robotics tech-
nology in an increasingly wider range of applications in the manufacturing
industry are reduction of manufacturing costs, increase of productivity, im-
provement of product quality standards and, last but not least, the possibility
of eliminating harmful or off-putting tasks for the human operator in a man-
ufacturing system.

By its usual meaning, the term automation denotes a technology aimed at
replacing human beings with machines in a manufacturing process, as regards
not only the execution of physical operations but also the intelligent processing
of information on the status of the process. Automation is then the synthesis
of industrial technologies typical of the manufacturing process and computer
technology allowing information management. The three levels of automation
one may refer to are rigid automation, programmable automation, and flexible
automation.

Rigid automation deals with a factory context oriented to the mass manu-
facture of products of the same type. The need to manufacture large numbers
of parts with high productivity and quality standards demands the use of
fixed operational sequences to be executed on the workpiece by special pur-
pose machines.

Programmable automation deals with a factory context oriented to the
manufacture of low-to-medium batches of products of different types. A pro-
grammable automated system permits changing easy the sequence of opera-
tions to be executed on the workpieces in order to vary the range of products.
The machines employed are more versatile and are capable of manufacturing
different objects belonging to the same group technology. The majority of the
products available on the market today are manufactured by programmable
automated systems.

1.3 Industrial Robotics 17

0 5,000 10,000 15,000 20,000 25,000 30,000

Food

2005 2006

Communication

Precision and optical products

Automotive parts

Motor vehicles 

Chemical, rubber and plastics

Electrical/electronics 

Metal products

Machinery
(industrial and consumer)

Units
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Flexible automation represents the evolution of programmable automation.
Its goal is to allow manufacturing of variable batches of different products by
minimizing the time lost for reprogramming the sequence of operations and
the machines employed to pass from one batch to the next. The realization of a
flexible manufacturing system (FMS) demands strong integration of computer
technology with industrial technology.

The industrial robot is a machine with significant characteristics of versa-
tility and flexibility. According to the widely accepted definition of the Robot
Institute of America, a robot is a reprogrammable multifunctional manipulator
designed to move materials, parts, tools or specialized devices through variable
programmed motions for the performance of a variety of tasks. Such a defini-
tion, dating back to 1980, reflects the current status of robotics technology.

By virtue of its programmability, the industrial robot is a typical com-
ponent of programmable automated systems. Nonetheless, robots can be en-
trusted with tasks in both rigid and flexible automated systems.

According to the above-mentioned IFR report, up to 2006 nearly one mil-
lion industrial robots are in use worldwide, half of which are in Asia, one third
in Europe, and 16% in North America. The four countries with the largest
number of robots are Japan, Germany, United States and Italy. The figures
for robot installations in the last 15 years are summarized in the graph in
Fig. 1.20; by the end of 2007, an increase of 10% in sales with respect to the
previous year is foreseen, with milder increase rates in the following years,
reaching a worldwide figure of 1,200,000 units at work by the end of 2010.

In the same report it is shown how the average service life of an industrial
robot is about 12 years, which may increase to 15 in a few years from now.
An interesting statistic is robot density based on the total number of persons
employed: this ranges from 349 robots in operation per 10,000 workers to
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Fig. 1.22. Examples of AGVs for material handling (courtesy of E&K Automation
GmbH)

187 in Korea, 186 in Germany, and 13 in Italy. The United States has just
99 robots per 10,000 workers. The average cost of a 6-axis industrial robot,
including the control unit and development software, ranges from 20,000 to
60,000 euros, depending on the size and applications.

The automotive industry is still the predominant user of industrial robots.
The graph in Fig. 1.21 referring to 2005 and 2006, however, reveals how both
the chemical industry and the electrical/electronics industry are gaining in im-
portance, and new industrial applications, such as metal products, constitute
an area with a high potential investment.

Industrial robots present three fundamental capacities that make them
useful for a manufacturing process: material handling , manipulation, and mea-
surement .

In a manufacturing process, each object has to be transferred from one
location in the factory to another in order to be stored, manufactured, assem-
bled, and packed. During transfer, the physical characteristics of the object do
not undergo any alteration. The robot’s capability to pick up an object, move
it in space on predefined paths and release it makes the robot itself an ideal
candidate for material handling operations. Typical applications include:

• palletizing (placing objects on a pallet in an ordered way),
• warehouse loading and unloading,
• mill and machine tool tending,
• part sorting,
• packaging.

In these applications, besides robots, Automated Guided Vehicles (AGV)
are utilized which ensure handling of parts and tools around the shop floor
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from one manufacturing cell to the next (Fig. 1.22). As compared to the tra-
ditional fixed guide paths for vehicles (inductive guide wire, magnetic tape,
or optical visible line), modern AGVs utilize high-tech systems with onboard
microprocessors and sensors (laser, odometry, GPS) which allow their local-
ization within the plant layout, and manage their work flow and functions,
allowing their complete integration in the FMS. The mobile robots employed
in advanced applications can be considered as the natural evolution of the
AGV systems, as far as enhanced autonomy is concerned.

Manufacturing consists of transforming objects from raw material into
finished products; during this process, the part either changes its own physical
characteristics as a result of machining, or loses its identity as a result of an
assembly of more parts. The robot’s capability to manipulate both objects and
tools make it suitable to be employed in manufacturing. Typical applications
include:

• arc and spot welding,
• painting and coating,
• gluing and sealing,
• laser and water jet cutting,
• milling and drilling,
• casting and die spraying,
• deburring and grinding,
• screwing, wiring and fastening,
• assembly of mechanical and electrical groups,
• assembly of electronic boards.
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Fig. 1.24. The AdeptOne XL robot (courtesy of Adept Technology Inc)

Besides material handling and manipulation, in a manufacturing process
it is necessary to perform measurements to test product quality. The robot’s
capability to explore 3D space together with the availability of measurements
on the manipulator’s status allow a robot to be used as a measuring device.
Typical applications include:

• object inspection,
• contour finding,
• detection of manufacturing imperfections.

The graph in Fig. 1.23 reports the number of robots employed in Europe
in 2005 and 2006 for various operations, which reveals how material handling
requires twice as many robots employed for welding, whereas a limited number
of robots is still employed for assembly.

In the following some industrial robots are illustrated in terms of their
features and application fields.

The AdeptOne XL robot in Fig. 1.24 has a four-joint SCARA structure.
Direct drive motors are employed. The maximum reach is 800 mm, with a
repeatability of 0.025 mm horizontally and 0.038 mm vertically. Maximum
speeds are 1200 mm/s for the prismatic joint, while they range from to 650
to 3300 deg/s for the three revolute joints. The maximum payload3 is 12 kg.
Typical industrial applications include small-parts material handling, assem-
bly and packaging.

3 Repeatability and payload are classical parameters found in industrial robot data
sheets. The former gives a measure of the manipulator’s ability to return to a
previously reached position, while the latter indicates the average load to be
carried at the robot’s end-effector.
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Fig. 1.25. The COMAU Smart NS robot (courtesy of COMAU SpA Robotica)

Fig. 1.26. The ABB IRB 4400 robot (courtesy of ABB Robotics)

The Comau SMART NS robot in Fig. 1.25 has a six-joint anthropomorphic
structure with spherical wrist. In its four versions, the outreach ranges from
1650 and 1850 mm horizontally, with a repeatability of 0.05 mm. Maximum
speeds range from 155 to 170 deg/s for the inner three joints, and from 350
to 550 deg/s for the outer three joints. The maximum payload is 16 kg. Both
floor and ceiling mounting positions are allowed. Typical industrial applica-
tions include arc welding, light handling, assembly and technological processes.

The ABB IRB 4400 robot in Fig. 1.26 also has a six-joint anthropomor-
phic structure, but unlike the previous open-chain structure, it possesses a
closed chain of parallelogram type between the shoulder and elbow joints.
The outreach ranges from 1960 to 2550 mm for the various versions, with a
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Fig. 1.27. The KUKA KR 60 Jet robot (courtesy of KUKA Roboter GmbH)

repeatability from 0.07 to 0.1 mm. The maximum speed at the end-effector
is 2200 mm/s. The maximum payload is 60 kg. Floor or shelf-mounting is
available. Typical industrial applications include material handling, machine
tending, grinding, gluing, casting, die spraying and assembly.

The KUKA KR 60 Jet robot in Fig. 1.27 is composed of a five-axis struc-
ture, mounted on a sliding track with a gantry-type installation; the upright
installation is also available. The linear unit has a stroke from a minimum
of 400 mm to a maximum of 20 m (depending on customer’s request), and a
maximum speed of 3200 mm/s. On the other hand, the robot has a payload
of 60 kg, an outreach of 820 mm and a repeatability of 0.15 mm. Maximum
speeds are 120 deg/s and 166 deg/s for the first two joints, while they range
from 260 to 322 deg/s for the outer three joints. Typical industrial applications
include machine tending, arc welding, deburring, coating, sealing, plasma and
waterjet cutting.

The ABB IRB340 FlexPicker robot in Fig. 1.28 adopts a parallel geometry
with four axes; in view of its reduced weight and floor mounting, the robot
can transport 150 objects a minute (cycle time of just 0.4 s), reaching record
speeds of 10 m/s and accelerations of 100 m/s2, for a payload of 1 kg, with
a repeatability of 0.1 mm. In its ‘clean’ aluminum version, it is particularly
suitable for packaging in the food and pharmaceutical industries.

The Fanuc M-16iB robot in Fig. 1.29 has a six-joint anthropomorphic
structure with a spherical wrist. In its two versions, the outreach varies
from 1667 to 1885 mm horizontally, with a repeatability of 0.1 mm. Maximum
speeds range from 165 to 175 deg/s for the inner three joints, and from 340
to 520 deg/s for the outer three joints. Payload varies from 10 to 20 kg. The
peculiarity of this robot consists of the integrated sensors in the control unit,
including a servoing system based on 3D vision and a six-axis force sensor.
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Fig. 1.28. The ABB IRB 340 FlexPicker robot (courtesy of ABB Robotics)

Fig. 1.29. The Fanuc M-16iB robot (courtesy of Fanuc Ltd)

The robot is utilized for handling arbitrarily located objects, deburring, seal-
ing and waterjet cutting.

The Light Weight Robot (LWR) in Fig. 1.30 with a seven-axis structure
was introduced in 2006 as the outcome of technology transfer from DLR (the
German Aerospace Agency) to KUKA. In view of the adoption of lightweight
materials, as well as the adoption of torque sensors at the joints, the robot
can manipulate a payload of 7 to 14 kg, in the face of a weight of the structure
of just 15 kg. The horizontal outreach is 868 mm, with joint speeds ranging
from 110 to 210 deg/s. On the other hand, the presence of the seventh axis of
motion confers kinematic redundancy to the robot, which can then be recon-
figured into more dexterous postures for the execution of given tasks. Such
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Fig. 1.30. The KUKA LWR robot (courtesy of KUKA Roboter GmbH)

a manipulator represents one of the most advanced industrial products and,
in view of its lightweight feature, it offers interesting performance for interac-
tion with the environment, ensuring an inherent safety in case of contact with
human beings.

In most industrial applications requiring object manipulation, typical grip-
pers are utilized as end-effectors. Nevertheless, whenever enhanced manipula-
bility and dexterity is desired, multifingered robot hands are available.

The BarrettHand (Fig. 1.31), endowed with a fixed finger and two mobile
fingers around the base of the palm, allows the manipulation of objects of
different dimension, shape and orientation.

The SCHUNK Antropomorphic Hand (SAH) in Fig. 1.32 is the outcome
of technology transfer from DLR and Harbin Institute of Technology (China)
to SCHUNK. Characterized by three independent aligned fingers and an op-
posing finger which is analogous to the human thumb. The finger joints are
endowed with magnetic angular sensors and torque sensors. This hand offers
good dexterity and approaches the characteristics of the human hand.

LWR technology has been employed for the realization of the two arms
of Justin, a humanoid manipulator made by DLR, composed of a three-joint
torso with an anthropomorphic structure, two seven-axis arms and a sen-
sorized head. The robot is illustrated in Fig. 1.33 in the execution of a biman-
ual manipulation task; the hands employed are previous versions of the SAH
anthropomorphic hand.

The applications listed describe the current employment of robots as com-
ponents of industrial automation systems. They all refer to strongly structured
working environments and thus do not exhaust all the possible utilizations of
robots for industrial applications. Whenever it is desired to tackle problems
requiring the adaptation of the robot to a changeable working environment,
the fall-out of advanced robotics products are of concern. In this regard, the
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Fig. 1.31. The BarrettHand (courtesy of Barrett Technology Inc)

Fig. 1.32. The SCHUNK Anthropomorphic Hand (courtesy of SCHUNK Intec Ltd)

lightweight robot, the hands and the humanoid manipulator presented above
are to be considered at the transition from traditional industrial robotics sys-
tems toward those innovative systems of advanced robotics.

1.4 Advanced Robotics

The expression advanced robotics usually refers to the science studying robots
with marked characteristics of autonomy , operating in scarcely structured
or unstructured environments, whose geometrical or physical characteristics
would not be known a priori.

Nowadays, advanced robotics is still in its youth. It has indeed featured
the realization of prototypes only, because the associated technology is not
yet mature. There are many motivations which strongly encourage advances
in knowledge within this field. They range from the need for automata when-
ever human operators are not available or are not safe (field robots), to the
opportunity of developing products for potentially wide markets which are
aimed at improving quality of life (service robots).

The graph in Fig. 1.34 reports the number of robots in stock for non-
industrial applications at the end of 2006 and the forecast to 2010. Such
applications are characterized by the complexity level, the uncertainty and
variability of the environment with which the robot interacts, as shown in the
following examples.
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Fig. 1.33. The Justin humanoid robot manipulator (courtesy of DLR)

1.4.1 Field Robots

The context is that of deploying robots in areas where human beings could
not survive or be exposed to unsustainable risks. Such robots should carry
out exploration tasks and report useful data on the environment to a remote
operator, using suitable onboard sensors. Typical scenarios are the explo-
ration of a volcano, the intervention in areas contaminated by poisonous gas
or radiation, or the exploration of the deep ocean or space. As is well known,
NASA succeeded in delivering some mobile robots (rovers) to Mars (Fig. 1.35)
which navigated on the Martian soil, across rocks, hills and crevasses. Such
rovers were partially teleoperated from earth and have successfully explored
the environment with sufficient autonomy. Some mini-robots were deployed
on September 11, 2001 at Ground Zero after the collapse of the Twin Towers
in New York, to penetrate the debris in the search for survivors.

A similar scenario is that of disasters caused by fires in tunnels or earth-
quakes; in such occurrences, there is a danger of further explosions, escape of
harmful gases or collapse, and thus human rescue teams may cooperate with
robot rescue teams. Also in the military field, unmanned autonomous aircrafts
and missiles are utilized, as well as teleoperated robots with onboard cameras
to explore buildings. The ‘Grand Challenge’ of October 2005 (Fig. 1.36) was
financially supported by the US Department of Defense (DARPA) with the
goal of developing autonomous vehicles to carry weapons and sensors, thus
reducing soldier employment.
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Fig. 1.35. The Sojourner rover was deployed by the Pathfinder lander and explored
250 m2 of Martian soil in 1997 (courtesy of NASA)

1.4.2 Service Robots

Autonomous vehicles are also employed for civil applications, i.e., for mass
transit systems (Fig. 1.37), thus contributing to the reduction of pollution
levels. Such vehicles are part of the so-called Intelligent Transportation Sys-
tems (ITS) devoted to traffic management in urban areas. Another feasible
application where the adoption of mobile robots offers potential advantages
is museum guided tours (Fig. 1.38).

Many countries are investing in establishing the new market of service
robots which will co-habitat with human beings in everyday life. According
to the above-mentioned IFR report, up to 2005 1.9 million service robots for
domestic applications (Fig. 1.39) and 1 million toy robots have been sold.

Technology is ready to transform into commercial products the prototypes
of robotic aids to enhance elderly and impaired people’s autonomy in everyday
life; autonomous wheelchairs, mobility aid lifters, feeding aids and rehabilita-
tion robots allowing tetraplegics to perform manual labor tasks are examples
of such service devices. In perspective, other than an all-purpose robot waiter,
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Fig. 1.36. The unmanned car Stanley autonomously completed a path of 132 miles
in the record time of 6 h and 53 min (courtesy of DARPA)

Fig. 1.37. The Cycab is an electrically-driven vehicle for autonomous transportation
in urban environments (courtesy of INRIA)

assistance, and healthcare systems integrating robotic and telematic modules
will be developed for home service management (domotics).

Several robotic systems are employed for medical applications. Surgery
assistance systems exploit a robot’s high accuracy to position a tool, i.e., for
hip prosthesis implant. Yet, in minimally-invasive surgery, i.e., cardiac surgery,
the surgeon operates while seated comfortably at a console viewing a 3D image
of the surgical field, and operating the surgical instruments remotely by means
of a haptic interface (Fig. 1.40).

Further, in diagnostic and endoscopic surgery systems, small teleoperated
robots travels through the cavities of human body, i.e., in the gastrointestinal
system, bringing live images or intervening in situ for biopsy, dispensing drugs
or removing neoplasms.
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Fig. 1.38. Rhino, employing the synchro-drive mobile base B21 by Real World
Interface, was one of the first robots for museum guided tours (courtesy of Deutsches
Museum Bonn)

Fig. 1.39. The vacuum robot Roomba, employing a differential-drive kinematics,
autonomously sweeps and cleans floors (courtesy of I-Robot Corp)

Finally, in motor rehabilitation systems, a hemiplegic patient wears an
exoskeleton, which actively interacts, sustains and corrects the movements
according to the physiotherapist’s programmed plan.

Another wide market segment comes from entertainment, where robots
are used as toy companions for children, and life companions for the elderly,
such as humanoid robots (Fig. 1.41) and the pet robots (Fig. 1.42) being
developed in Japan. It is reasonable to predict that service robots will be
naturally integrated into our society. Tomorrow, robots will be as pervasive
and personal as today’s personal computers, or just as TV sets in the homes
of 20 years ago. Robotics will then become ubiquitous, a challenge under
discussion within the scientific community.

1.5 Robot Modelling, Planning and Control

In all robot applications, completion of a generic task requires the execution
of a specific motion prescribed to the robot. The correct execution of such
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Fig. 1.40. The da Vinci robotic system for laparoscopic surgery (courtesy of Intu-
itive Surgical Inc)

motion is entrusted to the control system which should provide the robot’s
actuators with the commands consistent with the desired motion. Motion
control demands an accurate analysis of the characteristics of the mechanical
structure, actuators, and sensors. The goal of such analysis is the derivation
of the mathematical models describing the input/output relationship charac-
terizing the robot components. Modelling a robot manipulator is therefore a
necessary premise to finding motion control strategies.

Significant topics in the study of modelling, planning and control of robots
which constitute the subject of subsequent chapters are illustrated below.

1.5.1 Modelling

Kinematic analysis of the mechanical structure of a robot concerns the de-
scription of the motion with respect to a fixed reference Cartesian frame
by ignoring the forces and moments that cause motion of the structure. It
is meaningful to distinguish between kinematics and differential kinematics.
With reference to a robot manipulator, kinematics describes the analytical
relationship between the joint positions and the end-effector position and ori-
entation. Differential kinematics describes the analytical relationship between
the joint motion and the end-effector motion in terms of velocities, through
the manipulator Jacobiann.

The formulation of the kinematics relationship allows the study of two
key problems of robotics, namely, the direct kinematics problem and the in-
verse kinematics problem. The former concerns the determination of a sys-
tematic, general method to describe the end-effector motion as a function of
the joint motion by means of linear algebra tools. The latter concerns the
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Fig. 1.41. The Asimo humanoid robot, launched in 1996, has been endowed with
even more natural locomotion and human-robot interaction skills (courtesy of Honda
Motor Company Ltd)

Fig. 1.42. The AIBO dog had been the most widely diffused entertainment robot
in the recent years (courtesy of Sony Corp)

inverse problem; its solution is of fundamental importance to transform the
desired motion, naturally prescribed to the end-effector in the workspace, into
the corresponding joint motion.

The availability of a manipulator’s kinematic model is also useful to de-
termine the relationship between the forces and torques applied to the joints
and the forces and moments applied to the end-effector in static equilibrium
configurations.

Chapter 2 is dedicated to the study of kinematics. Chapter 3 is dedicated to
the study of differential kinematics and statics, whereas Appendix A provides
a useful brush-up on linear algebra.

Kinematics of a manipulator represents the basis of a systematic, general
derivation of its dynamics, i.e., the equations of motion of the manipulator
as a function of the forces and moments acting on it. The availability of the
dynamic model is very useful for mechanical design of the structure, choice
of actuators, determination of control strategies, and computer simulation of
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manipulator motion. Chapter 7 is dedicated to the study of dynamics, whereas
Appendix B recalls some fundamentals on rigid body mechanics.

Modelling of mobile robots requires a preliminary analysis of the kinematic
constraints imposed by the presence of wheels. Depending on the mechanical
structure, such constraints can be integrable or not; this has direct conse-
quence on a robot’s mobility. The kinematic model of a mobile robot is es-
sentially the description of the admissible instantaneous motions in respect
of the constraints. On the other hand, the dynamic model accounts for the
reaction forces and describes the relationship between the above motions and
the generalized forces acting on the robot. These models can be expressed
in a canonical form which is convenient for design of planning and control
techniques. Kinematic and dynamic analysis of mobile robots is developed
in Chap. 11, while Appendix D contains some useful concepts of differential
geometry .

1.5.2 Planning

With reference to the tasks assigned to a manipulator, the issue is whether
to specify the motion at the joints or directly at the end-effector. In material
handling tasks, it is sufficient to assign only the pick-up and release locations
of an object (point-to-point motion), whereas, in machining tasks, the end-
effector has to follow a desired trajectory (path motion). The goal of trajectory
planning is to generate the timing laws for the relevant variables (joint or end-
effector) starting from a concise description of the desired motion. Chapter 4
is dedicated to trajectory planning for robot manipulators.

The motion planning problem for a mobile robot concerns the generation
of trajectories to take the vehicle from a given initial configuration to a desired
final configuration. Such a problem is more complex than that of robot ma-
nipulators, since trajectories have to be generated in respect of the kinematic
constraints imposed by the wheels. Some solution techniques are presented in
Chap. 11, which exploit the specific differential structure of the mobile robots’
kinematic models.

Whenever obstacles are present in a mobile robot’s workspace, the planned
motions must be safe, so as to avoid collisions. Such a problem, known as
motion planning , can be formulated in an effective fashion for both robot ma-
nipulators and mobile robots utilizing the configuration space concept. The
solution techniques are essentially of algorithmic nature and include exact,
probabilistic and heuristic methods. Chapter 12 is dedicated to motion plan-
ning problem, while Appendix E provides some basic concepts on graph search
algorithms.

1.5.3 Control

Realization of the motion specified by the control law requires the employment
of actuators and sensors. The functional characteristics of the most commonly
used actuators and sensors for robots are described in Chap. 5.
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Chapter 6 is concerned with the hardware/software architecture of a
robot’s control system which is in charge of implementation of control laws as
well as of interface with the operator.

The trajectories generated constitute the reference inputs to the motion
control system of the mechanical structure. The problem of robot manipulator
control is to find the time behaviour of the forces and torques to be delivered
by the joint actuators so as to ensure the execution of the reference trajec-
tories. This problem is quite complex, since a manipulator is an articulated
system and, as such, the motion of one link influences the motion of the oth-
ers. Manipulator equations of motion indeed reveal the presence of coupling
dynamic effects among the joints, except in the case of a Cartesian structure
with mutually orthogonal axes. The synthesis of the joint forces and torques
cannot be made on the basis of the sole knowledge of the dynamic model,
since this does not completely describe the real structure. Therefore, manip-
ulator control is entrusted to the closure of feedback loops; by computing the
deviation between the reference inputs and the data provided by the propri-
oceptive sensors, a feedback control system is capable of satisfying accuracy
requirements on the execution of the prescribed trajectories.

Chapter 8 is dedicated to the presentation of motion control techniques,
whereas Appendix C illustrates the basic principles of feedback control .

Control of a mobile robot substantially differs from the analogous problem
for robot manipulators. This is due, in turn, to the availability of fewer control
inputs than the robot has configuration variables. An important consequence
is that the structure of a controller allowing a robot to follow a trajectory
(tracking problem) is unavoidably different from that of a controller aimed at
taking the robot to a given configuration (regulation problem). Further, since
a mobile robot’s proprioceptive sensors do not yield any data on the vehicle’s
configuration, it is necessary to develop localization methods for the robot
in the environment. The control design problem for wheeled mobile robots is
treated in Chap. 11.

If a manipulation task requires interaction between the robot and the en-
vironment, the control problem should account for the data provided by the
exteroceptive sensors; the forces exchanged at the contact with the environ-
ment, and the objects’ position as detected by suitable cameras. Chapter 9 is
dedicated to force control techniques for robot manipulators, while Chap. 10
presents visual control techniques.
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Kinematics

A manipulator can be schematically represented from a mechanical viewpoint
as a kinematic chain of rigid bodies (links) connected by means of revolute
or prismatic joints. One end of the chain is constrained to a base, while an
end-effector is mounted to the other end. The resulting motion of the struc-
ture is obtained by composition of the elementary motions of each link with
respect to the previous one. Therefore, in order to manipulate an object in
space, it is necessary to describe the end-effector position and orientation.
This chapter is dedicated to the derivation of the direct kinematics equation
through a systematic, general approach based on linear algebra. This allows
the end-effector position and orientation (pose) to be expressed as a function
of the joint variables of the mechanical structure with respect to a reference
frame. Both open-chain and closed-chain kinematic structures are considered.
With reference to a minimal representation of orientation, the concept of
operational space is introduced and its relationship with the joint space is es-
tablished. Furthermore, a calibration technique of the manipulator kinematic
parameters is presented. The chapter ends with the derivation of solutions to
the inverse kinematics problem, which consists of the determination of the
joint variables corresponding to a given end-effector pose.

2.1 Pose of a Rigid Body

A rigid body is completely described in space by its position and orientation
(in brief pose) with respect to a reference frame. As shown in Fig. 2.1, let
O–xyz be the orthonormal reference frame and x, y, z be the unit vectors of
the frame axes.

The position of a point O′ on the rigid body with respect to the coordinate
frame O–xyz is expressed by the relation

o′ = o′xx + o′yy + o′zz,
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Fig. 2.1. Position and orientation of a rigid body

where o′x, o′y, o′z denote the components of the vector o′ ∈ IR3 along the frame
axes; the position of O′ can be compactly written as the (3 × 1) vector

o′ =

⎡⎣ o′x
o′y
o′z

⎤⎦ . (2.1)

Vector o′ is a bound vector since its line of application and point of application
are both prescribed, in addition to its direction and norm.

In order to describe the rigid body orientation, it is convenient to consider
an orthonormal frame attached to the body and express its unit vectors with
respect to the reference frame. Let then O′–x′y′z′ be such a frame with origin
in O′ and x′, y′, z′ be the unit vectors of the frame axes. These vectors are
expressed with respect to the reference frame O–xyz by the equations:

x′ = x′
xx + x′

yy + x′
zz

y′ = y′xx + y′yy + y′zz (2.2)
z′ = z′xx + z′yy + z′zz.

The components of each unit vector are the direction cosines of the axes of
frame O′–x′y′z′ with respect to the reference frame O–xyz.

2.2 Rotation Matrix

By adopting a compact notation, the three unit vectors in (2.2) describing the
body orientation with respect to the reference frame can be combined in the
(3 × 3) matrix

R =

⎡⎣x′ y′ z′

⎤⎦ =

⎡⎣x′
x y′x z′x

x′
y y′y z′y

x′
z y′z z′z

⎤⎦ =

⎡⎣x′T x y′T x z′T x

x′T y y′T y z′T y

x′T z y′T z z′T z

⎤⎦ , (2.3)
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which is termed rotation matrix .
It is worth noting that the column vectors of matrix R are mutually or-

thogonal since they represent the unit vectors of an orthonormal frame, i.e.,

x′T y′ = 0 y′T z′ = 0 z′T x′ = 0.

Also, they have unit norm

x′T x′ = 1 y′T y′ = 1 z′T z′ = 1.

As a consequence, R is an orthogonal matrix meaning that

RT R = I3 (2.4)

where I3 denotes the (3 × 3) identity matrix.
If both sides of (2.4) are postmultiplied by the inverse matrix R−1, the

useful result is obtained:
RT = R−1, (2.5)

that is, the transpose of the rotation matrix is equal to its inverse. Further,
observe that det(R) = 1 if the frame is right-handed, while det(R) = −1 if
the frame is left-handed.

The above-defined rotation matrix belongs to the special orthonormal
group SO(m) of the real (m × m) matrices with othonormal columns and
determinant equal to 1; in the case of spatial rotations it is m = 3, whereas
in the case of planar rotations it is m = 2.

2.2.1 Elementary Rotations

Consider the frames that can be obtained via elementary rotations of the
reference frame about one of the coordinate axes. These rotations are positive
if they are made counter-clockwise about the relative axis.

Suppose that the reference frame O–xyz is rotated by an angle α about
axis z (Fig. 2.2), and let O–x′y′z′ be the rotated frame. The unit vectors of
the new frame can be described in terms of their components with respect
to the reference frame. Consider the frames that can be obtained via elemen-
tary rotations of the reference frame about one of the coordinate axes. These
rotations are positive if they are made counter-clockwise about the relative
axis.

Suppose that the reference frame O–xyz is rotated by an angle α about
axis z (Fig. 2.2), and let O–x′y′z′ be the rotated frame. The unit vectors of
the new frame can be described in terms of their components with respect to
the reference frame, i.e.,

x′ =

⎡⎣ cosα
sinα

0

⎤⎦ y′ =

⎡⎣−sinα
cosα

0

⎤⎦ z′ =

⎡⎣ 0
0
1

⎤⎦ .
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Fig. 2.2. Rotation of frame O–xyz by an angle α about axis z

Hence, the rotation matrix of frame O–x′y′z′ with respect to frame O–xyz is

Rz(α) =

⎡⎣ cosα −sinα 0
sinα cosα 0

0 0 1

⎤⎦ . (2.6)

In a similar manner, it can be shown that the rotations by an angle β
about axis y and by an angle γ about axis x are respectively given by

Ry(β) =

⎡⎣ cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ

⎤⎦ (2.7)

Rx(γ) =

⎡⎣ 1 0 0
0 cos γ −sin γ
0 sin γ cos γ

⎤⎦ . (2.8)

These matrices will be useful to describe rotations about an arbitrary axis in
space.

It is easy to verify that for the elementary rotation matrices in (2.6)–(2.8)
the following property holds:

Rk(−ϑ) = RT
k (ϑ) k = x, y, z. (2.9)

In view of (2.6)–(2.8), the rotation matrix can be attributed a geometrical
meaning; namely, the matrix R describes the rotation about an axis in space
needed to align the axes of the reference frame with the corresponding axes
of the body frame.

2.2.2 Representation of a Vector

In order to understand a further geometrical meaning of a rotation matrix,
consider the case when the origin of the body frame coincides with the origin
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Fig. 2.3. Representation of a point P in two different coordinate frames

of the reference frame (Fig. 2.3); it follows that o′ = 0, where 0 denotes the
(3 × 1) null vector. A point P in space can be represented either as

p =

⎡⎣ px

py

pz

⎤⎦
with respect to frame O–xyz, or as

p′ =

⎡⎣ p′x
p′y
p′z

⎤⎦
with respect to frame O–x′y′z′.

Since p and p′ are representations of the same point P , it is

p = p′xx′ + p′yy′ + p′zz
′ =

⎡⎣x′ y′ z′

⎤⎦p′

and, accounting for (2.3), it is

p = Rp′. (2.10)

The rotation matrix R represents the transformation matrix of the vector
coordinates in frame O–x′y′z′ into the coordinates of the same vector in frame
O–xyz. In view of the orthogonality property (2.4), the inverse transformation
is simply given by

p′ = RT p. (2.11)
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Fig. 2.4. Representation of a point P in rotated frames

Example 2.1

Consider two frames with common origin mutually rotated by an angle α about
the axis z. Let p and p′ be the vectors of the coordinates of a point P , expressed
in the frames O–xyz and O–x′y′z′, respectively (Fig. 2.4). On the basis of simple
geometry, the relationship between the coordinates of P in the two frames is

px = p′
x cos α − p′

y sin α

py = p′
x sin α + p′

y cos α

pz = p′
z.

Therefore, the matrix (2.6) represents not only the orientation of a frame with
respect to another frame, but it also describes the transformation of a vector from
a frame to another frame with the same origin.

2.2.3 Rotation of a Vector

A rotation matrix can be also interpreted as the matrix operator allowing
rotation of a vector by a given angle about an arbitrary axis in space. In fact,
let p′ be a vector in the reference frame O–xyz; in view of orthogonality of the
matrix R, the product Rp′ yields a vector p with the same norm as that of p′

but rotated with respect to p′ according to the matrix R. The norm equality
can be proved by observing that pT p = p′T RT Rp′ and applying (2.4). This
interpretation of the rotation matrix will be revisited later.
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Fig. 2.5. Rotation of a vector

Example 2.2

Consider the vector p which is obtained by rotating a vector p′ in the plane xy by
an angle α about axis z of the reference frame (Fig. 2.5). Let (p′

x, p′
y, p′

z) be the
coordinates of the vector p′. The vector p has components

px = p′
x cos α − p′

y sin α

py = p′
x sin α + p′

y cos α

pz = p′
z.

It is easy to recognize that p can be expressed as

p = Rz(α)p′,

where Rz(α) is the same rotation matrix as in (2.6).

In sum, a rotation matrix attains three equivalent geometrical meanings:

• It describes the mutual orientation between two coordinate frames; its
column vectors are the direction cosines of the axes of the rotated frame
with respect to the original frame.

• It represents the coordinate transformation between the coordinates of a
point expressed in two different frames (with common origin).

• It is the operator that allows the rotation of a vector in the same coordinate
frame.

2.3 Composition of Rotation Matrices

In order to derive composition rules of rotation matrices, it is useful to consider
the expression of a vector in two different reference frames. Let then O–x0y0z0,
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O–x1y1z1, O–x2y2z2 be three frames with common origin O. The vector p
describing the position of a generic point in space can be expressed in each
of the above frames; let p0, p1, p2 denote the expressions of p in the three
frames.1

At first, consider the relationship between the expression p2 of the vector
p in Frame 2 and the expression p1 of the same vector in Frame 1. If Rj

i

denotes the rotation matrix of Frame i with respect to Frame j, it is

p1 = R1
2p

2. (2.12)

Similarly, it turns out that

p0 = R0
1p

1 (2.13)
p0 = R0

2p
2. (2.14)

On the other hand, substituting (2.12) in (2.13) and using (2.14) gives

R0
2 = R0

1R
1
2. (2.15)

The relationship in (2.15) can be interpreted as the composition of successive
rotations. Consider a frame initially aligned with the frame O–x0y0z0. The
rotation expressed by matrix R0

2 can be regarded as obtained in two steps:

• First rotate the given frame according to R0
1, so as to align it with frame

O–x1y1z1.
• Then rotate the frame, now aligned with frame O–x1y1z1, according to

R1
2, so as to align it with frame O–x2y2z2.

Notice that the overall rotation can be expressed as a sequence of partial
rotations; each rotation is defined with respect to the preceding one. The
frame with respect to which the rotation occurs is termed current frame.
Composition of successive rotations is then obtained by postmultiplication of
the rotation matrices following the given order of rotations, as in (2.15). With
the adopted notation, in view of (2.5), it is

Rj
i = (Ri

j)
−1 = (Ri

j)
T . (2.16)

Successive rotations can be also specified by constantly referring them
to the initial frame; in this case, the rotations are made with respect to a
fixed frame. Let R0

1 be the rotation matrix of frame O–x1y1z1 with respect
to the fixed frame O–x0y0z0. Let then R̄

0
2 denote the matrix characterizing

frame O–x2y2z2 with respect to Frame 0, which is obtained as a rotation of
Frame 1 according to the matrix R̄

1
2. Since (2.15) gives a composition rule of

successive rotations about the axes of the current frame, the overall rotation
can be regarded as obtained in the following steps:
1 Hereafter, the superscript of a vector or a matrix denotes the frame in which its

components are expressed.
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• First realign Frame 1 with Frame 0 by means of rotation R1
0.

• Then make the rotation expressed by R̄
1
2 with respect to the current frame.

• Finally compensate for the rotation made for the realignment by means of
the inverse rotation R0

1.

Since the above rotations are described with respect to the current frame, the
application of the composition rule (2.15) yields

R̄
0
2 = R0

1R
1
0R̄

1
2R

0
1.

In view of (2.16), it is
R̄

0
2 = R̄

1
2R

0
1 (2.17)

where the resulting R̄
0
2 is different from the matrix R0

2 in (2.15). Hence, it
can be stated that composition of successive rotations with respect to a fixed
frame is obtained by premultiplication of the single rotation matrices in the
order of the given sequence of rotations.

By recalling the meaning of a rotation matrix in terms of the orientation
of a current frame with respect to a fixed frame, it can be recognized that its
columns are the direction cosines of the axes of the current frame with respect
to the fixed frame, while its rows (columns of its transpose and inverse) are
the direction cosines of the axes of the fixed frame with respect to the current
frame.

An important issue of composition of rotations is that the matrix product
is not commutative. In view of this, it can be concluded that two rotations
in general do not commute and its composition depends on the order of the
single rotations.

Example 2.3

Consider an object and a frame attached to it. Figure 2.6 shows the effects of two
successive rotations of the object with respect to the current frame by changing the
order of rotations. It is evident that the final object orientation is different in the two
cases. Also in the case of rotations made with respect to the current frame, the final
orientations differ (Fig. 2.7). It is interesting to note that the effects of the sequence
of rotations with respect to the fixed frame are interchanged with the effects of the
sequence of rotations with respect to the current frame. This can be explained by
observing that the order of rotations in the fixed frame commutes with respect to
the order of rotations in the current frame.
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Fig. 2.6. Successive rotations of an object about axes of current frame

Fig. 2.7. Successive rotations of an object about axes of fixed frame

2.4 Euler Angles

Rotation matrices give a redundant description of frame orientation; in fact,
they are characterized by nine elements which are not independent but related
by six constraints due to the orthogonality conditions given in (2.4). This im-
plies that three parameters are sufficient to describe orientation of a rigid body
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Fig. 2.8. Representation of Euler angles ZYZ

in space. A representation of orientation in terms of three independent param-
eters constitutes a minimal representation. In fact, a minimal representation
of the special orthonormal group SO(m) requires m(m − 1)/2 parameters;
thus, three parameters are needed to parameterize SO(3), whereas only one
parameter is needed for a planar rotation SO(2).

A minimal representation of orientation can be obtained by using a set
of three angles φ = [ϕ ϑ ψ ]T . Consider the rotation matrix expressing
the elementary rotation about one of the coordinate axes as a function of a
single angle. Then, a generic rotation matrix can be obtained by composing a
suitable sequence of three elementary rotations while guaranteeing that two
successive rotations are not made about parallel axes. This implies that 12
distinct sets of angles are allowed out of all 27 possible combinations; each
set represents a triplet of Euler angles. In the following, two sets of Euler
angles are analyzed; namely, the ZYZ angles and the ZYX (or Roll–Pitch–
Yaw) angles.

2.4.1 ZYZ Angles

The rotation described by ZYZ angles is obtained as composition of the fol-
lowing elementary rotations (Fig. 2.8):

• Rotate the reference frame by the angle ϕ about axis z; this rotation is
described by the matrix Rz(ϕ) which is formally defined in (2.6).

• Rotate the current frame by the angle ϑ about axis y′; this rotation is
described by the matrix Ry′(ϑ) which is formally defined in (2.7).

• Rotate the current frame by the angle ψ about axis z′′; this rotation is
described by the matrix Rz′′(ψ) which is again formally defined in (2.6).
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The resulting frame orientation is obtained by composition of rotations
with respect to current frames, and then it can be computed via postmulti-
plication of the matrices of elementary rotation, i.e.,2

R(φ) = Rz(ϕ)Ry′(ϑ)Rz′′(ψ) (2.18)

=

⎡⎣ cϕcϑcψ − sϕsψ −cϕcϑsψ − sϕcψ cϕsϑ

sϕcϑcψ + cϕsψ −sϕcϑsψ + cϕcψ sϕsϑ

−sϑcψ sϑsψ cϑ

⎤⎦ .

It is useful to solve the inverse problem, that is to determine the set of
Euler angles corresponding to a given rotation matrix

R =

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ .

Compare this expression with that of R(φ) in (2.18). By considering the
elements [1, 3] and [2, 3], under the assumption that r13 �= 0 and r23 �= 0, it
follows that

ϕ = Atan2(r23, r13)

where Atan2(y, x) is the arctangent function of two arguments3. Then, squar-
ing and summing the elements [1, 3] and [2, 3] and using the element [3, 3]
yields

ϑ = Atan2
(√

r2
13 + r2

23, r33

)
.

The choice of the positive sign for the term
√

r2
13 + r2

23 limits the range of
feasible values of ϑ to (0, π). On this assumption, considering the elements
[3, 1] and [3, 2] gives

ψ = Atan2(r32,−r31).

In sum, the requested solution is

ϕ = Atan2(r23, r13)

ϑ = Atan2
(√

r2
13 + r2

23, r33

)
(2.19)

ψ = Atan2(r32,−r31).

It is possible to derive another solution which produces the same effects as
solution (2.19). Choosing ϑ in the range (−π, 0) leads to

ϕ = Atan2(−r23,−r13)
2 The notations cφ and sφ are the abbreviations for cos φ and sin φ, respectively;

short-hand notations of this kind will be adopted often throughout the text.
3 The function Atan2(y, x) computes the arctangent of the ratio y/x but utilizes the

sign of each argument to determine which quadrant the resulting angle belongs
to; this allows the correct determination of an angle in a range of 2π.
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Fig. 2.9. Representation of Roll–Pitch–Yaw angles

ϑ = Atan2
(
−
√

r2
13 + r2

23, r33

)
(2.20)

ψ = Atan2(−r32, r31).

Solutions (2.19), (2.20) degenerate when sϑ = 0; in this case, it is possible
to determine only the sum or difference of ϕ and ψ. In fact, if ϑ = 0, π,
the successive rotations of ϕ and ψ are made about axes of current frames
which are parallel, thus giving equivalent contributions to the rotation; see
Problem 2.2.4

2.4.2 RPY Angles

Another set of Euler angles originates from a representation of orientation in
the (aero)nautical field. These are the ZYX angles, also called Roll–Pitch–
Yaw angles , to denote the typical changes of attitude of an (air)craft. In this
case, the angles φ = [ϕ ϑ ψ ]T represent rotations defined with respect to
a fixed frame attached to the centre of mass of the craft (Fig. 2.9).

The rotation resulting from Roll–Pitch–Yaw angles can be obtained as
follows:

• Rotate the reference frame by the angle ψ about axis x (yaw); this rotation
is described by the matrix Rx(ψ) which is formally defined in (2.8).

• Rotate the reference frame by the angle ϑ about axis y (pitch); this rotation
is described by the matrix Ry(ϑ) which is formally defined in (2.7).

• Rotate the reference frame by the angle ϕ about axis z (roll); this rotation
is described by the matrix Rz(ϕ) which is formally defined in (2.6).

4 In the following chapter, it will be seen that these configurations characterize the
so-called representation singularities of the Euler angles.
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The resulting frame orientation is obtained by composition of rotations with
respect to the fixed frame, and then it can be computed via premultiplication
of the matrices of elementary rotation, i.e.,5

R(φ) = Rz(ϕ)Ry(ϑ)Rx(ψ) (2.21)

=

⎡⎣ cϕcϑ cϕsϑsψ − sϕcψ cϕsϑcψ + sϕsψ

sϕcϑ sϕsϑsψ + cϕcψ sϕsϑcψ − cϕsψ

−sϑ cϑsψ cϑcψ

⎤⎦ .

As for the Euler angles ZYZ, the inverse solution to a given rotation matrix

R =

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ ,

can be obtained by comparing it with the expression of R(φ) in (2.21). The
solution for ϑ in the range (−π/2, π/2) is

ϕ = Atan2(r21, r11)

ϑ = Atan2
(
−r31,

√
r2
32 + r2

33

)
(2.22)

ψ = Atan2(r32, r33).

The other equivalent solution for ϑ in the range (π/2, 3π/2) is

ϕ = Atan2(−r21,−r11)

ϑ = Atan2
(
−r31,−

√
r2
32 + r2

33

)
(2.23)

ψ = Atan2(−r32,−r33).

Solutions (2.22), (2.23) degenerate when cϑ = 0; in this case, it is possible to
determine only the sum or difference of ϕ and ψ.

2.5 Angle and Axis

A nonminimal representation of orientation can be obtained by resorting to
four parameters expressing a rotation of a given angle about an axis in space.
This can be advantageous in the problem of trajectory planning for a manip-
ulator’s end-effector orientation.

Let r = [ rx ry rz ]T be the unit vector of a rotation axis with respect
to the reference frame O–xyz. In order to derive the rotation matrix R(ϑ, r)
expressing the rotation of an angle ϑ about axis r, it is convenient to compose
5 The ordered sequence of rotations XYZ about axes of the fixed frame is equivalent

to the sequence ZYX about axes of the current frame.
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Fig. 2.10. Rotation of an angle about an axis

elementary rotations about the coordinate axes of the reference frame. The
angle is taken to be positive if the rotation is made counter-clockwise about
axis r.

As shown in Fig. 2.10, a possible solution is to rotate first r by the angles
necessary to align it with axis z, then to rotate by ϑ about z and finally
to rotate by the angles necessary to align the unit vector with the initial
direction. In detail, the sequence of rotations, to be made always with respect
to axes of fixed frame, is the following:

• Align r with z, which is obtained as the sequence of a rotation by −α
about z and a rotation by −β about y.

• Rotate by ϑ about z.
• Realign with the initial direction of r, which is obtained as the sequence

of a rotation by β about y and a rotation by α about z.

In sum, the resulting rotation matrix is

R(ϑ, r) = Rz(α)Ry(β)Rz(ϑ)Ry(−β)Rz(−α). (2.24)

From the components of the unit vector r it is possible to extract the tran-
scendental functions needed to compute the rotation matrix in (2.24), so as
to eliminate the dependence from α and β; in fact, it is

sinα =
ry√

r2
x + r2

y

cosα =
rx√

r2
x + r2

y

sinβ =
√

r2
x + r2

y cosβ = rz.
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Then, it can be found that the rotation matrix corresponding to a given angle
and axis is — see Problem 2.4 —

R(ϑ, r)=

⎡⎢⎣ r2
x(1 − cϑ) + cϑ rxry(1 − cϑ) − rzsϑ rxrz(1 − cϑ) + rysϑ

rxry(1 − cϑ) + rzsϑ r2
y(1 − cϑ) + cϑ ryrz(1 − cϑ) − rxsϑ

rxrz(1 − cϑ) − rysϑ ryrz(1 − cϑ) + rxsϑ r2
z(1 − cϑ) + cϑ

⎤⎥⎦.
(2.25)

For this matrix, the following property holds:

R(−ϑ,−r) = R(ϑ, r), (2.26)

i.e., a rotation by −ϑ about −r cannot be distinguished from a rotation by ϑ
about r; hence, such representation is not unique.

If it is desired to solve the inverse problem to compute the axis and angle
corresponding to a given rotation matrix

R =

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ ,

the following result is useful:

ϑ = cos−1

(
r11 + r22 + r33 − 1

2

)
(2.27)

r =
1

2 sinϑ

⎡⎣ r32 − r23
r13 − r31
r21 − r12

⎤⎦ , (2.28)

for sinϑ �= 0. Notice that the expressions (2.27), (2.28) describe the rotation
in terms of four parameters; namely, the angle and the three components of
the axis unit vector. However, it can be observed that the three components
of r are not independent but are constrained by the condition

r2
x + r2

y + r2
z = 1. (2.29)

If sinϑ = 0, the expressions (2.27), (2.28) become meaningless. To solve the
inverse problem, it is necessary to directly refer to the particular expressions
attained by the rotation matrix R and find the solving formulae in the two
cases ϑ = 0 and ϑ = π. Notice that, when ϑ = 0 (null rotation), the unit
vector r is arbitrary (singularity). See also Problem 2.5.

2.6 Unit Quaternion

The drawbacks of the angle/axis representation can be overcome by a dif-
ferent four-parameter representation; namely, the unit quaternion, viz. Euler
parameters, defined as Q = {η, ε} where:

η = cos
ϑ

2
(2.30)
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ε = sin
ϑ

2
r; (2.31)

η is called the scalar part of the quaternion while ε = [ εx εy εz ]T is called
the vector part of the quaternion. They are constrained by the condition

η2 + ε2x + ε2y + ε2z = 1, (2.32)

hence, the name unit quaternion. It is worth remarking that, unlike the an-
gle/axis representation, a rotation by −ϑ about −r gives the same quater-
nion as that associated with a rotation by ϑ about r; this solves the above
nonuniqueness problem. In view of (2.25), (2.30), (2.31), (2.32), the rotation
matrix corresponding to a given quaternion takes on the form — see Prob-
lem 2.6 —

R(η, ε) =

⎡⎢⎣ 2(η2 + ε2x) − 1 2(εxεy − ηεz) 2(εxεz + ηεy)

2(εxεy + ηεz) 2(η2 + ε2y) − 1 2(εyεz − ηεx)

2(εxεz − ηεy) 2(εyεz + ηεx) 2(η2 + ε2z) − 1

⎤⎥⎦ . (2.33)

If it is desired to solve the inverse problem to compute the quaternion
corresponding to a given rotation matrix

R =

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ ,

the following result is useful:

η =
1
2
√
r11 + r22 + r33 + 1 (2.34)

ε =
1
2

⎡⎢⎣ sgn (r32 − r23)
√
r11 − r22 − r33 + 1

sgn (r13 − r31)
√
r22 − r33 − r11 + 1

sgn (r21 − r12)
√
r33 − r11 − r22 + 1

⎤⎥⎦ , (2.35)

where conventionally sgn (x) = 1 for x ≥ 0 and sgn (x) = −1 for x < 0. Notice
that in (2.34) it has been implicitly assumed η ≥ 0; this corresponds to an
angle ϑ ∈ [−π, π], and thus any rotation can be described. Also, compared to
the inverse solution in (2.27), (2.28) for the angle and axis representation, no
singularity occurs for (2.34), (2.35). See also Problem 2.8.

The quaternion extracted from R−1 = RT is denoted as Q−1, and can be
computed as

Q−1 = {η,−ε}. (2.36)
Let Q1 = {η1, ε1} and Q2 = {η2, ε2} denote the quaternions corresponding

to the rotation matrices R1 and R2, respectively. The quaternion correspond-
ing to the product R1R2 is given by

Q1 ∗ Q2 = {η1η2 − εT
1 ε2, η1ε2 + η2ε1 + ε1 × ε2} (2.37)

where the quaternion product operator “∗” has been formally introduced. It is
easy to see that if Q2 = Q−1

1 then the quaternion {1,0} is obtained from (2.37)
which is the identity element for the product. See also Problem 2.9.
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Fig. 2.11. Representation of a point P in different coordinate frames

2.7 Homogeneous Transformations

As illustrated at the beginning of the chapter, the position of a rigid body in
space is expressed in terms of the position of a suitable point on the body with
respect to a reference frame (translation), while its orientation is expressed in
terms of the components of the unit vectors of a frame attached to the body
— with origin in the above point — with respect to the same reference frame
(rotation).

As shown in Fig. 2.11, consider an arbitrary point P in space. Let p0

be the vector of coordinates of P with respect to the reference frame O0–
x0y0z0. Consider then another frame in space O1–x1y1z1. Let o0

1 be the vector
describing the origin of Frame 1 with respect to Frame 0, and R0

1 be the
rotation matrix of Frame 1 with respect to Frame 0. Let also p1 be the vector
of coordinates of P with respect to Frame 1. On the basis of simple geometry,
the position of point P with respect to the reference frame can be expressed
as

p0 = o0
1 + R0

1p
1. (2.38)

Hence, (2.38) represents the coordinate transformation (translation + rota-
tion) of a bound vector between two frames.

The inverse transformation can be obtained by premultiplying both sides
of (2.38) by R0

1
T ; in view of(2.4), it follows that

p1 = −R0
1
T o0

1 + R0
1
T p0 (2.39)

which, via (2.16), can be written as

p1 = −R1
0o

0
1 + R1

0p
0. (2.40)

In order to achieve a compact representation of the relationship between
the coordinates of the same point in two different frames, the homogeneous
representation of a generic vector p can be introduced as the vector p̃ formed
by adding a fourth unit component, i.e.,
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p̃ =

⎡⎢⎣p

1

⎤⎥⎦ . (2.41)

By adopting this representation for the vectors p0 and p1 in (2.38), the coor-
dinate transformation can be written in terms of the (4 × 4) matrix

A0
1 =

⎡⎢⎣ R0
1 o0

1

0T 1

⎤⎥⎦ (2.42)

which, according to (2.41), is termed homogeneous transformation matrix .
Since o0

1 ∈ IR3 e R0
1 ∈ SO(3), this matrix belongs to the special Euclidean

group SE(3) = IR3 × SO(3).
As can be easily seen from (2.42), the transformation of a vector from

Frame 1 to Frame 0 is expressed by a single matrix containing the rotation
matrix of Frame 1 with respect to Frame 0 and the translation vector from
the origin of Frame 0 to the origin of Frame 1.6 Therefore, the coordinate
transformation (2.38) can be compactly rewritten as

p̃0 = A0
1p̃

1. (2.43)

The coordinate transformation between Frame 0 and Frame 1 is described
by the homogeneous transformation matrix A1

0 which satisfies the equation

p̃1 = A1
0p̃

0 =
(
A0

1

)−1
p̃0. (2.44)

This matrix is expressed in a block-partitioned form as

A1
0 =

⎡⎢⎣ R0
1
T −R0

1
T o0

1

0T 1

⎤⎥⎦ =

⎡⎢⎣ R1
0 −R1

0o
0
1

0T 1

⎤⎥⎦ , (2.45)

which gives the homogeneous representation form of the result already estab-
lished by (2.39), (2.40) — see Problem 2.10.

Notice that for the homogeneous transformation matrix the orthogonality
property does not hold; hence, in general,

A−1 �= AT . (2.46)

In sum, a homogeneous transformation matrix expresses the coordinate
transformation between two frames in a compact form. If the frames have the
6 It can be shown that in (2.42) non-null values of the first three elements of the

fourth row of A produce a perspective effect, while values other than unity for
the fourth element give a scaling effect.
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Fig. 2.12. Conventional representations of joints

same origin, it reduces to the rotation matrix previously defined. Instead, if
the frames have distinct origins, it allows the notation with superscripts and
subscripts to be kept which directly characterize the current frame and the
fixed frame.

Analogously to what presented for the rotation matrices, it is easy to
verify that a sequence of coordinate transformations can be composed by the
product

p̃0 = A0
1A

1
2 . . .A

n−1
n p̃n (2.47)

where Ai−1
i denotes the homogeneous transformation relating the description

of a point in Frame i to the description of the same point in Frame i− 1.

2.8 Direct Kinematics

A manipulator consists of a series of rigid bodies (links) connected by means of
kinematic pairs or joints. Joints can be essentially of two types: revolute and
prismatic; conventional representations of the two types of joints are sketched
in Fig. 2.12. The whole structure forms a kinematic chain. One end of the
chain is constrained to a base. An end-effector (gripper, tool) is connected to
the other end allowing manipulation of objects in space.

From a topological viewpoint, the kinematic chain is termed open when
there is only one sequence of links connecting the two ends of the chain. Al-
ternatively, a manipulator contains a closed kinematic chain when a sequence
of links forms a loop.

The mechanical structure of a manipulator is characterized by a number of
degrees of freedom (DOFs) which uniquely determine its posture.7 Each DOF
is typically associated with a joint articulation and constitutes a joint variable.
The aim of direct kinematics is to compute the pose of the end-effector as a
function of the joint variables.

7 The term posture of a kinematic chain denotes the pose of all the rigid bodies
composing the chain. Whenever the kinematic chain reduces to a single rigid
body, then the posture coincides with the pose of the body.
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Fig. 2.13. Description of the position and orientation of the end-effector frame

It was previously illustrated that the pose of a body with respect to a
reference frame is described by the position vector of the origin and the unit
vectors of a frame attached to the body. Hence, with respect to a reference
frame Ob–xbybzb, the direct kinematics function is expressed by the homoge-
neous transformation matrix

T b
e(q) =

⎡⎢⎣nb
e(q) sb

e(q) ab
e(q) pb

e(q)

0 0 0 1

⎤⎥⎦ , (2.48)

where q is the (n× 1) vector of joint variables, ne, se, ae are the unit vectors
of a frame attached to the end-effector, and pe is the position vector of the
origin of such a frame with respect to the origin of the base frame Ob–xbybzb

(Fig. 2.13). Note that ne, se, ae and pe are a function of q.
The frame Ob–xbybzb is termed base frame. The frame attached to the end-

effector is termed end-effector frame and is conveniently chosen according to
the particular task geometry. If the end-effector is a gripper, the origin of the
end-effector frame is located at the centre of the gripper, the unit vector ae

is chosen in the approach direction to the object, the unit vector se is chosen
normal to ae in the sliding plane of the jaws, and the unit vector ne is chosen
normal to the other two so that the frame (ne, se,ae) is right-handed.

A first way to compute direct kinematics is offered by a geometric analysis
of the structure of the given manipulator.
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Fig. 2.14. Two-link planar arm

Example 2.4

Consider the two-link planar arm in Fig. 2.14. On the basis of simple trigonometry,
the choice of the joint variables, the base frame, and the end-effector frame leads
to8

T b
e(q) =

⎡⎢⎣nb
e sb

e ab
e pb

e

0 0 0 1

⎤⎥⎦ =

⎡⎢⎣ 0 s12 c12 a1c1 + a2c12

0 −c12 s12 a1s1 + a2s12

1 0 0 0
0 0 0 1

⎤⎥⎦ . (2.49)

It is not difficult to infer that the effectiveness of a geometric approach
to the direct kinematics problem is based first on a convenient choice of the
relevant quantities and then on the ability and geometric intuition of the prob-
lem solver. Whenever the manipulator structure is complex and the number of
joints increases, it is preferable to adopt a less direct solution, which, though,
is based on a systematic, general procedure. The problem becomes even more
complex when the manipulator contains one or more closed kinematic chains.
In such a case, as it will be discussed later, there is no guarantee to obtain an
analytical expression for the direct kinematics function in (2.48).

2.8.1 Open Chain

Consider an open-chain manipulator constituted by n + 1 links connected by
n joints, where Link 0 is conventionally fixed to the ground. It is assumed that
each joint provides the mechanical structure with a single DOF, corresponding
to the joint variable.

The construction of an operating procedure for the computation of di-
rect kinematics is naturally derived from the typical open kinematic chain of
the manipulator structure. In fact, since each joint connects two consecutive
8 The notations si...j , ci...j denote respectively sin (qi + . . . + qj), cos (qi + . . . + qj).
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Fig. 2.15. Coordinate transformations in an open kinematic chain

links, it is reasonable to consider first the description of kinematic relationship
between consecutive links and then to obtain the overall description of manip-
ulator kinematics in a recursive fashion. To this purpose, it is worth defining
a coordinate frame attached to each link, from Link 0 to Link n. Then, the
coordinate transformation describing the position and orientation of Frame n
with respect to Frame 0 (Fig. 2.15) is given by

T 0
n(q) = A0

1(q1)A
1
2(q2) . . .A

n−1
n (qn). (2.50)

As requested, the computation of the direct kinematics function is recursive
and is obtained in a systematic manner by simple products of the homogeneous
transformation matrices Ai−1

i (qi) (for i = 1, . . . , n), each of which is a function
of a single joint variable.

With reference to the direct kinematics equation in (2.49), the actual co-
ordinate transformation describing the position and orientation of the end-
effector frame with respect to the base frame can be obtained as

T b
e(q) = T b

0T
0
n(q)T n

e (2.51)

where T b
0 and T n

e are two (typically) constant homogeneous transformations
describing the position and orientation of Frame 0 with respect to the base
frame, and of the end-effector frame with respect to Frame n, respectively.

2.8.2 Denavit–Hartenberg Convention

In order to compute the direct kinematics equation for an open-chain manip-
ulator according to the recursive expression in (2.50), a systematic, general
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Fig. 2.16. Denavit–Hartenberg kinematic parameters

method is to be derived to define the relative position and orientation of two
consecutive links; the problem is that to determine two frames attached to
the two links and compute the coordinate transformations between them. In
general, the frames can be arbitrarily chosen as long as they are attached to
the link they are referred to. Nevertheless, it is convenient to set some rules
also for the definition of the link frames.

With reference to Fig. 2.16, let Axis i denote the axis of the joint connect-
ing Link i− 1 to Link i; the so-called Denavit–Hartenberg convention (DH) is
adopted to define link Frame i:

• Choose axis zi along the axis of Joint i + 1.
• Locate the origin Oi at the intersection of axis zi with the common normal9

to axes zi−1 and zi. Also, locate Oi′ at the intersection of the common
normal with axis zi−1.

• Choose axis xi along the common normal to axes zi−1 and zi with direction
from Joint i to Joint i + 1.

• Choose axis yi so as to complete a right-handed frame.

The Denavit–Hartenberg convention gives a nonunique definition of the link
frame in the following cases:

• For Frame 0, only the direction of axis z0 is specified; then O0 and x0 can
be arbitrarily chosen.

• For Frame n, since there is no Joint n+1, zn is not uniquely defined while
xn has to be normal to axis zn−1. Typically, Joint n is revolute, and thus
zn is to be aligned with the direction of zn−1.

9 The common normal between two lines is the line containing the minimum dis-
tance segment between the two lines.
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• When two consecutive axes are parallel, the common normal between them
is not uniquely defined.

• When two consecutive axes intersect, the direction of xi is arbitrary.
• When Joint i is prismatic, the direction of zi−1 is arbitrary.

In all such cases, the indeterminacy can be exploited to simplify the procedure;
for instance, the axes of consecutive frames can be made parallel.

Once the link frames have been established, the position and orientation of
Frame i with respect to Frame i− 1 are completely specified by the following
parameters:

ai distance between Oi and Oi′ ,
di coordinate of Oi′ along zi−1,
αi angle between axes zi−1 and zi about axis xi to be taken positive when

rotation is made counter-clockwise,
ϑi angle between axes xi−1 and xi about axis zi−1 to be taken positive when

rotation is made counter-clockwise.

Two of the four parameters (ai and αi) are always constant and depend
only on the geometry of connection between consecutive joints established
by Link i. Of the remaining two parameters, only one is variable depending
on the type of joint that connects Link i− 1 to Link i. In particular:

• if Joint i is revolute the variable is ϑi,
• if Joint i is prismatic the variable is di.

At this point, it is possible to express the coordinate transformation between
Frame i and Frame i− 1 according to the following steps:

• Choose a frame aligned with Frame i− 1.
• Translate the chosen frame by di along axis zi−1 and rotate it by ϑi about

axis zi−1; this sequence aligns the current frame with Frame i′ and is
described by the homogeneous transformation matrix

Ai−1
i′ =

⎡⎢⎣
cϑi

−sϑi
0 0

sϑi
cϑi

0 0
0 0 1 di

0 0 0 1

⎤⎥⎦ .

• Translate the frame aligned with Frame i′ by ai along axis xi′ and rotate
it by αi about axis xi′ ; this sequence aligns the current frame with Frame i
and is described by the homogeneous transformation matrix

Ai′
i =

⎡⎢⎣
1 0 0 ai

0 cαi
−sαi

0
0 sαi

cαi
0

0 0 0 1

⎤⎥⎦ .

64 2 Kinematics

• The resulting coordinate transformation is obtained by postmultiplication
of the single transformations as

Ai−1
i (qi) = Ai−1

i′ Ai′
i =

⎡⎢⎣
cϑi

−sϑi
cαi

sϑi
sαi

aicϑi

sϑi
cϑi

cαi
−cϑi

sαi
aisϑi

0 sαi
cαi

di

0 0 0 1

⎤⎥⎦ . (2.52)

Notice that the transformation matrix from Frame i to Frame i−1 is a function
only of the joint variable qi, that is, ϑi for a revolute joint or di for a prismatic
joint.

To summarize, the Denavit–Hartenberg convention allows the construction
of the direct kinematics function by composition of the individual coordinate
transformations expressed by (2.52) into one homogeneous transformation
matrix as in (2.50). The procedure can be applied to any open kinematic
chain and can be easily rewritten in an operating form as follows.

1. Find and number consecutively the joint axes; set the directions of axes
z0, . . . , zn−1.

2. Choose Frame 0 by locating the origin on axis z0; axes x0 and y0 are
chosen so as to obtain a right-handed frame. If feasible, it is worth choosing
Frame 0 to coincide with the base frame.

Execute steps from 3 to 5 for i = 1, . . . , n− 1:

3. Locate the origin Oi at the intersection of zi with the common normal to
axes zi−1 and zi. If axes zi−1 and zi are parallel and Joint i is revolute,
then locate Oi so that di = 0; if Joint i is prismatic, locate Oi at a reference
position for the joint range, e.g., a mechanical limit.

4. Choose axis xi along the common normal to axes zi−1 and zi with direction
from Joint i to Joint i + 1.

5. Choose axis yi so as to obtain a right-handed frame.

To complete:

6. Choose Frame n; if Joint n is revolute, then align zn with zn−1, otherwise,
if Joint n is prismatic, then choose zn arbitrarily. Axis xn is set according
to step 4.

7. For i = 1, . . . , n, form the table of parameters ai, di, αi, ϑi.
8. On the basis of the parameters in 7, compute the homogeneous transfor-

mation matrices Ai−1
i (qi) for i = 1, . . . , n.

9. Compute the homogeneous transformation T 0
n(q) = A0

1 . . .A
n−1
n that

yields the position and orientation of Frame n with respect to Frame 0.
10.Given T b

0 and T n
e , compute the direct kinematics function as T b

e(q) =
T b

0T
0
nT n

e that yields the position and orientation of the end-effector frame
with respect to the base frame.
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Fig. 2.17. Connection of a single link in the chain with two links

For what concerns the computational aspects of direct kinematics, it can be
recognized that the heaviest load derives from the evaluation of transcenden-
tal functions. On the other hand, by suitably factorizing the transformation
equations and introducing local variables, the number of flops (additions +
multiplications) can be reduced. Finally, for computation of orientation it is
convenient to evaluate the two unit vectors of the end-effector frame of sim-
plest expression and derive the third one by vector product of the first two.

2.8.3 Closed Chain

The above direct kinematics method based on the DH convention exploits
the inherently recursive feature of an open-chain manipulator. Nevertheless,
the method can be extended to the case of manipulators containing closed
kinematic chains according to the technique illustrated below.

Consider a closed-chain manipulator constituted by n + 1 links. Because
of the presence of a loop, the number of joints l must be greater than n; in
particular, it can be understood that the number of closed loops is equal to
l − n.

With reference to Fig. 2.17, Links 0 through i are connected successively
through the first i joints as in an open kinematic chain. Then, Joint i + 1′

connects Link i with Link i + 1′ while Joint i + 1′′ connects Link i with
Link i + 1′′; the axes of Joints i + 1′ and i + 1′′ are assumed to be aligned.
Although not represented in the figure, Links i + 1′ and i + 1′′ are members
of the closed kinematic chain. In particular, Link i + 1′ is further connected
to Link i + 2′ via Joint i + 2′ and so forth, until Link j via Joint j. Likewise,
Link i + 1′′ is further connected to Link i + 2′′ via Joint i + 2′′ and so forth,
until Link k via Joint k. Finally, Links j and k are connected together at
Joint j + 1 to form a closed chain. In general, j �= k.

In order to attach frames to the various links and apply DH convention,
one closed kinematic chain is taken into account. The closed chain can be
virtually cut open at Joint j + 1, i.e., the joint between Link j and Link k.
An equivalent tree-structured open kinematic chain is obtained, and thus link

66 2 Kinematics

Fig. 2.18. Coordinate transformations in a closed kinematic chain

frames can be defined as in Fig. 2.18. Since Links 0 through i occur before
the two branches of the tree, they are left out of the analysis. For the same
reason, Links j + 1 through n are left out as well. Notice that Frame i is to
be chosen with axis zi aligned with the axes of Joints i + 1′ and i + 1′′.

It follows that the position and orientation of Frame j with respect to
Frame i can be expressed by composing the homogeneous transformations as

Ai
j(q

′) = Ai
i+1′(qi+1′) . . .Aj−1

j (qj) (2.53)

where q′ = [ qi+1′ . . . qj ]T . Likewise, the position and orientation of
Frame k with respect to Frame i is given by

Ai
k(q′′) = Ai

i+1′′(qi+1′′) . . .Ak−1
k (qk) (2.54)

where q′′ = [ qi+1′′ . . . qk ]T .
Since Links j and k are connected to each other through Joint j + 1,

it is worth analyzing the mutual position and orientation between Frames j
and k, as illustrated in Fig. 2.19. Notice that, since Links j and k are connected
to form a closed chain, axes zj and zk are aligned. Therefore, the following
orientation constraint has to be imposed between Frames j and k:

zi
j(q

′) = zi
k(q′′), (2.55)

where the unit vectors of the two axes have been conveniently referred to
Frame i.

Moreover, if Joint j+1 is prismatic, the angle ϑjk between axes xj and xk

is fixed; hence, in addition to (2.55), the following constraint is obtained:

xiT
j (q′)xi

k(q′′) = cosϑjk. (2.56)

Obviously, there is no need to impose a similar constraint on axes yj and yk

since that would be redundant.
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Fig. 2.19. Coordinate transformation at the cut joint

Regarding the position constraint between Frames j and k, let pi
j and

pi
k respectively denote the positions of the origins of Frames j and k, when

referred to Frame i. By projecting on Frame j the distance vector of the origin
of Frame k from Frame j, the following constraint has to be imposed:

Rj
i (q

′)
(
pi

j(q
′) − pi

k(q′′)
)

= [ 0 0 djk ]T (2.57)

where Rj
i = RiT

j denotes the orientation of Frame i with respect to Frame j.
At this point, if Joint j + 1 is revolute, then djk is a fixed offset along axis zj ;
hence, the three equalities of (2.57) fully describe the position constraint. If,
however, Joint j + 1 is prismatic, then djk varies. Consequently, only the first
two equalities of (2.57) describe the position constraint, i.e.,[

xiT
j (q′)

yiT
j (q′)

] (
pi

j(q
′) − pi

k(q′′)
)

=
[

0
0

]
(2.58)

where Ri
j = [xi

j yi
j zi

j ].
In summary, if Joint j + 1 is revolute the constraints are{

Rj
i (q

′)
(
pi

j(q
′) − pi

k(q′′)
)

= [ 0 0 djk ]T

zi
j(q

′) = zi
k(q′′),

(2.59)

whereas if Joint j + 1 is prismatic the constraints are⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

xiT
j (q′)

yiT
j (q′)

] (
pi

j(q
′) − pi

k(q′′)
)

=
[

0
0

]
zi

j(q
′) = zi

k(q′′)

xiT
j (q′)xi

k(q′′) = cosϑjk.

(2.60)
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In either case, there are six equalities that must be satisfied. Those should be
solved for a reduced number of independent joint variables to be keenly chosen
among the components of q′ and q′′ which characterize the DOFs of the closed
chain. These are the natural candidates to be the actuated joints, while the
other joints in the chain (including the cut joint) are typically not actuated.
Such independent variables, together with the remaining joint variables not
involved in the above analysis, constitute the joint vector q that allows the
direct kinematics equation to be computed as

T 0
n(q) = A0

i A
i
jA

j
n, (2.61)

where the sequence of successive transformations after the closure of the chain
has been conventionally resumed from Frame j.

In general, there is no guarantee to solve the constraints in closed form
unless the manipulator has a simple kinematic structure. In other words, for
a given manipulator with a specific geometry, e.g., a planar structure, some of
the above equalities may become dependent. Hence, the number of indepen-
dent equalities is less than six and it should likely be easier to solve them.

To conclude, it is worth sketching the operating form of the procedure to
compute the direct kinematics function for a closed-chain manipulator using
the Denavit–Hartenberg convention.

1. In the closed chain, select one joint that is not actuated. Assume that the
joint is cut open so as to obtain an open chain in a tree structure.

2. Compute the homogeneous transformations according to DH convention.
3. Find the equality constraints for the two frames connected by the cut joint.
4. Solve the constraints for a reduced number of joint variables.
5. Express the homogeneous transformations in terms of the above joint vari-

ables and compute the direct kinematics function by composing the various
transformations from the base frame to the end-effector frame.

2.9 Kinematics of Typical Manipulator Structures

This section contains several examples of computation of the direct kinemat-
ics function for typical manipulator structures that are often encountered in
industrial robots.

With reference to the schematic representation of the kinematic chain,
manipulators are usually illustrated in postures where the joint variables, de-
fined according to the DH convention, are different from zero; such values
might differ from the null references utilized for robot manipulator program-
ming. Hence, it will be necessary to sum constant contributions (offsets) to
the values of the joint variables measured by the robot sensory system, so as
to match the references.
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Fig. 2.20. Three-link planar arm

2.9.1 Three-link Planar Arm

Consider the three-link planar arm in Fig. 2.20, where the link frames have
been illustrated. Since the revolute axes are all parallel, the simplest choice
was made for all axes xi along the direction of the relative links (the direction
of x0 is arbitrary) and all lying in the plane (x0, y0). In this way, all the
parameters di are null and the angles between the axes xi directly provide the
joint variables. The DH parameters are specified in Table 2.1.

Table 2.1. DH parameters for the three-link planar arm

Link ai αi di ϑi

1 a1 0 0 ϑ1

2 a2 0 0 ϑ2

3 a3 0 0 ϑ3

Since all joints are revolute, the homogeneous transformation matrix de-
fined in (2.52) has the same structure for each joint, i.e.,

Ai−1
i (ϑi) =

⎡⎢⎣
ci −si 0 aici

si ci 0 aisi

0 0 1 0
0 0 0 1

⎤⎥⎦ i = 1, 2, 3. (2.62)
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Fig. 2.21. Parallelogram arm

Computation of the direct kinematics function as in (2.50) yields

T 0
3(q) = A0

1A
1
2A

2
3 =

⎡⎢⎣
c123 −s123 0 a1c1 + a2c12 + a3c123
s123 c123 0 a1s1 + a2s12 + a3s123

0 0 1 0
0 0 0 1

⎤⎥⎦ (2.63)

where q = [ϑ1 ϑ2 ϑ3 ]T . Notice that the unit vector z0
3 of Frame 3 is aligned

with z0 = [ 0 0 1 ]T , in view of the fact that all revolute joints are parallel
to axis z0. Obviously, pz = 0 and all three joints concur to determine the
end-effector position in the plane of the structure. It is worth pointing out
that Frame 3 does not coincide with the end-effector frame (Fig. 2.13), since
the resulting approach unit vector is aligned with x0

3 and not with z0
3. Thus,

assuming that the two frames have the same origin, the constant transforma-
tion

T 3
e =

⎡⎢⎣
0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

⎤⎥⎦ .

is needed, having taken n aligned with z0.

2.9.2 Parallelogram Arm

Consider the parallelogram arm in Fig. 2.21. A closed chain occurs where the
first two joints connect Link 1′ and Link 1′′ to Link 0, respectively. Joint 4 was
selected as the cut joint, and the link frames have been established accordingly.
The DH parameters are specified in Table 2.2, where a1′ = a3′ and a2′ = a1′′

in view of the parallelogram structure.
Notice that the parameters for Link 4 are all constant. Since the joints

are revolute, the homogeneous transformation matrix defined in (2.52) has
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Table 2.2. DH parameters for the parallelogram arm

Link ai αi di ϑi

1′ a1′ 0 0 ϑ1′

2′ a2′ 0 0 ϑ2′

3′ a3′ 0 0 ϑ3′

1′′ a1′′ 0 0 ϑ1′′

4 a4 0 0 0

the same structure for each joint, i.e., as in (2.62) for Joints 1′, 2′, 3′ and 1′′.
Therefore, the coordinate transformations for the two branches of the tree are
respectively:

A0
3′(q′)=A0

1′A1′
2′A2′

3′ =

⎡⎢⎣
c1′2′3′ −s1′2′3′ 0 a1′c1′ + a2′c1′2′ + a3′c1′2′3′

s1′2′3′ c1′2′3′ 0 a1′s1′ + a2′s1′2′ + a3′s1′2′3′

0 0 1 0
0 0 0 1

⎤⎥⎦
where q′ = [ϑ1′ ϑ2′ ϑ3′ ]T , and

A0
1′′(q′′) =

⎡⎢⎣
c1′′ −s1′′ 0 a1′′c1′′

s1′′ c1′′ 0 a1′′s1′′

0 0 1 0
0 0 0 1

⎤⎥⎦
where q′′ = ϑ1′′ . To complete, the constant homogeneous transformation for
the last link is

A3′
4 =

⎡⎢⎣
1 0 0 a4

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ .

With reference to (2.59), the position constraints are (d3′1′′ = 0)

R3′
0 (q′)

(
p0

3′(q′) − p0
1′′(q′′)

)
=

⎡⎣ 0
0
0

⎤⎦
while the orientation constraints are satisfied independently of q′ and q′′. Since
a1′ = a3′ and a2′ = a1′′ , two independent constraints can be extracted, i.e.,

a1′(c1′ + c1′2′3′) + a1′′(c1′2′ − c1′′) = 0
a1′(s1′ + s1′2′3′) + a1′′(s1′2′ − s1′′) = 0.

In order to satisfy them for any choice of a1′ and a1′′ , it must be

ϑ2′ = ϑ1′′ − ϑ1′

ϑ3′ = π − ϑ2′ = π − ϑ1′′ + ϑ1′
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Therefore, the vector of joint variables is q = [ϑ1′ ϑ1′′ ]T . These joints are
natural candidates to be the actuated joints.10 Substituting the expressions
of ϑ2′ and ϑ3′ into the homogeneous transformation A0

3′ and computing the
direct kinematics function as in (2.61) yields

T 0
4(q) = A0

3′(q)A3′
4 =

⎡⎢⎣
−c1′ s1′ 0 a1′′c1′′ − a4c1′

−s1′ −c1′ 0 a1′′s1′′ − a4s1′

0 0 1 0
0 0 0 1

⎤⎥⎦ . (2.64)

A comparison between (2.64) and (2.49) reveals that the parallelogram arm is
kinematically equivalent to a two-link planar arm. The noticeable difference,
though, is that the two actuated joints — providing the DOFs of the structure
— are located at the base. This will greatly simplify the dynamic model of
the structure, as will be seen in Sect. 7.3.3.

2.9.3 Spherical Arm

Consider the spherical arm in Fig. 2.22, where the link frames have been
illustrated. Notice that the origin of Frame 0 was located at the intersection
of z0 with z1 so that d1 = 0; analogously, the origin of Frame 2 was located
at the intersection between z1 and z2. The DH parameters are specified in
Table 2.3.

Table 2.3. DH parameters for the spherical arm

Link ai αi di ϑi

1 0 −π/2 0 ϑ1

2 0 π/2 d2 ϑ2

3 0 0 d3 0

The homogeneous transformation matrices defined in (2.52) are for the
single joints:

A0
1(ϑ1) =

⎡⎢⎣
c1 0 −s1 0
s1 0 c1 0
0 −1 0 0
0 0 0 1

⎤⎥⎦ A1
2(ϑ2) =

⎡⎢⎣
c2 0 s2 0
s2 0 −c2 0
0 1 0 d2

0 0 0 1

⎤⎥⎦

A2
3(d3) =

⎡⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1

⎤⎥⎦ .

10 Notice that it is not possible to solve (2.64) for ϑ2′ and ϑ3′ since they are con-
strained by the condition ϑ2′ + ϑ3′ = π.
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Fig. 2.22. Spherical arm

Computation of the direct kinematics function as in (2.50) yields

T 0
3(q) = A0

1A
1
2A

2
3 =

⎡⎢⎣
c1c2 −s1 c1s2 c1s2d3 − s1d2

s1c2 c1 s1s2 s1s2d3 + c1d2

−s2 0 c2 c2d3

0 0 0 1

⎤⎥⎦ (2.65)

where q = [ϑ1 ϑ2 d3 ]T . Notice that the third joint does not obviously
influence the rotation matrix. Further, the orientation of the unit vector y0

3

is uniquely determined by the first joint, since the revolute axis of the second
joint z1 is parallel to axis y3. Different from the previous structures, in this
case Frame 3 can represent an end-effector frame of unit vectors (ne, se,ae),
i.e., T 3

e = I4.

2.9.4 Anthropomorphic Arm

Consider the anthropomorphic arm in Fig. 2.23. Notice how this arm corre-
sponds to a two-link planar arm with an additional rotation about an axis
of the plane. In this respect, the parallelogram arm could be used in lieu of
the two-link planar arm, as found in some industrial robots with an anthro-
pomorphic structure.

The link frames have been illustrated in the figure. As for the previous
structure, the origin of Frame 0 was chosen at the intersection of z0 with z1

(d1 = 0); further, z1 and z2 are parallel and the choice of axes x1 and x2

was made as for the two-link planar arm. The DH parameters are specified in
Table 2.4.
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Fig. 2.23. Anthropomorphic arm

Table 2.4. DH parameters for the anthropomorphic arm

Link ai αi di ϑi

1 0 π/2 0 ϑ1

2 a2 0 0 ϑ2

3 a3 0 0 ϑ3

The homogeneous transformation matrices defined in (2.52) are for the
single joints:

A0
1(ϑ1) =

⎡⎢⎣
c1 0 s1 0
s1 0 −c1 0
0 1 0 0
0 0 0 1

⎤⎥⎦

Ai−1
i (ϑi) =

⎡⎢⎣
ci −si 0 aici

si ci 0 aisi

0 0 1 0
0 0 0 1

⎤⎥⎦ i = 2, 3.

Computation of the direct kinematics function as in (2.50) yields

T 0
3(q) = A0

1A
1
2A

2
3 =

⎡⎢⎣
c1c23 −c1s23 s1 c1(a2c2 + a3c23)
s1c23 −s1s23 −c1 s1(a2c2 + a3c23)
s23 c23 0 a2s2 + a3s23

0 0 0 1

⎤⎥⎦ (2.66)

where q = [ϑ1 ϑ2 ϑ3 ]T . Since z3 is aligned with z2, Frame 3 does not coin-
cide with a possible end-effector frame as in Fig. 2.13, and a proper constant
transformation would be needed.
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Fig. 2.24. Spherical wrist

2.9.5 Spherical Wrist

Consider a particular type of structure consisting just of the wrist of Fig. 2.24.
Joint variables were numbered progressively starting from 4, since such a
wrist is typically thought of as mounted on a three-DOF arm of a six-DOF
manipulator. It is worth noticing that the wrist is spherical since all revolute
axes intersect at a single point. Once z3, z4, z5 have been established, and x3

has been chosen, there is an indeterminacy on the directions of x4 and x5.
With reference to the frames indicated in Fig. 2.24, the DH parameters are
specified in Table 2.5.

Table 2.5. DH parameters for the spherical wrist

Link ai αi di ϑi

4 0 −π/2 0 ϑ4

5 0 π/2 0 ϑ5

6 0 0 d6 ϑ6

The homogeneous transformation matrices defined in (2.52) are for the
single joints:

A3
4(ϑ4) =

⎡⎢⎣
c4 0 −s4 0
s4 0 c4 0
0 −1 0 0
0 0 0 1

⎤⎥⎦ A4
5(ϑ5) =

⎡⎢⎣
c5 0 s5 0
s5 0 −c5 0
0 1 0 0
0 0 0 1

⎤⎥⎦

A5
6(ϑ6) =

⎡⎢⎣
c6 −s6 0 0
s6 c6 0 0
0 0 1 d6

0 0 0 1

⎤⎥⎦ .
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Fig. 2.25. Stanford manipulator

Computation of the direct kinematics function as in (2.50) yields

T 3
6(q) = A3

4A
4
5A

5
6 =

⎡⎢⎣
c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5 c4s5d6

s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5 s4s5d6

−s5c6 s5s6 c5 c5d6

0 0 0 1

⎤⎥⎦
(2.67)

where q = [ϑ4 ϑ5 ϑ6 ]T . Notice that, as a consequence of the choice made
for the coordinate frames, the block matrix R3

6 that can be extracted from T 3
6

coincides with the rotation matrix of Euler angles (2.18) previously derived,
that is, ϑ4, ϑ5, ϑ6 constitute the set of ZYZ angles with respect to the reference
frame O3–x3y3z3. Moreover, the unit vectors of Frame 6 coincide with the unit
vectors of a possible end-effector frame according to Fig. 2.13.

2.9.6 Stanford Manipulator

The so-called Stanford manipulator is composed of a spherical arm and a
spherical wrist (Fig. 2.25). Since Frame 3 of the spherical arm coincides with
Frame 3 of the spherical wrist, the direct kinematics function can be obtained
via simple composition of the transformation matrices (2.65), (2.67) of the
previous examples, i.e.,

T 0
6 = T 0

3T
3
6 =

⎡⎢⎣n0 s0 a0 p0

0 0 0 1

⎤⎥⎦ .
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Carrying out the products yields

p0
6 =

⎡⎣ c1s2d3 − s1d2 +
(
c1(c2c4s5 + s2c5) − s1s4s5

)
d6

s1s2d3 + c1d2 +
(
s1(c2c4s5 + s2c5) + c1s4s5

)
d6

c2d3 + (−s2c4s5 + c2c5)d6

⎤⎦ (2.68)

for the end-effector position, and

n0
6 =

⎡⎣ c1
(
c2(c4c5c6 − s4s6) − s2s5c6

)− s1(s4c5c6 + c4s6)
s1

(
c2(c4c5c6 − s4s6) − s2s5c6

)
+ c1(s4c5c6 + c4s6)

−s2(c4c5c6 − s4s6) − c2s5c6

⎤⎦
s0
6 =

⎡⎣ c1
(−c2(c4c5s6 + s4c6) + s2s5s6

)− s1(−s4c5s6 + c4c6)
s1

(−c2(c4c5s6 + s4c6) + s2s5s6

)
+ c1(−s4c5s6 + c4c6)

s2(c4c5s6 + s4c6) + c2s5s6

⎤⎦ (2.69)

a0
6 =

⎡⎣ c1(c2c4s5 + s2c5) − s1s4s5

s1(c2c4s5 + s2c5) + c1s4s5

−s2c4s5 + c2c5

⎤⎦
for the end-effector orientation.

A comparison of the vector p0
6 in (2.68) with the vector p0

3 in (2.65) relative
to the sole spherical arm reveals the presence of additional contributions due
to the choice of the origin of the end-effector frame at a distance d6 from
the origin of Frame 3 along the direction of a0

6. In other words, if it were
d6 = 0, the position vector would be the same. This feature is of fundamental
importance for the solution of the inverse kinematics for this manipulator, as
will be seen later.

2.9.7 Anthropomorphic Arm with Spherical Wrist

A comparison between Fig. 2.23 and Fig. 2.24 reveals that the direct kinemat-
ics function cannot be obtained by multiplying the transformation matrices
T 0

3 and T 3
6, since Frame 3 of the anthropomorphic arm cannot coincide with

Frame 3 of the spherical wrist.
Direct kinematics of the entire structure can be obtained in two ways.

One consists of interposing a constant transformation matrix between T 0
3 and

T 3
6 which allows the alignment of the two frames. The other refers to the

Denavit–Hartenberg operating procedure with the frame assignment for the
entire structure illustrated in Fig. 2.26. The DH parameters are specified in
Table 2.6.

Since Rows 3 and 4 differ from the corresponding rows of the tables for
the two single structures, the relative homogeneous transformation matrices
A2

3 and A3
4 have to be modified into

A2
3(ϑ3) =

⎡⎢⎣
c3 0 s3 0
s3 0 −c3 0
0 1 0 0
0 0 0 1

⎤⎥⎦ A3
4(ϑ4) =

⎡⎢⎣
c4 0 −s4 0
s4 0 c4 0
0 −1 0 d4

0 0 0 1

⎤⎥⎦

78 2 Kinematics

Fig. 2.26. Anthropomorphic arm with spherical wrist

Table 2.6. DH parameters for the anthropomorphic arm with spherical wrist

Link ai αi di ϑi

1 0 π/2 0 ϑ1

2 a2 0 0 ϑ2

3 0 π/2 0 ϑ3

4 0 −π/2 d4 ϑ4

5 0 π/2 0 ϑ5

6 0 0 d6 ϑ6

while the other transformation matrices remain the same. Computation of the
direct kinematics function leads to expressing the position and orientation of
the end-effector frame as:

p0
6 =

⎡⎣ a2c1c2 + d4c1s23 + d6

(
c1(c23c4s5 + s23c5) + s1s4s5

)
a2s1c2 + d4s1s23 + d6

(
s1(c23c4s5 + s23c5) − c1s4s5

)
a2s2 − d4c23 + d6(s23c4s5 − c23c5)

⎤⎦ (2.70)

and

n0
6 =

⎡⎣ c1
(
c23(c4c5c6 − s4s6) − s23s5c6

)
+ s1(s4c5c6 + c4s6)

s1

(
c23(c4c5c6 − s4s6) − s23s5c6

)− c1(s4c5c6 + c4s6)
s23(c4c5c6 − s4s6) + c23s5c6

⎤⎦
s0
6 =

⎡⎣ c1
(−c23(c4c5s6 + s4c6) + s23s5s6

)
+ s1(−s4c5s6 + c4c6)

s1

(−c23(c4c5s6 + s4c6) + s23s5s6

)− c1(−s4c5s6 + c4c6)
−s23(c4c5s6 + s4c6) − c23s5s6

⎤⎦ (2.71)

a0
6 =

⎡⎣ c1(c23c4s5 + s23c5) + s1s4s5

s1(c23c4s5 + s23c5) − c1s4s5

s23c4s5 − c23c5

⎤⎦ .
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Fig. 2.27. DLR manipulator

By setting d6 = 0, the position of the wrist axes intersection is obtained. In
that case, the vector p0 in (2.70) corresponds to the vector p0

3 for the sole
anthropomorphic arm in (2.66), because d4 gives the length of the forearm
(a3) and axis x3 in Fig. 2.26 is rotated by π/2 with respect to axis x3 in
Fig. 2.23.

2.9.8 DLR Manipulator

Consider the DLR manipulator, whose development is at the basis of the real-
ization of the robot in Fig. 1.30; it is characterized by seven DOFs and as such
it is inherently redundant. This manipulator has two possible configurations
for the outer three joints (wrist). With reference to a spherical wrist similar to
that introduced in Sect. 2.9.5, the resulting kinematic structure is illustrated
in Fig. 2.27, where the frames attached to the links are evidenced.

As in the case of the spherical arm, notice that the origin of Frame 0 has
been chosen so as to zero d1. The DH parameters are specified in Table 2.7.

Table 2.7. DH parameters for the DLR manipulator

Link ai αi di ϑi

1 0 π/2 0 ϑ1

2 0 π/2 0 ϑ2

3 0 π/2 d3 ϑ3

4 0 π/2 0 ϑ4

5 0 π/2 d5 ϑ5

6 0 π/2 0 ϑ6

7 0 0 d7 ϑ7

80 2 Kinematics

The generic homogeneous transformation matrix defined in (2.52) is (αi =
π/2)

Ai−1
i =

⎡⎢⎢⎣
ci 0 si 0
si 0 −ci 0
0 1 0 di

0 0 0 1

⎤⎥⎥⎦ i = 1, . . . , 6 (2.72)

while, since α7 = 0, it is

A6
7 =

⎡⎢⎢⎣
c7 −s7 0 0
s7 c7 0 0
0 0 1 d7

0 0 0 1

⎤⎥⎥⎦ . (2.73)

The direct kinematics function, computed as in (2.50), leads to the following
expressions for the end-effector frame

p0
7 =

⎡⎣ d3xd3 + d5xd5 + d7xd7

d3yd3 + d5yd5 + d7yd7

d3zd3 + d5zd5 + d7zd7

⎤⎦ (2.74)

with

xd3 = c1s2

xd5 = c1(c2c3s4 − s2c4) + s1s3s4

xd7 = c1(c2k1 + s2k2) + s1k3

yd3 = s1s2

yd5 = s1(c2c3s4 − s2c4) − c1s3s4

yd7 = s1(c2k1 + s2k2) − c1k3

zd3 = −c2

zd5 = c2c4 + s2c3s4

zd7 = s2(c3(c4c5s6 − s4c6) + s3s5s6) − c2k2,

where

k1 = c3(c4c5s6 − s4c6) + s3s5s6

k2 = s4c5s6 + c4c6

k3 = s3(c4c5s6 − s4c6) − c3s5s6.

Furthermore, the end-effector frame orientation can be derived as

n0
7 =

⎡⎣ ((xac5 + xcs5)c6 + xbs6)c7 + (xas5 − xcc5)s7

((yac5 + ycs5)c6 + ybs6)c7 + (yas5 − ycc5)s7

(zac6 + zcs6)c7 + zbs7

⎤⎦
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s0
7 =

⎡⎣−((xac5 + xcs5)c6 + xbs6)s7 + (xas5 − xcc5)c7
−((yac5 + ycs5)c6 + ybs6)s7 + (yas5 − ycc5)c7

−(zac6 + zcs6)s7 + zbc7

⎤⎦ (2.75)

a0
7 =

⎡⎣ (xac5 + xcs5)s6 − xbc6
(yac5 + ycs5)s6 − ybc6

zas6 − zcc6

⎤⎦ ,

where

xa = (c1c2c3 + s1s3)c4 + c1s2s4

xb = (c1c2c3 + s1s3)s4 − c1s2c4

xc = c1c2s3 − s1c3

ya = (s1c2c3 − c1s3)c4 + s1s2s4

yb = (s1c2c3 − c1s3)s4 − s1s2c4

yc = s1c2s3 + c1c3

za = (s2c3c4 − c2s4)c5 + s2s3s5

zb = (s2c3s4 + c2c4)s5 − s2s3c5

zc = s2c3s4 + c2c4.
(2.76)

As in the case of the anthropomorphic arm with spherical wrist, it occurs
that Frame 4 cannot coincide with the base frame of the wrist.

Finally, consider the possibility to mount a different type of spherical wrist,
where Joint 7 is so that α7 = π/2. In such a case, the computation of the
direct kinematics function changes, since the seventh row of the kinematic
parameters table changes. In particular, notice that, since d7 = 0, a7 �= 0,
then

A6
7 =

⎡⎢⎢⎣
c7 0 s7 a7c7
s7 0 −c7 a7s7

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (2.77)

It follows, however, that Frame 7 does not coincide with the end-effector
frame, as already discussed for the three-link planar arm, since the approach
unit vector a0

7 is aligned with x7.

2.9.9 Humanoid Manipulator

The term humanoid refers to a robot showing a kinematic structure similar to
that of the human body. It is commonly thought that the most relevant fea-
ture of humanoid robots is biped locomotion. However, in detail, a humanoid
manipulator refers to an articulated structure with a kinematics analogous to
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Fig. 2.28. Humanoid manipulator

that of the human body upper part: torso, arms, end-effectors similar to hu-
man hands and a ‘head’ which, eventually, includes an artificial vision system
— see Chap. 10.

For the humanoid manipulator in Fig. 1.33, it is worth noticing the pres-
ence of two end-effectors (where the ‘hands’ are mounted), while the arms
consist of two DLR manipulators, introduced in the previous section, each
with seven DOFs. In particular, consider the configuration where the last
joint is so that α7 = π/2.

To simplify, the kinematic structure allowing the articulation of the robot’s
head in Fig. 1.33. The torso can be modelled as an anthropomorphic arm
(three DOFs), for a total of seventeen DOFs.

Further, a connecting device exists between the end-effector of the anthro-
pomorphic torso and the base frames of the two manipulators. Such device
permits keeping the ‘chest’ of the humanoid manipulator always orthogonal to
the ground. With reference to Fig. 2.28, this device is represented by a further
joint, located at the end of the torso. Hence, the corresponding parameter ϑ4

does not constitute a DOF, yet it varies so as to compensate Joints 2 and 3
rotations of the anthropomorphic torso.

To compute the direct kinematics function, it is possible to resort to a DH
parameters table for each of the two tree kinematic structures, which can be
identified from the base of the manipulator to each of the two end-effectors.
Similarly to the case of mounting a spherical wrist onto an anthropomorphic
arm, this implies the change of some rows of the transformation matrices of



2.10 Joint Space and Operational Space 83

those manipulators, described in the previous sections, constituting the torso
and the arms.

Alternatively, it is possible to consider intermediate transformation matri-
ces between the relevant structures. In detail, as illustrated in Fig. 2.28, if t
denotes the frame attached to the torso, r and l the base frames, respectively,
of the right arm and the left arm, and rh and lh the frames attached to the
two hands (end-effectors), it is possible to compute for the right arm and the
left arm, respectively:

T 0
rh = T 0

3 T 3
t T t

rT
r
rh (2.78)

T 0
lh = T 0

3 T 3
t T t

lT
l
lh (2.79)

where the matrix T 3
t describes the transformation imposed by the motion of

Joint 4 (dashed line in Fig. 2.28), located at the end-effector of the torso.
Frame 4 coincides with Frame t in Fig. 2.27. In view of the property of pa-
rameter ϑ4, it is ϑ4 = −ϑ2 − ϑ3, and thus

T 3
t =

⎡⎢⎣
c23 s23 0 0
−s23 c23 0 0

0 0 1 0
0 0 0 1

⎤⎥⎦ .

The matrix T 0
3 is given by (2.66), whereas the matrices T t

r and T t
l relating

the torso end-effector frame to the base frames of the two manipulators have
constant values. With reference to Fig. 2.28, the elements of these matrices
depend on the angle β and on the distances between the origin of Frame t
and the origins of Frames r and l. Finally, the expressions of the matrices T r

rh

and T l
lh must be computed by considering the change in the seventh row of

the DH parameters table of the DLR manipulator, so as to account for the
different kinematic structure of the wrist (see Problem 2.14).

2.10 Joint Space and Operational Space

As described in the previous sections, the direct kinematics equation of a
manipulator allows the position and orientation of the end-effector frame to
be expressed as a function of the joint variables with respect to the base frame.

If a task is to be specified for the end-effector, it is necessary to assign the
end-effector position and orientation, eventually as a function of time (tra-
jectory). This is quite easy for the position. On the other hand, specifying
the orientation through the unit vector triplet (ne, se,ae)11 is quite difficult,
since their nine components must be guaranteed to satisfy the orthonormal-
ity constraints imposed by (2.4) at each time instant. This problem will be
resumed in Chap. 4.
11 To simplify, the indication of the reference frame in the superscript is omitted.
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The problem of describing end-effector orientation admits a natural so-
lution if one of the above minimal representations is adopted. In this case,
indeed, a motion trajectory can be assigned to the set of angles chosen to
represent orientation.

Therefore, the position can be given by a minimal number of coordinates
with regard to the geometry of the structure, and the orientation can be
specified in terms of a minimal representation (Euler angles) describing the
rotation of the end-effector frame with respect to the base frame. In this way,
it is possible to describe the end-effector pose by means of the (m×1) vector,
with m ≤ n,

xe =
[

pe

φe

]
(2.80)

where pe describes the end-effector position and φe its orientation.
This representation of position and orientation allows the description of an

end-effector task in terms of a number of inherently independent parameters.
The vector xe is defined in the space in which the manipulator task is specified;
hence, this space is typically called operational space. On the other hand, the
joint space (configuration space) denotes the space in which the (n×1) vector
of joint variables

q =

⎡⎢⎣ q1
...
qn

⎤⎥⎦ , (2.81)

is defined; it is qi = ϑi for a revolute joint and qi = di for a prismatic
joint. Accounting for the dependence of position and orientation from the
joint variables, the direct kinematics equation can be written in a form other
than (2.50), i.e.,

xe = k(q). (2.82)

The (m× 1) vector function k(·) — nonlinear in general — allows computa-
tion of the operational space variables from the knowledge of the joint space
variables.

It is worth noticing that the dependence of the orientation components
of the function k(q) in (2.82) on the joint variables is not easy to express
except for simple cases. In fact, in the most general case of a six-dimensional
operational space (m = 6), the computation of the three components of the
function φe(q) cannot be performed in closed form but goes through the
computation of the elements of the rotation matrix, i.e., ne(q), se(q), ae(q).
The equations that allow the determination of the Euler angles from the triplet
of unit vectors ne, se, ae were given in Sect. 2.4.
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Example 2.5

Consider again the three-link planar arm in Fig. 2.20. The geometry of the structure
suggests that the end-effector position is determined by the two coordinates px and
py, while its orientation is determined by the angle φ formed by the end-effector with
the axis x0. Expressing these operational variables as a function of the joint variables,
the two position coordinates are given by the first two elements of the fourth column
of the homogeneous transformation matrix (2.63), while the orientation angle is
simply given by the sum of joint variables. In sum, the direct kinematics equation
can be written in the form

xe =

[
px

py

φ

]
= k(q) =

[
a1c1 + a2c12 + a3c123

a1s1 + a2s12 + a3s123

ϑ1 + ϑ2 + ϑ3

]
. (2.83)

This expression shows that three joint space variables allow specification of at most
three independent operational space variables. On the other hand, if orientation is
of no concern, it is xe = [ px py ]T and there is kinematic redundancy of DOFs
with respect to a pure positioning end-effector task; this concept will be dealt with
in detail afterwards.

2.10.1 Workspace

With reference to the operational space, an index of robot performance is
the so-called workspace; this is the region described by the origin of the end-
effector frame when all the manipulator joints execute all possible motions. It
is often customary to distinguish between reachable workspace and dexterous
workspace. The latter is the region that the origin of the end-effector frame
can describe while attaining different orientations, while the former is the
region that the origin of the end-effector frame can reach with at least one
orientation. Obviously, the dexterous workspace is a subspace of the reachable
workspace. A manipulator with less than six DOFs cannot take any arbitrary
position and orientation in space.

The workspace is characterized by the manipulator geometry and the me-
chanical joint limits. For an n-DOF manipulator, the reachable workspace is
the geometric locus of the points that can be achieved by considering the
direct kinematics equation for the sole position part, i.e.,

pe = pe(q) qim ≤ qi ≤ qiM i = 1, . . . , n,

where qim (qiM ) denotes the minimum (maximum) limit at Joint i. This vol-
ume is finite, closed, connected — pe(q) is a continuous function — and thus
is defined by its bordering surface. Since the joints are revolute or prismatic,
it is easy to recognize that this surface is constituted by surface elements of
planar, spherical, toroidal and cylindrical type. The manipulator workspace
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Fig. 2.29. Region of admissible configurations for a two-link arm

(without end-effector) is reported in the data sheet given by the robot manu-
facturer in terms of a top view and a side view. It represents a basic element
to evaluate robot performance for a desired application.

Example 2.6

Consider the simple two-link planar arm. If the mechanical joint limits are known,
the arm can attain all the joint space configurations corresponding to the points in
the rectangle in Fig. 2.29.

The reachable workspace can be derived via a graphical construction of the
image of the rectangle perimeter in the plane of the arm. To this purpose, it is
worth considering the images of the segments ab, bc, cd, da, ae, ef , fd. Along the
segments ab, bc, cd, ae, ef , fd a loss of mobility occurs due to a joint limit; a
loss of mobility occurs also along the segment ad because the arm and forearm are
aligned.12 Further, a change of the arm posture occurs at points a and d: for q2 > 0
the elbow-down posture is obtained, while for q2 < 0 the arm is in the elbow-up
posture.

In the plane of the arm, start drawing the arm in configuration A corresponding
to q1m and q2 = 0 (a); then, the segment ab describing motion from q2 = 0 to
q2M generates the arc AB; the subsequent arcs BC, CD, DA, AE, EF , FD are
generated in a similar way (Fig. 2.30). The external contour of the area CDAEFHC
delimits the requested workspace. Further, the area BCDAB is relative to elbow-
down postures while the area DAEFD is relative to elbow-up postures; hence, the
points in the area BADHB are reachable by the end-effector with both postures.

12 In the following chapter, it will be seen that this configuration characterizes a
kinematic singularity of the arm.
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Fig. 2.30. Workspace of a two-link planar arm

In a real manipulator, for a given set of joint variables, the actual val-
ues of the operational space variables deviate from those computed via direct
kinematics. The direct kinematics equation has indeed a dependence from the
DH parameters which is not explicit in (2.82). If the mechanical dimensions
of the structure differ from the corresponding parameter of the table because
of mechanical tolerances, a deviation arises between the position reached in
the assigned posture and the position computed via direct kinematics. Such a
deviation is defined accuracy ; this parameter attains typical values below one
millimeter and depends on the structure as well as on manipulator dimen-
sions. Accuracy varies with the end-effector position in the workspace and it
is a relevant parameter when robot programming oriented environments are
adopted, as will be seen in the last chapter.

Another parameter that is usually listed in the performance data sheet of
an industrial robot is repeatability which gives a measure of the manipulator’s
ability to return to a previously reached position; this parameter is relevant
for programming an industrial robot by the teaching–by–showing technique
which will be presented in Chap. 6. Repeatability depends not only on the
characteristics of the mechanical structure but also on the transducers and
controller; it is expressed in metric units and is typically smaller than accuracy.
For instance, for a manipulator with a maximum reach of 1.5 m, accuracy
varies from 0.2 to 1 mm in the workspace, while repeatability varies from 0.02
to 0.2 mm.

2.10.2 Kinematic Redundancy

A manipulator is termed kinematically redundant when it has a number of
DOFs which is greater than the number of variables that are necessary to
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describe a given task. With reference to the above-defined spaces, a manipu-
lator is intrinsically redundant when the dimension of the operational space is
smaller than the dimension of the joint space (m < n). Redundancy is, any-
how, a concept relative to the task assigned to the manipulator; a manipulator
can be redundant with respect to a task and nonredundant with respect to
another. Even in the case of m = n, a manipulator can be functionally redun-
dant when only a number of r components of operational space are of concern
for the specific task, with r < m.

Consider again the three-DOF planar arm of Sect. 2.9.1. If only the end-
effector position (in the plane) is specified, that structure presents a functional
redundancy (n = m = 3, r = 2); this is lost when also the end-effector
orientation in the plane is specified (n = m = r = 3). On the other hand, a
four-DOF planar arm is intrinsically redundant (n = 4, m = 3).

Yet, take the typical industrial robot with six DOFs; such manipulator
is not intrinsically redundant (n = m = 6), but it can become functionally
redundant with regard to the task to execute. Thus, for instance, in a laser-
cutting task a functional redundancy will occur since the end-effector rotation
about the approach direction is irrelevant to completion of the task (r = 5).

At this point, a question should arise spontaneously: Why to intentionally
utilize a redundant manipulator? The answer is to recognize that redundancy
can provide the manipulator with dexterity and versatility in its motion. The
typical example is constituted by the human arm that has seven DOFs: three
in the shoulder, one in the elbow and three in the wrist, without considering
the DOFs in the fingers. This manipulator is intrinsically redundant; in fact,
if the base and the hand position and orientation are both fixed — requiring
six DOFs — the elbow can be moved, thanks to the additional available DOF.
Then, for instance, it is possible to avoid obstacles in the workspace. Further,
if a joint of a redundant manipulator reaches its mechanical limit, there might
be other joints that allow execution of the prescribed end-effector motion.

A formal treatment of redundancy will be presented in the following chap-
ter.

2.11 Kinematic Calibration

The Denavit–Hartenberg parameters for direct kinematics need to be com-
puted as precisely as possible in order to improve manipulator accuracy. Kine-
matic calibration techniques are devoted to finding accurate estimates of DH
parameters from a series of measurements on the manipulator’s end-effector
pose. Hence, they do not allow direct measurement of the geometric parame-
ters of the structure.

Consider the direct kinematics equation in (2.82) which can be rewritten
by emphasizing the dependence of the operational space variables on the fixed
DH parameters, besides the joint variables. Let a = [ a1 . . . an ]T , α =
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[α1 . . . αn ]T , d = [ d1 . . . dn ]T , and ϑ = [ θ1 . . . θn ]T denote the
vectors of DH parameters for the whole structure; then (2.82) becomes

xe = k(a,α,d,ϑ). (2.84)

The manipulator’s end-effector pose should be measured with high precision
for the effectiveness of the kinematic calibration procedure. To this purpose
a mechanical apparatus can be used that allows the end-effector to be con-
strained at given poses with a priori known precision. Alternatively, direct
measurement systems of object position and orientation in the Cartesian space
can be used which employ triangulation techniques.

Let xm be the measured pose and xn the nominal pose that can be com-
puted via (2.84) with the nominal values of the parameters a, α, d, ϑ. The
nominal values of the fixed parameters are set equal to the design data of the
mechanical structure, whereas the nominal values of the joint variables are set
equal to the data provided by the position transducers at the given manipula-
tor posture. The deviation Δx = xm −xn gives a measure of accuracy at the
given posture. On the assumption of small deviations, at first approximation,
it is possible to derive the following relation from (2.84):

Δx =
∂k

∂a
Δa +

∂k

∂α
Δα +

∂k

∂d
Δd +

∂k

∂ϑ
Δϑ (2.85)

where Δa, Δα, Δd, Δϑ denote the deviations between the values of the
parameters of the real structure and the nominal ones. Moreover, ∂k/∂a,
∂k/∂α, ∂k/∂d, ∂k/∂ϑ denote the (m × n) matrices whose elements are the
partial derivatives of the components of the direct kinematics function with
respect to the single parameters.13

Group the parameters in the (4n × 1) vector ζ = [aT αT dT ϑT ]T .
Let Δζ = ζm−ζn denote the parameter variations with respect to the nominal
values, and Φ = [ ∂k/∂a ∂k/∂α ∂k/∂d ∂k/∂ϑ ] the (m× 4n) kinematic
calibration matrix computed for the nominal values of the parameters ζn.
Then (2.85) can be compactly rewritten as

Δx = Φ(ζn)Δζ. (2.86)

It is desired to compute Δζ starting from the knowledge of ζn,xn and the
measurement of xm. Since (2.86) constitutes a system of m equations into
4n unknowns with m < 4n, a sufficient number of end-effector pose measure-
ments has to be performed so as to obtain a system of at least 4n equations.
Therefore, if measurements are made for a number of l poses, (2.86) yields

Δx̄ =

⎡⎣Δx1
...

Δxl

⎤⎦ =

⎡⎣Φ1
...

Φl

⎤⎦Δζ = Φ̄Δζ. (2.87)

13 These matrices are the Jacobians of the transformations between the parameter
space and the operational space.
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As regards the nominal values of the parameters needed for the computation
of the matrices Φi, it should be observed that the geometric parameters are
constant whereas the joint variables depend on the manipulator configuration
at pose i.

In order to avoid ill-conditioning of matrix Φ̄, it is advisable to choose l
so that lm � 4n and then solve (2.87) with a least-squares technique; in this
case the solution is of the form

Δζ = (Φ̄T
Φ̄)−1Φ̄

T
Δx̄ (2.88)

where (Φ̄T
Φ̄)−1Φ̄

T is the left pseudo-inverse matrix of Φ̄.14 By computing Φ̄
with the nominal values of the parameters ζn, the first parameter estimate is
given by

ζ′ = ζn + Δζ. (2.89)

This is a nonlinear parameter estimate problem and, as such, the procedure
should be iterated until Δζ converges within a given threshold. At each itera-
tion, the calibration matrix Φ̄ is to be updated with the parameter estimates
ζ′ obtained via (2.89) at the previous iteration. In a similar manner, the de-
viation Δx̄ is to be computed as the difference between the measured values
for the l end-effector poses and the corresponding poses computed by the di-
rect kinematics function with the values of the parameters at the previous
iteration. As a result of the kinematic calibration procedure, more accurate
estimates of the real manipulator geometric parameters as well as possible
corrections to make on the joint transducers measurements are obtained.

Kinematic calibration is an operation that is performed by the robot manu-
facturer to guarantee the accuracy reported in the data sheet. There is another
kind of calibration that is performed by the robot user which is needed for the
measurement system start-up to guarantee that the position transducers data
are consistent with the attained manipulator posture. For instance, in the
case of incremental (nonabsolute) position transducers, such calibration con-
sists of taking the mechanical structure into a given reference posture (home)
and initializing the position transducers with the values at that posture.

2.12 Inverse Kinematics Problem

The direct kinematics equation, either in the form (2.50) or in the form (2.82),
establishes the functional relationship between the joint variables and the end-
effector position and orientation. The inverse kinematics problem consists of
the determination of the joint variables corresponding to a given end-effector
position and orientation. The solution to this problem is of fundamental im-
portance in order to transform the motion specifications, assigned to the end-
effector in the operational space, into the corresponding joint space motions
that allow execution of the desired motion.
14 See Sect. A.7 for the definition of the pseudo-inverse of a matrix.
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As regards the direct kinematics equation in (2.50), the end-effector po-
sition and rotation matrix are computed in a unique manner, once the joint
variables are known15. On the other hand, the inverse kinematics problem is
much more complex for the following reasons:

• The equations to solve are in general nonlinear, and thus it is not always
possible to find a closed-form solution.

• Multiple solutions may exist.
• Infinite solutions may exist, e.g., in the case of a kinematically redundant

manipulator.
• There might be no admissible solutions, in view of the manipulator kine-

matic structure.

The existence of solutions is guaranteed only if the given end-effector position
and orientation belong to the manipulator dexterous workspace.

On the other hand, the problem of multiple solutions depends not only on
the number of DOFs but also on the number of non-null DH parameters; in
general, the greater the number of non-null parameters, the greater the num-
ber of admissible solutions. For a six-DOF manipulator without mechanical
joint limits, there are in general up to 16 admissible solutions. Such occur-
rence demands some criterion to choose among admissible solutions (e.g., the
elbow-up/elbow-down case of Example 2.6). The existence of mechanical joint
limits may eventually reduce the number of admissible multiple solutions for
the real structure.

Computation of closed-form solutions requires either algebraic intuition to
find those significant equations containing the unknowns or geometric intu-
ition to find those significant points on the structure with respect to which
it is convenient to express position and/or orientation as a function of a re-
duced number of unknowns. The following examples will point out the ability
required to an inverse kinematics problem solver. On the other hand, in all
those cases when there are no — or it is difficult to find — closed-form so-
lutions, it might be appropriate to resort to numerical solution techniques;
these clearly have the advantage of being applicable to any kinematic struc-
ture, but in general they do not allow computation of all admissible solutions.
In the following chapter, it will be shown how suitable algorithms utilizing
the manipulator Jacobian can be employed to solve the inverse kinematics
problem.

2.12.1 Solution of Three-link Planar Arm

Consider the arm shown in Fig. 2.20 whose direct kinematics was given
in (2.63). It is desired to find the joint variables ϑ1, ϑ2, ϑ3 corresponding
to a given end-effector position and orientation.

15 In general, this cannot be said for (2.82) too, since the Euler angles are not
uniquely defined.

92 2 Kinematics

As already pointed out, it is convenient to specify position and orientation
in terms of a minimal number of parameters: the two coordinates px, py and
the angle φ with axis x0, in this case. Hence, it is possible to refer to the direct
kinematics equation in the form (2.83).

A first algebraic solution technique is illustrated below. Having specified
the orientation, the relation

φ = ϑ1 + ϑ2 + ϑ3 (2.90)

is one of the equations of the system to solve16. From (2.63) the following
equations can be obtained:

pWx = px − a3cφ = a1c1 + a2c12 (2.91)
pWy = py − a3sφ = a1s1 + a2s12 (2.92)

which describe the position of point W , i.e., the origin of Frame 2; this depends
only on the first two angles ϑ1 and ϑ2. Squaring and summing (2.91), (2.92)
yields

p2
Wx + p2

Wy = a2
1 + a2

2 + 2a1a2c2

from which

c2 =
p2

Wx + p2
Wy − a2

1 − a2
2

2a1a2
.

The existence of a solution obviously imposes that −1 ≤ c2 ≤ 1, otherwise
the given point would be outside the arm reachable workspace. Then, set

s2 = ±
√

1 − c22,

where the positive sign is relative to the elbow-down posture and the negative
sign to the elbow-up posture. Hence, the angle ϑ2 can be computed as

ϑ2 = Atan2(s2, c2).

Having determined ϑ2, the angle ϑ1 can be found as follows. Substituting
ϑ2 into (2.91), (2.92) yields an algebraic system of two equations in the two
unknowns s1 and c1, whose solution is

s1 =
(a1 + a2c2)pWy − a2s2pWx

p2
Wx + p2

Wy

c1 =
(a1 + a2c2)pWx + a2s2pWy

p2
Wx + p2

Wy

.

In analogy to the above, it is

ϑ1 = Atan2(s1, c1).
16 If φ is not specified, then the arm is redundant and there exist infinite solutions

to the inverse kinematics problem.
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Fig. 2.31. Admissible postures for a two-link planar arm

In the case when s2 = 0, it is obviously ϑ2 = 0, π; as will be shown in the
following, in such a posture the manipulator is at a kinematic singularity . Yet,
the angle ϑ1 can be determined uniquely, unless a1 = a2 and it is required
pWx = pWy = 0.

Finally, the angle ϑ3 is found from (2.90) as

ϑ3 = φ− ϑ1 − ϑ2.

An alternative geometric solution technique is presented below. As above,
the orientation angle is given as in (2.90) and the coordinates of the origin
of Frame 2 are computed as in (2.91), (2.92). The application of the cosine
theorem to the triangle formed by links a1, a2 and the segment connecting
points W and O gives

p2
Wx + p2

Wy = a2
1 + a2

2 − 2a1a2 cos (π − ϑ2);

the two admissible configurations of the triangle are shown in Fig. 2.31. Ob-
serving that cos (π − ϑ2) = −cosϑ2 leads to

c2 =
p2

Wx + p2
Wy − a2

1 − a2
2

2a1a2
.

For the existence of the triangle, it must be
√

p2
Wx + p2

Wy ≤ a1 + a2. This
condition is not satisfied when the given point is outside the arm reachable
workspace. Then, under the assumption of admissible solutions, it is

ϑ2 = ±cos−1(c2);

the elbow-up posture is obtained for ϑ2 ∈ (−π, 0) while the elbow-down pos-
ture is obtained for ϑ2 ∈ (0, π).

To find ϑ1 consider the angles α and β in Fig. 2.31. Notice that the deter-
mination of α depends on the sign of pWx and pWy; then, it is necessary to
compute α as

α = Atan2(pWy, pWx).
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To compute β, applying again the cosine theorem yields

cβ

√
p2

Wx + p2
Wy = a1 + a2c2

and resorting to the expression of c2 given above leads to

β = cos−1

⎛⎝p2
Wx + p2

Wy + a2
1 − a2

2

2a1

√
p2

Wx + p2
Wy

⎞⎠
with β ∈ (0, π) so as to preserve the existence of triangles. Then, it is

ϑ1 = α± β,

where the positive sign holds for ϑ2 < 0 and the negative sign for ϑ2 > 0.
Finally, ϑ3 is computed from (2.90).

It is worth noticing that, in view of the substantial equivalence between
the two-link planar arm and the parallelogram arm, the above techniques can
be formally applied to solve the inverse kinematics of the arm in Sect. 2.9.2.

2.12.2 Solution of Manipulators with Spherical Wrist

Most of the existing manipulators are kinematically simple, since they are
typically formed by an arm, of the kind presented above, and a spherical wrist;
see the manipulators in Sects. 2.9.6–2.9.8. This choice is partly motivated by
the difficulty to find solutions to the inverse kinematics problem in the general
case. In particular, a six -DOF kinematic structure has closed-form inverse
kinematics solutions if:

• three consecutive revolute joint axes intersect at a common point, like for
the spherical wrist;

• three consecutive revolute joint axes are parallel.

In any case, algebraic or geometric intuition is required to obtain closed-form
solutions.

Inspired by the previous solution to a three-link planar arm, a suitable
point along the structure can be found whose position can be expressed both as
a function of the given end-effector position and orientation and as a function
of a reduced number of joint variables. This is equivalent to articulating the
inverse kinematics problem into two subproblems, since the solution for the
position is decoupled from that for the orientation.

For a manipulator with spherical wrist, the natural choice is to locate such
point W at the intersection of the three terminal revolute axes (Fig. 2.32). In
fact, once the end-effector position and orientation are specified in terms of
pe and Re = [ne se ae ], the wrist position can be found as

pW = pe − d6ae (2.93)
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Fig. 2.32. Manipulator with spherical wrist

which is a function of the sole joint variables that determine the arm posi-
tion17. Hence, in the case of a (nonredundant) three-DOF arm, the inverse
kinematics can be solved according to the following steps:

• Compute the wrist position pW (q1, q2, q3) as in (2.93).
• Solve inverse kinematics for (q1, q2, q3).
• Compute R0

3(q1, q2, q3).
• Compute R3

6(ϑ4, ϑ5, ϑ6) = R0
3
T R.

• Solve inverse kinematics for orientation (ϑ4, ϑ5, ϑ6).

Therefore, on the basis of this kinematic decoupling, it is possible to solve
the inverse kinematics for the arm separately from the inverse kinematics
for the spherical wrist. Below are presented the solutions for two typical arms
(spherical and anthropomorphic) as well as the solution for the spherical wrist.

2.12.3 Solution of Spherical Arm

Consider the spherical arm shown in Fig. 2.22, whose direct kinematics was
given in (2.65). It is desired to find the joint variables ϑ1, ϑ2, d3 corresponding
to a given end-effector position pW .

In order to separate the variables on which pW depends, it is convenient to
express the position of pW with respect to Frame 1; then, consider the matrix
equation

(A0
1)

−1T 0
3 = A1

2A
2
3.

17 Note that the same reasoning was implicitly adopted in Sect. 2.12.1 for the three-
link planar arm; pW described the one-DOF wrist position for the two-DOF arm
obtained by considering only the first two links.
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Equating the first three elements of the fourth columns of the matrices on
both sides yields

p1
W =

⎡⎣ pWxc1 + pWys1

−pWz

−pWxs1 + pWyc1

⎤⎦ =

⎡⎣ d3s2

−d3c2
d2

⎤⎦ (2.94)

which depends only on ϑ2 and d3. To solve this equation, set

t = tan
ϑ1

2

so that

c1 =
1 − t2

1 + t2
s1 =

2t
1 + t2

.

Substituting this equation in the third component on the left-hand side
of (2.94) gives

(d2 + pWy)t2 + 2pWxt + d2 − pWy = 0,

whose solution is

t =
−pWx ±

√
p2

Wx + p2
Wy − d2

2

d2 + pWy
.

The two solutions correspond to two different postures. Hence, it is

ϑ1 = 2Atan2
(
−pWx ±

√
p2

Wx + p2
Wy − d2

2, d2 + pWy

)
.

Once ϑ1 is known, squaring and summing the first two components of (2.94)
yields

d3 =
√

(pWxc1 + pWys1)2 + p2
Wz,

where only the solution with d3 ≥ 0 has been considered. Note that the same
value of d3 corresponds to both solutions for ϑ1. Finally, if d3 �= 0, from the
first two components of (2.94) it is

pWxc1 + pWys1

−pWz
=

d3s2

−d3c2
,

from which
ϑ2 = Atan2(pWxc1 + pWys1, pWz).

Notice that, if d3 = 0, then ϑ2 cannot be uniquely determined.

2.12.4 Solution of Anthropomorphic Arm

Consider the anthropomorphic arm shown in Fig. 2.23. It is desired to find
the joint variables ϑ1, ϑ2, ϑ3 corresponding to a given end-effector position
pW . Notice that the direct kinematics for pW is expressed by (2.66) which can
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be obtained from (2.70) by setting d6 = 0, d4 = a3 and replacing ϑ3 with the
angle ϑ3 +π/2 because of the misalignment of the Frames 3 for the structures
in Fig. 2.23 and in Fig. 2.26, respectively. Hence, it follows

pWx = c1(a2c2 + a3c23) (2.95)
pWy = s1(a2c2 + a3c23) (2.96)
pWz = a2s2 + a3s23. (2.97)

Proceeding as in the case of the two-link planar arm, it is worth squaring
and summing (2.95)–(2.97) yielding

p2
Wx + p2

Wy + p2
Wz = a2

2 + a2
3 + 2a2a3c3

from which

c3 =
p2

Wx + p2
Wy + p2

Wz − a2
2 − a2

3

2a2a3
(2.98)

where the admissibility of the solution obviously requires that −1 ≤ c3 ≤ 1,
or equivalently |a2−a3| ≤

√
p2

Wx + p2
Wy + p2

Wz ≤ a2 +a3, otherwise the wrist
point is outside the reachable workspace of the manipulator. Hence it is

s3 = ±
√

1 − c23 (2.99)

and thus
ϑ3 = Atan2(s3, c3)

giving the two solutions, according to the sign of s3,

ϑ3,I ∈ [−π, π] (2.100)
ϑ3,II = −ϑ3,I . (2.101)

Having determined ϑ3, it is possible to compute ϑ2 as follows. Squaring
and summing (2.95), (2.96) gives

p2
Wx + p2

Wy = (a2c2 + a3c23)2

from which
a2c2 + a3c23 = ±

√
p2

Wx + p2
Wy. (2.102)

The system of the two Eqs. (2.102), (2.97), for each of the solutions (2.100),
(2.101), admits the solutions:

c2 =
±
√

p2
Wx + p2

Wy(a2 + a3c3) + pWza3s3

a2
2 + a2

3 + 2a2a3c3
(2.103)

s2 =
pWz(a2 + a3c3) ∓

√
p2

Wx + p2
Wya3s3

a2
2 + a2

3 + 2a2a3c3
. (2.104)
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From (2.103), (2.104) it follows

ϑ2 = Atan2(s2, c2)

which gives the four solutions for ϑ2, according to the sign of s3 in (2.99):

ϑ2,I = Atan2
(
(a2 + a3c3)pWz − a3s

+
3

√
p2

Wx + p2
Wy,

(a2 + a3c3)
√

p2
Wx + p2

Wy + a3s
+
3 pWz

)
(2.105)

ϑ2,II = Atan2
(
(a2 + a3c3)pWz + a3s

+
3

√
p2

Wx + p2
Wy,

−(a2 + a3c3)
√

p2
Wx + p2

Wy + a3s
+
3 pWz

)
(2.106)

corresponding to s+
3 =

√
1 − c23, and

ϑ2,III = Atan2
(
(a2 + a3c3)pWz − a3s

−
3

√
p2

Wx + p2
Wy,

(a2 + a3c3)
√

p2
Wx + p2

Wy + a3s
−
3 pWz

)
(2.107)

ϑ2,IV = Atan2
(
(a2 + a3c3)pWz + a3s

−
3

√
p2

Wx + p2
Wy,

−(a2 + a3c3)
√

p2
Wx + p2

Wy + a3s
−
3 pWz

)
(2.108)

corresponding to s−3 = −
√

1 − c23.
Finally, to compute ϑ1, it is sufficient to rewrite (2.95), (2.96), using

(2.102), as

pWx = ±c1

√
p2

Wx + p2
Wy

pWy = ±s1

√
p2

Wx + p2
Wy

which, once solved, gives the two solutions:

ϑ1,I = Atan2(pWy, pWx) (2.109)
ϑ1,II = Atan2(−pWy,−pWx). (2.110)

Notice that (2.110) gives18

ϑ1,II =
{Atan2(pWy, pWx) − π pWy ≥ 0

Atan2(pWy, pWx) + π pWy < 0.

18 It is easy to show that Atan2(−y,−x) = −Atan2(y,−x) and

Atan2(y,−x) =

{
π − Atan2(y, x) y ≥ 0
−π − Atan2(y, x) y < 0.
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Fig. 2.33. The four configurations of an anthropomorphic arm compatible with a
given wrist position

As can be recognized, there exist four solutions according to the values of
ϑ3 in (2.100), (2.101), ϑ2 in (2.105)–(2.108) and ϑ1 in (2.109), (2.110):

(ϑ1,I, ϑ2,I, ϑ3,I) (ϑ1,I, ϑ2,III, ϑ3,II) (ϑ1,II, ϑ2,II, ϑ3,I) (ϑ1,II, ϑ2,IV, ϑ3,II),

which are illustrated in Fig. 2.33: shoulder–right/elbow–up, shoulder–left/elbow–
up, shoulder–right/elbow–down, shoulder–left/elbow–down; obviously, the fore-
arm orientation is different for the two pairs of solutions.

Notice finally how it is possible to find the solutions only if at least

pWx �= 0 or pWy �= 0.

In the case pWx = pWy = 0, an infinity of solutions is obtained, since it is
possible to determine the joint variables ϑ2 and ϑ3 independently of the value
of ϑ1; in the following, it will be seen that the arm in such configuration is
kinematically singular (see Problem 2.18).

2.12.5 Solution of Spherical Wrist

Consider the spherical wrist shown in Fig. 2.24, whose direct kinematics was
given in (2.67). It is desired to find the joint variables ϑ4, ϑ5, ϑ6 corresponding
to a given end-effector orientation R3

6. As previously pointed out, these angles
constitute a set of Euler angles ZYZ with respect to Frame 3. Hence, having
computed the rotation matrix

R3
6 =

⎡⎣n3
x s3

x a3
x

n3
y s3

y a3
y

n3
z s3

z a3
z

⎤⎦ ,
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from its expression in terms of the joint variables in (2.67), it is possible to
compute the solutions directly as in (2.19), (2.20), i.e.,

ϑ4 = Atan2(a3
y, a

3
x)

ϑ5 = Atan2
(√

(a3
x)2 + (a3

y)2, a3
z

)
(2.111)

ϑ6 = Atan2(s3
z,−n3

z)

for ϑ5 ∈ (0, π), and

ϑ4 = Atan2(−a3
y,−a3

x)

ϑ5 = Atan2
(
−
√

(a3
x)2 + (a3

y)2, a3
z

)
(2.112)

ϑ6 = Atan2(−s3
z, n

3
z)

for ϑ5 ∈ (−π, 0).
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Problems

2.1. Find the rotation matrix corresponding to the set of Euler angles ZXZ.

2.2. Discuss the inverse solution for the Euler angles ZYZ in the case sϑ = 0.
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Fig. 2.34. Four-link closed-chain planar arm with prismatic joint

2.3. Discuss the inverse solution for the Roll–Pitch–Yaw angles in the case
cϑ = 0.

2.4. Verify that the rotation matrix corresponding to the rotation by an angle
about an arbitrary axis is given by (2.25).

2.5. Prove that the angle and the unit vector of the axis corresponding to a
rotation matrix are given by (2.27), (2.28). Find inverse formulae in the case
of sinϑ = 0.

2.6. Verify that the rotation matrix corresponding to the unit quaternion is
given by (2.33).

2.7. Prove that the unit quaternion is invariant with respect to the rotation
matrix and its transpose, i.e., R(η, ε)ε = RT (η, ε)ε = ε.

2.8. Prove that the unit quaternion corresponding to a rotation matrix is
given by (2.34), (2.35).

2.9. Prove that the quaternion product is expressed by (2.37).

2.10. By applying the rules for inverting a block-partitioned matrix, prove
that matrix A1

0 is given by (2.45).

2.11. Find the direct kinematics equation of the four-link closed-chain planar
arm in Fig. 2.34, where the two links connected by the prismatic joint are
orthogonal to each other

2.12. Find the direct kinematics equation for the cylindrical arm in Fig. 2.35.

2.13. Find the direct kinematics equation for the SCARA manipulator in
Fig. 2.36.

2.14. Find the complete direct kinematics equation for the humanoid manip-
ulator in Fig. 2.28.
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Fig. 2.35. Cylindrical arm

2.15. For the set of minimal representations of orientation φ, define the sum
operation in terms of the composition of rotations. By means of an example,
show that the commutative property does not hold for that operation.

2.16. Consider the elementary rotations about coordinate axes given by in-
finitesimal angles. Show that the rotation resulting from any two elementary
rotations does not depend on the order of rotations. [Hint : for an infinitesimal
angle dφ, approximate cos (dφ) ≈ 1 and sin (dφ) ≈ dφ . . . ]. Further, define
R(dφx, dφy, dφz) = Rx(dφx)Ry(dφy)Rz(dφz); show that

R(dφx, dφy, dφz)R(dφ′
x, dφ

′
y, dφ

′
z) = R(dφx + dφ′

x, dφy + dφ′
y, dφz + dφ′

z).

2.17. Draw the workspace of the three-link planar arm in Fig. 2.20 with the
data:

a1 = 0.5 a2 = 0.3 a3 = 0.2

−π/3 ≤ q1 ≤ π/3 − 2π/3 ≤ q2 ≤ 2π/3 − π/2 ≤ q3 ≤ π/2.

2.18. With reference to the inverse kinematics of the anthropomorphic arm
in Sect. 2.12.4, discuss the number of solutions in the singular cases of s3 = 0
and pWx = pWy = 0.

2.19. Solve the inverse kinematics for the cylindrical arm in Fig. 2.35.

2.20. Solve the inverse kinematics for the SCARA manipulator in Fig. 2.36.
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Fig. 2.36. SCARA manipulator

3

Differential Kinematics and Statics

In the previous chapter, direct and inverse kinematics equations establishing
the relationship between the joint variables and the end-effector pose were
derived. In this chapter, differential kinematics is presented which gives the
relationship between the joint velocities and the corresponding end-effector
linear and angular velocity. This mapping is described by a matrix, termed
geometric Jacobian, which depends on the manipulator configuration. Alter-
natively, if the end-effector pose is expressed with reference to a minimal
representation in the operational space, it is possible to compute the Jaco-
bian matrix via differentiation of the direct kinematics function with respect
to the joint variables. The resulting Jacobian, termed analytical Jacobian, in
general differs from the geometric one. The Jacobian constitutes one of the
most important tools for manipulator characterization; in fact, it is useful for
finding singularities, analyzing redundancy , determining inverse kinematics
algorithms, describing the mapping between forces applied to the end-effector
and resulting torques at the joints (statics) and, as will be seen in the follow-
ing chapters, deriving dynamic equations of motion and designing operational
space control schemes. Finally, the kineto-statics duality concept is illustrated,
which is at the basis of the definition of velocity and force manipulability el-
lipsoids.

3.1 Geometric Jacobian

Consider an n-DOF manipulator. The direct kinematics equation can be writ-
ten in the form

T e(q) =

⎡⎢⎣ Re(q) pe(q)

0T 1

⎤⎥⎦ (3.1)

where q = [ q1 . . . qn ]T is the vector of joint variables. Both end-effector
position and orientation vary as q varies.
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The goal of the differential kinematics is to find the relationship between
the joint velocities and the end-effector linear and angular velocities. In other
words, it is desired to express the end-effector linear velocity ṗe and angular
velocity ωe as a function of the joint velocities q̇. As will be seen afterwards,
the sought relations are both linear in the joint velocities, i.e.,

ṗe = JP (q)q̇ (3.2)

ωe = JO(q)q̇. (3.3)

In (3.2) JP is the (3 × n) matrix relating the contribution of the joint veloc-
ities q̇ to the end-effector linear velocity ṗe, while in (3.3) JO is the (3 × n)
matrix relating the contribution of the joint velocities q̇ to the end-effector
angular velocity ωe. In compact form, (3.2), (3.3) can be written as

ve =
[

ṗe

ωe

]
= J(q)q̇ (3.4)

which represents the manipulator differential kinematics equation. The (6×n)
matrix J is the manipulator geometric Jacobian

J =
[

JP

JO

]
, (3.5)

which in general is a function of the joint variables.
In order to compute the geometric Jacobian, it is worth recalling a number

of properties of rotation matrices and some important results of rigid body
kinematics.

3.1.1 Derivative of a Rotation Matrix

The manipulator direct kinematics equation in (3.1) describes the end-effector
pose, as a function of the joint variables, in terms of a position vector and a
rotation matrix. Since the aim is to characterize the end-effector linear and
angular velocities, it is worth considering first the derivative of a rotation
matrix with respect to time.

Consider a time-varying rotation matrix R = R(t). In view of the orthog-
onality of R, one has the relation

R(t)RT (t) = I

which, differentiated with respect to time, gives the identity

Ṙ(t)RT (t) + R(t)Ṙ
T
(t) = O.

Set
S(t) = Ṙ(t)RT (t); (3.6)
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the (3 × 3) matrix S is skew-symmetric since

S(t) + ST (t) = O. (3.7)

Postmultiplying both sides of (3.6) by R(t) gives

Ṙ(t) = S(t)R(t) (3.8)

that allows the time derivative of R(t) to be expressed as a function of R(t)
itself.

Equation (3.8) relates the rotation matrix R to its derivative by means
of the skew-symmetric operator S and has a meaningful physical interpreta-
tion. Consider a constant vector p′ and the vector p(t) = R(t)p′. The time
derivative of p(t) is

ṗ(t) = Ṙ(t)p′,

which, in view of (3.8), can be written as

ṗ(t) = S(t)R(t)p′.

If the vector ω(t) denotes the angular velocity of frame R(t) with respect to
the reference frame at time t, it is known from mechanics that

ṗ(t) = ω(t) × R(t)p′.

Therefore, the matrix operator S(t) describes the vector product between the
vector ω and the vector R(t)p′. The matrix S(t) is so that its symmetric
elements with respect to the main diagonal represent the components of the
vector ω(t) = [ωx ωy ωz ]T in the form

S =

⎡⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤⎦ , (3.9)

which justifies the expression S(t) = S(ω(t)). Hence, (3.8) can be rewritten
as

Ṙ = S(ω)R. (3.10)

Furthermore, if R denotes a rotation matrix, it can be shown that the
following relation holds:

RS(ω)RT = S(Rω) (3.11)

which will be useful later (see Problem 3.1).
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Example 3.1

Consider the elementary rotation matrix about axis z given in (2.6). If α is a function
of time, by computing the time derivative of Rz(α(t)), (3.6) becomes

S(t) =

[−α̇ sin α −α̇ cos α 0
α̇ cos α −α̇ sin α 0

0 0 0

][
cos α sin α 0
−sin α cos α 0

0 0 1

]

=

[
0 −α̇ 0
α̇ 0 0
0 0 0

]
= S(ω(t)).

According to (3.9), it is
ω = [ 0 0 α̇ ]T

that expresses the angular velocity of the frame about axis z.

With reference to Fig. 2.11, consider the coordinate transformation of a
point P from Frame 1 to Frame 0; in view of (2.38), this is given by

p0 = o0
1 + R0

1p
1. (3.12)

Differentiating (3.12) with respect to time gives

ṗ0 = ȯ0
1 + R0

1ṗ
1 + Ṙ

0

1p
1; (3.13)

utilizing the expression of the derivative of a rotation matrix (3.8) and speci-
fying the dependence on the angular velocity gives

ṗ0 = ȯ0
1 + R0

1ṗ
1 + S(ω0

1)R
0
1p

1.

Further, denoting the vector R0
1p

1 by r0
1, it is

ṗ0 = ȯ0
1 + R0

1ṗ
1 + ω0

1 × r0
1 (3.14)

which is the known form of the velocity composition rule.
Notice that, if p1 is fixed in Frame 1, then it is

ṗ0 = ȯ0
1 + ω0

1 × r0
1 (3.15)

since ṗ1 = 0.

3.1.2 Link Velocities

Consider the generic Link i of a manipulator with an open kinematic chain.
According to the Denavit–Hartenberg convention adopted in the previous
chapter, Link i connects Joints i and i + 1; Frame i is attached to Link i
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Fig. 3.1. Characterization of generic Link i of a manipulator

and has origin along Joint i+1 axis, while Frame i−1 has origin along Joint i
axis (Fig. 3.1).

Let pi−1 and pi be the position vectors of the origins of Frames i−1 and i,
respectively. Also, let ri−1

i−1,i denote the position of the origin of Frame i with
respect to Frame i− 1 expressed in Frame i− 1. According to the coordinate
transformation (3.10), one can write1

pi = pi−1 + Ri−1r
i−1
i−1,i.

Then, by virtue of (3.14), it is

ṗi = ṗi−1 + Ri−1ṙ
i−1
i−1,i + ωi−1 × Ri−1r

i−1
i−1,i = ṗi−1 + vi−1,i + ωi−1 × ri−1,i

(3.16)
which gives the expression of the linear velocity of Link i as a function of the
translational and rotational velocities of Link i− 1. Note that vi−1,i denotes
the velocity of the origin of Frame i with respect to the origin of Frame i− 1.

Concerning link angular velocity, it is worth starting from the rotation
composition

Ri = Ri−1R
i−1
i ;

from (3.8), its time derivative can be written as

S(ωi)Ri = S(ωi−1)Ri + Ri−1S(ωi−1
i−1,i)R

i−1
i (3.17)

where ωi−1
i−1,i denotes the angular velocity of Frame i with respect to Frame

i− 1 expressed in Frame i− 1. From (2.4), the second term on the right-hand
side of (3.17) can be rewritten as

Ri−1S(ωi−1
i−1,i)R

i−1
i = Ri−1S(ωi−1

i−1,i)R
T
i−1Ri−1R

i−1
i ;

1 Hereafter, the indication of superscript ‘0’ is omitted for quantities referred to
Frame 0. Also, without loss of generality, Frame 0 and Frame n are taken as the
base frame and the end-effector frame, respectively.
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in view of property (3.11), it is

Ri−1S(ωi−1
i−1,i)R

i−1
i = S(Ri−1ω

i−1
i−1,i)Ri.

Then, (3.17) becomes

S(ωi)Ri = S(ωi−1)Ri + S(Ri−1ω
i−1
i−1,i)Ri

leading to the result

ωi = ωi−1 + Ri−1ω
i−1
i−1,i = ωi−1 + ωi−1,i, (3.18)

which gives the expression of the angular velocity of Link i as a function of
the angular velocities of Link i− 1 and of Link i with respect to Link i− 1.

The relations (3.16), (3.18) attain different expressions depending on the
type of Joint i (prismatic or revolute).

Prismatic joint

Since orientation of Frame i with respect to Frame i − 1 does not vary by
moving Joint i, it is

ωi−1,i = 0. (3.19)

Further, the linear velocity is

vi−1,i = ḋizi−1 (3.20)

where zi−1 is the unit vector of Joint i axis. Hence, the expressions of angular
velocity (3.18) and linear velocity (3.16) respectively become

ωi = ωi−1 (3.21)
ṗi = ṗi−1 + ḋizi−1 + ωi × ri−1,i, (3.22)

where the relation ωi = ωi−1 has been exploited to derive (3.22).

Revolute joint

For the angular velocity it is obviously

ωi−1,i = ϑ̇izi−1, (3.23)

while for the linear velocity it is

vi−1,i = ωi−1,i × ri−1,i (3.24)

due to the rotation of Frame i with respect to Frame i − 1 induced by the
motion of Joint i. Hence, the expressions of angular velocity (3.18) and linear
velocity (3.16) respectively become

ωi = ωi−1 + ϑ̇izi−1 (3.25)
ṗi = ṗi−1 + ωi × ri−1,i, (3.26)

where (3.18) has been exploited to derive (3.26).
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Fig. 3.2. Representation of vectors needed for the computation of the velocity
contribution of a revolute joint to the end-effector linear velocity

3.1.3 Jacobian Computation

In order to compute the Jacobian, it is convenient to proceed separately for
the linear velocity and the angular velocity.

For the contribution to the linear velocity , the time derivative of pe(q) can
be written as

ṗe =
n∑

i=1

∂pe

∂qi
q̇i =

n∑
i=1

jPiq̇i. (3.27)

This expression shows how ṗe can be obtained as the sum of the terms q̇ijPi.
Each term represents the contribution of the velocity of single Joint i to the
end-effector linear velocity when all the other joints are still.

Therefore, by distinguishing the case of a prismatic joint (qi = di) from
the case of a revolute joint (qi = ϑi), it is:

• If Joint i is prismatic, from (3.20) it is

q̇ijPi = ḋizi−1

and then
jPi = zi−1.

• If Joint i is revolute, observing that the contribution to the linear velocity
is to be computed with reference to the origin of the end-effector frame
(Fig. 3.2), it is

q̇ijPi = ωi−1,i × ri−1,e = ϑ̇izi−1 × (pe − pi−1)

and then
jPi = zi−1 × (pe − pi−1).
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For the contribution to the angular velocity , in view of (3.18), it is

ωe = ωn =
n∑

i=1

ωi−1,i =
n∑

i=1

jOiq̇i, (3.28)

where (3.19) and (3.23) have been utilized to characterize the terms q̇ijOi,
and thus in detail:

• If Joint i is prismatic, from (3.19) it is

q̇ijOi = 0

and then
jOi = 0.

• If Joint i is revolute, from (3.23) it is

q̇ijOi = ϑ̇izi−1

and then
jOi = zi−1.

In summary, the Jacobian in (3.5) can be partitioned into the (3 × 1)
column vectors jPi and jOi as

J =

⎡⎣ jP1 jPn

. . .
jO1 jOn

⎤⎦ , (3.29)

where

[
jPi

jOi

]
=

⎧⎪⎪⎨⎪⎪⎩
[

zi−1

0

]
for a prismatic joint[

zi−1 × (pe − pi−1)
zi−1

]
for a revolute joint.

(3.30)

The expressions in (3.30) allow Jacobian computation in a simple, systematic
way on the basis of direct kinematics relations. In fact, the vectors zi−1, pe

and pi−1 are all functions of the joint variables. In particular:

• zi−1 is given by the third column of the rotation matrix R0
i−1, i.e.,

zi−1 = R0
1(q1) . . .R

i−2
i−1(qi−1)z0 (3.31)

where z0 = [ 0 0 1 ]T allows the selection of the third column.
• pe is given by the first three elements of the fourth column of the trans-

formation matrix T 0
e, i.e., by expressing p̃e in the (4 × 1) homogeneous

form
p̃e = A0

1(q1) . . .A
n−1
n (qn)p̃0 (3.32)

where p̃0 = [ 0 0 0 1 ]T allows the selection of the fourth column.
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• pi−1 is given by the first three elements of the fourth column of the trans-
formation matrix T 0

i−1, i.e., it can be extracted from

p̃i−1 = A0
1(q1) . . .A

i−2
i−1(qi−1)p̃0. (3.33)

The above equations can be conveniently used to compute the translational
and rotational velocities of any point along the manipulator structure, as long
as the direct kinematics functions relative to that point are known.

Finally, notice that the Jacobian matrix depends on the frame in which
the end-effector velocity is expressed. The above equations allow computation
of the geometric Jacobian with respect to the base frame. If it is desired to
represent the Jacobian in a different Frame u, it is sufficient to know the
relative rotation matrix Ru. The relationship between velocities in the two
frames is [

ṗu
e

ωu
e

]
=

[
Ru O
O Ru

] [
ṗe

ωe

]
,

which, substituted in (3.4), gives[
ṗu

e

ωu
e

]
=

[
Ru O
O Ru

]
Jq̇

and then

Ju =
[

Ru O
O Ru

]
J , (3.34)

where Ju denotes the geometric Jacobian in Frame u, which has been assumed
to be time-invariant.

3.2 Jacobian of Typical Manipulator Structures

In the following, the Jacobian is computed for some of the typical manipulator
structures presented in the previous chapter.

3.2.1 Three-link Planar Arm

In this case, from (3.30) the Jacobian is

J(q) =
[

z0 × (p3 − p0) z1 × (p3 − p1) z2 × (p3 − p2)
z0 z1 z2

]
.

Computation of the position vectors of the various links gives

p0 =

⎡⎣ 0
0
0

⎤⎦ p1 =

⎡⎣ a1c1
a1s1

0

⎤⎦ p2 =

⎡⎣ a1c1 + a2c12
a1s1 + a2s12

0

⎤⎦
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p3 =

⎡⎣ a1c1 + a2c12 + a3c123
a1s1 + a2s12 + a3s123

0

⎤⎦
while computation of the unit vectors of revolute joint axes gives

z0 = z1 = z2 =

⎡⎣ 0
0
1

⎤⎦
since they are all parallel to axis z0. From (3.29) it is

J =

⎡⎢⎢⎢⎢⎢⎣
−a1s1 − a2s12 − a3s123 −a2s12 − a3s123 −a3s123

a1c1 + a2c12 + a3c123 a2c12 + a3c123 a3c123
0 0 0
0 0 0
0 0 0
1 1 1

⎤⎥⎥⎥⎥⎥⎦ . (3.35)

In the Jacobian (3.35), only the three non-null rows are relevant (the rank of
the matrix is at most 3); these refer to the two components of linear velocity
along axes x0, y0 and the component of angular velocity about axis z0. This
result can be derived by observing that three DOFs allow specification of at
most three end-effector variables; vz, ωx, ωy are always null for this kinematic
structure. If orientation is of no concern, the (2×3) Jacobian for the positional
part can be derived by considering just the first two rows, i.e.,

JP =
[−a1s1 − a2s12 − a3s123 −a2s12 − a3s123 −a3s123

a1c1 + a2c12 + a3c123 a2c12 + a3c123 a3c123

]
. (3.36)

3.2.2 Anthropomorphic Arm

In this case, from (3.30) the Jacobian is

J =
[

z0 × (p3 − p0) z1 × (p3 − p1) z2 × (p3 − p2)
z0 z1 z2

]
.

Computation of the position vectors of the various links gives

p0 = p1 =

⎡⎣ 0
0
0

⎤⎦ p2 =

⎡⎣ a2c1c2
a2s1c2
a2s2

⎤⎦

p3 =

⎡⎣ c1(a2c2 + a3c23)
s1(a2c2 + a3c23)
a2s2 + a3s23

⎤⎦
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while computation of the unit vectors of revolute joint axes gives

z0 =

⎡⎣ 0
0
1

⎤⎦ z1 = z2 =

⎡⎣ s1

−c1
0

⎤⎦ .

From (3.29) it is

J =

⎡⎢⎢⎢⎢⎢⎣
−s1(a2c2 + a3c23) −c1(a2s2 + a3s23) −a3c1s23

c1(a2c2 + a3c23) −s1(a2s2 + a3s23) −a3s1s23

0 a2c2 + a3c23 a3c23
0 s1 s1

0 −c1 −c1
1 0 0

⎤⎥⎥⎥⎥⎥⎦ . (3.37)

Only three of the six rows of the Jacobian (3.37) are linearly independent.
Having 3 DOFs only, it is worth considering the upper (3 × 3) block of the
Jacobian

JP =

⎡⎣−s1(a2c2 + a3c23) −c1(a2s2 + a3s23) −a3c1s23

c1(a2c2 + a3c23) −s1(a2s2 + a3s23) −a3s1s23

0 a2c2 + a3c23 a3c23

⎤⎦ (3.38)

that describes the relationship between the joint velocities and the end-effector
linear velocity. This structure does not allow an arbitrary angular velocity ω
to be obtained; in fact, the two components ωx and ωy are not independent
(s1ωy = −c1ωx).

3.2.3 Stanford Manipulator

In this case, from (3.30) it is

J =
[

z0 × (p6 − p0) z1 × (p6 − p1) z2

z0 z1 0

z3 × (p6 − p3) z4 × (p6 − p4) z5 × (p6 − p5)
z3 z4 z5

]
.

Computation of the position vectors of the various links gives

p0 = p1 =

⎡⎣ 0
0
0

⎤⎦ p3 = p4 = p5 =

⎡⎣ c1s2d3 − s1d2

s1s2d3 + c1d2

c2d3

⎤⎦

p6 =

⎡⎣ c1s2d3 − s1d2 +
(
c1(c2c4s5 + s2c5) − s1s4s5

)
d6

s1s2d3 + c1d2 +
(
s1(c2c4s5 + s2c5) + c1s4s5

)
d6

c2d3 + (−s2c4s5 + c2c5)d6

⎤⎦ ,
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while computation of the unit vectors of joint axes gives

z0 =

⎡⎣ 0
0
1

⎤⎦ z1 =

⎡⎣−s1

c1
0

⎤⎦ z2 = z3 =

⎡⎣ c1s2

s1s2

c2

⎤⎦

z4 =

⎡⎣−c1c2s4 − s1c4
−s1c2s4 + c1c4

s2s4

⎤⎦ z5 =

⎡⎣ c1(c2c4s5 + s2c5) − s1s4s5

s1(c2c4s5 + s2c5) + c1s4s5

−s2c4s5 + c2c5

⎤⎦ .

The sought Jacobian can be obtained by developing the computations as
in (3.29), leading to expressing end-effector linear and angular velocity as
a function of joint velocities.

3.3 Kinematic Singularities

The Jacobian in the differential kinematics equation of a manipulator defines
a linear mapping

ve = J(q)q̇ (3.39)

between the vector q̇ of joint velocities and the vector ve = [ ṗT
e ωT

e ]T of end-
effector velocity. The Jacobian is, in general, a function of the configuration
q; those configurations at which J is rank-deficient are termed kinematic
singularities. To find the singularities of a manipulator is of great interest for
the following reasons:

a) Singularities represent configurations at which mobility of the structure
is reduced, i.e., it is not possible to impose an arbitrary motion to the
end-effector.

b) When the structure is at a singularity, infinite solutions to the inverse
kinematics problem may exist.

c) In the neighbourhood of a singularity, small velocities in the operational
space may cause large velocities in the joint space.

Singularities can be classified into:

• Boundary singularities that occur when the manipulator is either out-
stretched or retracted. It may be understood that these singularities do
not represent a true drawback, since they can be avoided on condition that
the manipulator is not driven to the boundaries of its reachable workspace.

• Internal singularities that occur inside the reachable workspace and are
generally caused by the alignment of two or more axes of motion, or else by
the attainment of particular end-effector configurations. Unlike the above,
these singularities constitute a serious problem, as they can be encountered
anywhere in the reachable workspace for a planned path in the operational
space.
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Fig. 3.3. Two-link planar arm at a boundary singularity

Example 3.2

To illustrate the behaviour of a manipulator at a singularity, consider a two-link
planar arm. In this case, it is worth considering only the components ṗx and ṗy of
the linear velocity in the plane. Thus, the Jacobian is the (2 × 2) matrix

J =

[
−a1s1 − a2s12 −a2s12

a1c1 + a2c12 a2c12

]
. (3.40)

To analyze matrix rank, consider its determinant given by

det(J) = a1a2s2. (3.41)

For a1, a2 �= 0, it is easy to find that the determinant in (3.41) vanishes whenever

ϑ2 = 0 ϑ2 = π,

ϑ1 being irrelevant for the determination of singular configurations. These occur
when the arm tip is located either on the outer (ϑ2 = 0) or on the inner (ϑ2 = π)
boundary of the reachable workspace. Figure 3.3 illustrates the arm posture for
ϑ2 = 0.

By analyzing the differential motion of the structure in such configuration, it
can be observed that the two column vectors [−(a1 + a2)s1 (a1 + a2)c1 ]T and
[−a2s1 a2c1 ]T of the Jacobian become parallel, and thus the Jacobian rank be-
comes one; this means that the tip velocity components are not independent (see
point a) above).

3.3.1 Singularity Decoupling

Computation of internal singularities via the Jacobian determinant may be
tedious and of no easy solution for complex structures. For manipulators hav-
ing a spherical wrist, by analogy with what has already been seen for inverse
kinematics, it is possible to split the problem of singularity computation into
two separate problems:
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Fig. 3.4. Spherical wrist at a singularity

• computation of arm singularities resulting from the motion of the first 3
or more links,

• computation of wrist singularities resulting from the motion of the wrist
joints.

For the sake of simplicity, consider the case n = 6; the Jacobian can be
partitioned into (3 × 3) blocks as follows:

J =
[

J11 J12

J21 J22

]
(3.42)

where, since the outer 3 joints are all revolute, the expressions of the two right
blocks are respectively

J12 =
[
z3 × (pe − p3) z4 × (pe − p4) z5 × (pe − p5)

]
J22 =

[
z3 z4 z5

]
. (3.43)

As singularities are typical of the mechanical structure and do not depend on
the frames chosen to describe kinematics, it is convenient to choose the origin
of the end-effector frame at the intersection of the wrist axes (see Fig. 2.32).
The choice p = pW leads to

J12 =
[
0 0 0

]
,

since all vectors pW − pi are parallel to the unit vectors zi, for i = 3, 4, 5, no
matter how Frames 3, 4, 5 are chosen according to DH convention. In view of
this choice, the overall Jacobian becomes a block lower-triangular matrix. In
this case, computation of the determinant is greatly simplified, as this is given
by the product of the determinants of the two blocks on the diagonal, i.e.,

det(J) = det(J11)det(J22). (3.44)

In turn, a true singularity decoupling has been achieved; the condition

det(J11) = 0
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Fig. 3.5. Anthropomorphic arm at an elbow singularity

leads to determining the arm singularities, while the condition

det(J22) = 0

leads to determining the wrist singularities.
Notice, however, that this form of Jacobian does not provide the relation-

ship between the joint velocities and the end-effector velocity, but it leads to
simplifying singularity computation. Below the two types of singularities are
analyzed in detail.

3.3.2 Wrist Singularities

On the basis of the above singularity decoupling, wrist singularities can be
determined by inspecting the block J22 in (3.43). It can be recognized that the
wrist is at a singular configuration whenever the unit vectors z3, z4, z5 are
linearly dependent. The wrist kinematic structure reveals that a singularity
occurs when z3 and z5 are aligned, i.e., whenever

ϑ5 = 0 ϑ5 = π.

Taking into consideration only the first configuration (Fig. 3.4), the loss of
mobility is caused by the fact that rotations of equal magnitude about opposite
directions on ϑ4 and ϑ6 do not produce any end-effector rotation. Further, the
wrist is not allowed to rotate about the axis orthogonal to z4 and z3, (see
point a) above). This singularity is naturally described in the joint space and
can be encountered anywhere inside the manipulator reachable workspace; as
a consequence, special care is to be taken in programming an end-effector
motion.

3.3.3 Arm Singularities

Arm singularities are characteristic of a specific manipulator structure; to
illustrate their determination, consider the anthropomorphic arm (Fig. 2.23),
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Fig. 3.6. Anthropomorphic arm at a shoulder singularity

whose Jacobian for the linear velocity part is given by (3.38). Its determinant
is

det(JP ) = −a2a3s3(a2c2 + a3c23).

Like in the case of the planar arm of Example 3.2, the determinant does not
depend on the first joint variable.

For a2, a3 �= 0, the determinant vanishes if s3 = 0 and/or (a2c2 + a3c23) =
0. The first situation occurs whenever

ϑ3 = 0 ϑ3 = π

meaning that the elbow is outstretched (Fig. 3.5) or retracted, and is termed
elbow singularity . Notice that this type of singularity is conceptually equiva-
lent to the singularity found for the two-link planar arm.

By recalling the direct kinematics equation in (2.66), it can be observed
that the second situation occurs when the wrist point lies on axis z0 (Fig. 3.6);
it is thus characterized by

px = py = 0

and is termed shoulder singularity .
Notice that the whole axis z0 describes a continuum of singular configu-

rations; a rotation of ϑ1 does not cause any translation of the wrist position
(the first column of JP is always null at a shoulder singularity), and then
the kinematics equation admits infinite solutions; moreover, motions starting
from the singular configuration that take the wrist along the z1 direction are
not allowed (see point b) above).

If a spherical wrist is connected to an anthropomorphic arm (Fig. 2.26),
the arm direct kinematics is different. In this case the Jacobian to consider
represents the block J11 of the Jacobian in (3.42) with p = pW . Analyzing its
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determinant leads to finding the same singular configurations, which are rela-
tive to different values of the third joint variables, though — compare (2.66)
and (2.70).

Finally, it is important to remark that, unlike the wrist singularities, the
arm singularities are well identified in the operational space, and thus they
can be suitably avoided in the end-effector trajectory planning stage.

3.4 Analysis of Redundancy

The concept of kinematic redundancy has been introduced in Sect. 2.10.2;
redundancy is related to the number n of DOFs of the structure, the number m
of operational space variables, and the number r of operational space variables
necessary to specify a given task.

In order to perform a systematic analysis of redundancy, it is worth con-
sidering differential kinematics in lieu of direct kinematics (2.82). To this end,
(3.39) is to be interpreted as the differential kinematics mapping relating the
n components of the joint velocity vector to the r ≤ m components of the ve-
locity vector ve of concern for the specific task. To clarify this point, consider
the case of a 3-link planar arm; that is not intrinsically redundant (n = m = 3)
and its Jacobian (3.35) has 3 null rows accordingly. If the task does not spec-
ify ωz (r = 2), the arm becomes functionally redundant and the Jacobian to
consider for redundancy analysis is the one in (3.36).

A different case is that of the anthropomorphic arm for which only posi-
tion variables are of concern (n = m = 3). The relevant Jacobian is the one
in (3.38). The arm is neither intrinsically redundant nor can become function-
ally redundant if it is assigned a planar task; in that case, indeed, the task
would set constraints on the 3 components of end-effector linear velocity.

Therefore, the differential kinematics equation to consider can be formally
written as in (3.39), i.e.,

ve = J(q)q̇, (3.45)

where now ve is meant to be the (r × 1) vector of end-effector velocity of
concern for the specific task and J is the corresponding (r × n) Jacobian
matrix that can be extracted from the geometric Jacobian; q̇ is the (n × 1)
vector of joint velocities. If r < n, the manipulator is kinematically redundant
and there exist (n− r) redundant DOFs.

The Jacobian describes the linear mapping from the joint velocity space to
the end-effector velocity space. In general, it is a function of the configuration.
In the context of differential kinematics, however, the Jacobian has to be
regarded as a constant matrix, since the instantaneous velocity mapping is
of interest for a given posture. The mapping is schematically illustrated in
Fig. 3.7 with a typical notation from set theory.
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Fig. 3.7. Mapping between the joint velocity space and the end-effector velocity
space

The differential kinematics equation in (3.45) can be characterized in terms
of the range and null spaces of the mapping;2 specifically, one has that:

• The range space of J is the subspace R(J) in IRr of the end-effector veloc-
ities that can be generated by the joint velocities, in the given manipulator
posture.

• The null space of J is the subspace N (J) in IRn of joint velocities that do
not produce any end-effector velocity, in the given manipulator posture.

If the Jacobian has full rank , one has

dim
(R(J)

)
= r dim

(N (J)
)

= n− r

and the range of J spans the entire space IRr. Instead, if the Jacobian degen-
erates at a singularity , the dimension of the range space decreases while the
dimension of the null space increases, since the following relation holds:

dim
(R(J)

)
+ dim

(N (J)
)

= n

independently of the rank of the matrix J .
The existence of a subspace N (J) �= ∅ for a redundant manipulator allows

determination of systematic techniques for handling redundant DOFs. To this
end, if q̇∗ denotes a solution to (3.45) and P is an (n× n) matrix so that

R(P ) ≡ N (J),

the joint velocity vector
q̇ = q̇∗ + P q̇0, (3.46)

with arbitrary q̇0, is also a solution to (3.45). In fact, premultiplying both
sides of (3.46) by J yields

Jq̇ = Jq̇∗ + JP q̇0 = Jq̇∗ = ve

2 See Sect. A.4 for the linear mappings.
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since JP q̇0 = 0 for any q̇0. This result is of fundamental importance for
redundancy resolution; a solution of the kind (3.46) points out the possibility
of choosing the vector of arbitrary joint velocities q̇0 so as to exploit advanta-
geously the redundant DOFs. In fact, the effect of q̇0 is to generate internal
motions of the structure that do not change the end-effector position and ori-
entation but may allow, for instance, manipulator reconfiguration into more
dexterous postures for execution of a given task.

3.5 Inverse Differential Kinematics

In Sect. 2.12 it was shown how the inverse kinematics problem admits closed-
form solutions only for manipulators having a simple kinematic structure.
Problems arise whenever the end-effector attains a particular position and/or
orientation in the operational space, or the structure is complex and it is not
possible to relate the end-effector pose to different sets of joint variables, or
else the manipulator is redundant. These limitations are caused by the highly
nonlinear relationship between joint space variables and operational space
variables.

On the other hand, the differential kinematics equation represents a linear
mapping between the joint velocity space and the operational velocity space,
although it varies with the current configuration. This fact suggests the pos-
sibility to utilize the differential kinematics equation to tackle the inverse
kinematics problem.

Suppose that a motion trajectory is assigned to the end-effector in terms
of ve and the initial conditions on position and orientation. The aim is to
determine a feasible joint trajectory (q(t), q̇(t)) that reproduces the given
trajectory.

By considering (3.45) with n = r, the joint velocities can be obtained via
simple inversion of the Jacobian matrix

q̇ = J−1(q)ve. (3.47)

If the initial manipulator posture q(0) is known, joint positions can be com-
puted by integrating velocities over time, i.e.,

q(t) =
∫ t

0

q̇(ς)dς + q(0).

The integration can be performed in discrete time by resorting to numerical
techniques. The simplest technique is based on the Euler integration method;
given an integration interval Δt, if the joint positions and velocities at time
tk are known, the joint positions at time tk+1 = tk + Δt can be computed as

q(tk+1) = q(tk) + q̇(tk)Δt. (3.48)
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This technique for inverting kinematics is independent of the solvability
of the kinematic structure. Nonetheless, it is necessary that the Jacobian be
square and of full rank ; this demands further insight into the cases of redun-
dant manipulators and kinematic singularity occurrence.

3.5.1 Redundant Manipulators

When the manipulator is redundant (r < n), the Jacobian matrix has more
columns than rows and infinite solutions exist to (3.45). A viable solution
method is to formulate the problem as a constrained linear optimization prob-
lem.

In detail, once the end-effector velocity ve and Jacobian J are given (for
a given configuration q), it is desired to find the solutions q̇ that satisfy the
linear equation in (3.45) and minimize the quadratic cost functional of joint
velocities3

g(q̇) =
1
2
q̇T Wq̇

where W is a suitable (n× n) symmetric positive definite weighting matrix.
This problem can be solved with the method of Lagrange multipliers. Con-

sider the modified cost functional

g(q̇,λ) =
1
2
q̇T Wq̇ + λT (ve − Jq̇),

where λ is an (r × 1) vector of unknown multipliers that allows the incorpo-
ration of the constraint (3.45) in the functional to minimize. The requested
solution has to satisfy the necessary conditions:(

∂g

∂q̇

)T

= 0
(

∂g

∂λ

)T

= 0.

From the first one, it is Wq̇ − JT λ = 0 and thus

q̇ = W−1JT λ (3.49)

where the inverse of W exists. Notice that the solution (3.49) is a minimum,
since ∂2g/∂q̇2 = W is positive definite. From the second condition above, the
constraint

ve = Jq̇

is recovered. Combining the two conditions gives

ve = JW−1JT λ;

under the assumption that J has full rank, JW−1JT is an (r × r) square
matrix of rank r and thus can be inverted. Solving for λ yields

λ = (JW−1JT )−1ve

3 Quadratic forms and the relative operations are recalled in Sect. A.6.
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which, substituted into (3.49), gives the sought optimal solution

q̇ = W−1JT (JW−1JT )−1ve. (3.50)

Premultiplying both sides of (3.50) by J , it is easy to verify that this solution
satisfies the differential kinematics equation in (3.45).

A particular case occurs when the weighting matrix W is the identity
matrix I and the solution simplifies into

q̇ = J†ve; (3.51)

the matrix
J† = JT (JJT )−1 (3.52)

is the right pseudo-inverse of J .4 The obtained solution locally minimizes the
norm of joint velocities.

It was pointed out above that if q̇∗ is a solution to (3.45), q̇∗+P q̇0 is also a
solution, where q̇0 is a vector of arbitrary joint velocities and P is a projector
in the null space of J . Therefore, in view of the presence of redundant DOFs,
the solution (3.51) can be modified by the introduction of another term of
the kind P q̇0. In particular, q̇0 can be specified so as to satisfy an additional
constraint to the problem.

In that case, it is necessary to consider a new cost functional in the form

g′(q̇) =
1
2
(q̇ − q̇0)

T (q̇ − q̇0);

this choice is aimed at minimizing the norm of vector q̇ − q̇0; in other words,
solutions are sought which satisfy the constraint (3.45) and are as close as pos-
sible to q̇0. In this way, the objective specified through q̇0 becomes unavoid-
ably a secondary objective to satisfy with respect to the primary objective
specified by the constraint (3.45).

Proceeding in a way similar to the above yields

g′(q̇,λ) =
1
2
(q̇ − q̇0)

T (q̇ − q̇0) + λT (ve − Jq̇);

from the first necessary condition it is

q̇ = JT λ + q̇0 (3.53)

which, substituted into (3.45), gives

λ = (JJT )−1(ve − Jq̇0).

Finally, substituting λ back in (3.53) gives

q̇ = J†ve + (In − J†J)q̇0. (3.54)
4 See Sect. A.7 for the definition of the pseudo-inverse of a matrix.
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As can be easily recognized, the obtained solution is composed of two terms.
The first is relative to minimum norm joint velocities. The second, termed
homogeneous solution, attempts to satisfy the additional constraint to specify
via q̇0;5 the matrix (I −J†J) is one of those matrices P introduced in (3.46)
which allows the projection of the vector q̇0 in the null space of J , so as
not to violate the constraint (3.45). A direct consequence is that, in the case
ve = 0, is is possible to generate internal motions described by (I − J†J)q̇0

that reconfigure the manipulator structure without changing the end-effector
position and orientation.

Finally, it is worth discussing the way to specify the vector q̇0 for a con-
venient utilization of redundant DOFs. A typical choice is

q̇0 = k0

(
∂w(q)
∂q

)T

(3.55)

where k0 > 0 and w(q) is a (secondary) objective function of the joint vari-
ables. Since the solution moves along the direction of the gradient of the ob-
jective function, it attempts to maximize it locally compatible to the primary
objective (kinematic constraint). Typical objective functions are:

• The manipulability measure, defined as

w(q) =
√

det
(
J(q)JT (q)

)
(3.56)

which vanishes at a singular configuration; thus, by maximizing this mea-
sure, redundancy is exploited to move away from singularities.6

• The distance from mechanical joint limits, defined as

w(q) = − 1
2n

n∑
i=1

(
qi − q̄i

qiM − qim

)2

(3.57)

where qiM (qim) denotes the maximum (minimum) joint limit and q̄i the
middle value of the joint range; thus, by maximizing this distance, redun-
dancy is exploited to keep the joint variables as close as possible to the
centre of their ranges.

• The distance from an obstacle, defined as

w(q) = min
p,o

‖p(q) − o‖ (3.58)

where o is the position vector of a suitable point on the obstacle (its
centre, for instance, if the obstacle is modelled as a sphere) and p is the

5 It should be recalled that the additional constraint has secondary priority with
respect to the primary kinematic constraint.

6 The manipulability measure is given by the product of the singular values of the
Jacobian (see Problem 3.8).
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position vector of a generic point along the structure; thus, by maximizing
this distance, redundancy is exploited to avoid collision of the manipulator
with an obstacle (see also Problem 3.9).7

3.5.2 Kinematic Singularities

Both solutions (3.47) and (3.51) can be computed only when the Jacobian
has full rank. Hence, they become meaningless when the manipulator is at a
singular configuration; in such a case, the system ve = Jq̇ contains linearly
dependent equations.

It is possible to find a solution q̇ by extracting all the linearly independent
equations only if ve ∈ R(J). The occurrence of this situation means that the
assigned path is physically executable by the manipulator, even though it is
at a singular configuration. If instead ve /∈ R(J), the system of equations has
no solution; this means that the operational space path cannot be executed
by the manipulator at the given posture.

It is important to underline that the inversion of the Jacobian can represent
a serious inconvenience not only at a singularity but also in the neighbourhood
of a singularity. For instance, for the Jacobian inverse it is well known that its
computation requires the computation of the determinant; in the neighbour-
hood of a singularity, the determinant takes on a relatively small value which
can cause large joint velocities (see point c) in Sect. 3.3). Consider again the
above example of the shoulder singularity for the anthropomorphic arm. If a
path is assigned to the end-effector which passes nearby the base rotation axis
(geometric locus of singular configurations), the base joint is forced to make
a rotation of about π in a relatively short time to allow the end-effector to
keep tracking the imposed trajectory.

A more rigorous analysis of the solution features in the neighbourhood of
singular configurations can be developed by resorting to the singular value
decomposition (SVD) of matrix J .8

An alternative solution overcoming the problem of inverting differential
kinematics in the neighbourhood of a singularity is provided by the so-called
damped least-squares (DLS) inverse

J� = JT (JJT + k2I)−1 (3.59)

where k is a damping factor that renders the inversion better conditioned
from a numerical viewpoint. It can be shown that such a solution can be

7 If an obstacle occurs along the end-effector path, it is opportune to invert the
order of priority between the kinematic constraint and the additional constraint;
in this way the obstacle may be avoided, but one gives up tracking the desired
path.

8 See Sect. A.8.
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obtained by reformulating the problem in terms of the minimization of the
cost functional

g′′(q̇) =
1
2
(ve − Jq̇)T (ve − Jq̇) +

1
2
k2q̇T q̇,

where the introduction of the first term allows a finite inversion error to be
tolerated, with the advantage of norm-bounded velocities. The factor k es-
tablishes the relative weight between the two objectives, and there exist tech-
niques for selecting optimal values for the damping factor (see Problem 3.10).

3.6 Analytical Jacobian

The above sections have shown the way to compute the end-effector velocity
in terms of the velocity of the end-effector frame. The Jacobian is computed
according to a geometric technique in which the contributions of each joint
velocity to the components of end-effector linear and angular velocity are
determined.

If the end-effector pose is specified in terms of a minimal number of pa-
rameters in the operational space as in (2.80), it is natural to ask whether
it is possible to compute the Jacobian via differentiation of the direct kine-
matics function with respect to the joint variables. To this end, an analytical
technique is presented below to compute the Jacobian, and the existing rela-
tionship between the two Jacobians is found.

The translational velocity of the end-effector frame can be expressed as
the time derivative of vector pe, representing the origin of the end-effector
frame with respect to the base frame, i.e.,

ṗe =
∂pe

∂q
q̇ = JP (q)q̇. (3.60)

For what concerns the rotational velocity of the end-effector frame, the
minimal representation of orientation in terms of three variables φe can be
considered. Its time derivative φ̇e in general differs from the angular velocity
vector defined above. In any case, once the function φe(q) is known, it is
formally correct to consider the Jacobian obtained as

φ̇e =
∂φe

∂q
q̇ = Jφ(q)q̇. (3.61)

Computing the Jacobian Jφ(q) as ∂φe/∂q is not straightforward, since the
function φe(q) is not usually available in direct form, but requires computation
of the elements of the relative rotation matrix.

Upon these premises, the differential kinematics equation can be obtained
as the time derivative of the direct kinematics equation in (2.82), i.e.,

ẋe =
[

ṗe

φ̇e

]
=

[
JP (q)
Jφ(q)

]
q̇ = JA(q)q̇ (3.62)
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Fig. 3.8. Rotational velocities of Euler angles ZYZ in current frame

Fig. 3.9. Composition of elementary rotational velocities for computing angular
velocity

where the analytical Jacobian

JA(q) =
∂k(q)
∂q

(3.63)

is different from the geometric Jacobian J , since the end-effector angular
velocity ωe with respect to the base frame is not given by φ̇e.

It is possible to find the relationship between the angular velocity ωe and
the rotational velocity φ̇e for a given set of orientation angles. For instance,
consider the Euler angles ZYZ defined in Sect. 2.4.1; in Fig. 3.8, the vectors
corresponding to the rotational velocities ϕ̇, ϑ̇, ψ̇ have been represented with
reference to the current frame. Figure 3.9 illustrates how to compute the
contributions of each rotational velocity to the components of angular velocity
about the axes of the reference frame:

• as a result of ϕ̇: [ωx ωy ωz ]T = ϕ̇ [ 0 0 1 ]T

• as a result of ϑ̇: [ωx ωy ωz ]T = ϑ̇ [−sϕ cϕ 0 ]T
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• as a result of ψ̇: [ωx ωy ωz ]T = ψ̇ [ cϕsϑ sϕsϑ cϑ ]T ,

and then the equation relating the angular velocity ωe to the time derivative
of the Euler angles φ̇e is9

ωe = T (φe)φ̇e, (3.64)

where, in this case,

T =

⎡⎣ 0 −sϕ cϕsϑ

0 cϕ sϕsϑ

1 0 cϑ

⎤⎦ .

The determinant of matrix T is −sϑ, which implies that the relationship
cannot be inverted for ϑ = 0, π. This means that, even though all rotational
velocities of the end-effector frame can be expressed by means of a suitable
angular velocity vector ωe, there exist angular velocities which cannot be
expressed by means of φ̇e when the orientation of the end-effector frame causes
sϑ = 0.10 In fact, in this situation, the angular velocities that can be described
by φ̇e should have linearly dependent components in the directions orthogonal
to axis z (ω2

x + ω2
y = ϑ̇2). An orientation for which the determinant of the

transformation matrix vanishes is termed representation singularity of φe.
From a physical viewpoint, the meaning of ωe is more intuitive than that

of φ̇e. The three components of ωe represent the components of angular veloc-
ity with respect to the base frame. Instead, the three elements of φ̇e represent
nonorthogonal components of angular velocity defined with respect to the
axes of a frame that varies as the end-effector orientation varies. On the other
hand, while the integral of φ̇e over time gives φe, the integral of ωe does not
admit a clear physical interpretation, as can be seen in the following example.

Example 3.3

Consider an object whose orientation with respect to a reference frame is known at
time t = 0. Assign the following time profiles to ω:
• ω = [ π/2 0 0 ]T 0 ≤ t ≤ 1 ω = [ 0 π/2 0 ]T 1 < t ≤ 2,
• ω = [ 0 π/2 0 ]T 0 ≤ t ≤ 1 ω = [ π/2 0 0 ]T 1 < t ≤ 2.

The integral of ω gives the same result in the two cases∫ 2

0

ωdt = [ π/2 π/2 0 ]T

but the final object orientation corresponding to the second timing law is clearly
different from the one obtained with the first timing law (Fig. 3.10).

9 This relation can also be obtained from the rotation matrix associated with the
three angles (see Problem 3.11).

10 In Sect. 2.4.1, it was shown that for this orientation the inverse solution of the
Euler angles degenerates.
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Fig. 3.10. Nonuniqueness of orientation computed as the integral of angular velocity

Once the transformation T between ωe and φ̇e is given, the analytical
Jacobian can be related to the geometric Jacobian as

ve =
[

I O
O T (φe)

]
ẋe = T A(φe)ẋe (3.65)

which, in view of (3.4), (3.62), yields

J = T A(φ)JA. (3.66)

This relationship shows that J and JA, in general, differ. Regarding the use
of either one or the other in all those problems where the influence of the
Jacobian matters, it is anticipated that the geometric Jacobian will be adopted
whenever it is necessary to refer to quantities of clear physical meaning, while
the analytical Jacobian will be adopted whenever it is necessary to refer to
differential quantities of variables defined in the operational space.

For certain manipulator geometries, it is possible to establish a substantial
equivalence between J and JA. In fact, when the DOFs cause rotations of
the end-effector all about the same fixed axis in space, the two Jacobians
are essentially the same. This is the case of the above three-link planar arm.
Its geometric Jacobian (3.35) reveals that only rotations about axis z0 are
permitted. The (3×3) analytical Jacobian that can be derived by considering
the end-effector position components in the plane of the structure and defining
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the end-effector orientation as φ = ϑ1 + ϑ2 + ϑ3 coincides with the matrix
that is obtained by eliminating the three null rows of the geometric Jacobian.

3.7 Inverse Kinematics Algorithms

In Sect. 3.5 it was shown how to invert kinematics by using the differential
kinematics equation. In the numerical implementation of (3.48), computation
of joint velocities is obtained by using the inverse of the Jacobian evaluated
with the joint variables at the previous instant of time

q(tk+1) = q(tk) + J−1(q(tk))ve(tk)Δt.

It follows that the computed joint velocities q̇ do not coincide with those
satisfying (3.47) in the continuous time. Therefore, reconstruction of joint
variables q is entrusted to a numerical integration which involves drift phe-
nomena of the solution; as a consequence, the end-effector pose corresponding
to the computed joint variables differs from the desired one.

This inconvenience can be overcome by resorting to a solution scheme that
accounts for the operational space error between the desired and the actual
end-effector position and orientation. Let

e = xd − xe (3.67)

be the expression of such error.
Consider the time derivative of (3.67), i.e.,

ė = ẋd − ẋe (3.68)

which, according to differential kinematics (3.62), can be written as

ė = ẋd − JA(q)q̇. (3.69)

Notice in (3.69) that the use of operational space quantities has naturally
lead to using the analytical Jacobian in lieu of the geometric Jacobian. For
this equation to lead to an inverse kinematics algorithm, it is worth relating
the computed joint velocity vector q̇ to the error e so that (3.69) gives a
differential equation describing error evolution over time. Nonetheless, it is
necessary to choose a relationship between q̇ and e that ensures convergence
of the error to zero.

Having formulated inverse kinematics in algorithmic terms implies that
the joint variables q corresponding to a given end-effector pose xd are ac-
curately computed only when the error xd − k(q) is reduced within a given
threshold; such settling time depends on the dynamic characteristics of the
error differential equation. The choice of q̇ as a function of e permits finding
inverse kinematics algorithms with different features.
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Fig. 3.11. Inverse kinematics algorithm with Jacobian inverse

3.7.1 Jacobian (Pseudo-)inverse

On the assumption that matrix JA is square and nonsingular, the choice

q̇ = J−1
A (q)(ẋd + Ke) (3.70)

leads to the equivalent linear system

ė + Ke = 0. (3.71)

If K is a positive definite (usually diagonal) matrix, the system (3.71) is
asymptotically stable. The error tends to zero along the trajectory with a
convergence rate that depends on the eigenvalues of matrix K;11 the larger
the eigenvalues, the faster the convergence. Since the scheme is practically
implemented as a discrete-time system, it is reasonable to predict that an
upper bound exists on the eigenvalues; depending on the sampling time, there
will be a limit for the maximum eigenvalue of K under which asymptotic
stability of the error system is guaranteed.

The block scheme corresponding to the inverse kinematics algorithm
in (3.70) is illustrated in Fig. 3.11, where k(·) indicates the direct kinematics
function in (2.82). This scheme can be revisited in terms of the usual feedback
control schemes. Specifically, it can observed that the nonlinear block k(·) is
needed to compute x and thus the tracking error e, while the block J−1

A (q)
has been introduced to compensate for JA(q) and making the system linear.
The block scheme shows the presence of a string of integrators on the forward
loop and then, for a constant reference (ẋd = 0), guarantees a null steady-
state error. Further, the feedforward action provided by ẋd for a time-varying
reference ensures that the error is kept to zero (in the case e(0) = 0) along
the whole trajectory, independently of the type of desired reference xd(t).

Finally, notice that (3.70), for ẋd = 0, corresponds to the Newton method
for solving a system of nonlinear equations. Given a constant end-effector
pose xd, the algorithm can be keenly applied to compute one of the admissible

11 See Sect. A.5.
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Fig. 3.12. Block scheme of the inverse kinematics algorithm with Jacobian trans-
pose

solutions to the inverse kinematics problem, whenever that does not admit
closed-form solutions, as discussed in Sect. 2.12. Such a method is also useful
in practice at the start-up of the manipulator for a given task, to compute the
corresponding joint configuration.

In the case of a redundant manipulator , solution (3.70) can be generalized
into

q̇ = J†
A(ẋd + Ke) + (In − J†

AJA)q̇0, (3.72)

which represents the algorithmic version of solution (3.54).
The structure of the inverse kinematics algorithm can be conceptually

adopted for a simple robot control technique, known under the name of kine-
matic control . As will be seen in Chap. 7, a manipulator is actually an electro-
mechanical system actuated by motor torques, while in Chaps. 8–10 dynamic
control techniques will be presented which will properly account for the non-
linear and coupling effects of the dynamic model.

At first approximation, however, it is possible to consider a kinematic
command as system input, typically a velocity. This is possible in view of
the presence of a low-level control loop, which ‘ideally’ imposes any specified
reference velocity. On the other hand, such a loop already exists in a ‘closed’
control unit, where the user can also intervene with kinematic commands.
In other words, the scheme in Fig. 3.11 can implement a kinematic control,
provided that the integrator is regarded as a simplified model of the robot,
thanks to the presence of single joint local servos, which ensure a more or
less accurate reproduction of the velocity commands. Nevertheless, it is worth
underlining that such a kinematic control technique yields satisfactory perfor-
mance only when one does not require too fast motions or rapid accelerations.
The performance of the independent joint control will be analyzed in Sect. 8.3.

3.7.2 Jacobian Transpose

A computationally simpler algorithm can be derived by finding a relationship
between q̇ and e that ensures error convergence to zero, without requiring
linearization of (3.69). As a consequence, the error dynamics is governed by a
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nonlinear differential equation. The Lyapunov direct method can be utilized
to determine a dependence q̇(e) that ensures asymptotic stability of the error
system. Choose as Lyapunov function candidate the positive definite quadratic
form12

V (e) =
1
2
eT Ke, (3.73)

where K is a symmetric positive definite matrix. This function is so that

V (e) > 0 ∀e �= 0, V (0) = 0.

Differentiating (3.73) with respect to time and accounting for (3.68) gives

V̇ = eT Kẋd − eT Kẋe. (3.74)

In view of (3.62), it is

V̇ = eT Kẋd − eT KJA(q)q̇. (3.75)

At this point, the choice of joint velocities as

q̇ = JT
A(q)Ke (3.76)

leads to
V̇ = eT Kẋd − eT KJA(q)JT

A(q)Ke. (3.77)

Consider the case of a constant reference (ẋd = 0). The function in (3.77) is
negative definite, under the assumption of full rank for JA(q). The condition
V̇ < 0 with V > 0 implies that the system trajectories uniformly converge
to e = 0, i.e., the system is asymptotically stable. When N (JT

A) �= ∅, the
function in (3.77) is only negative semi-definite, since V̇ = 0 for e �= 0 with
Ke ∈ N (JT

A). In this case, the algorithm can get stuck at q̇ = 0 with e �= 0.
However, the example that follows will show that this situation occurs only if
the assigned end-effector position is not actually reachable from the current
configuration.

The resulting block scheme is illustrated in Fig. 3.12, which shows the no-
table feature of the algorithm to require computation only of direct kinematics
functions k(q), JT

A(q).
It can be recognized that (3.76) corresponds to the gradient method for

the solution of a system on nonlinear equations. As in the case of the Jaco-
bian inverse solution, for a given constant end-effector pose xd, the Jacobian
transpose algorithm can be keenly employed to solve the inverse kinemat-
ics problem, or more simply to initialize the values of the manipulator joint
variables.

The case when xd is a time-varying function (ẋd �= 0) deserves a separate
analysis. In order to obtain V̇ < 0 also in this case, it would be sufficient to
choose a q̇ that depends on the (pseudo-)inverse of the Jacobian as in (3.70),
12 See Sect. C.3 for the presentation of the Lyapunov direct method.
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Fig. 3.13. Characterization of the anthropomorphic arm at a shoulder singularity
for the admissible solutions of the Jacobian transpose algorithm

recovering the asymptotic stability result derived above.13 For the inversion
scheme based on the transpose, the first term on the right-hand side of (3.77)
is not cancelled any more and nothing can be said about its sign. This im-
plies that asymptotic stability along the trajectory cannot be achieved. The
tracking error e(t) is, anyhow, norm-bounded; the larger the norm of K, the
smaller the norm of e.14 In practice, since the inversion scheme is to be im-
plemented in discrete-time, there is an upper bound on the norm of K with
reference to the adopted sampling time.

Example 3.4

Consider the anthropomorphic arm; a shoulder singularity occurs whenever a2c2 +
a3c23 = 0 (Fig. 3.6). In this configuration, the transpose of the Jacobian in (3.38) is

JT
P =

[
0 0 0

−c1(a2s2 + a3s23) −s1(a2s2 + a3s23) 0
−a3c1s23 −a3s1s23 a3c23

]
.

By computing the null space of JT
P , if νx, νy and νz denote the components of vector

ν along the axes of the base frame, one has the result

νy

νx
= − 1

tan ϑ1
νz = 0,

13 Notice that, anyhow, in case of kinematic singularities, it is necessary to resort
to an inverse kinematics scheme that does not require inversion of the Jacobian.

14 Notice that the negative definite term is a quadratic function of the error, while
the other term is a linear function of the error. Therefore, for an error of very
small norm, the linear term prevails over the quadratic term, and the norm of K
should be increased to reduce the norm of e as much as possible.
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implying that the direction of N (JT
P ) coincides with the direction orthogonal to the

plane of the structure (Fig. 3.13). The Jacobian transpose algorithm gets stuck if,
with K diagonal and having all equal elements, the desired position is along the line
normal to the plane of the structure at the intersection with the wrist point. On the
other hand, the end-effector cannot physically move from the singular configuration
along such a line. Instead, if the prescribed path has a non-null component in the
plane of the structure at the singularity, algorithm convergence is ensured, since in
that case Ke /∈ N (JT

P ).

In summary, the algorithm based on the computation of the Jacobian
transpose provides a computationally efficient inverse kinematics method that
can be utilized also for paths crossing kinematic singularities.

3.7.3 Orientation Error

The inverse kinematics algorithms presented in the above sections utilize the
analytical Jacobian since they operate on error variables (position and orien-
tation) that are defined in the operational space.

For what concerns the position error, it is obvious that its expression is
given by

eP = pd − pe(q) (3.78)

where pd and pe denote respectively the desired and computed end-effector
positions. Further, its time derivative is

ėP = ṗd − ṗe. (3.79)

On the other hand, for what concerns the orientation error , its expression
depends on the particular representation of end-effector orientation, namely,
Euler angles, angle and axis, and unit quaternion.

Euler angles

The orientation error is chosen according to an expression formally analogous
to (3.78), i.e.,

eO = φd − φe(q) (3.80)

where φd and φe denote respectively the desired and computed set of Euler
angles. Further, its time derivative is

ėO = φ̇d − φ̇e. (3.81)

Therefore, assuming that neither kinematic nor representation singularities
occur, the Jacobian inverse solution for a nonredundant manipulator is derived
from (3.70), i.e.,
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q̇ = J−1
A (q)

[
ṗd + KP eP

φ̇d + KOeO

]
(3.82)

where KP and KO are positive definite matrices.
As already pointed out in Sect. 2.10 for computation of the direct kinemat-

ics function in the form (2.82), the determination of the orientation variables
from the joint variables is not easy except for simple cases (see Example 2.5).
To this end, it is worth recalling that computation of the angles φe, in a
minimal representation of orientation, requires computation of the rotation
matrix Re = [ne se ae ]; in fact, only the dependence of Re on q is known
in closed form, but not that of φe on q. Further, the use of inverse func-
tions (Atan2) in (2.19), (2.22) involves a non-negligible complexity in the
computation of the analytical Jacobian, and the occurrence of representation
singularities constitutes another drawback for the orientation error based on
Euler angles.

Different kinds of remarks are to be made about the way to assign a time
profile for the reference variables φd chosen to represent end-effector orienta-
tion. The most intuitive way to specify end-effector orientation is to refer to
the orientation of the end-effector frame (nd, sd, ad) with respect to the base
frame. Given the limitations pointed out in Sect. 2.10 about guaranteeing or-
thonormality of the unit vectors along time, it is necessary first to compute
the Euler angles corresponding to the initial and final orientation of the end-
effector frame via (2.19), (2.22); only then a time evolution can be generated.
Such solutions will be presented in Chap. 4.

A radical simplification of the problem at issue can be obtained for manip-
ulators having a spherical wrist. Section 2.12.2 pointed out the possibility to
solve the inverse kinematics problem for the position part separately from that
for the orientation part. This result also has an impact at algorithmic level. In
fact, the implementation of an inverse kinematics algorithm for determining
the joint variables influencing the wrist position allows the computation of
the time evolution of the wrist frame RW (t). Hence, once the desired time
evolution of the end-effector frame Rd(t) is given, it is sufficient to compute
the Euler angles ZYZ from the matrix RT

W Rd by applying (2.19). As shown
in Sect. 2.12.5, these angles are directly the joint variables of the spherical
wrist. See also Problem 3.14.

The above considerations show that the inverse kinematics algorithms
based on the analytical Jacobian are effective for kinematic structures having
a spherical wrist which are of significant interest. For manipulator structures
which cannot be reduced to that class, it may be appropriate to reformulate
the inverse kinematics problem on the basis of a different definition of the
orientation error.
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Angle and axis

If Rd = [nd sd ad ] denotes the desired rotation matrix of the end-effector
frame and Re = [ne se ae ] the rotation matrix that can be computed
from the joint variables, the orientation error between the two frames can be
expressed as

eO = r sinϑ (3.83)

where ϑ and r identify the angle and axis of the equivalent rotation that can
be deduced from the matrix

R(ϑ, r) = RdR
T
e (q), (3.84)

describing the rotation needed to align R with Rd. Notice that (3.83) gives a
unique relationship for −π/2 < ϑ < π/2. The angle ϑ represents the magni-
tude of an orientation error, and thus the above limitation is not restrictive
since the tracking error is typically small for an inverse kinematics algorithm.

By comparing the off-diagonal terms of the expression of R(ϑ, r) in (2.25)
with the corresponding terms resulting on the right-hand side of (3.84), it can
be found that a functional expression of the orientation error in (3.83) is (see
Problem 3.16)

eO =
1
2
(ne(q) × nd + se(q) × sd + ae(q) × ad); (3.85)

the limitation on ϑ is transformed in the condition nT
e nd ≥ 0, sT

e sd ≥ 0,
aT

e ad ≥ 0.
Differentiating (3.85) with respect to time and accounting for the expres-

sion of the columns of the derivative of a rotation matrix in (3.8) gives (see
Problem 3.19)

ėO = LT ωd − Lωe (3.86)

where
L = −1

2
(
S(nd)S(ne) + S(sd)S(se) + S(ad)S(ae)

)
. (3.87)

At this point, by exploiting the relations (3.2), (3.3) of the geometric Jacobian
expressing ṗe and ωe as a function of q̇, (3.79), (3.86) become

ė =
[

ėP

ėO

]
=

[
ṗd − JP (q)q̇

LT ωd − LJO(q)q̇

]
=

[
ṗd

LT ωd

]
−

[
I O
O L

]
Jq̇. (3.88)

The expression in (3.88) suggests the possibility of devising inverse kinematics
algorithms analogous to the ones derived above, but using the geometric Ja-
cobian in place of the analytical Jacobian. For instance, the Jacobian inverse
solution for a nonredundant nonsingular manipulator is

q̇ = J−1(q)

[
ṗd + KP eP

L−1
(
LT ωd + KOeO

)]
. (3.89)
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It is worth remarking that the inverse kinematics solution based on (3.89)
is expected to perform better than the solution based on (3.82) since it uses
the geometric Jacobian in lieu of the analytical Jacobian, thus avoiding the
occurrence of representation singularities.

Unit quaternion

In order to devise an inverse kinematics algorithm based on the unit quater-
nion, a suitable orientation error should be defined. Let Qd = {ηd, εd} and
Qe = {ηe, εe} represent the quaternions associated with Rd and Re, re-
spectively. The orientation error can be described by the rotation matrix
RdR

T
e and, in view of (2.37), can be expressed in terms of the quaternion

ΔQ = {Δη,Δε} where
ΔQ = Qd ∗ Q−1

e . (3.90)

It can be recognized that ΔQ = {1,0} if and only if Re and Rd are aligned.
Hence, it is sufficient to define the orientation error as

eO = Δε = ηe(q)εd − ηdεe(q) − S(εd)εe(q), (3.91)

where the skew-symmetric operator S(·) has been used. Notice, however, that
the explicit computation of ηe and εe from the joint variables is not possible
but it requires the intermediate computation of the rotation matrix Re that
is available from the manipulator direct kinematics; then, the quaternion can
be extracted using (2.34).

At this point, a Jacobian inverse solution can be computed as

q̇ = J−1(q)
[

ṗd + KP eP

ωd + KOeO

]
(3.92)

where noticeably the geometric Jacobian has been used. Substituting (3.92)
into (3.4) gives (3.79) and

ωd − ωe + KOeO = 0. (3.93)

It should be observed that now the orientation error equation is nonlinear
in eO since it contains the end-effector angular velocity error instead of the
time derivative of the orientation error. To this end, it is worth considering
the relationship between the time derivative of the quaternion Qe and the
angular velocity ωe. This can be found to be (see Problem 3.19)

η̇e = −1
2
εT

e ωe (3.94)

ε̇e =
1
2

(ηeI3 − S(εe)) ωe (3.95)

which is the so-called quaternion propagation. A similar relationship holds
between the time derivative of Qd and ωd.
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To study stability of system (3.93), consider the positive definite Lyapunov
function candidate

V = (ηd − ηe)2 + (εd − εe)T (εd − εe). (3.96)

In view of (3.94), (3.95), differentiating (3.96) with respect to time and ac-
counting for (3.93) yields (see Problem 3.20)

V̇ = −eT
OKOeO (3.97)

which is negative definite, implying that eO converges to zero.
In summary, the inverse kinematics solution based on (3.92) uses the geo-

metric Jacobian as the solution based on (3.89) but is computationally lighter.

3.7.4 Second-order Algorithms

The above inverse kinematics algorithms can be defined as first-order algo-
rithms, in that they allow the inversion of a motion trajectory, specified at
the end-effector in terms of of position and orientation, into the equivalent
joint positions and velocities.

Nevertheless, as will be seen in Chap. 8, for control purposes it may be
necessary to invert a motion trajectory specified in terms of position, velocity
and acceleration. On the other hand, the manipulator is inherently a second-
order mechanical system, as will be revealed by the dynamic model to be
derived in Chap. 7.

The time differentiation of the differential kinematics equation (3.62) leads
to

ẍe = JA(q)q̈ + J̇A(q, q̇)q̇ (3.98)

which gives the relationship between the joint space accelerations and the
operational space accelerations.

Under the assumption of a square and non-singular matrix JA, the second-
order differential kinematics (3.98) can be inverted in terms of the joint ac-
celerations

q̈ = J−1
A (q)

(
ẍe − J̇A(q, q̇)q̇

)
. (3.99)

The numerical integration of (3.99) to reconstruct the joint velocities and
positions would unavoidably lead to a drift of the solution; therefore, similarly
to the inverse kinematics algorithm with the Jacobian inverse, it is worth
considering the error defined in (3.68) along with its derivative

ë = ẍd − ẍe (3.100)

which, in view of (3.98), yields

ë = ẍd − JA(q)q̈ − J̇A(q, q̇)q̇. (3.101)



142 3 Differential Kinematics and Statics

Fig. 3.14. Block scheme of the second-order inverse kinematics algorithm with
Jacobian inverse

At this point, it is advisable to choose the joint acceleration vector as

q̈ = J−1
A (q)

(
ẍd + KDė + KP e − J̇A(q, q̇)q̇

)
(3.102)

where KD and KP are positive definite (typically diagonal) matrices. Sub-
stituting (3.102) into (3.101) leads to the equivalent linear error system

ë + KDė + KP e = 0 (3.103)

which is asymptotically stable: the error tends to zero along the trajectory with
a convergence speed depending on the choice of the matrices KP e KD. The
second-order inverse kinematics algorithm is illustrated in the block scheme
of Fig. 3.14.

In the case of a redundant manipulator , the generalization of (3.102) leads
to an algorithmic solution based on the Jacobian pseudo-inverse of the kind

q̈ = J†
A

(
ẍd + KDė + KP e − J̇A(q, q̇)q̇

)
+ (In − J†

AJA)q̈0 (3.104)

where the vector q̈0 represents arbitrary joint accelerations which can be cho-
sen so as to (locally) optimize an objective function like those considered in
Sect. 3.5.1.

As for the first-order inverse kinematics algorithms, it is possible to con-
sider other expressions for the orientation error which, unlike the Euler angles,
refer to an angle and axis description, else to the unit quaternion.
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3.7.5 Comparison Among Inverse Kinematics Algorithms

In order to make a comparison of performance among the inverse kinematics
algorithms presented above, consider the 3-link planar arm in Fig. 2.20 whose
link lengths are a1 = a2 = a3 = 0.5 m. The direct kinematics for this arm is
given by (2.83), while its Jacobian can be found from (3.35) by considering
the 3 non-null rows of interest for the operational space.

Let the arm be at the initial posture q = [π −π/2 −π/2 ]T rad, corre-
sponding to the end-effector pose: p = [ 0 0.5 ]T m, φ = 0 rad. A circular path
of radius 0.25 m and centre at (0.25, 0.5) m is assigned to the end-effector. Let
the motion trajectory be

pd(t) =
[

0.25(1 − cosπt)
0.25(2 + sinπt)

]
0 ≤ t ≤ 4;

i.e., the end-effector has to make two complete circles in a time of 2 s per
circle. As regards end-effector orientation, initially it is required to follow the
trajectory

φd(t) = sin
π

24
t 0 ≤ t ≤ 4;

i.e., the end-effector has to attain a different orientation (φd = 0.5 rad) at the
end of the two circles.

The inverse kinematics algorithms were implemented on a computer by
adopting the Euler numerical integration scheme (3.48) with an integration
time Δt = 1 ms.

At first, the inverse kinematics along the given trajectory has been per-
formed by using (3.47). The results obtained in Fig. 3.15 show that the norm
of the position error along the whole trajectory is bounded; at steady state,
after t = 4, the error sets to a constant value in view of the typical drift of
open-loop schemes. A similar drift can be observed for the orientation error.

Next, the inverse kinematics algorithm based on (3.70) using the Jacobian
inverse has been used, with the matrix gain K = diag{500, 500, 100}. The
resulting joint positions and velocities as well as the tracking errors are shown
in Fig. 3.16. The norm of the position error is radically decreased and con-
verges to zero at steady state, thanks to the closed-loop feature of the scheme;
the orientation error, too, is decreased and tends to zero at steady state.

On the other hand, if the end-effector orientation is not constrained, the
operational space becomes two-dimensional and is characterized by the first
two rows of the direct kinematics in (2.83) as well as by the Jacobian in (3.36);
a redundant DOF is then available. Hence, the inverse kinematics algorithm
based on (3.72) using the Jacobian pseudo-inverse has been used with K =
diag{500, 500}. If redundancy is not exploited (q̇0 = 0), the results in Fig. 3.17
reveal that position tracking remains satisfactory and, of course, the end-
effector orientation freely varies along the given trajectory.

With reference to the previous situation, the use of the Jacobian transpose
algorithm based on (3.76) with K = diag{500, 500} gives rise to a tracking
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Fig. 3.15. Time history of the norm of end-effector position error and orientation
error with the open-loop inverse Jacobian algorithm
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Fig. 3.16. Time history of the joint positions and velocities, and of the norm of end-
effector position error and orientation error with the closed-loop inverse Jacobian
algorithm

error (Fig. 3.18) which is anyhow bounded and rapidly tends to zero at steady
state.

In order to show the capability of handling the degree of redundancy, the
algorithm based on (3.72) with q̇0 �= 0 has been used; two types of constraints
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Fig. 3.17. Time history of the norm of end-effector position error and orientation
with the Jacobian pseudo-inverse algorithm
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Fig. 3.18. Time history of the norm of end-effector position error and orientation
with the Jacobian transpose algorithm

have been considered concerning an objective function to locally maximize
according to the choice (3.55). The first function is

w(ϑ2, ϑ3) =
1
2
(s2

2 + s2
3)

that provides a manipulability measure. Notice that such a function is compu-
tationally simpler than the function in (3.56), but it still describes a distance
from kinematic singularities in an effective way. The gain in (3.55)) has been
set to k0 = 50. In Fig. 3.19, the joint trajectories are reported for the two
cases with and without (k0 = 0) constraint. The addition of the constraint
leads to having coincident trajectories for Joints 2 and 3. The manipulability
measure in the constrained case (continuous line) attains larger values along
the trajectory compared to the unconstrained case (dashed line). It is worth
underlining that the tracking position error is practically the same in the two
cases (Fig. 3.17), since the additional joint velocity contribution is projected
in the null space of the Jacobian so as not to alter the performance of the
end-effector position task.

Finally, it is worth noticing that in the constrained case the resulting joint
trajectories are cyclic, i.e., they take on the same values after a period of
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Fig. 3.19. Time history of the joint positions, the norm of end-effector position
error, and the manipulability measure with the Jacobian pseudo-inverse algorithm
and manipulability constraint; upper left : with the unconstrained solution, upper
right : with the constrained solution

the circular path. This does not happen for the unconstrained case, since the
internal motion of the structure causes the arm to be in a different posture
after one circle.

The second objective function considered is the distance from mechanical
joint limits in (3.57). Specifically, it is assumed what follows: the first joint
does not have limits (q1m = −2π, q1M = 2π), the second joint has limits q2m =
−π/2, q2M = π/2, and the third joint has limits q3m = −3π/2, q3M = −π/2.
It is not difficult to verify that, in the unconstrained case, the trajectories of
Joints 2 and 3 in Fig. 3.19 violate the respective limits. The gain in (3.55)
has been set to k0 = 250. The results in Fig. 3.20 show the effectiveness of
the technique with utilization of redundancy, since both Joints 2 and 3 tend
to invert their motion — with respect to the unconstrained trajectories in
Fig. 3.19 — and keep far from the minimum limit for Joint 2 and the maximum
limit for Joint 3, respectively. Such an effort does not appreciably affect the
position tracking error, whose norm is bounded anyhow within acceptable
values.

3.8 Statics 147

0 1 2 3 4 5
0

0.5

1

1.5

2
x 10

4

[s]

[m
]

pos error norm

0 1 2 3 4 5

6

4

2

0

2

4

6

[s]

[r
ad

]

joint 1 pos 

0 1 2 3 4 5

6

4

2

0

2

4

6

[s]

[r
ad

]

joint 2 pos 

0 1 2 3 4 5
5

0

5

[s]

[r
ad

]

joint 3 pos 

Fig. 3.20. Time history of the joint positions and the norm of end-effector position
error with the Jacobian pseudo-inverse algorithm and joint limit constraint (joint
limits are denoted by dashed lines)

3.8 Statics

The goal of statics is to determine the relationship between the generalized
forces applied to the end-effector and the generalized forces applied to the
joints — forces for prismatic joints, torques for revolute joints — with the
manipulator at an equilibrium configuration.

Let τ denote the (n × 1) vector of joint torques and γ the (r × 1) vector
of end-effector forces15 where r is the dimension of the operational space of
interest.

The application of the principle of virtual work allows the determination
of the required relationship. The mechanical manipulators considered are sys-
tems with time-invariant, holonomic constraints, and thus their configurations
depend only on the joint variables q and not explicitly on time. This implies
that virtual displacements coincide with elementary displacements.

Consider the elementary works performed by the two force systems. As for
the joint torques, the elementary work associated with them is

dWτ = τT dq. (3.105)

15 Hereafter, generalized forces at the joints are often called torques, while general-
ized forces at the end-effector are often called forces.
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As for the end-effector forces γ, if the force contributions fe are separated by
the moment contributions μe, the elementary work associated with them is

dWγ = fT
e dpe + μT

e ωedt, (3.106)

where dpe is the linear displacement and ωedt is the angular displacement16

By accounting for the differential kinematics relationship in (3.4), (3.5),
the relation (3.106) can be rewritten as

dWγ = fT
e JP (q)dq + μT

e JO(q)dq (3.107)
= γT

e J(q)dq

where γe = [fT
e μT

e ]T . Since virtual and elementary displacements coincide,
the virtual works associated with the two force systems are

δWτ = τT δq (3.108)
δWγ = γT

e J(q)δq, (3.109)

where δ is the usual symbol to indicate virtual quantities.
According to the principle of virtual work, the manipulator is at static

equilibrium if and only if

δWτ = δWγ ∀δq, (3.110)

i.e., the difference between the virtual work of the joint torques and the virtual
work of the end-effector forces must be null for all joint displacements.

From (3.109), notice that the virtual work of the end-effector forces is
null for any displacement in the null space of J . This implies that the joint
torques associated with such displacements must be null at static equilibrium.
Substituting (3.108), (3.109) into (3.110) leads to the notable result

τ = JT (q)γe (3.111)

stating that the relationship between the end-effector forces and the joint
torques is established by the transpose of the manipulator geometric Jacobian.

3.8.1 Kineto-Statics Duality

The statics relationship in (3.111), combined with the differential kinematics
equation in (3.45), points out a property of kineto-statics duality . In fact, by
adopting a representation similar to that of Fig. 3.7 for differential kinematics,
one has that (Fig. 3.21):

• The range space of JT is the subspace R(JT ) in IRn of the joint torques
that can balance the end-effector forces, in the given manipulator posture.

16 The angular displacement has been indicated by ωedt in view of the problems of
integrability of ωe discussed in Sect. 3.6.
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Fig. 3.21. Mapping between the end-effector force space and the joint torque space

• The null space of JT is the subspace N (JT ) in IRr of the end-effector forces
that do not require any balancing joint torques, in the given manipulator
posture.

It is worth remarking that the end-effector forces γe ∈ N (JT ) are entirely
absorbed by the structure in that the mechanical constraint reaction forces
can balance them exactly. Hence, a manipulator at a singular configuration
remains in the given posture whatever end-effector force γe is applied so that
γe ∈ N (JT ).

The relations between the two subspaces are established by

N (J) ≡ R⊥(JT ) R(J) ≡ N⊥(JT )

and then, once the manipulator Jacobian is known, it is possible to charac-
terize completely differential kinematics and statics in terms of the range and
null spaces of the Jacobian and its transpose.

On the basis of the above duality, the inverse kinematics scheme with the
Jacobian transpose in Fig. 3.12 admits an interesting physical interpretation.
Consider a manipulator with ideal dynamics τ = q̇ (null masses and unit
viscous friction coefficients); the algorithm update law q̇ = JT Ke plays the
role of a generalized spring of stiffness constant K generating a force Ke that
pulls the end-effector towards the desired posture in the operational space.
If this manipulator is allowed to move, e.g., in the case Ke /∈ N (JT ), the
end-effector attains the desired posture and the corresponding joint variables
are determined.

3.8.2 Velocity and Force Transformation

The kineto-statics duality concept presented above can be useful to character-
ize the transformation of velocities and forces between two coordinate frames.

Consider a reference coordinate frame O0–x0y0z0 and a rigid body moving
with respect to such a frame. Then let O1–x1y1z1 and O2–x2y2z2 be two
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Fig. 3.22. Representation of linear and angular velocities in different coordinate
frames on the same rigid body

coordinate frames attached to the body (Fig. 3.22). The relationships between
translational and rotational velocities of the two frames with respect to the
reference frame are given by

ω2 = ω1

ṗ2 = ṗ1 + ω1 × r12.

By exploiting the skew-symmetric operator S(·) in (3.9), the above relations
can be compactly written as[

ṗ2

ω2

]
=

[
I −S(r12)
O I

] [
ṗ1

ω1

]
. (3.112)

All vectors in (3.112) are meant to be referred to the reference frame O0–
x0y0z0. On the other hand, if vectors are referred to their own frames, it
is

r12 = R1r
1
12

and also

ṗ1 = R1ṗ
1
1 ṗ2 = R2ṗ

2
2 = R1R

1
2ṗ

2
2

ω1 = R1ω
1
1 ω2 = R2ω

2
2 = R1R

1
2ω

2
2.

Accounting for (3.112) and (3.11) gives

R1R
1
2ṗ

2
2 = R1ṗ

1
1 − R1S(r1

12)R
T
1 R1ω

1
1

R1R
1
2ω

2
2 = R1ω

1
1.

Eliminating the dependence on R1, which is premultiplied to each term on
both sides of the previous relations, yields17[

ṗ2
2

ω2
2

]
=

[
R2

1 −R2
1S(r1

12)
O R2

1

] [
ṗ1

1

ω1
1

]
(3.113)

17 Recall that RT R = I , as in (2.4).
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giving the sought general relationship of velocity transformation between two
frames.

It may be observed that the transformation matrix in (3.113) plays the
role of a true Jacobian, since it characterizes a velocity transformation, and
thus (3.113) may be shortly written as

v2
2 = J2

1v
1
1. (3.114)

At this point, by virtue of the kineto-statics duality, the force transformation
between two frames can be directly derived in the form

γ1
1 = J2

1
T γ2

2 (3.115)

which can be detailed into18[
f1

1

μ1
1

]
=

[
R1

2 O

S(r1
12)R

1
2 R1

2

] [
f2

2

μ2
2

]
. (3.116)

Finally, notice that the above analysis is instantaneous in that, if a coordinate
frame varies with respect to the other, it is necessary to recompute the Jaco-
bian of the transformation through the computation of the related rotation
matrix of one frame with respect to the other.

3.8.3 Closed Chain

As discussed in Sect. 2.8.3, whenever the manipulator contains a closed chain,
there is a functional relationship between the joint variables. In particular,
the closed chain structure is transformed into a tree-structured open chain by
virtually cutting the loop at a joint. It is worth choosing such a cut joint as
one of the unactuated joints. Then, the constraints (2.59) or (2.60) should be
solved for a reduced number of joint variables, corresponding to the DOFs of
the chain. Therefore, it is reasonable to assume that at least such independent
joints are actuated, while the others may or may not be actuated. Let qo =
[ qT

a qT
u ]T denote the vector of joint variables of the tree-structured open

chain, where qa and qu are the vectors of actuated and unactuated joint
variables, respectively. Assume that from the above constraints it is possible
to determine a functional expression

qu = qu(qa). (3.117)

Time differentiation of (3.117) gives the relationship between joint velocities
in the form

q̇o = Υ q̇a (3.118)

where

Υ =

⎡⎣ I
∂qu

∂qa

⎤⎦ (3.119)

18 The skew-symmetry property S + ST = O is utilized.
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is the transformation matrix between the two vectors of joint velocities, which
in turn plays the role of a Jacobian.

At this point, according to an intuitive kineto-statics duality concept, it is
possible to describe the transformation between the corresponding vectors of
joint torques in the form

τ a = Υ T τ o (3.120)

where τ o = [ τT
a τT

u ]T , with obvious meaning of the quantities.

Example 3.5

Consider the parallelogram arm of Sect. 2.9.2. On the assumption to actuate the
two Joints 1′ and 1′′ at the base, it is qa = [ ϑ1′ ϑ1′′ ]T and qu = [ ϑ2′ ϑ3′ ]T .
Then, using (2.64), the transformation matrix in (3.119) is

Υ =

⎡⎢⎣ 1 0
0 1
−1 1
1 −1

⎤⎥⎦ .

Hence, in view of (3.120), the torque vector of the actuated joints is

τ a =

[
τ1′ − τ2′ + τ3′

τ1′′ + τ2′ − τ3′

]
(3.121)

while obviously τ u = [ 0 0 ]T in agreement with the fact that both Joints 2′ and 3′

are unactuated.

3.9 Manipulability Ellipsoids

The differential kinematics equation in (3.45) and the statics equation in
(3.111), together with the duality property, allow the definition of indices for
the evaluation of manipulator performance. Such indices can be helpful both
for mechanical manipulator design and for determining suitable manipulator
postures to execute a given task in the current configuration.

First, it is desired to represent the attitude of a manipulator to arbitrarily
change end-effector position and orientation. This capability is described in
an effective manner by the velocity manipulability ellipsoid .

Consider the set of joint velocities of constant (unit) norm

q̇T q̇ = 1; (3.122)

this equation describes the points on the surface of a sphere in the joint ve-
locity space. It is desired to describe the operational space velocities that can
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be generated by the given set of joint velocities, with the manipulator in a
given posture. To this end, one can utilize the differential kinematics equation
in (3.45) solved for the joint velocities; in the general case of a redundant ma-
nipulator (r < n) at a nonsingular configuration, the minimum-norm solution
q̇ = J†(q)ve can be considered which, substituted into (3.122), yields

vT
e

(
J†T (q)J†(q)

)
ve = 1.

Accounting for the expression of the pseudo-inverse of J in (3.52) gives

vT
e

(
J(q)JT(q)

)−1
ve = 1, (3.123)

which is the equation of the points on the surface of an ellipsoid in the end-
effector velocity space.

The choice of the minimum-norm solution rules out the presence of internal
motions for the redundant structure. If the general solution (3.54) is used for
q̇, the points satisfying (3.122) are mapped into points inside the ellipsoid
whose surface is described by (3.123).

For a nonredundant manipulator, the differential kinematics solution (3.47)
is used to derive (3.123); in this case the points on the surface of the sphere in
the joint velocity space are mapped into points on the surface of the ellipsoid
in the end-effector velocity space.

Along the direction of the major axis of the ellipsoid, the end-effector can
move at large velocity, while along the direction of the minor axis small end-
effector velocities are obtained. Further, the closer the ellipsoid is to a sphere
— unit eccentricity — the better the end-effector can move isotropically along
all directions of the operational space. Hence, it can be understood why this
ellipsoid is an index characterizing manipulation ability of the structure in
terms of velocities.

As can be recognized from (3.123), the shape and orientation of the ellip-
soid are determined by the core of its quadratic form and then by the matrix
JJT which is in general a function of the manipulator configuration. The
directions of the principal axes of the ellipsoid are determined by the eigen-
vectors ui, for i = 1, . . . , r, of the matrix JJT , while the dimensions of the

axes are given by the singular values of J , σi =
√

λi(JJT ), for i = 1, . . . , r,

where λi(JJT ) denotes the generic eigenvalue of JJT .
A global representative measure of manipulation ability can be obtained

by considering the volume of the ellipsoid. This volume is proportional to the
quantity

w(q) =
√

det
(
J(q)JT (q)

)
which is the manipulability measure already introduced in (3.56). In the case
of a nonredundant manipulator (r = n), w reduces to

w(q) =
∣∣det

(
J(q)

)∣∣ . (3.124)
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Fig. 3.23. Velocity manipulability ellipses for a two-link planar arm in different
postures

It is easy to recognize that it is always w > 0, except for a manipulator at a
singular configuration when w = 0. For this reason, this measure is usually
adopted as a distance of the manipulator from singular configurations.

Example 3.6

Consider the two-link planar arm. From the expression in (3.41), the manipulability
measure is in this case

w = |det(J)| = a1a2|s2|.
Therefore, as a function of the arm postures, the manipulability is maximum for
ϑ2 = ±π/2. On the other hand, for a given constant reach a1 + a2, the structure
offering the maximum manipulability, independently of ϑ1 and ϑ2, is the one with
a1 = a2.

These results have a biomimetic interpretation in the human arm, if that is
regarded as a two-link arm (arm + forearm). The condition a1 = a2 is satisfied with
good approximation. Further, the elbow angle ϑ2 is usually in the neighbourhood of
π/2 in the execution of several tasks, such as that of writing. Hence, the human being
tends to dispose the arm in the most dexterous configuration from a manipulability
viewpoint.

Figure 3.23 illustrates the velocity manipulability ellipses for a certain number of
postures with the tip along the horizontal axis and a1 = a2 = 1. It can be seen that
when the arm is outstretched the ellipsoid is very thin along the vertical direction.
Hence, one recovers the result anticipated in the study of singularities that the arm
in this posture can generate tip velocities preferably along the vertical direction. In
Fig. 3.24, moreover, the behaviour of the minimum and maximum singular values of
the matrix J is illustrated as a function of tip position along axis x; it can be verified
that the minimum singular value is null when the manipulator is at a singularity
(retracted or outstretched).

Therefore, with reference to the postures, manipulability has a maximum for
ϑ2 = ±π/2. On the other hand, for a given total extension a1 + a2, the structure
which, independently of ϑ1 and ϑ2, offers the largest manipulability is that with
a1 = a2.
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Fig. 3.24. Minimum and maximum singular values of J for a two-link planar arm
as a function of the arm posture
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Fig. 3.25. Force manipulability ellipses for a two-link planar arm in different pos-
tures

The manipulability measure w has the advantage of being easy to compute,
through the determinant of matrix JJT . However, its numerical value does
not constitute an absolute measure of the actual closeness of the manipulator
to a singularity. It is enough to consider the above example and take two
arms of identical structure, one with links of 1 m and the other with links of
1 cm. Two different values of manipulability are obtained which differ by four
orders of magnitude. Hence, in that case it is convenient to consider only |s2|
— eventually |ϑ2| — as the manipulability measure. In more general cases
when it is not easy to find a simple, meaningful index, one can consider the
ratio between the minimum and maximum singular values of the Jacobian
σr/σ1 which is equivalent to the inverse of the condition number of matrix J .
This ratio gives not only a measure of the distance from a singularity (σr = 0),
but also a direct measure of eccentricity of the ellipsoid. The disadvantage in
utilizing this index is its computational complexity; it is practically impossible
to compute it in symbolic form, i.e., as a function of the joint configuration,
except for matrices of reduced dimension.

On the basis of the existing duality between differential kinematics and
statics, it is possible to describe the manipulability of a structure not only
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with reference to velocities, but also with reference to forces. To be specific,
one can consider the sphere in the space of joint torques

τT τ = 1 (3.125)

which, accounting for (3.111), is mapped into the ellipsoid in the space of
end-effector forces

γT
e

(
J(q)JT(q)

)
γe = 1 (3.126)

which is defined as the force manipulability ellipsoid . This ellipsoid character-
izes the end-effector forces that can be generated with the given set of joint
torques, with the manipulator in a given posture.

As can be easily recognized from (3.126), the core of the quadratic form is
constituted by the inverse of the matrix core of the velocity ellipsoid in (3.123).
This feature leads to the notable result that the principal axes of the force
manipulability ellipsoid coincide with the principal axes of the velocity manip-
ulability ellipsoid, while the dimensions of the respective axes are in inverse
proportion. Therefore, according to the concept of force/velocity duality, a
direction along which good velocity manipulability is obtained is a direction
along which poor force manipulability is obtained, and vice versa.

In Fig. 3.25, the manipulability ellipses for the same postures as those
of the example in Fig. 3.23 are illustrated. A comparison of the shape and
orientation of the ellipses confirms the force/velocity duality effect on the
manipulability along different directions.

It is worth pointing out that these manipulability ellipsoids can be repre-
sented geometrically in all cases of an operational space of dimension at most
3. Therefore, if it is desired to analyze manipulability in a space of greater
dimension, it is worth separating the components of linear velocity (force)
from those of angular velocity (moment), also avoiding problems due to non-
homogeneous dimensions of the relevant quantities (e.g., m/s vs rad/s). For
instance, for a manipulator with a spherical wrist, the manipulability analysis
is naturally prone to a decoupling between arm and wrist.

An effective interpretation of the above results can be achieved by regard-
ing the manipulator as a mechanical transformer of velocities and forces from
the joint space to the operational space. Conservation of energy dictates that
an amplification in the velocity transformation is necessarily accompanied by
a reduction in the force transformation, and vice versa. The transformation
ratio along a given direction is determined by the intersection of the vector
along that direction with the surface of the ellipsoid. Once a unit vector u
along a direction has been assigned, it is possible to compute the transforma-
tion ratio for the force manipulability ellipsoid as

α(q) =
(

uT J(q)JT (q)u
)−1/2

(3.127)
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Fig. 3.26. Velocity and force manipulability ellipses for a 3-link planar arm in a
typical configuration for a task of controlling force and velocity

and for the velocity manipulability ellipsoid as

β(q) =
(

uT
(
J(q)JT (q)

)−1
u

)−1/2

. (3.128)

The manipulability ellipsoids can be conveniently utilized not only for an-
alyzing manipulability of the structure along different directions of the opera-
tional space, but also for determining compatibility of the structure to execute
a task assigned along a direction. To this end, it is useful to distinguish be-
tween actuation tasks and control tasks of velocity and force. In terms of the
relative ellipsoid, the task of actuating a velocity (force) requires preferably
a large transformation ratio along the task direction, since for a given set of
joint velocities (forces) at the joints it is possible to generate a large velocity
(force) at the end-effector. On the other hand, for a control task it is impor-
tant to have a small transformation ratio so as to gain good sensitivity to
errors that may occur along the given direction.

Revisiting once again the duality between velocity manipulability ellipsoid
and force manipulability ellipsoid, it can be found that an optimal direction to
actuate a velocity is also an optimal direction to control a force. Analogously,
a good direction to actuate a force is also a good direction to control a velocity.

To have a tangible example of the above concept, consider the typical task
of writing on a horizontal surface for the human arm; this time, the arm is re-
garded as a 3-link planar arm: arm + forearm + hand. Restricting the analysis
to a two-dimensional task space (the direction vertical to the surface and the
direction of the line of writing), one has to achieve fine control of the vertical
force (the pressure of the pen on the paper) and of the horizontal velocity (to
write in good calligraphy). As a consequence, the force manipulability ellipse
tends to be oriented horizontally for correct task execution. Correspondingly,
the velocity manipulability ellipse tends to be oriented vertically in perfect
agreement with the task requirement. In this case, from Fig. 3.26 the typical
configuration of the human arm when writing can be recognized.
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Fig. 3.27. Velocity and force manipulability ellipses for a 3-link planar arm in a
typical configuration for a task of actuating force and velocity

An opposite example to the previous one is that of the human arm when
throwing a weight in the horizontal direction. In fact, now it is necessary to
actuate a large vertical force (to sustain the weight) and a large horizontal
velocity (to throw the load for a considerable distance). Unlike the above, the
force (velocity) manipulability ellipse tends to be oriented vertically (horizon-
tally) to successfully execute the task. The relative configuration in Fig. 3.27
is representative of the typical attitude of the human arm when, for instance,
releasing the ball in a bowling game.

In the above two examples, it is worth pointing out that the presence of a
two-dimensional operational space is certainly advantageous to try reconfig-
uring the structure in the best configuration compatible with the given task.
In fact, the transformation ratios defined in (3.127) and (3.128) are scalar
functions of the manipulator configurations that can be optimized locally ac-
cording to the technique for exploiting redundant DOFs previously illustrated.
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Problems

3.1. Prove (3.11).

3.2. Compute the Jacobian of the cylindrical arm in Fig. 2.35.

3.3. Compute the Jacobian of the SCARA manipulator in Fig. 2.36.

3.4. Find the singularities of the 3-link planar arm in Fig. 2.20.

3.5. Find the singularities of the spherical arm in Fig. 2.22.

3.6. Find the singularities of the cylindrical arm in Fig. 2.35.

3.7. Find the singularities of the SCARA manipulator in Fig. 2.36.

3.8. Show that the manipulability measure defined in (3.56) is given by the
product of the singular values of the Jacobian matrix.

3.9. For the 3-link planar arm in Fig. 2.20, find an expression of the distance
of the arm from a circular obstacle of given radius and coordinates.

3.10. Find the solution to the differential kinematics equation with the
damped least-square inverse in (3.59).

3.11. Prove (3.64) in an alternative way, i.e., by computing S(ωe) as in (3.6)
starting from R(φ) in (2.18).

3.12. With reference to (3.64), find the transformation matrix T (φe) in the
case of RPY angles.

3.13. With reference to (3.64), find the triplet of Euler angles for which
T (0) = I.

3.14. Show how the inverse kinematics scheme of Fig. 3.11 can be simplified
in the case of a manipulator having a spherical wrist.
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3.15. Find an expression of the upper bound on the norm of e for the solu-
tion (3.76) in the case ẋd �= 0.

3.16. Prove (3.81).

3.17. Prove (3.86), (3.87).

3.18. Prove that the equation relating the angular velocity to the time deriva-
tive of the quaternion is given by

ω = 2S(ε)ε̇ + 2ηε̇ − 2η̇ε.

[Hint : Start by showing that (2.33) can be rewritten as R(η, ε) = (2η2−1)I +
2εεT + 2ηS(ε)].

3.19. Prove (3.94), (3.95).

3.20. Prove that the time derivative of the Lyapunov function in (3.96) is
given by (3.97).

3.21. Consider the 3-link planar arm in Fig. 2.20, whose link lengths are
respectively 0.5 m, 0.3 m, 0.3 m. Perform a computer implementation of the
inverse kinematics algorithm using the Jacobian pseudo-inverse along the op-
erational space path given by a straight line connecting the points of coordi-
nates (0.8, 0.2) m and (0.8,−0.2) m. Add a constraint aimed at avoiding link
collision with a circular object located at ø = [ 0.3 0 ]T m of radius 0.1 m. The
initial arm configuration is chosen so that pe(0) = pd(0). The final time is
2 s. Use sinusoidal motion timing laws. Adopt the Euler numerical integration
scheme (3.48) with an integration time Δt = 1 ms.

3.22. Consider the SCARA manipulator in Fig. 2.36, whose links both have a
length of 0.5 m and are located at a height of 1 m from the supporting plane.
Perform a computer implementation of the inverse kinematics algorithms with
both Jacobian inverse and Jacobian transpose along the operational space
path whose position is given by a straight line connecting the points of co-
ordinates (0.7, 0, 0) m and (0, 0.8, 0.5) m, and whose orientation is given by
a rotation from 0 rad to π/2 rad. The initial arm configuration is chosen so
that xe(0) = xd(0). The final time is 2 s. Use sinusoidal motion timing laws.
Adopt the Euler numerical integration scheme (3.48) with an integration time
Δt = 1 ms.

3.23. Prove that the directions of the principal axes of the force and velocity
manipulability ellipsoids coincide while their dimensions are in inverse pro-
portion.

4

Trajectory Planning

For the execution of a specific robot task, it is worth considering the main
features of motion planning algorithms. The goal of trajectory planning is to
generate the reference inputs to the motion control system which ensures that
the manipulator executes the planned trajectories. The user typically specifies
a number of parameters to describe the desired trajectory. Planning consists of
generating a time sequence of the values attained by an interpolating function
(typically a polynomial) of the desired trajectory. This chapter presents some
techniques for trajectory generation, both in the case when the initial and
final point of the path are assigned (point-to-point motion), and in the case
when a finite sequence of points are assigned along the path (motion through
a sequence of points). First, the problem of trajectory planning in the joint
space is considered, and then the basic concepts of trajectory planning in
the operational space are illustrated. The treatment of the motion planning
problem for mobile robots is deferred to Chap. 12.

4.1 Path and Trajectory

The minimal requirement for a manipulator is the capability to move from
an initial posture to a final assigned posture. The transition should be char-
acterized by motion laws requiring the actuators to exert joint generalized
forces which do not violate the saturation limits and do not excite the typi-
cally modelled resonant modes of the structure. It is then necessary to devise
planning algorithms that generate suitably smooth trajectories.

In order to avoid confusion between terms often used as synonyms, the
difference between a path and a trajectory is to be explained. A path denotes
the locus of points in the joint space, or in the operational space, which the
manipulator has to follow in the execution of the assigned motion; a path is
then a pure geometric description of motion. On the other hand, a trajectory
is a path on which a timing law is specified, for instance in terms of velocities
and/or accelerations at each point.
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In principle, it can be conceived that the inputs to a trajectory planning
algorithm are the path description, the path constraints, and the constraints
imposed by manipulator dynamics, whereas the outputs are the end-effector
trajectories in terms of a time sequence of the values attained by position,
velocity and acceleration.

A geometric path cannot be fully specified by the user for obvious com-
plexity reasons. Typically, a reduced number of parameters is specified such
as extremal points, possible intermediate points, and geometric primitives in-
terpolating the points. Also, the motion timing law is not typically specified
at each point of the geometric path, but rather it regards the total trajectory
time, the constraints on the maximum velocities and accelerations, and even-
tually the assignment of velocity and acceleration at points of particular inter-
est. On the basis of the above information, the trajectory planning algorithm
generates a time sequence of variables that describe end-effector position and
orientation over time in respect of the imposed constraints. Since the control
action on the manipulator is carried out in the joint space, a suitable inverse
kinematics algorithm is to be used to reconstruct the time sequence of joint
variables corresponding to the above sequence in the operational space.

Trajectory planning in the operational space naturally allows the presence
of path constraints to be accounted; these are due to regions of workspace
which are forbidden to the manipulator, e.g., due to the presence of obstacles.
In fact, such constraints are typically better described in the operational space,
since their corresponding points in the joint space are difficult to compute.

With regard to motion in the neighbourhood of singular configurations and
presence of redundant DOFs, trajectory planning in the operational space may
involve problems difficult to solve. In such cases, it may be advisable to specify
the path in the joint space, still in terms of a reduced number of parameters.
Hence, a time sequence of joint variables has to be generated which satisfy
the constraints imposed on the trajectory.

For the sake of clarity, in the following, the case of joint space trajectory
planning is treated first. The results will then be extended to the case of
trajectories in the operational space.

4.2 Joint Space Trajectories

A manipulator motion is typically assigned in the operational space in terms
of trajectory parameters such as the initial and final end-effector pose, possi-
ble intermediate poses, and travelling time along particular geometric paths.
If it is desired to plan a trajectory in the joint space, the values of the joint
variables have to be determined first from the end-effector position and ori-
entation specified by the user. It is then necessary to resort to an inverse
kinematics algorithm, if planning is done off-line, or to directly measure the
above variables, if planning is done by the teaching-by-showing technique (see
Chap. 6).
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The planning algorithm generates a function q(t) interpolating the given
vectors of joint variables at each point, in respect of the imposed constraints.

In general, a joint space trajectory planning algorithm is required to have
the following features:

• the generated trajectories should be not very demanding from a compu-
tational viewpoint,

• the joint positions and velocities should be continuous functions of time
(continuity of accelerations may be imposed, too),

• undesirable effects should be minimized, e.g., nonsmooth trajectories in-
terpolating a sequence of points on a path.

At first, the case is examined when only the initial and final points on
the path and the traveling time are specified (point-to-point); the results are
then generalized to the case when also intermediate points along the path are
specified (motion through a sequence of points). Without loss of generality,
the single joint variable q(t) is considered.

4.2.1 Point-to-Point Motion

In point-to-point motion, the manipulator has to move from an initial to a
final joint configuration in a given time tf . In this case, the actual end-effector
path is of no concern. The algorithm should generate a trajectory which, in
respect to the above general requirements, is also capable of optimizing some
performance index when the joint is moved from one position to another.

A suggestion for choosing the motion primitive may stem from the analysis
of an incremental motion problem. Let I be the moment of inertia of a rigid
body about its rotation axis. It is required to take the angle q from an initial
value qi to a final value qf in a time tf . It is obvious that infinite solutions
exist to this problem. Assumed that rotation is executed through a torque τ
supplied by a motor, a solution can be found which minimizes the energy dis-
sipated in the motor. This optimization problem can be formalized as follows.
Having set q̇ = ω, determine the solution to the differential equation

Iω̇ = τ

subject to the condition ∫ tf

o

ω(t)dt = qf − qi

so as to minimize the performance index∫ tf

0

τ2(t)dt.

It can be shown that the resulting solution is of the type

ω(t) = at2 + bt + c.
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Even though the joint dynamics cannot be described in the above simple
manner,1 the choice of a third-order polynomial function to generate a joint
trajectory represents a valid solution for the problem at issue.

Therefore, to determine a joint motion, the cubic polynomial

q(t) = a3t
3 + a2t

2 + a1t + a0 (4.1)

can be chosen, resulting into a parabolic velocity profile

q̇(t) = 3a3t
2 + 2a2t + a1

and a linear acceleration profile

q̈(t) = 6a3t + 2a2.

Since four coefficients are available, it is possible to impose, besides the initial
and final joint position values qi and qf , also the initial and final joint velocity
values q̇i and q̇f which are usually set to zero. Determination of a specific
trajectory is given by the solution to the following system of equations:

a0 = qi

a1 = q̇i

a3t
3
f + a2t

2
f + a1tf + a0 = qf

3a3t
2
f + 2a2tf + a1 = q̇f ,

that allows the computation of the coefficients of the polynomial in (4.1).2

Figure 4.1 illustrates the timing law obtained with the following data: qi = 0,
qf = π, tf = 1, and q̇i = q̇f = 0. As anticipated, velocity has a parabolic pro-
file, while acceleration has a linear profile with initial and final discontinuity.

If it is desired to assign also the initial and final values of acceleration, six
constraints have to be satisfied and then a polynomial of at least fifth order
is needed. The motion timing law for the generic joint is then given by

q(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t + a0, (4.2)

whose coefficients can be computed, as for the previous case, by imposing the
conditions for t = 0 and t = tf on the joint variable q(t) and on its first
two derivatives. With the choice (4.2), one obviously gives up minimizing the
above performance index.

An alternative approach with timing laws of blended polynomial type is
frequently adopted in industrial practice, which allows a direct verification

1 In fact, recall that the moment of inertia about the joint axis is a function of
manipulator configuration.

2 Notice that it is possible to normalize the computation of the coefficients, so as
to be independent both on the final time tf and on the path length |qf − qi|.
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Fig. 4.1. Time history of position, velocity and acceleration with a cubic polynomial
timing law

of whether the resulting velocities and accelerations can be supported by the
physical mechanical manipulator.

In this case, a trapezoidal velocity profile is assigned, which imposes a
constant acceleration in the start phase, a cruise velocity, and a constant
deceleration in the arrival phase. The resulting trajectory is formed by a linear
segment connected by two parabolic segments to the initial and final positions.

In the following, the problem is formulated by assuming that the final time
of trajectory duration has been assigned. However, in industrial practice, the
user is offered the option to specify the velocity percentage with respect to the
maximum allowable velocity; this choice is aimed at avoiding occurrences when
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Fig. 4.2. Characterization of a timing law with trapezoidal velocity profile in terms
of position, velocity and acceleration

the specification of a much too short motion duration would involve much too
large values of velocities and/or accelerations, beyond those achievable by the
manipulator.

As can be seen from the velocity profiles in Fig. 4.2, it is assumed that both
initial and final velocities are null and the segments with constant accelerations
have the same time duration; this implies an equal magnitude q̈c in the two
segments. Notice also that the above choice leads to a symmetric trajectory
with respect to the average point qm = (qf + qi)/2 at tm = tf/2.

The trajectory has to satisfy some constraints to ensure the transition
from qi to qf in a time tf . The velocity at the end of the parabolic segment
must be equal to the (constant) velocity of the linear segment, i.e.,

q̈ctc =
qm − qc

tm − tc
(4.3)

where qc is the value attained by the joint variable at the end of the parabolic
segment at time tc with constant acceleration q̈c (recall that q̇(0) = 0). It is
then

qc = qi +
1
2
q̈ct

2
c . (4.4)

Combining (4.3), (4.4) gives

q̈ct
2
c − q̈ctf tc + qf − qi = 0. (4.5)
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Usually, q̈c is specified with the constraint that sgn q̈c = sgn (qf − qi); hence,
for given tf , qi and qf , the solution for tc is computed from (4.5) as (tc ≤ tf/2)

tc =
tf
2

− 1
2

√
t2f q̈c − 4(qf − qi)

q̈c
. (4.6)

Acceleration is then subject to the constraint

|q̈c| ≥
4|qf − qi|

t2f
. (4.7)

When the acceleration q̈c is chosen so as to satisfy (4.7) with the equality
sign, the resulting trajectory does not feature the constant velocity segment
any more and has only the acceleration and deceleration segments (triangular
profile).

Given qi, qf and tf , and thus also an average transition velocity, the con-
straint in (4.7) allows the imposition of a value of acceleration consistent with
the trajectory. Then, tc is computed from (4.6), and the following sequence of
polynomials is generated:

q(t) =

⎧⎪⎨⎪⎩
qi + 1

2 q̈ct
2 0 ≤ t ≤ tc

qi + q̈ctc(t− tc/2) tc < t ≤ tf − tc

qf − 1
2 q̈c(tf − t)2 tf − tc < t ≤ tf .

(4.8)

Figure 4.3 illustrates a representation of the motion timing law obtained by
imposing the data: qi = 0, qf = π, tf = 1, and |q̈c| = 6π.

Specifying acceleration in the parabolic segment is not the only way to
determine trajectories with trapezoidal velocity profile. Besides qi, qf and tf ,
one can specify also the cruise velocity q̇c which is subject to the constraint

|qf − qi|
tf

< |q̇c| ≤
2|qf − qi|

tf
. (4.9)

By recognizing that q̇c = q̈ctc, (4.5) allows the computation of tc as

tc =
qi − qf + q̇ctf

q̇c
, (4.10)

and thus the resulting acceleration is

q̈c =
q̇2
c

qi − qf + q̇ctf
. (4.11)

The computed values of tc and q̈c as in (4.10), (4.11) allow the generation of
the sequence of polynomials expressed by (4.8).

The adoption of a trapezoidal velocity profile results in a worse perfor-
mance index compared to the cubic polynomial. The decrease is, however,
limited; the term

∫ tf

0
τ2dt increases by 12.5% with respect to the optimal

case.
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Fig. 4.3. Time history of position, velocity and acceleration with a trapezoidal
velocity profile timing law

4.2.2 Motion Through a Sequence of Points

In several applications, the path is described in terms of a number of points
greater than two. For instance, even for the simple point-to-point motion
of a pick-and-place task, it may be worth assigning two intermediate points
between the initial point and the final point; suitable positions can be set for
lifting off and setting down the object, so that reduced velocities are obtained
with respect to direct transfer of the object. For more complex applications,
it may be convenient to assign a sequence of points so as to guarantee better
monitoring on the executed trajectories; the points are to be specified more
densely in those segments of the path where obstacles have to be avoided
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Fig. 4.4. Characterization of a trajectory on a given path obtained through inter-
polating polynomials

or a high path curvature is expected. It should not be forgotten that the
corresponding joint variables have to be computed from the operational space
poses.

Therefore, the problem is to generate a trajectory when N points, termed
path points , are specified and have to be reached by the manipulator at certain
instants of time. For each joint variable there are N constraints, and then one
might want to use an (N −1)-order polynomial. This choice, however, has the
following disadvantages:

• It is not possible to assign the initial and final velocities.
• As the order of a polynomial increases, its oscillatory behaviour increases,

and this may lead to trajectories which are not natural for the manipulator.
• Numerical accuracy for computation of polynomial coefficients decreases

as order increases.
• The resulting system of constraint equations is heavy to solve.
• Polynomial coefficients depend on all the assigned points; thus, if it is

desired to change a point, all of them have to be recomputed.

These drawbacks can be overcome if a suitable number of low-order inter-
polating polynomials, continuous at the path points, are considered in place
of a single high-order polynomial.

According to the previous section, the interpolating polynomial of lowest
order is the cubic polynomial , since it allows the imposition of continuity of
velocities at the path points. With reference to the single joint variable, a
function q(t) is sought, formed by a sequence of N − 1 cubic polynomials
Πk(t), for k = 1, . . . , N − 1, continuous with continuous first derivatives. The
function q(t) attains the values qk for t = tk (k = 1, . . . , N), and q1 = qi,
t1 = 0, qN = qf , tN = tf ; the qk’s represent the path points describing
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the desired trajectory at t = tk (Fig. 4.4). The following situations can be
considered:

• Arbitrary values of q̇(t) are imposed at the path points.
• The values of q̇(t) at the path points are assigned according to a certain

criterion.
• The acceleration q̈(t) has to be continuous at the path points.

To simplify the problem, it is also possible to find interpolating polynomials
of order less than three which determine trajectories passing nearby the path
points at the given instants of time.

Interpolating polynomials with imposed velocities at path points

This solution requires the user to be able to specify the desired velocity at
each path point; the solution does not possess any novelty with respect to the
above concepts.

The system of equations allowing computation of the coefficients of the
N − 1 cubic polynomials interpolating the N path points is obtained by im-
posing the following conditions on the generic polynomial Πk(t) interpolating
qk and qk+1, for k = 1, . . . , N − 1:

Πk(tk) = qk

Πk(tk+1) = qk+1

Π̇k(tk) = q̇k

Π̇k(tk+1) = q̇k+1.

The result is N −1 systems of four equations in the four unknown coefficients
of the generic polynomial; these can be solved one independently of the other.
The initial and final velocities of the trajectory are typically set to zero (q̇1 =
q̇N = 0) and continuity of velocity at the path points is ensured by setting

Π̇k(tk+1) = Π̇k+1(tk+1)

for k = 1, . . . , N − 2.
Figure 4.5 illustrates the time history of position, velocity and acceleration

obtained with the data: q1 = 0, q2 = 2π, q3 = π/2, q4 = π, t1 = 0, t2 = 2, t3 =
3, t4 = 5, q̇1 = 0, q̇2 = π, q̇3 = −π, q̇4 = 0. Notice the resulting discontinuity
on the acceleration, since only continuity of velocity is guaranteed.

Interpolating polynomials with computed velocities at path points

In this case, the joint velocity at a path point has to be computed according
to a certain criterion. By interpolating the path points with linear segments,
the relative velocities can be computed according to the following rules:
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Fig. 4.5. Time history of position, velocity and acceleration with a timing law of
interpolating polynomials with velocity constraints at path points

q̇k =
{

0 sgn (vk) �= sgn (vk+1)
1
2 (vk + vk+1) sgn (vk) = sgn (vk+1)

(4.12)

q̇N = 0,

where vk = (qk − qk−1)/(tk − tk−1) gives the slope of the segment in the
time interval [tk−1, tk]. With the above settings, the determination of the
interpolating polynomials is reduced to the previous case.

Figure 4.6 illustrates the time history of position, velocity and acceleration
obtained with the following data: q1 = 0, q2 = 2π, q3 = π/2, q4 = π, t1 = 0,
t2 = 2, t3 = 3, t4 = 5, q̇1 = 0, q̇4 = 0. It is easy to recognize that the imposed

q̇1 = 0
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Fig. 4.6. Time history of position, velocity and acceleration with a timing law of
interpolating polynomials with computed velocities at path points

sequence of path points leads to having zero velocity at the intermediate
points.

Interpolating polynomials with continuous accelerations at path
points (splines)

Both the above two solutions do not ensure continuity of accelerations at
the path points. Given a sequence of N path points, the acceleration is also
continuous at each tk if four constraints are imposed, namely, two position
constraints for each of the adjacent cubics and two constraints guaranteeing
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continuity of velocity and acceleration. The following equations have then to
be satisfied:

Πk−1(tk) = qk

Πk−1(tk) = Πk(tk)
Π̇k−1(tk) = Π̇k(tk)
Π̈k−1(tk) = Π̈k(tk).

The resulting system for the N path points, including the initial and final
points, cannot be solved. In fact, it is formed by 4(N − 2) equations for the
intermediate points and 6 equations for the extremal points; the position
constraints for the polynomials Π0(t1) = qi and ΠN (tf ) = qf have to be
excluded since they are not defined. Also, Π̇0(t1), Π̈0(t1), Π̇N (tf ), Π̈N (tf ) do
not have to be counted as polynomials since they are just the imposed values
of initial and final velocities and accelerations. In summary, one has 4N − 2
equations in 4(N − 1) unknowns.

The system can be solved only if one eliminates the two equations which
allow the arbitrary assignment of the initial and final acceleration values.
Fourth-order polynomials should be used to include this possibility for the
first and last segment.

On the other hand, if only third-order polynomials are to be used, the fol-
lowing deception can be operated. Two virtual points are introduced for which
continuity constraints on position, velocity and acceleration can be imposed,
without specifying the actual positions, though. It is worth remarking that the
effective location of these points is irrelevant, since their position constraints
regard continuity only. Hence, the introduction of two virtual points implies
the determination of N + 1 cubic polynomials.

Consider N +2 time instants tk, where t2 and tN+1 conventionally refer to
the virtual points. The system of equations for determining the N + 1 cubic
polynomials can be found by taking the 4(N − 2) equations:

Πk−1(tk) = qk (4.13)
Πk−1(tk) = Πk(tk) (4.14)
Π̇k−1(tk) = Π̇k(tk) (4.15)
Π̈k−1(tk) = Π̈k(tk) (4.16)

for k = 3, . . . , N , written for the N − 2 intermediate path points, the 6 equa-
tions:

Π1(t1) = qi (4.17)
Π̇1(t1) = q̇i (4.18)
Π̈1(t1) = q̈i, (4.19)

ΠN+1(tN+2) = qf (4.20)
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Π̇N+1(tN+2) = q̇f (4.21)

Π̈N+1(tN+2) = q̈f (4.22)

written for the initial and final points, and the 6 equations:

Πk−1(tk) = Πk(tk) (4.23)
Π̇k−1(tk) = Π̇k(tk) (4.24)
Π̈k−1(tk) = Π̈k(tk) (4.25)

for k = 2, N + 1, written for the two virtual points. The resulting system
has 4(N + 1) equations in 4(N + 1) unknowns, that are the coefficients of the
N + 1 cubic polynomials.

The solution to the system is computationally demanding, even for low
values of N . Nonetheless, the problem can be cast in a suitable form so as
to solve the resulting system of equations with a computationally efficient
algorithm. Since the generic polynomial Πk(t) is a cubic, its second derivative
must be a linear function of time which then can be written as

Π̈k(t) =
Π̈k(tk)
Δtk

(tk+1 − t) +
Π̈k(tk+1)

Δtk
(t− tk) k = 1, . . . , N + 1, (4.26)

where Δtk = tk+1 − tk indicates the time interval to reach qk+1 from qk. By
integrating (4.26) twice over time, the generic polynomial can be written as

Πk(t) =
Π̈k(tk)
6Δtk

(tk+1 − t)3 +
Π̈k(tk+1)

6Δtk
(t− tk)3 (4.27)

+

(
Πk(tk+1)

Δtk
− ΔtkΠ̈k(tk+1)

6

)
(t− tk)

+

(
Πk(tk)
Δtk

− ΔtkΠ̈k(tk)
6

)
(tk+1 − t) k = 1, . . . , N + 1,

which depends on the 4 unknowns: Πk(tk), Πk(tk+1), Π̈k(tk), Π̈k(tk+1).
Notice that the N variables qk for k �= 2, N + 1 are given via (4.13), while

continuity is imposed for q2 and qN+1 via (4.23). By using (4.14), (4.17),
(4.20), the unknowns in the N + 1 equations in (4.27) reduce to 2(N + 2).
By observing that the equations in (4.18), (4.21) depend on q2 and qN+1, and
that q̇i and q̇f are given, q2 and qN+1 can be computed as a function of Π̈1(t1)
and Π̈N+1(tN+2), respectively. Thus, a number of 2(N +1) unknowns are left.

By accounting for (4.16), (4.25), and noticing that in ((4.19), (4.22) q̈i and
q̈f are given, the unknowns reduce to N .

At this point, (4.15), (4.24) can be utilized to write the system of N
equations in N unknowns:

Π̇1(t2) = Π̇2(t2)
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...

Π̇N (tN+1) = Π̇N+1(tN+1).

Time-differentiation of (4.27) gives both Π̇k(tk+1) and Π̇k+1(tk+1) for k =
1, . . . , N , and thus it is possible to write a system of linear equations of the
kind

A [ Π̈2(t2) . . . Π̈N+1(tN+1) ]T = b (4.28)

which presents a vector b of known terms and a nonsingular coefficient matrix
A; the solution to this system always exists and is unique. It can be shown
that the matrix A has a tridiagonal band structure of the type

A =

⎡⎢⎢⎢⎢⎣
a11 a12 . . . 0 0
a21 a22 . . . 0 0
...

...
. . .

...
...

0 0 . . . aN−1,N−1 aN−1,N

0 0 . . . aN,N−1 aNN

⎤⎥⎥⎥⎥⎦ ,

which simplifies the solution to the system (see Problem 4.4). This matrix
is the same for all joints, since it depends only on the time intervals Δtk
specified.

An efficient solution algorithm exists for the above system which is given
by a forward computation followed by a backward computation. From the
first equation, Π̈2(t2) can be computed as a function of Π̈3(t3) and then
substituted in the second equation, which then becomes an equation in the
unknowns Π̈3(t3) and Π̈4(t4). This is carried out forward by transforming all
the equations in equations with two unknowns, except the last one which will
have Π̈N+1(tN+1) only as unknown. At this point, all the unknowns can be
determined step by step through a backward computation.

The above sequence of cubic polynomials is termed spline to indicate
smooth functions that interpolate a sequence of given points ensuring con-
tinuity of the function and its derivatives.

Figure 4.7 illustrates the time history of position, velocity and acceleration
obtained with the data: q1 = 0, q3 = 2π, q4 = π/2, q6 = π, t1 = 0, t3 = 2,
t4 = 3, t6 = 5, q̇1 = 0, q̇6 = 0. Two different pairs of virtual points were
considered at the time instants: t2 = 0.5, t5 = 4.5 (solid line in the figure),
and t2 = 1.5, t5 = 3.5 (dashed line in the figure), respectively. Notice the
parabolic velocity profile and the linear acceleration profile. Further, for the
second pair, larger values of acceleration are obtained, since the relative time
instants are closer to those of the two intermediate points.

Interpolating linear polynomials with parabolic blends

A simplification in trajectory planning can be achieved as follows. Consider
the case when it is desired to interpolate N path points q1, . . . , qN at time



176 4 Trajectory Planning

0 1 2 3 4 5

0

2

4

6

pos

[s]
[r

ad
]

0 1 2 3 4 5

5

0

5

vel

[s]

[r
ad

/s
]

0 1 2 3 4 5

30

20

10

0

10

20

30

acc

[s]

[r
ad

/s
^2

]

Fig. 4.7. Time history of position, velocity and acceleration with a timing law of
cubic splines for two different pairs of virtual points

instants t1, . . . , tN with linear segments. To avoid discontinuity problems on
the first derivative at the time instants tk, the function q(t) must have a
parabolic profile (blend) around tk; as a consequence, the entire trajectory is
composed of a sequence of linear and quadratic polynomials, which in turn
implies that a discontinuity on q̈(t) is tolerated.

Then let Δtk = tk+1 − tk be the time distance between qk and qk+1, and
Δtk,k+1 be the time interval during which the trajectory interpolating qk and
qk+1 is a linear function of time. Also let q̇k,k+1 be the constant velocity and
q̈k be the acceleration in the parabolic blend whose duration is Δt′k. The
resulting trajectory is illustrated in Fig. 4.8. The values of qk, Δtk, and Δt′k
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Fig. 4.8. Characterization of a trajectory with interpolating linear polynomials with
parabolic blends

are assumed to be given. Velocity and acceleration for the intermediate points
are computed as

q̇k−1,k =
qk − qk−1

Δtk−1
(4.29)

q̈k =
q̇k,k+1 − q̇k−1,k

Δt′k
; (4.30)

these equations are straightforward.
The first and last segments deserve special care. In fact, if it is desired to

maintain the coincidence of the trajectory with the first and last segments,
at least for a portion of time, the resulting trajectory has a longer duration
given by tN − t1 +(Δt′1 +Δt′N )/2, where q̇0,1 = q̇N,N+1 = 0 has been imposed
for computing initial and final accelerations.

Notice that q(t) reaches none of the path points qk but passes nearby
(Fig. 4.8). In this situation, the path points are more appropriately termed
via points; the larger the blending acceleration, the closer the passage to a via
point.

On the basis of the given qk, Δtk and Δt′k, the values of q̇k−1,k and q̈k

are computed via (4.29), (4.30) and a sequence of linear polynomials with
parabolic blends is generated. Their expressions as a function of time are not
derived here to avoid further loading of the analytic presentation.

Figure 4.9 illustrates the time history of position, velocity and acceleration
obtained with the data: q1 = 0, q2 = 2π, q3 = π/2, q4 = π, t1 = 0, t2 = 2,
t3 = 3, t4 = 5, q̇1 = 0, q̇4 = 0. Two different values for the blend times have
been considered: Δt′k = 0.2 (solid line in the figure) and Δt′k = 0.6 (dashed
line in the figure), for k = 1, . . . , 4, respectively. Notice that in the first case
the passage of q(t) is closer to the via points, though at the expense of higher
acceleration values.
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Fig. 4.9. Time history of position, velocity and acceleration with a timing law of
interpolating linear polynomials with parabolic blends

The technique presented above turns out to be an application of the trape-
zoidal velocity profile law to the interpolation problem. If one gives up a tra-
jectory passing near a via point at a prescribed instant of time, the use of
trapezoidal velocity profiles allows the development of a trajectory planning
algorithm which is attractive for its simplicity.

In particular, consider the case of one intermediate point only, and suppose
that trapezoidal velocity profiles are considered as motion primitives with
the possibility to specify the initial and final point and the duration of the
motion only; it is assumed that q̇i = q̇f = 0. If two segments with trapezoidal
velocity profiles were generated, the manipulator joint would certainly reach
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the intermediate point, but it would be forced to stop there, before continuing
the motion towards the final point. A keen alternative is to start generating
the second segment ahead of time with respect to the end of the first segment,
using the sum of velocities (or positions) as a reference. In this way, the joint
is guaranteed to reach the final position; crossing of the intermediate point at
the specified instant of time is not guaranteed, though.

Figure 4.10 illustrates the time history of position, velocity and accelera-
tion obtained with the data: qi = 0, qf = 3π/2, ti = 0, tf = 2. The interme-
diate point is located at q = π with t = 1, the maximum acceleration values
in the two segments are respectively |q̈c| = 6π and |q̈c| = 3π, and the time
anticipation is 0.18. As predicted, with time anticipation, the assigned inter-
mediate position becomes a via point with the advantage of an overall shorter
time duration. Notice, also, that velocity does not vanish at the intermediate
point.

4.3 Operational Space Trajectories

A joint space trajectory planning algorithm generates a time sequence of val-
ues for the joint variables q(t) so that the manipulator is taken from the
initial to the final configuration, eventually by moving through a sequence of
intermediate configurations. The resulting end-effector motion is not easily
predictable, in view of the nonlinear effects introduced by direct kinematics.
Whenever it is desired that the end-effector motion follows a geometrically
specified path in the operational space, it is necessary to plan trajectory exe-
cution directly in the same space. Planning can be done either by interpolating
a sequence of prescribed path points or by generating the analytical motion
primitive and the relative trajectory in a punctual way.

In both cases, the time sequence of the values attained by the operational
space variables is utilized in real time to obtain the corresponding sequence
of values of the joint space variables, via an inverse kinematics algorithm. In
this regard, the computational complexity induced by trajectory generation
in the operational space and related kinematic inversion sets an upper limit
on the maximum sampling rate to generate the above sequences. Since these
sequences constitute the reference inputs to the motion control system, a
linear microinterpolation is typically carried out. In this way, the frequency
at which reference inputs are updated is increased so as to enhance dynamic
performance of the system.

Whenever the path is not to be followed exactly, its characterization can
be performed through the assignment of N points specifying the values of the
variables xe chosen to describe the end-effector pose in the operational space
at given time instants tk, for k = 1, . . . , N . Similar to what was presented
in the above sections, the trajectory is generated by determining a smooth
interpolating vector function between the various path points. Such a function
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Fig. 4.10. Time history of position, velocity and acceleration with a timing law of
interpolating linear polynomials with parabolic blends obtained by anticipating the
generation of the second segment of trajectory

can be computed by applying to each component of xe any of the interpolation
techniques illustrated in Sect. 4.2.2 for the single joint variable.

Therefore, for given path (or via) points xe(tk), the corresponding com-
ponents xei(tk), for i = 1, . . . r (where r is the dimension of the operational
space of interest) can be interpolated with a sequence of cubic polynomials, a
sequence of linear polynomials with parabolic blends, and so on.

On the other hand, if the end-effector motion has to follow a prescribed
trajectory of motion, this must be expressed analytically. It is then necessary
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to refer to motion primitives defining the geometric features of the path and
time primitives defining the timing law on the path itself.

4.3.1 Path Primitives

For the definition of path primitives it is convenient to refer to the parametric
description of paths in space. Then let p be a (3 × 1) vector and f(σ) a con-
tinuous vector function defined in the interval [σi, σf ]. Consider the equation

p = f(σ); (4.31)

with reference to its geometric description, the sequence of values of p with
σ varying in [σi, σf ] is termed path in space. The equation in (4.31) defines
the parametric representation of the path Γ and the scalar σ is called pa-
rameter. As σ increases, the point p moves on the path in a given direction.
This direction is said to be the direction induced on Γ by the parametric
representation (4.31). A path is closed when p(σf ) = p(σi); otherwise it is
open.

Let pi be a point on the open path Γ on which a direction has been fixed.
The arc length s of the generic point p is the length of the arc of Γ with
extremes p and pi if p follows pi, the opposite of this length if p precedes pi.
The point pi is said to be the origin of the arc length (s = 0).

From the above presentation it follows that to each value of s a well-
determined path point corresponds, and then the arc length can be used as a
parameter in a different parametric representation of the path Γ :

p = f(s); (4.32)

the range of variation of the parameter s will be the sequence of arc lengths
associated with the points of Γ .

Consider a path Γ represented by (4.32). Let p be a point corresponding
to the arc length s. Except for special cases, p allows the definition of three
unit vectors characterizing the path. The orientation of such vectors depends
exclusively on the path geometry, while their direction depends also on the
direction induced by (4.32) on the path.

The first of such unit vectors is the tangent unit vector denoted by t. This
vector is oriented along the direction induced on the path by s.

The second unit vector is the normal unit vector denoted by n. This vector
is oriented along the line intersecting p at a right angle with t and lies in the
so-called osculating plane O (Fig. 4.11); such plane is the limit position of the
plane containing the unit vector t and a point p′ ∈ Γ when p′ tends to p along
the path. The direction of n is so that the path Γ , in the neighbourhood of p
with respect to the plane containing t and normal to n, lies on the same side
of n.

The third unit vector is the binormal unit vector denoted by b. This vector
is so that the frame (t,n, b) is right-handed (Fig. 4.11). Notice that it is not
always possible to define uniquely such a frame.
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Fig. 4.11. Parametric representation of a path in space

It can be shown that the above three unit vectors are related by simple
relations to the path representation Γ as a function of the arc length. In
particular, it is

t =
dp

ds

n =
1∥∥∥∥d2p

ds2

∥∥∥∥
d2p

ds2
(4.33)

b = t × n.

Typical path parametric representations are reported below which are useful
for trajectory generation in the operational space.

Rectilinear path

Consider the linear segment connecting point pi to point pf . The parametric
representation of this path is

p(s) = pi +
s

‖pf − pi‖
(pf − pi). (4.34)

Notice that p(0) = pi and p(‖pf − pi‖) = pf . Hence, the direction induced
on Γ by the parametric representation (4.34) is that going from pi to pf .
Differentiating (4.34) with respect to s gives

dp

ds
=

1
‖pf − pi‖

(pf − pi) (4.35)

d2p

ds2
= 0. (4.36)

In this case it is not possible to define the frame (t,n, b) uniquely.
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Fig. 4.12. Parametric representation of a circle in space

Circular path

Consider a circle Γ in space. Before deriving its parametric representation, it
is necessary to introduce its significant parameters. Suppose that the circle is
specified by assigning (Fig. 4.12):

• the unit vector of the circle axis r,
• the position vector d of a point along the circle axis,
• the position vector pi of a point on the circle.

With these parameters, the position vector c of the centre of the circle can
be found. Let δ = pi − d; for pi not to be on the axis, i.e., for the circle not
to degenerate into a point, it must be

|δT r| < ‖δ‖;

in this case it is
c = d + (δT r)r. (4.37)

It is now desired to find a parametric representation of the circle as a function
of the arc length. Notice that this representation is very simple for a suitable
choice of the reference frame. To see this, consider the frame O′–x′y′z′, where
O′ coincides with the centre of the circle, axis x′ is oriented along the direction
of the vector pi − c, axis z′ is oriented along r and axis y′ is chosen so as to
complete a right-handed frame. When expressed in this reference frame, the
parametric representation of the circle is

p′(s) =

⎡⎣ ρ cos (s/ρ)
ρ sin (s/ρ)

0

⎤⎦ , (4.38)
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where ρ = ‖pi − c‖ is the radius of the circle and the point pi has been
assumed as the origin of the arc length. For a different reference frame, the
path representation becomes

p(s) = c + Rp′(s), (4.39)

where c is expressed in the frame O–xyz and R is the rotation matrix of
frame O′– x′y′z′ with respect to frame O–xyz which, in view of (2.3), can be
written as

R = [x′ y′ z′ ];

x′, y′, z′ indicate the unit vectors of the frame expressed in the frame O–xyz.
Differentiating (4.39) with respect to s gives

dp

ds
= R

⎡⎣−sin (s/ρ)
cos (s/ρ)

0

⎤⎦ (4.40)

d2p

ds2
= R

⎡⎣−cos (s/ρ)/ρ
−sin (s/ρ)/ρ

0

⎤⎦ . (4.41)

4.3.2 Position

Let xe be the vector of operational space variables expressing the pose of
the manipulator’s end-effector as in (2.80). Generating a trajectory in the
operational space means to determine a function xe(t) taking the end-effector
frame from the initial to the final pose in a time tf along a given path with a
specific motion timing law. First, consider end-effector position. Orientation
will follow.

Let pe = f(s) be the (3×1) vector of the parametric representation of the
path Γ as a function of the arc length s; the origin of the end-effector frame
moves from pi to pf in a time tf . For simplicity, suppose that the origin of
the arc length is at pi and the direction induced on Γ is that going from pi

to pf . The arc length then goes from the value s = 0 at t = 0 to the value
s = sf (path length) at t = tf . The timing law along the path is described by
the function s(t).

In order to find an analytic expression for s(t), any of the above techniques
for joint trajectory generation can be employed. In particular, either a cubic
polynomial or a sequence of linear segments with parabolic blends can be
chosen for s(t).

It is worth making some remarks on the time evolution of pe on Γ , for a
given timing law s(t). The velocity of point pe is given by the time derivative
of pe

ṗe = ṡ
dpe

ds
= ṡt,
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where t is the tangent vector to the path at point p in (4.33). Then, ṡ rep-
resents the magnitude of the velocity vector relative to point p, taken with
the positive or negative sign depending on the direction of ṗ along t. The
magnitude of ṗ starts from zero at t = 0, then it varies with a parabolic or
trapezoidal profile as per either of the above choices for s(t), and finally it
returns to zero at t = tf .

As a first example, consider the segment connecting point pi with point pf .
The parametric representation of this path is given by (4.34). Velocity and ac-
celeration of pe can be easily computed by recalling the rule of differentiation
of compound functions, i.e.,

ṗe =
ṡ

‖pf − pi‖
(pf − pi) = ṡt (4.42)

p̈e =
s̈

‖pf − pi‖
(pf − pi) = s̈t. (4.43)

As a further example, consider a circle Γ in space. From the parametric
representation derived above, in view of (4.40), (4.41), velocity and accelera-
tion of point pe on the circle are

ṗe = R

⎡⎣−ṡ sin (s/ρ)
ṡ cos (s/ρ)

0

⎤⎦ (4.44)

p̈e = R

⎡⎣−ṡ2cos (s/ρ)/ρ− s̈ sin (s/ρ)
−ṡ2sin (s/ρ)/ρ + s̈ cos (s/ρ)

0

⎤⎦ . (4.45)

Notice that the velocity vector is aligned with t, and the acceleration vector
is given by two contributions: the first is aligned with n and represents the
centripetal acceleration, while the second is aligned with t and represents the
tangential acceleration.

Finally, consider the path consisting of a sequence of N + 1 points,
p0,p1, . . . ,pN , connected by N segments. A feasible parametric representa-
tion of the overall path is the following:

pe = p0 +
N∑

j=1

sj

‖pj − pj−1‖
(pj − pj−1), (4.46)

with j = 1, . . . , N . In (4.46) sj is the arc length associated with the j-th
segment of the path, connecting point pj−1 to point pj , defined as

sj(t) =

⎧⎪⎨⎪⎩
0 0 ≤ t ≤ tj−1

s′j(t) tj−1 < t < tj

‖pj − pj−1‖ tj ≤ t ≤ tf ,
(4.47)
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where t0 = 0 and tN = tf are respectively the initial and final time instants of
the trajectory, tj is the time instant corresponding to point pj and s′j(t) can
be an analytical function of cubic polynomial type, linear type with parabolic
blends, and so forth, which varies continuously from the value s′j = 0 at
t = tj−1 to the value s′j = ‖pj − pj−1‖ at t = tj .

The velocity and acceleration of pe can be easily found by differentiat-
ing (4.46):

ṗe =
N∑

j=1

ṡj

‖pj − pj−1‖
(pj − pj−1) =

N∑
j=1

ṡjtj (4.48)

p̈e =
N∑

j=1

s̈j

‖pj − pj−1‖
(pj − pj−1) =

N∑
j=1

s̈jtj , (4.49)

where tj is the tangent unit vector of the j-th segment.
Because of the discontinuity of the first derivative at the path points be-

tween two non-aligned segments, the manipulator will have to stop and then
go along the direction of the following segment. Assumed a relaxation of the
constraint to pass through the path points, it is possible to avoid a manipu-
lator stop by connecting the segments near the above points, which will then
be named operational space via points so as to guarantee, at least, continuity
of the first derivative.

As already illustrated for planning of interpolating linear polynomials with
parabolic blends passing by the via points in the joint space, the use of trape-
zoidal velocity profiles for the arc lengths allows the development of a rather
simple planning algorithm

In detail, it will be sufficient to properly anticipate the generation of the
single segments, before the preceding segment has been completed. This leads
to modifying (4.47) as follows:

sj(t) =

⎧⎪⎨⎪⎩
0 0 ≤ t ≤ tj−1 −Δtj

s′j(t + Δtj) tj−1 −Δtj < t < tj −Δtj

‖pj − pj−1‖ tj −Δtj ≤ t ≤ tf −ΔtN ,
(4.50)

where Δtj is the time advance at which the j-th segment is generated, which
can be recursively evaluated as

Δtj = Δtj−1 + δtj ,

with j = 1, . . . , N e Δt0 = 0. Notice that this time advance is given by the
sum of two contributions: the former, Δtj−1, accounts for the sum of the time
advances at which the preceding segments have been generated, while the
latter, δtj , is the time advance at which the generation of the current segment
starts.
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4.3.3 Orientation

Consider now end-effector orientation. Typically, this is specified in terms of
the rotation matrix of the (time-varying) end-effector frame with respect to
the base frame. As is well known, the three columns of the rotation matrix
represent the three unit vectors of the end-effector frame with respect to the
base frame. To generate a trajectory, however, a linear interpolation on the
unit vectors ne, se, ae describing the initial and final orientation does not
guarantee orthonormality of the above vectors at each instant of time.

Euler angles

In view of the above difficulty, for trajectory generation purposes, orientation
is often described in terms of the Euler angles triplet φe = (ϕ, ϑ, ψ) for which
a timing law can be specified. Usually, φe moves along the segment connecting
its initial value φi to its final value φf . Also in this case, it is convenient to
choose a cubic polynomial or a linear segment with parabolic blends timing
law. In this way, in fact, the angular velocity ωe of the time-varying frame,
which is related to φ̇e by the linear relationship (3.64), will have continuous
magnitude.

Therefore, for given φi and φf and timing law, the position, velocity and
acceleration profiles are

φe = φi +
s

‖φf − φi‖
(φf − φi)

φ̇e =
ṡ

‖φf − φi‖
(φf − φi) (4.51)

φ̈e =
s̈

‖φf − φi‖
(φf − φi);

where the timing law for s(t) has to be specified. The three unit vectors of the
end-effector frame can be computed — with reference to Euler angles ZYZ
— as in (2.18), the end-effector frame angular velocity as in (3.64), and the
angular acceleration by differentiating (3.64) itself.

Angle and axis

An alternative way to generate a trajectory for orientation of clearer inter-
pretation in the Cartesian space can be derived by resorting to the the angle
and axis description presented in Sect. 2.5. Given two coordinate frames in
the Cartesian space with the same origin and different orientation, it is always
possible to determine a unit vector so that the second frame can be obtained
from the first frame by a rotation of a proper angle about the axis of such
unit vector.
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Let Ri and Rf denote respectively the rotation matrices of the initial
frame Oi–xiyizi and the final frame Of–xfyfzf , both with respect to the
base frame. The rotation matrix between the two frames can be computed by
recalling that Rf = RiR

i
f ; the expression in (2.5) leads to

Ri
f = RT

i Rf =

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ .

If the matrix Ri(t) is defined to describe the transition from Ri to Rf , it
must be Ri(0) = I and Ri(tf ) = Ri

f . Hence, the matrix Ri
f can be expressed

as the rotation matrix about a fixed axis in space; the unit vector ri of the
axis and the angle of rotation ϑf can be computed by using (2.27):

ϑf = cos−1

(
r11 + r22 + r33 − 1

2

)
(4.52)

r =
1

2 sinϑf

⎡⎣ r32 − r23
r13 − r31
r21 − r12

⎤⎦ (4.53)

for sinϑf �= 0.
The matrix Ri(t) can be interpreted as a matrix Ri(ϑ(t), ri) and computed

via (2.25); it is then sufficient to assign a timing law to ϑ, of the type of those
presented for the single joint with ϑ(0) = 0 and ϑ(tf ) = ϑf , and compute the
components of ri from (4.52). Since ri is constant, the resulting velocity and
acceleration are respectively

ωi = ϑ̇ ri (4.54)
ω̇i = ϑ̈ ri. (4.55)

Finally, in order to characterize the end-effector orientation trajectory with
respect to the base frame, the following transformations are needed:

Re(t) = RiR
i(t)

ωe(t) = Riω
i(t)

ω̇e(t) = Riω̇
i(t).

Once a path and a trajectory have been specified in the operational space
in terms of pe(t) and φe(t) or Re(t), inverse kinematics techniques can be
used to find the corresponding trajectories in the joint space q(t).
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The generation of motion trajectories through sequences of points in the
joint space using splines is due to [131]. Alternative formulations for this
problem are found in [56]. For a complete treatment of splines, including
geometric properties and computational aspects, see [54]. In [155] a survey
on the functions employed for trajectory planning of a single motion axis
is given, which accounts for performance indices and effects of unmodelled
flexible dynamics.

Cartesian space trajectory planning and the associated motion control
problem have been originally treated in [179]. The systematic management
of the motion by the via points using interpolating linear polynomials with
parabolic blends has been proposed in [229]. A detailed presentation of the
general aspects of the geometric primitives that can be utilized in robotics to
define Cartesian space paths can be found in the computer graphics text [73].

Problems

4.1. Compute the joint trajectory from q(0) = 1 to q(2) = 4 with null initial
and final velocities and accelerations.

4.2. Compute the timing law q(t) for a joint trajectory with velocity profile
of the type q̇(t) = k(1 − cos (at)) from q(0) = 0 to q(2) = 3.

4.3. Given the values for the joint variable: q(0) = 0, q(2) = 2, and q(4) = 3,
compute the two fifth-order interpolating polynomials with continuous veloc-
ities and accelerations.

4.4. Show that the matrix A in (4.28) has a tridiagonal band structure.

4.5. Given the values for the joint variable: q(0) = 0, q(2) = 2, and q(4) = 3,
compute the cubic interpolating spline with null initial and final velocities and
accelerations.

4.6. Given the values for the joint variable: q(0) = 0, q(2) = 2, and q(4) = 3,
find the interpolating polynomial with linear segments and parabolic blends
with null initial and final velocities.

4.7. Find the timing law p(t) for a Cartesian space rectilinear path with trape-
zoidal velocity profile from p(0) = [ 0 0.5 0 ]T to p(2) = [ 1 −0.5 0 ]T .

4.8. Find the timing law p(t) for a Cartesian space circular path with trape-
zoidal velocity profile from p(0) = [ 0 0.5 1 ]T to p(2) = [ 0 −0.5 1 ]T ;
the circle is located in the plane x = 0 with centre at c = [ 0 0 1 ]T and
radius ρ = 0.5, and is executed clockwise for an observer aligned with x.
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Dynamics

Derivation of the dynamic model of a manipulator plays an important role
for simulation of motion, analysis of manipulator structures, and design of
control algorithms. Simulating manipulator motion allows control strategies
and motion planning techniques to be tested without the need to use a phys-
ically available system. The analysis of the dynamic model can be helpful for
mechanical design of prototype arms. Computation of the forces and torques
required for the execution of typical motions provides useful information for
designing joints, transmissions and actuators. The goal of this chapter is to
present two methods for derivation of the equations of motion of a manipula-
tor in the joint space. The first method is based on the Lagrange formulation
and is conceptually simple and systematic. The second method is based on the
Newton–Euler formulation and yields the model in a recursive form; it is com-
putationally more efficient since it exploits the typically open structure of the
manipulator kinematic chain. Then, a technique for dynamic parameter iden-
tification is presented. Further, the problems of direct dynamics and inverse
dynamics are formalized, and a technique for trajectory dynamic scaling is in-
troduced, which adapts trajectory planning to the dynamic characteristics of
the manipulator. The chapter ends with the derivation of the dynamic model
of a manipulator in the operational space and the definition of the dynamic
manipulability ellipsoid .

7.1 Lagrange Formulation

The dynamic model of a manipulator provides a description of the relationship
between the joint actuator torques and the motion of the structure.

With Lagrange formulation, the equations of motion can be derived in
a systematic way independently of the reference coordinate frame. Once a
set of variables qi, i = 1, . . . , n, termed generalized coordinates, are chosen
which effectively describe the link positions of an n-DOF manipulator, the
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Lagrangian of the mechanical system can be defined as a function of the
generalized coordinates:

L = T − U (7.1)

where T and U respectively denote the total kinetic energy and potential
energy of the system.

The Lagrange equations are expressed by

d

dt

∂L
∂q̇i

− ∂L
∂qi

= ξi i = 1, . . . , n (7.2)

where ξi is the generalized force associated with the generalized coordinate qi.
Equations (7.2) can be written in compact form as

d

dt

(
∂L
∂q̇

)T

−
(
∂L
∂q

)T

= ξ (7.3)

where, for a manipulator with an open kinematic chain, the generalized coor-
dinates are gathered in the vector of joint variables q. The contributions to
the generalized forces are given by the nonconservative forces, i.e., the joint
actuator torques, the joint friction torques, as well as the joint torques induced
by end-effector forces at the contact with the environment.1

The equations in (7.2) establish the relations existing between the gener-
alized forces applied to the manipulator and the joint positions, velocities and
accelerations. Hence, they allow the derivation of the dynamic model of the
manipulator starting from the determination of kinetic energy and potential
energy of the mechanical system.

Example 7.1

In order to understand the Lagrange formulation technique for deriving the dynamic
model, consider again the simple case of the pendulum in Example 5.1. With ref-
erence to Fig. 5.8, let ϑ denote the angle with respect to the reference position of
the body hanging down (ϑ = 0). By choosing ϑ as the generalized coordinate, the
kinetic energy of the system is given by

T =
1

2
Iϑ̇2 +

1

2
Imk2

r ϑ̇2.

The system potential energy, defined at less than a constant, is expressed by

U = mg�(1 − cos ϑ).

Therefore, the Lagrangian of the system is

L =
1

2
Iϑ̇2 +

1

2
Imk2

r ϑ̇2 − mg�(1 − cos ϑ).

1 The term torque is used as a synonym of joint generalized force.
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Substituting this expression in the Lagrange equation in (7.2) yields

(I + Imk2
r)ϑ̈ + mg� sin ϑ = ξ.

The generalized force ξ is given by the contributions of the actuation torque τ at
the joint and of the viscous friction torques −Fϑ̇ and −Fmk2

rϑ, where the latter has
been reported to the joint side. Hence, it is

ξ = τ − Fϑ̇ − Fmk2
rϑ

leading to the complete dynamic model of the system as the second-order differential
equation

(I + Imk2
r)ϑ̈ + (F + Fmk2

r)ϑ̇ + mg� sin ϑ = τ .

It is easy to verify how this equation is equivalent to (5.25) when reported to the
joint side.

7.1.1 Computation of Kinetic Energy

Consider a manipulator with n rigid links. The total kinetic energy is given
by the sum of the contributions relative to the motion of each link and the
contributions relative to the motion of each joint actuator:2

T =
n∑

i=1

(T�i
+ Tmi

), (7.4)

where T�i
is the kinetic energy of Link i and Tmi

is the kinetic energy of the
motor actuating Joint i.

The kinetic energy contribution of Link i is given by

T�i
=

1
2

∫
V�i

ṗ∗
i
T ṗ∗

i ρdV , (7.5)

where ṗ∗
i denotes the linear velocity vector and ρ is the density of the elemen-

tary particle of volume dV ; V�i
is the volume of Link i.

Consider the position vector p∗
i of the elementary particle and the position

vector pCi
of the link centre of mass, both expressed in the base frame. One

has
ri = [ rix riy riz ]T = p∗

i − p�i
(7.6)

with
p�i

=
1

m�i

∫
V�i

p∗
i ρdV (7.7)

2 Link 0 is fixed and thus gives no contribution.
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Fig. 7.1. Kinematic description of Link i for Lagrange formulation

where m�i
is the link mass. As a consequence, the link point velocity can be

expressed as

ṗ∗
i = ṗ�i

+ ωi × ri (7.8)
= ṗ�i

+ S(ωi)ri,

where ṗ�i
is the linear velocity of the centre of mass and ωi is the angular

velocity of the link (Fig. 7.1).
By substituting the velocity expression (7.8) into (7.5), it can be recognized

that the kinetic energy of each link is formed by the following contributions.

Translational

The contribution is
1
2

∫
V�i

ṗT
�i

ṗ�i
ρdV =

1
2
m�i

ṗT
�i

ṗ�i
. (7.9)

Mutual

The contribution is

2

(
1
2

∫
V�i

ṗT
�i

S(ωi)riρdV

)
= 2

(
1
2
ṗT

�i
S(ωi)

∫
V�i

(p∗
i − p�i

)ρdV

)
= 0

since, by virtue of (7.7), it is∫
V�i

p∗
i ρdV = p�i

∫
V�i

ρdV .
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Rotational

The contribution is

1
2

∫
V�i

rT
i ST (ωi)S(ωi)riρdV =

1
2
ωT

i

(∫
V�i

ST (ri)S(ri)ρdV

)
ωi

where the property S(ωi)ri = −S(ri)ωi has been exploited. In view of the
expression of the matrix operator S(·)

S(ri) =

⎡⎣ 0 −riz riy

riz 0 −rix

−riy rix 0

⎤⎦ ,

it is
1
2

∫
V�i

rT
i ST (ωi)S(ωi)riρdV =

1
2
ωT

i I�i
ωi. (7.10)

The matrix

I�i
=

⎡⎢⎣
∫

(r2
iy + r2

iz)ρdV − ∫
rixriyρdV − ∫

rixrizρdV

∗ ∫
(r2

ix + r2
iz)ρdV − ∫

riyrizρdV

∗ ∗ ∫
(r2

ix + r2
iy)ρdV

⎤⎥⎦ (7.11)

=

⎡⎢⎣ I�ixx −I�ixy −I�ixz

∗ I�iyy −I�iyz

∗ ∗ I�izz

⎤⎥⎦ .

is symmetric3 and represents the inertia tensor relative to the centre of mass
of Link i when expressed in the base frame. Notice that the position of Link i
depends on the manipulator configuration and thus the inertia tensor, when
expressed in the base frame, is configuration-dependent. If the angular velocity
of Link i is expressed with reference to a frame attached to the link (as in the
Denavit–Hartenberg convention), it is

ωi
i = RT

i ωi

where Ri is the rotation matrix from Link i frame to the base frame. When
referred to the link frame, the inertia tensor is constant. Let Ii

�i
denote such

tensor; then it is easy to verify the following relation:

I�i
= RiI

i
�i

RT
i . (7.12)

If the axes of Link i frame coincide with the central axes of inertia, then the
inertia products are null and the inertia tensor relative to the centre of mass
is a diagonal matrix.
3 The symbol ‘∗’ has been used to avoid rewriting the symmetric elements.
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By summing the translational and rotational contributions (7.9) and (7.10),
the kinetic energy of Link i is

T�i
=

1
2
m�i

ṗT
�i

ṗ�i
+

1
2
ωT

i RiI
i
�i

RT
i ωi. (7.13)

At this point, it is necessary to express the kinetic energy as a function
of the generalized coordinates of the system, that are the joint variables. To
this end, the geometric method for Jacobian computation can be applied to
the intermediate link other than the end-effector, yielding

ṗ�i
= j

(�i)
P1 q̇1 + . . . + j

(�i)
Pi q̇i = J

(�i)
P q̇ (7.14)

ωi = j
(�i)
O1 q̇1 + . . . + j

(�i)
Oi q̇i = J

(�i)
O q̇, (7.15)

where the contributions of the Jacobian columns relative to the joint velocities
have been taken into account up to current Link i. The Jacobians to consider
are then:

J
(�i)
P =

[
j
(�i)
P1 . . . j

(�i)
Pi 0 . . . 0

]
(7.16)

J
(�i)
O =

[
j
(�i)
O1 . . . j

(�i)
Oi 0 . . . 0

]
; (7.17)

the columns of the matrices in (7.16) and (7.17) can be computed according
to (3.30), giving

j
(�i)
Pj =

{
zj−1 for a prismatic joint
zj−1 × (p�i

− pj−1) for a revolute joint (7.18)

j
(�i)
Oj =

{
0 for a prismatic joint
zj−1 for a revolute joint. (7.19)

where pj−1 is the position vector of the origin of Frame j − 1 and zj−1 is the
unit vector of axis z of Frame j − 1. It follows that the kinetic energy of Link
i in (7.13) can be written as

T�i
=

1
2
m�i

q̇T J
(�i)T
P J

(�i)
P q̇ +

1
2
q̇T J

(�i)T
O RiI

i
�i

RT
i J

(�i)
O q̇. (7.20)

The kinetic energy contribution of the motor of Joint i can be computed
in a formally analogous way to that of the link. Consider the typical case of
rotary electric motors (that can actuate both revolute and prismatic joints by
means of suitable transmissions). It can be assumed that the contribution of
the fixed part (stator) is included in that of the link on which such motor is
located, and thus the sole contribution of the rotor is to be computed.

With reference to Fig. 7.2, the motor of Joint i is assumed to be located
on Link i−1. In practice, in the design of the mechanical structure of an open
kinematic chain manipulator one attempts to locate the motors as close as
possible to the base of the manipulator so as to lighten the dynamic load of
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Fig. 7.2. Kinematic description of Motor i

the first joints of the chain. The joint actuator torques are delivered by the
motors by means of mechanical transmissions (gears).4 The contribution of
the gears to the kinetic energy can be suitably included in that of the motor.
It is assumed that no induced motion occurs, i.e., the motion of Joint i does
not actuate the motion of other joints.

The kinetic energy of Rotor i can be written as

Tmi
=

1
2
mmi

ṗT
mi

ṗmi
+

1
2
ωT

mi
Imi

ωmi
, (7.21)

where mmi
is the mass of the rotor, ṗmi

denotes the linear velocity of the
centre of mass of the rotor, Imi

is the inertia tensor of the rotor relative to
its centre of mass, and ωmi

denotes the angular velocity of the rotor.
Let ϑmi

denote the angular position of the rotor. On the assumption of a
rigid transmission, one has

kriq̇i = ϑ̇mi
(7.22)

where kri is the gear reduction ratio. Notice that, in the case of actuation of
a prismatic joint, the gear reduction ratio is a dimensional quantity.

According to the angular velocity composition rule (3.18) and the rela-
tion (7.22), the total angular velocity of the rotor is

ωmi
= ωi−1 + kriq̇izmi

(7.23)

where ωi−1 is the angular velocity of Link i−1 on which the motor is located,
and zmi

denotes the unit vector along the rotor axis.
4 Alternatively, the joints may be actuated by torque motors directly coupled to

the rotation axis without gears.
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To express the rotor kinetic energy as a function of the joint variables, it
is worth expressing the linear velocity of the rotor centre of mass — similarly
to (7.14) — as

ṗmi
= J

(mi)
P q̇. (7.24)

The Jacobian to compute is then

J
(mi)
P =

[
j
(mi)
P1 . . . j

(mi)
P,i−1 0 . . . 0

]
(7.25)

whose columns are given by

j
(mi)
Pj =

{
zj−1 for a prismatic joint
zj−1 × (pmi

− pj−1) for a revolute joint (7.26)

where pj−1 is the position vector of the origin of Frame j − 1. Notice that

j
(mi)
Pi = 0 in (7.25), since the centre of mass of the rotor has been taken along

its axis of rotation.
The angular velocity in (7.23) can be expressed as a function of the joint

variables, i.e.,
ωmi

= J
(mi)
O q̇. (7.27)

The Jacobian to compute is then

J
(mi)
O =

[
j
(mi)
O1 . . . j

(mi)
O,i−1 j

(mi)
Oi 0 . . . 0

]
(7.28)

whose columns, in view of (7.23), (7.15), are respectively given by

j
(mi)
Oj =

{
j
(�i)
Oj j = 1, . . . , i− 1
krizmi

j = i.
(7.29)

To compute the second relation in (7.29), it is sufficient to know the compo-
nents of the unit vector of the rotor rotation axis zmi

with respect to the base
frame. Hence, the kinetic energy of Rotor i can be written as

Tmi
=

1
2
mmi

q̇T J
(mi)T
P J

(mi)
P q̇ +

1
2
q̇T J

(mi)T
O Rmi

Imi
mi

RT
mi

J
(mi)
O q̇. (7.30)

Finally, by summing the various contributions relative to the single links
(7.20) and single rotors (7.30) as in (7.4), the total kinetic energy of the
manipulator with actuators is given by the quadratic form

T =
1
2

n∑
i=1

n∑
j=1

bij(q)q̇iq̇j =
1
2
q̇T B(q)q̇ (7.31)

where

B(q) =
n∑

i=1

(
m�i

J
(�i)T
P J

(�i)
P + J

(�i)T
O RiI

i
�i

RT
i J

(�i)
O (7.32)

+mmi
J

(mi)T
P J

(mi)
P + J

(mi)T
O Rmi

Imi
mi

RT
mi

J
(mi)
O

)
is the (n× n) inertia matrix which is:
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• symmetric,
• positive definite,
• (in general) configuration-dependent .

7.1.2 Computation of Potential Energy

As done for kinetic energy, the potential energy stored in the manipulator is
given by the sum of the contributions relative to each link as well as to each
rotor:

U =
n∑

i=1

(U�i
+ Umi

). (7.33)

On the assumption of rigid links, the contribution due only to gravitational
forces5 is expressed by

U�i
= −

∫
V�i

gT
0 p∗

i ρdV = −m�i
gT

0 p�i
(7.34)

where g0 is the gravity acceleration vector in the base frame (e.g., g0 =
[ 0 0 −g ]T if z is the vertical axis), and (7.7) has been utilized for the
coordinates of the centre of mass of Link i. As regards the contribution of
Rotor i, similarly to (7.34), one has

Umi
= −mmi

gT
0 pmi

. (7.35)

By substituting (7.34), (7.35) into (7.33), the potential energy is given by

U = −
n∑

i=1

(m�i
gT

0 p�i
+ mmi

gT
0 pmi

) (7.36)

which reveals that potential energy, through the vectors p�i
and pmi

is a
function only of the joint variables q, and not of the joint velocities q̇.

7.1.3 Equations of Motion

Having computed the total kinetic and potential energy of the system as
in (7.31), (7.36), the Lagrangian (7.1) for the manipulator can be written as

L(q, q̇) = T (q, q̇) − U(q). (7.37)

Taking the derivatives required by Lagrange equations in (7.3) and recalling
that U does not depend on q̇ yields

B(q)q̈ + n(q, q̇) = ξ (7.38)
5 In the case of link flexibility, one would have an additional contribution due to

elastic forces.
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where

n(q, q̇) = Ḃ(q)q̇ − 1
2

(
∂

∂q

(
q̇T B(q)q̇

))T

+
(
∂U(q)
∂q

)T

.

In detail, noticing that U in (7.36) does not depend on q̇ and accounting
for (7.31) yields

d

dt

(
∂L
∂q̇i

)
=

d

dt

(
∂T
∂q̇i

)
=

n∑
j=1

bij(q)q̈j +
n∑

j=1

dbij(q)
dt

q̇j

=
n∑

j=1

bij(q)q̈j +
n∑

j=1

n∑
k=1

∂bij(q)
∂qk

q̇k q̇j

and
∂T
∂qi

=
1
2

n∑
j=1

n∑
k=1

∂bjk(q)
∂qi

q̇k q̇j

where the indices of summation have been conveniently switched. Further, in
view of (7.14), (7.24), it is

∂U
∂qi

= −
n∑

j=1

(
m�j

gT
0

∂p�j

∂qi
+ mmj

gT
0

∂pmj

∂qi

)
(7.39)

= −
n∑

j=1

(
m�j

gT
0 j

(�j)
Pi (q) + mmj

gT
0 j

(mj)
Pi (q)

)
= gi(q)

where, again, the index of summation has been changed.
As a result, the equations of motion are

n∑
j=1

bij(q)q̈j +
n∑

j=1

n∑
k=1

hijk(q)q̇k q̇j + gi(q) = ξi i = 1, . . . , n. (7.40)

where
hijk =

∂bij

∂qk
− 1

2
∂bjk

∂qi
. (7.41)

A physical interpretation of (7.40) reveals that:

• For the acceleration terms:
– The coefficient bii represents the moment of inertia at Joint i axis,

in the current manipulator configuration, when the other joints are
blocked.

– The coefficient bij accounts for the effect of acceleration of Joint j on
Joint j.

• For the quadratic velocity terms:
– The term hijj q̇

2
j represents the centrifugal effect induced on Joint i by

velocity of Joint j; notice that hiii = 0, since ∂bii/∂qi = 0.
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– The term hijkq̇j q̇k represents the Coriolis effect induced on Joint i by
velocities of Joints j and k.

• For the configuration-dependent terms :
– The term gi represents the moment generated at Joint i axis of the

manipulator, in the current configuration, by the presence of gravity.

Some joint dynamic couplings, e.g., coefficients bij and hijk, may be re-
duced or zeroed when designing the structure, so as to simplify the control
problem.

Regarding the nonconservative forces doing work at the manipulator joints,
these are given by the actuation torques τ minus the viscous friction torques
F vq̇ and the static friction torques fs(q, q̇): F v denotes the (n×n) diagonal
matrix of viscous friction coefficients. As a simplified model of static friction
torques, one may consider the Coulomb friction torques F s sgn (q̇), where F s

is an (n × n) diagonal matrix and sgn (q̇) denotes the (n × 1) vector whose
components are given by the sign functions of the single joint velocities.

If the manipulator’s end-effector is in contact with an environment, a
portion of the actuation torques is used to balance the torques induced at
the joints by the contact forces. According to a relation formally analogous
to (3.111), such torques are given by JT (q)he where he denotes the vector of
force and moment exerted by the end-effector on the environment.

In summary, the equations of motion (7.38) can be rewritten in the com-
pact matrix form which represents the joint space dynamic model :

B(q)q̈ + C(q, q̇)q̇ + F vq̇ + F s sgn (q̇) + g(q) = τ − JT (q)he (7.42)

where C is a suitable (n × n) matrix such that its elements cij satisfy the
equation

n∑
j=1

cij q̇j =
n∑

j=1

n∑
k=1

hijk q̇k q̇j . (7.43)

7.2 Notable Properties of Dynamic Model

In the following, two notable properties of the dynamic model are presented
which will be useful for dynamic parameter identification as well as for deriving
control algorithms.

7.2.1 Skew-symmetry of Matrix Ḃ − 2C

The choice of the matrix C is not unique, since there exist several matri-
ces C whose elements satisfy (7.43). A particular choice can be obtained by
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elaborating the term on the right-hand side of (7.43) and accounting for the
expressions of the coefficients hijk in (7.41). To this end, one has

n∑
j=1

cij q̇j =
n∑

j=1

n∑
k=1

hijkq̇k q̇j

=
n∑

j=1

n∑
k=1

(
∂bij

∂qk
− 1

2
∂bjk

∂qi

)
q̇k q̇j .

Splitting the first term on the right-hand side by an opportune switch of
summation between j and k yields

n∑
j=1

cij q̇j =
1
2

n∑
j=1

n∑
k=1

∂bij

∂qk
q̇k q̇j +

1
2

n∑
j=1

n∑
k=1

(
∂bik

∂qj
− ∂bjk

∂qi

)
q̇kq̇j .

As a consequence, the generic element of C is

cij =
n∑

k=1

cijk q̇k (7.44)

where the coefficients

cijk =
1
2

(
∂bij

∂qk
+

∂bik

∂qj
− ∂bjk

∂qi

)
(7.45)

are termed Christoffel symbols of the first type. Notice that, in view of the
symmetry of B, it is

cijk = cikj . (7.46)

This choice for the matrix C leads to deriving the following notable prop-
erty of the equations of motion (7.42). The matrix

N(q, q̇) = Ḃ(q) − 2C(q, q̇) (7.47)

is skew-symmetric; that is, given any (n× 1) vector w, the following relation
holds:

wT N(q, q̇)w = 0. (7.48)

In fact, substituting the coefficient (7.45) into (7.44) gives

cij =
1
2

n∑
k=1

∂bij

∂qk
q̇k +

1
2

n∑
k=1

(
∂bik

∂qj
− ∂bjk

∂qi

)
q̇k

=
1
2
ḃij +

1
2

n∑
k=1

(
∂bik

∂qj
− ∂bjk

∂qi

)
q̇k

and then the expression of the generic element of the matrix N in (7.47) is

nij = ḃij − 2cij =
n∑

k=1

(
∂bjk

∂qi
− ∂bik

∂qj

)
q̇k.
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The result follows by observing that

nij = −nji.

An interesting property which is a direct implication of the skew-symmetry
of N(q, q̇) is that, by setting w = q̇,

q̇T N(q, q̇)q̇ = 0; (7.49)

notice that (7.49) does not imply (7.48), since N is a function of q̇, too.
It can be shown that (7.49) holds for any choice of the matrix C, since it

is a result of the principle of conservation of energy (Hamilton). By virtue of
this principle, the total time derivative of kinetic energy is balanced by the
power generated by all the forces acting on the manipulator joints. For the
mechanical system at issue, one may write

1
2
d

dt

(
q̇T B(q)q̇

)
= q̇T

(
τ − F vq̇ − F s sgn (q̇) − g(q) − JT (q)he

)
. (7.50)

Taking the derivative on the left-hand side of (7.50) gives

1
2
q̇T Ḃ(q)q̇ + q̇T B(q)q̈

and substituting the expression of B(q)q̈ in (7.42) yields

1
2
d

dt

(
q̇T B(q)q̇

)
=

1
2
q̇T

(
Ḃ(q) − 2C(q, q̇)

)
q̇ (7.51)

+q̇T
(
τ − F vq̇ − F s sgn (q̇) − g(q) − JT (q)he

)
.

A direct comparison of the right-hand sides of (7.50) and (7.51) leads to the
result established by (7.49).

To summarize, the relation (7.49) holds for any choice of the matrix C,
since it is a direct consequence of the physical properties of the system,
whereas the relation (7.48) holds only for the particular choice of the ele-
ments of C as in (7.44), (7.45).

7.2.2 Linearity in the Dynamic Parameters

An important property of the dynamic model is the linearity with respect to
the dynamic parameters characterizing the manipulator links and rotors.

In order to determine such parameters, it is worth associating the kinetic
and potential energy contributions of each rotor with those of the link on
which it is located. Hence, by considering the union of Link i and Rotor i+ 1
(augmented Link i), the kinetic energy contribution is given by

Ti = T�i
+ Tmi+1 (7.52)
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where
T�i

=
1
2
m�iṗ

T
�i

ṗ�i
+

1
2
ωT

i I�i
ωi (7.53)

and
Tmi+1 =

1
2
mmi+1 ṗ

T
mi+1

ṗmi+1
+

1
2
ωT

mi+1
Imi+1ωmi+1 . (7.54)

With reference to the centre of mass of the augmented link, the linear velocities
of the link and rotor can be expressed according to (3.26) as

ṗ�i
= ṗCi

+ ωi × rCi,�i
(7.55)

ṗmi+1
= ṗCi

+ ωi × rCi,mi+1 (7.56)

with

rCi,�i
= p�i

− pCi
(7.57)

rCi,mi+1 = pmi+1
− pCi

, (7.58)

where pCi
denotes the position vector of the centre of mass of augmented

Link i.
Substituting (7.55) into (7.53) gives

T�i
=

1
2
m�iṗ

T
Ci

ṗCi
+ ṗT

Ci
S(ωi)m�i

rCi,�i
(7.59)

+
1
2
m�i

ωT
i ST (rCi,�i

)S(rCi,�i
)ωi +

1
2
ωT

i I�i
ωi.

By virtue of Steiner theorem, the matrix

Ī�i
= I�i

+ m�i
ST (rCi,�i

)S(rCi,�i
) (7.60)

represents the inertia tensor relative to the overall centre of mass pCi
, which

contains an additional contribution due to the translation of the pole with
respect to which the tensor is evaluated, as in (7.57). Therefore, (7.59) can be
written as

T�i
=

1
2
m�iṗ

T
Ci

ṗCi
+ ṗT

Ci
S(ωi)m�i

rCi,�i
+

1
2
ωT

i Ī�i
ωi. (7.61)

In a similar fashion, substituting (7.56) into (7.54) and exploiting (7.23)
yields

Tmi+1 =
1
2
mmi+1 ṗ

T
Ci

ṗCi
+ ṗT

Ci
S(ωi)mmi+1rCi,mi+1 +

1
2
ωT

i Īmi+1ωi(7.62)

+kr,i+1q̇i+1z
T
mi+1

Imi+1ωi +
1
2
k2

r,i+1q̇
2
i+1z

T
mi+1

Imi+1zmi+1 ,

where
Īmi+1 = Imi+1 + mmi+1S

T (rCi,mi+1)S(rCi,mi+1). (7.63)
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Summing the contributions in (7.61), (7.62) as in (7.52) gives the expres-
sion of the kinetic energy of augmented Link i in the form

Ti =
1
2
miṗ

T
Ci

ṗCi
+

1
2
ωT

i Īiωi + kr,i+1q̇i+1z
T
mi+1

Imi+1ωi (7.64)

+
1
2
k2

r,i+1q̇
2
i+1z

T
mi+1

Imi+1zmi+1 ,

where mi = m�i
+ mmi+1 and Īi = Ī�i

+ Īmi+1 are respectively the overall
mass and inertia tensor. In deriving (7.64), the relations in (7.57), (7.58) have
been utilized as well as the following relation between the positions of the
centres of mass:

m�i
p�i

+ mmi+1pmi+1
= mipCi

. (7.65)

Notice that the first two terms on the right-hand side of (7.64) represent
the kinetic energy contribution of the rotor when this is still, whereas the
remaining two terms account for the rotor’s own motion.

On the assumption that the rotor has a symmetric mass distribution about
its axis of rotation, its inertia tensor expressed in a frame Rmi

with origin at
the centre of mass and axis zmi

aligned with the rotation axis can be written
as

Imi
mi

=

⎡⎣ Imixx 0 0
0 Imiyy 0
0 0 Imizz

⎤⎦ (7.66)

where Imiyy = Imixx. As a consequence, the inertia tensor is invariant with
respect to any rotation about axis zmi

and is, anyhow, constant when referred
to any frame attached to Link i− 1.

Since the aim is to determine a set of dynamic parameters independent of
the manipulator joint configuration, it is worth referring the inertia tensor of
the link Īi to frame Ri attached to the link and the inertia tensor Imi+1 to
frame Rmi+1 so that it is diagonal. In view of (7.66) one has

Imi+1zmi+1 = Rmi+1I
mi+1
mi+1

RT
mi+1

zmi+1 = Imi+1zmi+1 (7.67)

where Imi+1 = Imi+1zz denotes the constant scalar moment of inertia of the
rotor about its rotation axis.

Therefore, the kinetic energy (7.64) becomes

Ti =
1
2
miṗ

iT
Ci

ṗi
Ci

+
1
2
ωiT

i Ī
i
iω

i
i + kr,i+1q̇i+1Imi+1z

iT
mi+1

ωi
i (7.68)

+
1
2
k2

r,i+1q̇
2
i+1Imi+1 .

According to the linear velocity composition rule for Link i in (3.15), one
may write

ṗi
Ci

= ṗi
i + ωi

i × ri
i,Ci

, (7.69)
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where all the vectors have been referred to Frame i; note that ri
i,Ci

is fixed in
such a frame. Substituting (7.69) into (7.68) gives

Ti =
1
2
miṗ

iT
i ṗi

i + ṗiT
i S(ωi

i)mir
i
i,Ci

+
1
2
ωiT

i Î
i

iω
i
i (7.70)

+kr,i+1q̇i+1Imi+1z
iT
mi+1

ωi
i +

1
2
k2

r,i+1q̇
2
i+1Imi+1 ,

where
Î

i

i = Ī
i
i + miS

T (ri
i,Ci

)S(ri
i,Ci

) (7.71)

represents the inertia tensor with respect to the origin of Frame i according
to Steiner theorem.

Let ri
i,Ci

= [ �Cix �Ciy �Ciz ]T . The first moment of inertia is

mir
i
i,Ci

=

⎡⎣mi�Cix

mi�Ciy

mi�Ciz

⎤⎦ . (7.72)

From (7.71) the inertia tensor of augmented Link i is

Î
i

i =

⎡⎢⎣Īixx + mi(�2Ciy
+ �2Ciz

) −Īixy −mi�Cix�Ciy −Īixz −mi�Cix�Ciz

∗ Īiyy + mi(�2Cix
+ �2Ciz

) −Īiyz −mi�Ciy�Ciz

∗ ∗ Īizz + mi(�2Cix
+ �2Ciy

)

⎤⎥⎦

=

⎡⎢⎣ Îixx −Îixy −Îixz

∗ Îiyy −Îiyz

∗ ∗ Îizz

⎤⎥⎦ . (7.73)

Therefore, the kinetic energy of the augmented link is linear with respect to
the dynamic parameters, namely, the mass, the three components of the first
moment of inertia in (7.72), the six components of the inertia tensor in (7.73),
and the moment of inertia of the rotor .

As regards potential energy, it is worth referring to the centre of mass of
augmented Link i defined as in (7.65), and thus the single contribution of
potential energy can be written as

Ui = −mig
iT
0 pi

Ci
(7.74)

where the vectors have been referred to Frame i. According to the relation

pi
Ci

= pi
i + ri

i,Ci
.

The expression in (7.74) can be rewritten as

Ui = −giT
0 (mip

i
i + mir

i
i,Ci

) (7.75)
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that is, the potential energy of the augmented link is linear with respect to
the mass and the three components of the first moment of inertia in (7.72).

By summing the contributions of kinetic energy and potential energy for
all augmented links, the Lagrangian of the system (7.1) can be expressed in
the form

L =
n∑

i=1

(βT
T i − βT

Ui)πi (7.76)

where πi is the (11 × 1) vector of dynamic parameters

πi = [mi mi�Cix mi�Ciy mi�Ciz Îixx Îixy Îixz Îiyy Îiyz Îizz Imi
]T ,

(7.77)
in which the moment of inertia of Rotor i has been associated with the pa-
rameters of Link i so as to simplify the notation.

In (7.76), βT i and βUi are two (11 × 1) vectors that allow the La-
grangian to be written as a function of πi. Such vectors are a function
of the generalized coordinates of the mechanical system (and also of their
derivatives as regards βT i). In particular, it can be shown that βT i =
βT i(q1, q2, . . . , qi, q̇1, q̇2, . . . , q̇i) and βUi = βUi(q1, q2, . . . , qi), i.e., they do not
depend on the variables of the joints subsequent to Link i.

At this point, it should be observed how the derivations required by the
Lagrange equations in (7.2) do not alter the property of linearity in the pa-
rameters, and then the generalized force at Joint i can be written as

ξi =
n∑

j=1

yT
ijπj (7.78)

where

yij =
d

dt

∂βT j

∂q̇i
− ∂βT j

∂qi
+

∂βUj

∂qi
. (7.79)

Since the partial derivatives of βT j and βUj appearing in (7.79) vanish for
j < i, the following notable result is obtained:⎡⎢⎢⎣

ξ1
ξ2
...
ξn

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
yT

11 yT
12 . . . yT

1n

0T yT
22 . . . yT

2n

...
...

. . .
...

0T 0T . . . yT
nn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

π1

π2

...
πn

⎤⎥⎥⎥⎦ (7.80)

which yields the property of linearity of the model of a manipulator with
respect to a suitable set of dynamic parameters.

In the simple case of no contact forces (he = 0), it may be worth including
the viscous friction coefficient Fvi and Coulomb friction coefficient Fsi in the
parameters of the vector πi, thus leading to a total number of 13 parameters
per joint. In summary, (7.80) can be compactly written as

τ = Y (q, q̇, q̈)π (7.81)
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Fig. 7.3. Two-link Cartesian arm

where π is a (p×1) vector of constant parameters and Y is an (n×p) matrix
which is a function of joint positions, velocities and accelerations; this matrix
is usually called regressor . Regarding the dimension of the parameter vector,
notice that p ≤ 13n since not all the thirteen parameters for each joint may
explicitly appear in (7.81).

7.3 Dynamic Model of Simple Manipulator Structures

In the following, three examples of dynamic model computation are illustrated
for simple two-DOF manipulator structures. Two DOFs, in fact, are enough
to understand the physical meaning of all dynamic terms, especially the joint
coupling terms. On the other hand, dynamic model computation for manip-
ulators with more DOFs would be quite tedious and prone to errors, when
carried out by paper and pencil. In those cases, it is advisable to perform it
with the aid of a symbolic programming software package.

7.3.1 Two-link Cartesian Arm

Consider the two-link Cartesian arm in Fig. 7.3, for which the vector of gen-
eralized coordinates is q = [ d1 d2 ]T . Let m�1 , m�2 be the masses of the two
links, and mm1 , mm2 the masses of the rotors of the two joint motors. Also let
Im1 , Im2 be the moments of inertia with respect to the axes of the two rotors.
It is assumed that pmi

= pi−1 and zmi
= zi−1, for i = 1, 2, i.e., the motors

are located on the joint axes with centres of mass located at the origins of the
respective frames.

With the chosen coordinate frames, computation of the Jacobians in (7.16),
(7.18) yields

J
(�1)
P =

⎡⎣ 0 0
0 0
1 0

⎤⎦ J
(�2)
P =

⎡⎣ 0 1
0 0
1 0

⎤⎦ .
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Obviously, in this case there are no angular velocity contributions for both
links.

Computation of the Jacobians in (7.25), (7.26) e (7.28), (7.29) yields

J
(m1)
P =

⎡⎣ 0 0
0 0
0 0

⎤⎦ J
(m2)
P =

⎡⎣ 0 0
0 0
1 0

⎤⎦

J
(m1)
O =

⎡⎣ 0 0
0 0
kr1 0

⎤⎦ J
(m2)
O =

⎡⎣ 0 kr2

0 0
0 0

⎤⎦
where kri is the gear reduction ratio of Motor i. It is obvious to see that
z1 = [ 1 0 0 ]T , which greatly simplifies computation of the second term
in (4.34).

From (7.32), the inertia matrix is

B =
[
m�1 + mm2 + k2

r1Im1 + m�2 0
0 m�2 + k2

r2Im2

]
.

It is worth observing that B is constant , i.e., it does not depend on the arm
configuration. This implies also that C = O, i.e., there are no contributions
of centrifugal and Coriolis forces. As for the gravitational terms, since g0 =
[ 0 0 −g ]T (g is gravity acceleration), (7.39) with the above Jacobians gives

g1 = (m�1 + mm2 + m�2)g g2 = 0.

In the absence of friction and tip contact forces, the resulting equations of
motion are

(m�1 + mm2 + k2
r1Im1 + m�2)d̈1 + (m�1 + mm2 + m�2)g = τ1

(m�2 + k2
r2Im2)d̈2 = τ2

where τ1 and τ2 denote the forces applied to the two joints. Notice that a
completely decoupled dynamics has been obtained. This is a consequence not
only of the Cartesian structures but also of the particular geometry; in other
words, if the second joint axis were not at a right angle with the first joint
axis, the resulting inertia matrix would not be diagonal (see Problem 7.1).

7.3.2 Two-link Planar Arm

Consider the two-link planar arm in Fig. 7.4, for which the vector of general-
ized coordinates is q = [ϑ1 ϑ2 ]T . Let �1, �2 be the distances of the centres
of mass of the two links from the respective joint axes. Also let m�1 , m�2 be
the masses of the two links, and mm1 , mm2 the masses of the rotors of the two
joint motors. Finally, let Im1 , Im2 be the moments of inertia with respect to
the axes of the two rotors, and I�1 , I�2 the moments of inertia relative to the
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Fig. 7.4. Two-link planar arm

centres of mass of the two links, respectively. It is assumed that pmi
= pi−1

and zmi
= zi−1, for i = 1, 2, i.e., the motors are located on the joint axes

with centres of mass located at the origins of the respective frames.
With the chosen coordinate frames, computation of the Jacobians in (7.16),

(7.18) yields

J
(�1)
P =

⎡⎣−�1s1 0
�1c1 0
0 0

⎤⎦ J
(�2)
P =

⎡⎣−a1s1 − �2s12 −�2s12

a1c1 + �2c12 �2c12
0 0

⎤⎦ ,

whereas computation of the Jacobians in (7.17), (7.19) yields

J
(�1)
O =

⎡⎣ 0 0
0 0
1 0

⎤⎦ J
(�2)
O =

⎡⎣ 0 0
0 0
1 1

⎤⎦ .

Notice that ωi, for i = 1, 2, is aligned with z0, and thus Ri has no effect. It
is then possible to refer to the scalar moments of inertia I�i

.
Computation of the Jacobians in (7.25), (7.26) yields

J
(m1)
P =

⎡⎣ 0 0
0 0
0 0

⎤⎦ J
(m2)
P =

⎡⎣−a1s1 0
a1c1 0

0 0

⎤⎦ ,

whereas computation of the Jacobians in (7.28), (7.29) yields

J
(m1)
O =

⎡⎣ 0 0
0 0
kr1 0

⎤⎦ J
(m2)
O =

⎡⎣ 0 0
0 0
1 kr2

⎤⎦
where kri is the gear reduction ratio of Motor i.

From (7.32), the inertia matrix is

B(q) =
[
b11(ϑ2) b12(ϑ2)
b21(ϑ2) b22

]
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b11 = I�1 + m�1�
2
1 + k2

r1Im1 + I�2 + m�2(a
2
1 + �22 + 2a1�2c2)

+Im2 + mm2a
2
1

b12 = b21 = I�2 + m�2(�
2
2 + a1�2c2) + kr2Im2

b22 = I�2 + m�2�
2
2 + k2

r2Im2 .

Compared to the previous example, the inertia matrix is now configuration-
dependent. Notice that the term kr2Im2 in the off-diagonal term of the inertia
matrix derives from having considered the rotational part of the motor ki-
netic energy as due to the total angular velocity, i.e., its own angular velocity
and that of the preceding link in the kinematic chain. At first approximation,
especially in the case of high values of the gear reduction ratio, this contribu-
tion could be neglected; in the resulting reduced model, motor inertias would
appear uniquely in the elements on the diagonal of the inertia matrix with
terms of the type k2

riImi
.

The computation of Christoffel symbols as in (7.45) gives

c111 =
1
2
∂b11
∂q1

= 0

c112 = c121 =
1
2
∂b11
∂q2

= −m�2a1�2s2 = h

c122 =
∂b12
∂q2

− 1
2
∂b22
∂q1

= h

c211 =
∂b21
∂q1

− 1
2
∂b11
∂q2

= −h

c212 = c221 =
1
2
∂b22
∂q1

= 0

c222 =
1
2
∂b22
∂q2

= 0,

leading to the matrix

C(q, q̇) =
[

hϑ̇2 h(ϑ̇1 + ϑ̇2)
−hϑ̇1 0

]
.

Computing the matrix N in (7.47) gives

N(q, q̇) = Ḃ(q) − 2C(q, q̇)

=
[

2hϑ̇2 hϑ̇2

hϑ̇2 0

]
− 2

[
hϑ̇2 h(ϑ̇1 + ϑ̇2)
−hϑ̇1 0

]
=

[
0 −2hϑ̇1 − hϑ̇2

2hϑ̇1 + hϑ̇2 0

]
that allows the verification of the skew-symmetry property expressed by (7.48).
See also Problem 7.2.
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As for the gravitational terms, since g0 = [ 0 −g 0 ]T , (7.39) with the
above Jacobians gives

g1 = (m�1�1 + mm2a1 + m�2a1)gc1 + m�2�2gc12

g2 = m�2�2gc12.

In the absence of friction and tip contact forces, the resulting equations of
motion are(

I�1 + m�1�
2
1 + k2

r1Im1 + I�2 + m�2(a
2
1 + �22 + 2a1�2c2) + Im2 + mm2a

2
1

)
ϑ̈1

+
(
I�2 + m�2(�

2
2 + a1�2c2) + kr2Im2

)
ϑ̈2

−2m�2a1�2s2ϑ̇1ϑ̇2 −m�2a1�2s2ϑ̇
2
2

+(m�1�1 + mm2a1 + m�2a1)gc1 + m�2�2gc12 = τ1 (7.82)(
I�2 + m�2(�

2
2 + a1�2c2) + kr2Im2

)
ϑ̈1 +

(
I�2 + m�2�

2
2 + k2

r2Im2

)
ϑ̈2

+m�2a1�2s2ϑ̇
2
1 + m�2�2gc12 = τ2

where τ1 and τ2 denote the torques applied to the joints.
Finally, it is wished to derive a parameterization of the dynamic model

(7.82) according to the relation (7.81). By direct inspection of the expressions
of the joint torques, it is possible to find the following parameter vector:

π = [π1 π2 π3 π4 π5 π6 π7 π8 ]T (7.83)

π1 = m1 = m�1 + mm2

π2 = m1�C1 = m�1(�1 − a1)

π3 = Î1 = I�1 + m�1(�1 − a1)2 + Im2

π4 = Im1

π5 = m2 = m�2

π6 = m2�C2 = m�2(�2 − a2)

π7 = Î2 = I�2 + m�2(�2 − a2)2

π8 = Im2 ,

where the parameters for the augmented links have been found according
to (7.77). It can be recognized that the number of non-null parameters is less
than the maximum number of twenty-two parameters allowed in this case.6

The regressor in (7.81) is

Y =
[
y11 y12 y13 y14 y15 y16 y17 y18

y21 y22 y23 y24 y25 y26 y27 y28

]
(7.84)

6 The number of parameters can be further reduced by resorting to a more accurate
inspection, which leads to finding a minimum number of five parameters; those
turn out to be a linear combination of the parameters in (7.83) (see Problem 7.4).
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y11 = a2
1ϑ̈1 + a1gc1

y12 = 2a1ϑ̈1 + gc1

y13 = ϑ̈1

y14 = k2
r1ϑ̈1

y15 = (a2
1 + 2a1a2c2 + a2

2)ϑ̈1 + (a1a2c2 + a2
2)ϑ̈2 − 2a1a2s2ϑ̇1ϑ̇2

−a1a2s2ϑ̇
2
2 + a1gc1 + a2gc12

y16 = (2a1c2 + 2a2)ϑ̈1 + (a1c2 + 2a2)ϑ̈2 − 2a1s2ϑ̇1ϑ̇2 − a1s2ϑ̇
2
2

+gc12

y17 = ϑ̈1 + ϑ̈2

y18 = kr2ϑ̈2

y21 = 0
y22 = 0
y23 = 0
y24 = 0
y25 = (a1a2c2 + a2

2)ϑ̈1 + a2
2ϑ̈2 + a1a2s2ϑ̇

2
1 + a2gc12

y26 = (a1c2 + 2a2)ϑ̈1 + 2a2ϑ̈2 + a1s2ϑ̇
2
1 + gc12

y27 = ϑ̈1 + ϑ̈2

y28 = kr2ϑ̈1 + k2
r2ϑ̈2.

Example 7.2

In order to understand the relative weight of the various torque contributions in the
dynamic model (7.82), consider a two-link planar arm with the following data:

a1 = a2 = 1 m �1 = �2 = 0.5 m m�1 = m�2 = 50 kg I�1 = I�2 = 10 kg·m2

kr1 = kr2 = 100 mm1 = mm2 = 5kg Im1 = Im2 = 0.01 kg·m2.

The two links have been chosen equal to illustrate better the dynamic interaction
between the two joints.

Figure 7.5 shows the time history of positions, velocities, accelerations and
torques resulting from joint trajectories with typical triangular velocity profile and
equal time duration. The initial arm configuration is so that the tip is located at the
point (0.2, 0) m with a lower elbow posture. Both joints make a rotation of π/2 rad
in a time of 0.5 s.

From the time history of the single torque contributions in Fig. 7.6 it can be
recognized that:
• The inertia torque at Joint 1 due to Joint 1 acceleration follows the time history

of the acceleration.
• The inertia torque at Joint 2 due to Joint 2 acceleration is piecewise constant,

since the inertia moment at Joint 2 axis is constant.
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Fig. 7.5. Time history of positions, velocities, accelerations and torques with joint
trajectories of equal duration
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Fig. 7.6. Time history of torque contributions with joint trajectories of equal du-
ration

272 7 Dynamics

0 0.2 0.4 0.6
2

1

0

1

2

3

4

[s]

[r
ad

]

joint 1 pos

0 0.2 0.4 0.6
2

1

0

1

2

3

4

[s]

[r
ad

]

joint 2 pos

0 0.2 0.4 0.6
6

4

2

0

2

4

6

[s]

[r
ad

/s
]

joint 1 vel

0 0.2 0.4 0.6
6

4

2

0

2

4

6

[s]

[r
ad

/s
]

joint 2 vel

0 0.2 0.4 0.6
40

20

0

20

40

[s]

[r
ad

/s
^2

]

joint 1 acc

0 0.2 0.4 0.6
40

20

0

20

40

[s]

[r
ad

/s
^2

]

joint 2 acc

0 0.2 0.4 0.6

5000

0

5000

[s]

[N
m

]

joint 1 torque

0 0.2 0.4 0.6

5000

0

5000

[s]

[N
m

]

joint 2 torque

Fig. 7.7. Time history of positions, velocities, accelerations and torques with joint
trajectories of different duration
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Fig. 7.8. Time history of torque contributions with joint trajectories of different
duration
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Fig. 7.9. Time history of tip position, velocity and acceleration with a straight line
tip trajectory along the horizontal axis

• The inertia torques at each joint due to acceleration of the other joint confirm
the symmetry of the inertia matrix, since the acceleration profiles are the same
for both joints.

• The Coriolis effect is present only at Joint 1, since the arm tip moves with respect
to the mobile frame attached to Link 1 but is fixed with respect to the frame
attached to Link 2.

• The centrifugal and Coriolis torques reflect the above symmetry.
Figure 7.7 shows the time history of positions, velocities, accelerations and

torques resulting from joint trajectories with typical trapezoidal velocity profile and
different time duration. The initial configuration is the same as in the previous case.
The two joints make a rotation so as to take the tip to the point (1.8, 0) m. The
acceleration time is 0.15 s and the maximum velocity is 5 rad/s for both joints.
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Fig. 7.10. Time history of joint positions, velocities, accelerations, and torques with
a straight line tip trajectory along the horizontal axis
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Fig. 7.11. Time history of joint torque contributions with a straight line tip tra-
jectory along the horizontal axis
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From the time history of the single torque contributions in Fig. 7.8 it can be
recognized that:
• The inertia torque at Joint 1 due to Joint 2 acceleration is opposite to that at

Joint 2 due to Joint 1 acceleration in that portion of trajectory when the two
accelerations have the same magnitude but opposite sign.

• The different velocity profiles imply that the centrifugal effect induced at Joint
1 by Joint 2 velocity dies out later than the centrifugal effect induced at Joint 2
by Joint 1 velocity.

• The gravitational torque at Joint 2 is practically constant in the first portion
of the trajectory, since Link 2 is almost kept in the same posture. As for the
gravitational torque at Joint 1, instead, the centre of mass of the articulated
system moves away from the origin of the axes.
Finally, Fig. 7.9 shows the time history of tip position, velocity and acceleration

for a trajectory with a trapezoidal velocity profile. Starting from the same initial
posture as above, the arm tip makes a translation of 1.6 m along the horizontal axis;
the acceleration time is 0.15 s and the maximum velocity is 5m/s.

As a result of an inverse kinematics procedure, the time history of joint positions,
velocities and accelerations have been computed which are illustrated in Fig. 7.10,
together with the joint torques that are needed to execute the assigned trajectory.
It can be noticed that the time history of the represented quantities differs from
the corresponding ones in the operational space, in view of the nonlinear effects
introduced by kinematic relations.

For what concerns the time history of the individual torque contributions in
Fig. 7.11, it is possible to make a number of remarks similar to those made above
for trajectories assigned directly in the joint space.

7.3.3 Parallelogram Arm

Consider the parallelogram arm in Fig. 7.12. Because of the presence of the
closed chain, the equivalent tree-structured open-chain arm is initially taken
into account. Let �1′ , �2′ , �3′ and �1′′ be the distances of the centres of mass
of the three links along one branch of the tree, and of the single link along
the other branch, from the respective joint axes. Also let m�1′ , m�2′ , m�3′ and
m�1′′ be the masses of the respective links, and I�1′ , I�2′ , I�3′ and I�1′′ the
moments of inertia relative to the centres of mass of the respective links. For
the sake of simplicity, the contributions of the motors are neglected.

With the chosen coordinate frames, computation of the Jacobians in (7.16)
(7.18) yields

J
(�1′ )
P =

⎡⎣−�1′s1′ 0 0
�1′c1′ 0 0

0 0 0

⎤⎦ J
(�2′ )
P =

⎡⎣−a1′s1′ − �2s1′2′ −�2′s1′2′ 0
a1′c1′ + �2′c1′2′ �2c1′2′ 0

0 0 0

⎤⎦

J
(�3′ )
P =

⎡⎣−a1′s1′ − a2′s1′2′ − �3′s1′2′3′ −a2′s1′2′ − �3′s1′2′3′ −�3′s1′2′3′

a1′c1′ + a2′c1′2′ + �3′c1′2′3′ a2′c1′2′ + �3′c1′2′3′ �3′c1′2′3′

0 0 0

⎤⎦
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Fig. 7.12. Parallelogram arm

and

J
(�1′′ )
P =

⎡⎣−�1′′s1′′

�1′′c1′′

0

⎤⎦ ,

whereas computation of the Jacobians in (7.17), (7.19) yields

J
(�1′ )
O =

⎡⎣ 0 0 0
0 0 0
1 0 0

⎤⎦ J
(�2′ )
O =

⎡⎣ 0 0 0
0 0 0
1 1 0

⎤⎦ J
(�3′ )
O =

⎡⎣ 0 0 0
0 0 0
1 1 1

⎤⎦
and

J
(�1′′ )
O =

⎡⎣ 0
0
1

⎤⎦ .

From (7.32), the inertia matrix of the virtual arm composed of joints ϑ1′ ,
ϑ2′ , ϑ3′ is

B′(q′) =

⎡⎣ b1′1′(ϑ2′ , ϑ3′) b1′2′(ϑ2′ , ϑ3′) b1′3′(ϑ2′ , ϑ3′)
b2′1′(ϑ2′ , ϑ3′) b2′2′(ϑ3′) b2′3′(ϑ3′)
b3′1′(ϑ2′ , ϑ3′) b3′2′(ϑ3′) b3′3′

⎤⎦
b1′1′ = I�1′ + m�1′ �

2
1′ + I�2′ + m�2′ (a

2
1′ + �22′ + 2a1′�2′c2′) + I�3′

+m�3′ (a
2
1′ + a2

2′ + �23′ + 2a1′a2′c2′ + 2a1′�3′c2′3′ + 2a2′�3′c3′)
b1′2′ = b2′1′ = I�2′ + m�2′ (�

2
2′ + a1′�2′c2′) + I�3′

+m�3′ (a
2
2′ + �23′ + a1′a2′c2′ + a1′�3′c2′3′ + 2a2′�3′c3′)

b1′3′ = b31 = I�3′ + m�3′ (�
2
3′ + a1′�3′c2′3′ + a2′�3′c3′)

b2′2′ = I�2′ + m�2′ �
2
2′ + I�3′ + m�3′ (a

2
2′ + �23′ + 2a2′�3′c3′)

b2′3′ = I�3′ + m�3′ (�
2
3′ + a2′�3′c3′)

b3′3′ = I�3′ + m�3′ �
2
3′
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while the moment of inertia of the virtual arm composed of just joint ϑ1′′ is

b1′′1′′ = I�1′′ + m�1′′ �
2
1′′ .

Therefore, the inertial torque contributions of the two virtual arms are re-
spectively:

τi′ =
3′∑

j′=1′
bi′j′ ϑ̈j′ τ1′′ = b1′′1′′ ϑ̈1′′ .

At this point, in view of (2.64) and (3.121), the inertial torque contribu-
tions at the actuated joints for the closed-chain arm turn out to be

τ a = Baq̈a

where qa = [ϑ1′ ϑ1′′ ]T , τ a = [ τa1 τa2 ]T and

Ba =
[
ba11 ba12

ba21 ba22

]
ba11 = I�1′ + m�1′ �

2
1′ + m�2′a

2
1′ + I�3′ + m�3′ �

2
3′ + m�3′a

2
1′

−2a1′m�3′ �3′

ba12 = ba21 =
(
a1′m�2′ �2′ + a1′′m�3′ (a1′ − �3′)

)
cos (ϑ1′′ − ϑ1′)

ba22 = I�1′ + m�1′ �
2
1′ + I�2′ + m�2′ �

2
2′ + m�3′a

2
1′′ .

This expression reveals the possibility of obtaining a configuration-independent
and decoupled inertia matrix; to this end it is sufficient to design the four links
of the parallelogram so that

m�3′ �̄3′

m�2′ �2′
=

a1′

a1′′

where �̄3′ = �3′ − a1′ is the distance of the centre of mass of Link 3′ from the
axis of Joint 4. If this condition is satisfied, then the inertia matrix is diagonal
(ba12 = ba21 = 0) with

ba11 = I�1′ + m�1′ �
2
1′ + m�2′a

2
1′

(
1 +

�2′ �̄3′

a1′a1′′

)
+ I�3′

ba22 = I�1′ + m�1′ �
2
1′ + I�2′ + m�2′ �

2
2′

(
1 +

a1′a1′′

�2′ �̄3′

)
.

As a consequence, no contributions of Coriolis and centrifugal torques are
obtained. Such a result could not be achieved with the previous two-link
planar arm, no matter how the design parameters were chosen.
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As for the gravitational terms, since g0 = [ 0 −g 0 ]T , (7.39) with the
above Jacobians gives

g1′ (m�1′ �1′ + m�2′a1′ + m�3′a1′)gc1′ + (m�2′ �2′ + m�3′a2′)gc1′2′

+m�3′ �3′gc1′2′3

g2′ (m�2′ �2′ + m�3′a2′)gc1′2′ + m�3′ �3′gc1′2′3

g3′ m�3′ �3′gc1′2′3

and
g1′′ = m�1′′ �1′′gc1′′ .

Composing the various contributions as done above yields

ga =
[

(m�1′ �1′ + m�2′a1′ −m�3′ �̄3′)gc1′

(m�1′′ �1′′ + m�2′ �2′ + m�3′a1′′)gc1′′

]
which, together with the inertial torques, completes the derivation of the
sought dynamic model.

A final comment is in order. In spite of its kinematic equivalence with the
two-link planar arm, the dynamic model of the parallelogram is remarkably
lighter. This property is quite advantageous for trajectory planning and con-
trol purposes. For this reason, apart from obvious considerations related to
manipulation of heavy payloads, the adoption of closed kinematic chains in
the design of industrial robots has received a great deal of attention.

7.4 Dynamic Parameter Identification

The use of the dynamic model for solving simulation and control problems de-
mands the knowledge of the values of dynamic parameters of the manipulator
model.

Computing such parameters from the design data of the mechanical struc-
ture is not simple. CAD modelling techniques can be adopted which allow the
computation of the values of the inertial parameters of the various components
(links, actuators and transmissions) on the basis of their geometry and type of
materials employed. Nevertheless, the estimates obtained by such techniques
are inaccurate because of the simplification typically introduced by geometric
modelling; moreover, complex dynamic effects, such as joint friction, cannot
be taken into account.

A heuristic approach could be to dismantle the various components of the
manipulator and perform a series of measurements to evaluate the inertial
parameters. Such technique is not easy to implement and may be troublesome
to measure the relevant quantities.

In order to find accurate estimates of dynamic parameters, it is worth
resorting to identification techniques which conveniently exploit the property
of linearity (7.81) of the manipulator model with respect to a suitable set of
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dynamic parameters. Such techniques allow the computation of the parameter
vector π from the measurements of joint torques τ and of relevant quantities
for the evaluation of the matrix Y , when suitable motion trajectories are
imposed to the manipulator.

On the assumption that the kinematic parameters in the matrix Y are
known with good accuracy, e.g., as a result of a kinematic calibration, mea-
surements of joint positions q, velocities q̇ and accelerations q̈ are required.
Joint positions and velocities can be actually measured while numerical recon-
struction of accelerations is needed; this can be performed on the basis of the
position and velocity values recorded during the execution of the trajectories.
The reconstructing filter does not work in real time and thus it can also be
anti-causal, allowing an accurate reconstruction of the accelerations.

As regards joint torques, in the unusual case of torque sensors at the
joint, these can be measured directly. Otherwise, they can be evaluated from
either wrist force measurements or current measurements in the case of electric
actuators.

If measurements of joint torques, positions, velocities and accelerations
have been obtained at given time instants t1, . . . , tN along a given trajectory,
one may write

τ̄ =

⎡⎢⎣ τ (t1)
...

τ (tN )

⎤⎥⎦ =

⎡⎢⎣ Y (t1)
...

Y (tN )

⎤⎥⎦π = Ȳ π. (7.85)

The number of time instants sets the number of measurements to perform
and should be large enough (typically Nn � p) so as to avoid ill-conditioning
of matrix Ȳ . Solving (7.85) by a least-squares technique leads to the solution
in the form

π = (Ȳ T
Ȳ )−1Ȳ

T
τ̄ (7.86)

where (Ȳ T
Ȳ )−1Ȳ

T is the left pseudo-inverse matrix of Ȳ .
It should be noticed that, in view of the block triangular structure of

matrix Y in (7.80), computation of parameter estimates could be simplified
by resorting to a sequential procedure. Take the equation τn = yT

nnπn and
solve it for πn by specifying τn and yT

nn for a given trajectory on Joint n.
By iterating the procedure, the manipulator parameters can be identified on
the basis of measurements performed joint by joint from the outer link to the
base. Such procedure, however, may have the inconvenience to accumulate
any error due to ill-conditioning of the matrices involved step by step. It may
then be worth operating with a global procedure by imposing motions on all
manipulator joints at the same time.

Regarding the rank of matrix Ȳ , it is possible to identify only the dynamic
parameters of the manipulator that contribute to the dynamic model. Exam-
ple 7.2 has indeed shown that for the two-link planar arm considered, only
8 out of the 22 possible dynamic parameters appear in the dynamic model.
Hence, there exist some dynamic parameters which, in view of the disposition
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of manipulator links and joints, are non-identifiable, since for any trajectory
assigned to the structure they do not contribute to the equations of motion. A
direct consequence is that the columns of the matrix Y in (7.80) correspond-
ing to such parameters are null and thus they have to be removed from the
matrix itself; e.g., the resulting (2 × 8) matrix in (7.84).

Another issue to consider about determination of the effective number
of parameters that can be identified by (7.86) is that some parameters can
be identified in linear combinations whenever they do not appear isolated in
the equations. In such a case, it is necessary, for each linear combination, to
remove as many columns of the matrix Y as the number of parameters in the
linear combination minus one.

For the determination of the minimum number of identifiable parameters
that allow direct application of the least-squares technique based on (7.86),
it is possible to inspect directly the equations of the dynamic model, as long
as the manipulator has few joints. Otherwise, numerical techniques based on
singular value decomposition of matrix Ȳ have to be used. If the matrix Ȳ
resulting from a series of measurements is not full-rank, one has to resort to
a damped least-squares inverse of Ȳ where solution accuracy depends on the
weight of the damping factor.

In the above discussion, the type of trajectory imposed to the manipulator
joints has not been explicitly addressed. It can be generally ascertained that
the choice should be oriented in favor of polynomial type trajectories which are
sufficiently rich to allow an accurate evaluation of the identifiable parameters.
This corresponds to achieving a low condition number of the matrix Ȳ

T
Ȳ

along the trajectory. On the other hand, such trajectories should not excite
any unmodelled dynamic effects such as joint elasticity or link flexibility that
would naturally lead to unreliable estimates of the dynamic parameters to
identify.

Finally, it is worth observing that the technique presented above can also
be extended to the identification of the dynamic parameters of an unknown
payload at the manipulator’s end-effector. In such a case, the payload can be
regarded as a structural modification of the last link and one may proceed to
identify the dynamic parameters of the modified link. To this end, if a force
sensor is available at the manipulator’s wrist, it is possible to characterize
directly the dynamic parameters of the payload starting from force sensor
measurements.

7.5 Newton–Euler Formulation

In the Lagrange formulation, the manipulator dynamic model is derived start-
ing from the total Lagrangian of the system. On the other hand, the Newton–
Euler formulation is based on a balance of all the forces acting on the generic
link of the manipulator. This leads to a set of equations whose structure allows
a recursive type of solution; a forward recursion is performed for propagating
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Fig. 7.13. Characterization of Link i for Newton–Euler formulation

link velocities and accelerations, followed by a backward recursion for propa-
gating forces.

Consider the generic augmented Link i (Link i plus motor of Joint i+1) of
the manipulator kinematic chain (Fig. 7.13). According to what was presented
in Sect. 7.2.2, one can refer to the centre of mass Ci of the augmented link to
characterize the following parameters:

• mi mass of augmented link,
• Īi inertia tensor of augmented link,
• Imi

moment of inertia of rotor,
• ri−1,Ci

vector from origin of Frame (i− 1) to centre of mass Ci,
• ri,Ci

vector from origin of Frame i to centre of mass Ci,
• ri−1,i vector from origin of Frame (i− 1) to origin of Frame i.

The velocities and accelerations to be considered are:

• ṗCi
linear velocity of centre of mass Ci,

• ṗi linear velocity of origin of Frame i,
• ωi angular velocity of link,
• ωmi

angular velocity of rotor,
• p̈Ci

linear acceleration of centre of mass Ci,
• p̈i linear acceleration of origin of Frame i,
• ω̇i angular acceleration of link,
• ω̇mi

angular acceleration of rotor,
• g0 gravity acceleration.

The forces and moments to be considered are:

• f i force exerted by Link i− 1 on Link i,
• −f i+1 force exerted by Link i + 1 on Link i,
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• μi moment exerted by Link i − 1 on Link i with respect to origin of
Frame i− 1,

• −μi+1 moment exerted by Link i + 1 on Link i with respect to origin of
Frame i.

Initially, all the vectors and matrices are assumed to be expressed with
reference to the base frame.

As already anticipated, the Newton–Euler formulation describes the mo-
tion of the link in terms of a balance of forces and moments acting on it.

The Newton equation for the translational motion of the centre of mass
can be written as

f i − f i+1 + mig0 = mip̈Ci
. (7.87)

The Euler equation for the rotational motion of the link (referring mo-
ments to the centre of mass) can be written as

μi + f i × ri−1,Ci
− μi+1 − f i+1 × ri,Ci

=
d

dt
(Īiωi + kr,i+1q̇i+1Imi+1zmi+1),

(7.88)
where (7.67) has been used for the angular momentum of the rotor. Notice
that the gravitational force mig0 does not generate any moment, since it is
concentrated at the centre of mass.

As pointed out in the above Lagrange formulation, it is convenient to
express the inertia tensor in the current frame (constant tensor). Hence, ac-
cording to (7.12), one has Īi = RiĪ

i
iR

T
i , where Ri is the rotation matrix from

Frame i to the base frame. Substituting this relation in the first term on the
right-hand side of (7.88) yields

d

dt
(Īiωi) = ṘiĪ

i
iR

T
i ωi + RiĪ

i
iṘ

T

i ωi + RiĪ
i
iR

T
i ω̇i (7.89)

= S(ωi)RiĪ
i
iR

T
i ωi + RiĪ

i
iR

T
i ST (ωi)ωi + RiĪ

i
iR

T
i ω̇i

= Īiω̇i + ωi × (Īiωi)

where the second term represents the gyroscopic torque induced by the depen-
dence of Īi on link orientation.7 Moreover, by observing that the unit vector
zmi+1 rotates accordingly to Link i, the derivative needed in the second term
on the right-hand side of (7.88) is

d

dt
(q̇i+1Imi+1zmi+1) = q̈i+1Imi+1zmi+1 + q̇i+1Imi+1ωi × zmi+1 (7.90)

By substituting (7.89), (7.90) in (7.88), the resulting Euler equation is

μi + f i × ri−1,Ci
−μi+1 − f i+1 × ri,Ci

= Īiω̇i + ωi × (Īiωi) (7.91)
+kr,i+1q̈i+1Imi+1zmi+1 + kr,i+1q̇i+1Imi+1ωi × zmi+1 .

7 In deriving (7.89), the operator S has been introduced to compute the derivative
of Ri, as in (3.8); also, the property ST (ωi)ωi = 0 has been utilized.
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The generalized force at Joint i can be computed by projecting the force
f i for a prismatic joint, or the moment μi for a revolute joint, along the
joint axis. In addition, there is the contribution of the rotor inertia torque
kriImi

ω̇T
mi

zmi
. Hence, the generalized force at Joint i is expressed by

τi =

{
fT

i zi−1 + kriImi
ω̇T

mi
zmi

for a prismatic joint

μT
i zi−1 + kriImi

ω̇T
mi

zmi
for a revolute joint.

(7.92)

7.5.1 Link Accelerations

The Newton–Euler equations in (7.87), (7.91) and the equation in (7.92) re-
quire the computation of linear and angular acceleration of Link i and Rotor
i. This computation can be carried out on the basis of the relations expressing
the linear and angular velocities previously derived. The equations in (3.21),
(3.22), (3.25), (3.26) can be briefly rewritten as

ωi =
{

ωi−1 for a prismatic joint
ωi−1 + ϑ̇izi−1 for a revolute joint

(7.93)

and

ṗi =

{
ṗi−1 + ḋizi−1 + ωi × ri−1,i for a prismatic joint
ṗi−1 + ωi × ri−1,i for a revolute joint.

(7.94)

As for the angular acceleration of the link, it can be seen that, for a
prismatic joint, differentiating (3.21) with respect to time gives

ω̇i = ω̇i−1, (7.95)

whereas, for a revolute joint, differentiating (3.25) with respect to time gives

ω̇i = ω̇i−1 + ϑ̈izi−1 + ϑ̇iωi−1 × zi−1. (7.96)

As for the linear acceleration of the link, for a prismatic joint, differenti-
ating (3.22) with respect to time gives

p̈i = p̈i−1 + d̈izi−1 + ḋiωi−1 × zi−1 + ω̇i × ri−1,i (7.97)

+ωi × ḋizi−1 + ωi × (ωi−1 × ri−1,i)

where the relation ṙi−1,i = ḋizi−1 + ωi−1 × ri−1,i has been used. Hence, in
view of (3.21), the equation in (7.97) can be rewritten as

p̈i = p̈i−1 + d̈izi−1 + 2ḋiωi × zi−1 + ω̇i × ri−1,i + ωi × (ωi × ri−1,i). (7.98)

Also, for a revolute joint, differentiating (3.26) with respect to time gives

p̈i = p̈i−1 + ω̇i × ri−1,i + ωi × (ωi × ri−1,i). (7.99)
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In summary, the equations in (7.95), (7.96), (7.98), (7.99) can be compactly
rewritten as

ω̇i =
{

ω̇i−1 for a prismatic joint
ω̇i−1 + ϑ̈izi−1 + ϑ̇iωi−1 × zi−1 for a revolute joint

(7.100)

and

p̈i=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p̈i−1 + d̈izi−1 + 2ḋiωi × zi−1 for a prismatic joint
+ω̇i × ri−1,i + ωi × (ωi × ri−1,i)

p̈i−1 + ω̇i × ri−1,i for a revolute joint.
+ωi × (ωi × ri−1,i)

(7.101)

The acceleration of the centre of mass of Link i required by the Newton
equation in (7.87) can be derived from (3.15), since ṙi

i,Ci
= 0; by differenti-

ating (3.15) with respect to time, the acceleration of the centre of mass Ci

can be expressed as a function of the velocity and acceleration of the origin
of Frame i, i.e.,

p̈Ci
= p̈i + ω̇i × ri,Ci

+ ωi × (ωi × ri,Ci
). (7.102)

Finally, the angular acceleration of the rotor can be obtained by time
differentiation of (7.23), i.e.,

ω̇mi
= ω̇i−1 + kriq̈izmi

+ kriq̇iωi−1 × zmi
. (7.103)

7.5.2 Recursive Algorithm

It is worth remarking that the resulting Newton–Euler equations of motion
are not in closed form, since the motion of a single link is coupled to the
motion of the other links through the kinematic relationship for velocities
and accelerations.

Once the joint positions, velocities and accelerations are known, one can
compute the link velocities and accelerations, and the Newton–Euler equations
can be utilized to find the forces and moments acting on each link in a recur-
sive fashion, starting from the force and moment applied to the end-effector.
On the other hand, also link and rotor velocities and accelerations can be
computed recursively starting from the velocity and acceleration of the base
link. In summary, a computationally recursive algorithm can be constructed
that features a forward recursion relative to the propagation of velocities and
accelerations and a backward recursion for the propagation of forces and mo-
ments along the structure.

For the forward recursion, once q, q̇, q̈, and the velocity and acceleration
of the base link ω0, p̈0 − g0, ω̇0 are specified, ωi, ω̇i, p̈i, p̈Ci

, ω̇mi
can be

computed using (7.93), (7.100), (7.101), (7.102), (7.103), respectively. Notice
that the linear acceleration has been taken as p̈0 −g0 so as to incorporate the
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term −g0 in the computation of the acceleration of the centre of mass p̈Ci

via (7.101), (7.102).
Having computed the velocities and accelerations with the forward recur-

sion from the base link to the end-effector, a backward recursion can be carried
out for the forces. In detail, once he = [fT

n+1 μT
n+1 ]T is given (eventually

he = 0), the Newton equation in (7.87) to be used for the recursion can be
rewritten as

f i = f i+1 + mip̈Ci
(7.104)

since the contribution of gravity acceleration has already been included in
p̈Ci

. Further, the Euler equation gives

μi = −f i × (ri−1,i + ri,Ci
) + μi+1 + f i+1 × ri,Ci

+ Īiω̇i + ωi × (Īiωi)
+kr,i+1q̈i+1Imi+1zmi+1 + kr,i+1q̇i+1Imi+1ωi × zmi+1 (7.105)

which derives from (7.91), where ri−1,Ci
has been expressed as the sum of the

two vectors appearing already in the forward recursion. Finally, the general-
ized forces resulting at the joints can be computed from (7.92) as

τi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fT

i zi−1 + kriImi
ω̇T

mi
zmi

+Fviḋi+ Fsi sgn (ḋi) for a prismatic joint
μT

i zi−1 + kriImi
ω̇T

mi
zmi

+Fviϑ̇i+ Fsi sgn (ϑ̇i) for a revolute joint,

(7.106)

where joint viscous and Coulomb friction torques have been included.
In the above derivation, it has been assumed that all vectors were referred

to the base frame. To simplify greatly computation, however, the recursion is
computationally more efficient if all vectors are referred to the current frame
on Link i. This implies that all vectors that need to be transformed from
Frame i + 1 into Frame i have to be multiplied by the rotation matrix Ri

i+1,
whereas all vectors that need to be transformed from Frame i−1 into Frame i
have to be multiplied by the rotation matrix Ri−1

i
T . Therefore, the equations

in (7.93), (7.100), (7.101), (7.102), (7.103), (7.104), (7.105), (7.106) can be
rewritten as:

ωi
i =

{
Ri−1

i
T ωi−1

i−1 for a prismatic joint

Ri−1
i

T (ωi−1
i−1 + ϑ̇iz0) for a revolute joint

(7.107)

ω̇i
i =

{
Ri−1

i
T ω̇i−1

i−1 for a prismatic joint

Ri−1
i

T (ω̇i−1
i−1 + ϑ̈iz0 + ϑ̇iω

i−1
i−1 × z0) for a revolute joint

(7.108)

p̈i
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ri−1
i

T (p̈i−1
i−1 + d̈iz0) + 2ḋiω

i
i × Ri−1

i
T z0

+ω̇i
i × ri

i−1,i + ωi
i × (ωi

i × ri
i−1,i) for a prismatic joint

Ri−1
i

T p̈i−1
i−1 + ω̇i

i × ri
i−1,i

+ωi
i × (ωi

i × ri
i−1,i) for a revolute joint

(7.109)
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Fig. 7.14. Computational structure of the Newton–Euler recursive algorithm

p̈i
Ci

= p̈i
i + ω̇i

i × ri
i,Ci

+ ωi
i × (ωi

i × ri
i,Ci

) (7.110)

ω̇i−1
mi

= ω̇i−1
i−1 + kriq̈iz

i−1
mi

+ kriq̇iω
i−1
i−1 × zi−1

mi
(7.111)

f i
i = Ri

i+1f
i+1
i+1 + mip̈

i
Ci

(7.112)

μi
i = −f i

i × (ri
i−1,i+ri

i,Ci
) + Ri

i+1μ
i+1
i+1 + Ri

i+1f
i+1
i+1 × ri

i,Ci
(7.113)

+Ī
i
iω̇

i
i + ωi

i × (Īi
iω

i
i)

+ωi
i × (Īi

iω
i
i) + kr,i+1q̈i+1Imi+1z

i
mi+1

+ kr,i+1q̇i+1Imi+1ω
i
i × zi

mi+1

τi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f i

i
T Ri−1

i
T z0 + kriImi

ω̇i−1
mi

T zi−1
mi

+Fviḋi + Fsi sgn (ḋi) for a prismatic joint

μi
i
T Ri−1

i
T z0 + kriImi

ω̇i−1
mi

T zi−1
mi

+Fviϑ̇i + Fsi sgn (ϑ̇i) for a revolute joint.

(7.114)

The above equations have the advantage that the quantities Ī
i
i, ri

i,Ci
, zi−1

mi

are constant ; further, it is z0 = [ 0 0 1 ]T .
To summarize, for given joint positions, velocities and accelerations, the

recursive algorithm is carried out in the following two phases:
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• With known initial conditions ω0
0, p̈0

0 − g0
0, and ω̇0

0, use (7.107), (7.108),
(7.109), (7.110), (7.111), for i = 1, . . . , n, to compute ωi

i, ω̇i
i, p̈i

i, p̈i
Ci

, ω̇i−1
mi

.
• With known terminal conditions fn+1

n+1 and μn+1
n+1, use (7.112), (7.113), for

i = n, . . . , 1, to compute f i
i, μi

i, and then (7.114) to compute τi.

The computational structure of the algorithm is schematically illustrated
in Fig. 7.14.

7.5.3 Example

In the following, an example to illustrate the single steps of the Newton–
Euler algorithm is developed. Consider the two-link planar arm whose dy-
namic model has already been derived in Example 7.2.

Start by imposing the initial conditions for the velocities and accelerations:

p̈0
0 − g0

0 = [ 0 g 0 ]T ω0
0 = ω̇0

0 = 0,

and the terminal conditions for the forces:

f3
3 = 0 μ3

3 = 0.

All quantities are referred to the current link frame. As a consequence, the
following constant vectors are obtained:

r1
1,C1

=

⎡⎣ �C1

0
0

⎤⎦ r1
0,1 =

⎡⎣ a1

0
0

⎤⎦ r2
2,C2

=

⎡⎣ �C2

0
0

⎤⎦ r2
1,2 =

⎡⎣ a2

0
0

⎤⎦
where �C1 and �C2 are both negative quantities. The rotation matrices needed
for vector transformation from one frame to another are

Ri−1
i =

⎡⎣ ci −si 0
si ci 0
0 0 1

⎤⎦ i = 1, 2 R2
3 = I.

Further, it is assumed that the axes of rotation of the two rotors coincide with
the respective joint axes, i.e., zi−1

mi
= z0 = [ 0 0 1 ]T for i = 1, 2.

According to (7.107)–(7.114), the Newton–Euler algorithm requires the
execution of the following steps:

• Forward recursion: Link 1

ω1
1 =

⎡⎢⎣ 0

0

ϑ̇1

⎤⎥⎦
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ω̇1
1 =

⎡⎢⎣ 0

0

ϑ̈1

⎤⎥⎦

p̈1
1 =

⎡⎢⎣−a1ϑ̇
2
1 + gs1

a1ϑ̈1 + gc1

0

⎤⎥⎦

p̈1
C1

=

⎡⎢⎣−(�C1 + a1)ϑ̇2
1 + gs1

(�C1 + a1)ϑ̈1 + gc1

0

⎤⎥⎦

ω̇0
m1

=

⎡⎢⎣ 0

0

kr1ϑ̈1

⎤⎥⎦ .

• Forward recursion: Link 2

ω2
2 =

⎡⎢⎣ 0

0

ϑ̇1 + ϑ̇2

⎤⎥⎦

ω̇2
2 =

⎡⎢⎣ 0

0

ϑ̈1 + ϑ̈2

⎤⎥⎦

p̈2
2 =

⎡⎢⎣ a1s2ϑ̈1 − a1c2ϑ̇
2
1 − a2(ϑ̇1 + ϑ̇2)2 + gs12

a1c2ϑ̈1 + a2(ϑ̈1 + ϑ̈2) + a1s2ϑ̇
2
1 + gc12

0

⎤⎥⎦

p̈2
C2

=

⎡⎢⎣ a1s2ϑ̈1 − a1c2ϑ̇
2
1 − (�C2 + a2)(ϑ̇1 + ϑ̇2)2 + gs12

a1c2ϑ̈1 + (�C2 + a2)(ϑ̈1 + ϑ̈2) + a1s2ϑ̇
2
1 + gc12

0

⎤⎥⎦

ω̇1
m2

=

⎡⎢⎣ 0

0

ϑ̈1 + kr2ϑ̈2

⎤⎥⎦ .
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• Backward recursion: Link 2

f2
2 =

⎡⎢⎣m2

(
a1s2ϑ̈1 − a1c2ϑ̇

2
1 − (�C2 + a2)(ϑ̇1 + ϑ̇2)2 + gs12

)
m2

(
a1c2ϑ̈1 + (�C2 + a2)(ϑ̈1 + ϑ̈2) + a1s2ϑ̇

2
1 + gc12

)
0

⎤⎥⎦

μ2
2 =

⎡⎢⎢⎢⎣
∗
∗

Ī2zz(ϑ̈1 + ϑ̈2) + m2(�C2 + a2)2(ϑ̈1 + ϑ̈2) + m2a1(�C2 + a2)c2ϑ̈1

+m2a1(�C2 + a2)s2ϑ̇
2
1 + m2(�C2 + a2)gc12

⎤⎥⎥⎥⎦
τ2 =

(
Ī2zz + m2

(
(�C2 + a2)2 + a1(�C2 + a2)c2

)
+ kr2Im2

)
ϑ̈1

+
(
Ī2zz + m2(�C2 + a2)2 + k2

r2Im2

)
ϑ̈2

+m2a1(�C2 + a2)s2ϑ̇
2
1 + m2(�C2 + a2)gc12.

• Backward recursion: Link 1

f1
1 =

⎡⎢⎢⎢⎢⎢⎣
−m2(�C2 + a2)s2(ϑ̈1 + ϑ̈2) −m1(�C1 + a1)ϑ̇2

1 −m2a1ϑ̇
2
1

−m2(�C2 + a2)c2(ϑ̇1 + ϑ̇2)2 + (m1 + m2)gs1

m1(�C1 + a1)ϑ̈1 + m2a1ϑ̈1 + m2(�C2 + a2)c2(ϑ̈1 + ϑ̈2)
−m2(�C2 + a2)s2(ϑ̇1 + ϑ̇2)2 + (m1 + m2)gc1

0

⎤⎥⎥⎥⎥⎥⎦

μ1
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
∗

Ī1zzϑ̈1 + m2a
2
1ϑ̈1 + m1(�C1 + a1)2ϑ̈1 + m2a1(�C2 + a2)c2ϑ̈1

+Ī2zz(ϑ̈1 + ϑ̈2) + m2a1(�C2 + a2)c2(ϑ̈1 + ϑ̈2)
+m2(�C2 + a2)2(ϑ̈1 + ϑ̈2) + kr2Im2 ϑ̈2

+m2a1(�C2 + a2)s2ϑ̇
2
1 −m2a1(�C2 + a2)s2(ϑ̇1 + ϑ̇2)2

+m1(�C1 + a1)gc1 + m2a1gc1 + m2(�C2 + a2)gc12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

τ1 =
(
Ī1zz + m1(�C1 + a1)2 + k2

r1Im1 + Ī2zz

+m2

(
a2
1 + (�C2 + a2)2 + 2a1(�C2 + a2)c2

))
ϑ̈1

+
(
Ī2zz + m2

(
(�C2 + a2)2 + a1(�C2 + a2)c2

)
+ kr2Im2

)
ϑ̈2

−2m2a1(�C2 + a2)s2ϑ̇1ϑ̇2 −m2a1(�C2 + a2)s2ϑ̇
2
2

+
(
m1(�C1 + a1) + m2a1

)
gc1 + m2(�C2 + a2)gc12.
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As for the moment components, those marked by the symbol ‘∗’ have not
been computed, since they are not related to the joint torques τ2 and τ1.

Expressing the dynamic parameters in the above torques as a function of
the link and rotor parameters as in (7.83) yields

m1 = m�1 + mm2

m1�C1 = m�1(�1 − a1)

Ī1zz + m1�
2
C1

= Î1 = I�1 + m�1(�1 − a1)2 + Im2

m2 = m�2

m2�C2 = m�2(�2 − a2)

Ī2zz + m2�
2
C2

= Î2 = I�2 + m�2(�2 − a2)2.

On the basis of these relations, it can be verified that the resulting dynamic
model coincides with the model derived in (7.82) with Lagrange formulation.

7.6 Direct Dynamics and Inverse Dynamics

Both Lagrange formulation and Newton–Euler formulation allow the compu-
tation of the relationship between the joint torques — and, if present, the
end-effector forces — and the motion of the structure. A comparison between
the two approaches reveals what follows. The Lagrange formulation has the
following advantages:

• It is systematic and of immediate comprehension.
• It provides the equations of motion in a compact analytical form containing

the inertia matrix, the matrix in the centrifugal and Coriolis forces, and
the vector of gravitational forces. Such a form is advantageous for control
design.

• It is effective if it is wished to include more complex mechanical effects
such as flexible link deformation.

The Newton–Euler formulation has the following fundamental advantage:

• It is an inherently recursive method that is computationally efficient.

In the study of dynamics, it is relevant to find a solution to two kinds of
problems concerning computation of direct dynamics and inverse dynamics.

The direct dynamics problem consists of determining, for t > t0, the joint
accelerations q̈(t) (and thus q̇(t), q(t)) resulting from the given joint torques
τ (t) — and the possible end-effector forces he(t) — once the initial positions
q(t0) and velocities q̇(t0) are known (initial state of the system).

The inverse dynamics problem consists of determining the joint torques
τ (t) which are needed to generate the motion specified by the joint accelera-
tions q̈(t), velocities q̇(t), and positions q(t) — once the possible end-effector
forces he(t) are known.
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Solving the direct dynamics problem is useful for manipulator simulation.
Direct dynamics allows the motion of the real physical system to be described
in terms of the joint accelerations, when a set of assigned joint torques is
applied to the manipulator; joint velocities and positions can be obtained by
integrating the system of nonlinear differential equations.

Since the equations of motion obtained with Lagrange formulation give the
analytical relationship between the joint torques (and the end-effector forces)
and the joint positions, velocities and accelerations, these can be computed
from (7.42) as

q̈ = B−1(q)(τ − τ ′) (7.115)

where

τ ′(q, q̇) = C(q, q̇)q̇ + F vq̇ + F s sgn (q̇) + g(q) + JT (q)he (7.116)

denotes the torque contributions depending on joint positions and velocities.
Therefore, for simulation of manipulator motion, once the state at the time
instant tk is known in terms of the position q(tk) and velocity q̇(tk), the accel-
eration q̈(tk) can be computed by (7.115). Then using a numerical integration
method, e.g., Runge–Kutta, with integration step Δt, the velocity q̇(tk+1) and
position q(tk+1) at the instant tk+1 = tk + Δt can be computed.

If the equations of motion are obtained with Newton–Euler formulation,
it is possible to compute direct dynamics by using a computationally more
efficient method. In fact, for given q and q̇, the torques τ ′(q, q̇) in (7.116) can
be computed as the torques given by the algorithm of Fig. 7.14 with q̈ = 0.
Further, column bi of matrix B(q) can be computed as the torque vector
given by the algorithm of Fig. 7.14 with g0 = 0, q̇ = 0, q̈i = 1 and q̈j = 0
for j �= i; iterating this procedure for i = 1, . . . , n leads to constructing the
matrix B(q). Hence, from the current values of B(q) and τ ′(q, q̇), and the
given τ , the equations in (7.115) can be integrated as illustrated above.

Solving the inverse dynamics problem is useful for manipulator trajectory
planning and control algorithm implementation. Once a joint trajectory is
specified in terms of positions, velocities and accelerations (typically as a re-
sult of an inverse kinematics procedure), and if the end-effector forces are
known, inverse dynamics allows computation of the torques to be applied to
the joints to obtain the desired motion. This computation turns out to be
useful both for verifying feasibility of the imposed trajectory and for com-
pensating nonlinear terms in the dynamic model of a manipulator. To this
end, Newton–Euler formulation provides a computationally efficient recursive
method for on-line computation of inverse dynamics. Nevertheless, it can be
shown that also Lagrange formulation is liable to a computationally efficient
recursive implementation, though with a nonnegligible reformulation effort.

For an n-joint manipulator the number of operations required is:8

8 See Sect. E.1 for the definition of computational complexity of an algorithm.
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• O(n) for computing inverse dynamics.

7.7 Dynamic Scaling of Trajectories

The existence of dynamic constraints to be taken into account for trajectory
generation has been mentioned in Sect. 4.1. In practice, with reference to the
given trajectory time or path shape (segments with high curvature), the tra-
jectories that can be obtained with any of the previously illustrated methods
may impose too severe dynamic performance for the manipulator. A typical
case is that when the required torques to generate the motion are larger than
the maximum torques the actuators can supply. In this case, an infeasible
trajectory has to be suitably time-scaled.

Suppose a trajectory has been generated for all the manipulator joints
as q(t), for t ∈ [0, tf ]. Computing inverse dynamics allows the evaluation of
the time history of the torques τ (t) required for the execution of the given
motion. By comparing the obtained torques with the torque limits available
at the actuators, it is easy to check whether or not the trajectory is actually
executable. The problem is then to seek an automatic trajectory dynamic
scaling technique — avoiding inverse dynamics recomputation — so that the
manipulator can execute the motion on the specified path with a proper timing
law without exceeding the torque limits.

Consider the manipulator dynamic model as given in (7.42) with F v =
O, F s = O and he = 0, for simplicity. The term C(q, q̇) accounting for
centrifugal and Coriolis forces has a quadratic dependence on joint velocities,
and thus it can be formally rewritten as

C(q, q̇)q̇ = Γ (q)[q̇q̇], (7.117)

where [q̇q̇] indicates the symbolic notation of the (n(n + 1)/2 × 1) vector

[q̇q̇] = [ q̇2
1 q̇1q̇2 . . . q̇n−1q̇n q̇2

n ]T ;

Γ (q) is a proper (n×n(n+1)/2) matrix that satisfies (7.117). In view of such
position, the manipulator dynamic model can be expressed as

B(q(t))q̈(t) + Γ (q(t))[q̇(t)q̇(t)] + g(q(t)) = τ (t), (7.118)

where the explicit dependence on time t has been shown.
Consider the new variable q̄(r(t)) satisfying the equation

q(t) = q̄(r(t)), (7.119)

where r(t) is a strictly increasing scalar function of time with r(0) = 0 and
r(tf ) = t̄f .

• O(n2) for computing direct dynamics,
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Differentiating (7.119) twice with respect to time provides the following
relations:

q̇ = ṙq̄′(r) (7.120)
q̈ = ṙ2q̄′′(r) + r̈q̄′(r) (7.121)

where the prime denotes the derivative with respect to r. Substituting (7.120),
(7.121) into (7.118) yields

ṙ2
(
B(q̄(r))q̄′′(r) + Γ (q̄(r))[q̄′(r)q̄′(r)]

)
+ r̈B(q̄(r))q̄′(r) + g(q̄(r)) = τ .

(7.122)
In (7.118) it is possible to identify the term

τ s(t) = B(q(t))q̈(t) + Γ (q(t))[q̇(t)q̇(t)], (7.123)

representing the torque contribution that depends on velocities and accelera-
tions. Correspondingly, in (7.122) one can set

τ s(t) = ṙ2
(
B(q̄(r))q̄′′(r) + Γ (q̄(r))[q̄′(r)q̄′(r)]

)
+ r̈B(q̄(r))q̄′(r). (7.124)

By analogy with (7.123), it can be written

τ̄ s(r) = B(q̄(r))q̄′′(r) + Γ (q̄(r))[q̄′(r)q̄′(r)] (7.125)

and then (7.124) becomes

τ s(t) = ṙ2τ̄ s(r) + r̈B(q̄(r))q̄′(r). (7.126)

The expression in (7.126) gives the relationship between the torque contribu-
tions depending on velocities and accelerations required by the manipulator
when this is subject to motions having the same path but different timing
laws, obtained through a time scaling of joint variables as in (7.119).

Gravitational torques have not been considered, since they are a function
of the joint positions only, and thus their contribution is not influenced by
time scaling.

The simplest choice for the scaling function r(t) is certainly the linear
function

r(t) = ct

with c a positive constant. In this case, (7.126) becomes

τ s(t) = c2τ̄ s(ct),

which reveals that a linear time scaling by c causes a scaling of the magnitude
of the torques by the coefficient c2. Let c > 1: (7.119) shows that the trajectory
described by q̄(r(t)), assuming r = ct as the independent variable, has a
duration t̄f > tf to cover the entire path specified by q. Correspondingly, the
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torque contributions τ̄ s(ct) computed as in (7.125) are scaled by the factor c2

with respect to the torque contributions τ s(t) required to execute the original
trajectory q(t).

With the use of a recursive algorithm for inverse dynamics computation,
it is possible to check whether the torques exceed the allowed limits during
trajectory execution; obviously, limit violation should not be caused by the
sole gravity torques. It is necessary to find the joint for which the torque
has exceeded the limit more than the others, and to compute the torque
contribution subject to scaling, which in turn determines the factor c2. It
is then possible to compute the time-scaled trajectory as a function of the
new time variable r = ct which no longer exceeds torque limits. It should be
pointed out, however, that with this kind of linear scaling the entire trajectory
may be penalized, even when a torque limit on a single joint is exceeded only
for a short interval of time.

7.8 Operational Space Dynamic Model

As an alternative to the joint space dynamic model, the equations of motion
of the system can be expressed directly in the operational space; to this end it
is necessary to find a dynamic model which describes the relationship between
the generalized forces acting on the manipulator and the number of minimal
variables chosen to describe the end-effector position and orientation in the
operational space.

Similar to kinematic description of a manipulator in the operational space,
the presence of redundant DOFs and/or kinematic and representation singu-
larities deserves careful attention in the derivation of an operational space
dynamic model.

The determination of the dynamic model with Lagrange formulation using
operational space variables allows a complete description of the system motion
only in the case of a nonredundant manipulator, when the above variables
constitute a set of generalized coordinates in terms of which the kinetic energy,
the potential energy, and the nonconservative forces doing work on them can
be expressed.

This way of proceeding does not provide a complete description of dy-
namics for a redundant manipulator; in this case, in fact, it is reasonable to
expect the occurrence of internal motions of the structure caused by those
joint generalized forces which do not affect the end-effector motion.

To develop an operational space model which can be adopted for both
redundant and nonredundant manipulators, it is then convenient to start from
the joint space model which is in all general. In fact, solving (7.42) for the joint
accelerations, and neglecting the joint friction torques for simplicity, yields

q̈ = −B−1(q)C(q, q̇)q̇ − B−1(q)g(q) + B−1(q)JT (q)(γe − he), (7.127)
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where the joint torques τ have been expressed in terms of the equivalent end-
effector forces γ according to (3.111). It is worth noting that h represents the
contribution of the end-effector forces due to contact with the environment,
whereas γ expresses the contribution of the end-effector forces due to joint
actuation.

On the other hand, the second-order differential kinematics equation
in (3.98) describes the relationship between joint space and operational space
accelerations, i.e.,

ẍe = JA(q)q̈ + J̇A(q, q̇)q̇.

The solution in (7.127) features the geometric Jacobian J , whereas the analyt-
ical Jacobian JA appears in (3.98). For notation uniformity, in view of (3.66),
one can set

T T
A(xe)γe = γA T T

A(xe)he = hA (7.128)

where T A is the transformation matrix between the two Jacobians. Substi-
tuting (7.127) into (3.98) and accounting for (7.128) gives

ẍe = −JAB−1Cq̇ − JAB−1g + J̇Aq̇ + JAB−1JT
A(γA − hA). (7.129)

where the dependence on q and q̇ has been omitted. With the positions

BA = (JAB−1JT
A)−1 (7.130)

CAẋe = BAJAB−1Cq̇ − BAJ̇Aq̇ (7.131)
gA = BAJAB−1g, (7.132)

the expression in (7.129) can be rewritten as

BA(xe)ẍe + CA(xe, ẋe)ẋe + gA(xe) = γA − hA, (7.133)

which is formally analogous to the joint space dynamic model (7.42). Notice
that the matrix JAB−1JT

A is invertible if and only if JA is full-rank, that is,
in the absence of both kinematic and representation singularities.

For a nonredundant manipulator in a nonsingular configuration, the ex-
pressions in (7.130)–(7.132) become:

BA = J−T
A BJ−1

A (7.134)

CAẋe = J−T
A Cq̇ − BAJ̇Aq̇ (7.135)

gA = J−T
A g. (7.136)

As anticipated above, the main feature of the obtained model is its formal
validity also for a redundant manipulator, even though the variables xe do
not constitute a set of generalized coordinates for the system; in this case, the
matrix BA is representative of a kinetic pseudo-energy .

In the following, the utility of the operational space dynamic model
in (7.133) for solving direct and inverse dynamics problems is investigated. The
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following derivation is meaningful for redundant manipulators; for a nonre-
dundant manipulator, in fact, using (7.133) does not pose specific problems
as long as JA is nonsingular ((7.134)–(7.136)).

With reference to operational space, the direct dynamics problem consists
of determining the resulting end-effector accelerations ẍe(t) (and thus ẋe(t),
xe(t)) from the given joint torques τ (t) and end-effector forces he(t). For a
redundant manipulator, (7.133) cannot be directly used, since (3.111) has a
solution in γe only if τ ∈ R(JT ). It follows that for simulation purposes,
the solution to the problem is naturally obtained in the joint space; in fact,
the expression in (7.42) allows the computation of q, q̇, q̈ which, substituted
into the direct kinematics equations in ((2.82), (3.62), (3.98), give xe, ẋe, ẍe,
respectively.

Formulation of an inverse dynamics problem in the operational space re-
quires the determination of the joint torques τ (t) that are needed to generate
a specific motion assigned in terms of ẍe(t), ẋe(t), xe(t), for given end-effector
forces he(t). A possible way of solution is to solve a complete inverse kinemat-
ics problem for (2.82), (3.62), (3.98), and then compute the required torques
with the joint space inverse dynamics as in (7.42). Hence, for redundant ma-
nipulators, redundancy resolution is performed at kinematic level.

An alternative solution to the inverse dynamics problem consists of com-
puting γA as in (7.133) and the joint torques τ as in (3.111). In this way,
however, the presence of redundant DOFs is not exploited at all, since the
computed torques do not generate internal motions of the structure.

If it is desired to find a formal solution that allows redundancy resolution
at dynamic level, it is necessary to determine those torques corresponding to
the equivalent end-effector forces computed as in (7.133). By analogy with
the differential kinematics solution (3.54), the expression of the torques to be
determined will feature the presence of a minimum-norm term and a homoge-
neous term. Since the joint torques have to be computed, it is convenient to
express the model (7.133) in terms of q, q̇, q̈. By recalling the positions (7.131),
(7.132), the expression in (7.133) becomes

BA(ẍe − J̇Aq̇) + BAJAB−1Cq̇ + BAJAB−1g = γA − hA

and, in view of (3.98),

BAJAq̈ + BAJAB−1Cq̇ + BAJAB−1g = γA − hA. (7.137)

By setting
J̄A(q) = B−1(q)JT

A(q)BA(q), (7.138)

the expression in (7.137) becomes

J̄
T
A(Bq̈ + Cq̇ + g) = γA − hA. (7.139)

At this point, from the joint space dynamic model in (7.42), it is easy to
recognize that (7.139) can be written as

J̄
T
A(τ − JT

AhA) = γA − hA
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from which
J̄

T
Aτ = γA. (7.140)

The general solution to (7.140) is of the form (see Problem 7.10)

τ = JT
A(q)γA +

(
In − JT

A(q)J̄T
A(q)

)
τ 0, (7.141)

that can be derived by observing that JT
A in (7.138) is a right pseudo-inverse

of J̄
T
A weighted by the inverse of the inertia matrix B−1. The (n×1) vector of

arbitrary torques τ 0 in (7.141) does not contribute to the end-effector forces,
since it is projected in the null space of J̄

T
A.

To summarize, for given xe, ẋe, ẍe and hA, the expression in (7.133)
allows the computation of γA. Then, (7.141) gives the torques τ which, besides
executing the assigned end-effector motion, generate internal motions of the
structure to be employed for handling redundancy at dynamic level through
a suitable choice of τ 0.

7.9 Dynamic Manipulability Ellipsoid

The availability of the dynamic model allows formulation of the dynamic ma-
nipulability ellipsoid which provides a useful tool for manipulator dynamic
performance analysis. This can be used for mechanical structure design as
well as for seeking optimal manipulator configurations.

Consider the set of joint torques of constant (unit) norm

τT τ = 1 (7.142)

describing the points on the surface of a sphere. It is desired to describe the
operational space accelerations that can be generated by the given set of joint
torques.

For studying dynamic manipulability, suppose to consider the case of a
manipulator standing still (q̇ = 0), not in contact with the environment (he =
0). The simplified model is

B(q)q̈ + g(q) = τ . (7.143)

The joint accelerations q̈ can be computed from the second-order differen-
tial kinematics that can be obtained by differentiating (3.39), and imposing
successively q̇ = 0, leading to

v̇e = J(q)q̈. (7.144)

Solving for minimum-norm accelerations only, for a nonsingular Jacobian, and
substituting in (7.143) yields the expression of the torques

τ = B(q)J†(q)v̇e + g(q) (7.145)
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Fig. 7.15. Effect of gravity on the dynamic manipulability ellipsoid for a three-link
planar arm

needed to derive the ellipsoid. In fact, substituting (7.145) into (7.142) gives(
B(q)J†(q)v̇e + g(q)

)T (
B(q)J†(q)v̇e + g(q)

)
= 1.

The vector on the right-hand side of (7.145) can be rewritten as

BJ†v̇e + g = B(J†v̇e + B−1g) (7.146)
= B(J†v̇e + B−1g + J†JB−1g − J†JB−1g)
= B

(
J†v̇e + J†JB−1g + (In − J†J)B−1g

)
,

where the dependence on q has been omitted. According to what was done
for solving (7.144), one can neglect the contribution of the accelerations given
by B−1g which are in the null space of J and then produce no end-effector
acceleration. Hence, (7.146) becomes

BJ†v̇e + g = BJ†(v̇e + JB−1g) (7.147)

and the dynamic manipulability ellipsoid can be expressed in the form

(v̇e + JB−1g)T J†T BT BJ†(v̇e + JB−1g) = 1. (7.148)

The core of the quadratic form J†T BT BJ† depends on the geometrical and
inertial characteristics of the manipulator and determines the volume and
principal axes of the ellipsoid. The vector −JB−1g, describing the contribu-
tion of gravity, produces a constant translation of the centre of the ellipsoid
(for each manipulator configuration) with respect to the origin of the reference
frame; see the example in Fig. 7.15 for a three-link planar arm.

The meaning of the dynamic manipulability ellipsoid is conceptually simi-
lar to that of the ellipsoids considered with reference to kineto-statics duality.
In fact, the distance of a point on the surface of the ellipsoid from the end-
effector gives a measure of the accelerations which can be imposed to the
end-effector along the given direction, with respect to the constraint (7.142).
With reference to Fig. 7.15, it is worth noticing how the presence of gravity
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acceleration allows the execution of larger accelerations downward, as natural
to predict.

In the case of a nonredundant manipulator, the ellipsoid reduces to

(v̇e + JB−1g)T J−T BT BJ−1(v̇e + JB−1g) = 1. (7.149)
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Problems

7.1. Find the dynamic model of a two-link Cartesian arm in the case when
the second joint axis forms an angle of π/4 with the first joint axis; compare
the result with the model of the manipulator in Fig. 7.3.

7.2. For the two-link planar arm of Sect. 7.3.2, prove that with a different
choice of the matrix C, (7.49) holds true while (7.48) does not.
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Fig. 7.16. Two-link planar arm with a prismatic joint and a revolute joint

7.3. Find the dynamic model of the SCARA manipulator in Fig. 2.36.

7.4. For the planar arm of Sect. 7.3.2, find a minimal parameterization of the
dynamic model in (7.82).

7.5. Find the dynamic model of the two-link planar arm with a prismatic
joint and a revolute joint in Fig. 7.16 with the Lagrange formulation. Then,
consider the addition of a concentrated tip payload of mass mL, and express
the resulting model in a linear form with respect to a suitable set of dynamic
parameters as in (7.81).

7.6. For the two-link planar arm of Fig. 7.4, find the dynamic model with
the Lagrange formulation when the absolute angles with respect to the base
frame are chosen as generalized coordinates. Discuss the result in view of a
comparison with the model derived in (7.82).

7.7. Compute the joint torques for the two-link planar arm of Fig. 7.4 with
the data and along the trajectories of Example 7.2, in the case of tip forces
f = [ 500 500 ]T N.

7.8. Find the dynamic model of the two-link planar arm with a prismatic
joint and a revolute joint in Fig. 7.16 by using the recursive Newton–Euler
algorithm.

7.9. Show that for the operational space dynamic model (7.133) a skew-
symmetry property holds which is analogous to (7.48).

7.10. Show how to obtain the general solution to (7.140) in the form (7.141).

7.11. For a nonredundant manipulator, compute the relationship between the
dynamic manipulability measure that can be defined for the dynamic manip-
ulability ellipsoid and the manipulability measure defined in (3.56).
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Motion Control

In Chap. 4, trajectory planning techniques have been presented which al-
low the generation of the reference inputs to the motion control system. The
problem of controlling a manipulator can be formulated as that to determine
the time history of the generalized forces (forces or torques) to be developed
by the joint actuators, so as to guarantee execution of the commanded task
while satisfying given transient and steady-state requirements. The task may
regard either the execution of specified motions for a manipulator operating
in free space, or the execution of specified motions and contact forces for a
manipulator whose end-effector is constrained by the environment. In view of
problem complexity, the two aspects will be treated separately; first, motion
control in free space, and then control of the interaction with the environ-
ment. The problem of motion control of a manipulator is the topic of this
chapter. A number of joint space control techniques are presented. These can
be distinguished between decentralized control schemes, i.e., when the single
manipulator joint is controlled independently of the others, and centralized
control schemes, i.e., when the dynamic interaction effects between the joints
are taken into account. Finally, as a premise to the interaction control prob-
lem, the basic features of operational space control schemes are illustrated.

8.1 The Control Problem

Several techniques can be employed for controlling a manipulator. The tech-
nique followed, as well as the way it is implemented, may have a significant
influence on the manipulator performance and then on the possible range of
applications. For instance, the need for trajectory tracking control in the op-
erational space may lead to hardware/software implementations, which differ
from those allowing point-to-point control, where only reaching of the final
position is of concern.

On the other hand, the manipulator mechanical design has an influence
on the kind of control scheme utilized. For instance, the control problem of
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Fig. 8.1. General scheme of joint space control

a Cartesian manipulator is substantially different from that of an anthropo-
morphic manipulator.

The driving system of the joints also has an effect on the type of control
strategy used. If a manipulator is actuated by electric motors with reduction
gears of high ratios, the presence of gears tends to linearize system dynam-
ics, and thus to decouple the joints in view of the reduction of nonlinearity
effects. The price to pay, however, is the occurrence of joint friction, elastic-
ity and backlash that may limit system performance more than it is due to
configuration-dependent inertia, Coriolis and centrifugal forces, and so forth.
On the other hand, a robot actuated with direct drives eliminates the draw-
backs due to friction, elasticity and backlash, but the weight of nonlinearities
and couplings between the joints becomes relevant. As a consequence, different
control strategies have to be thought of to obtain high performance.

Without any concern to the specific type of mechanical manipulator, it
is worth remarking that task specification (end-effector motion and forces) is
usually carried out in the operational space, whereas control actions (joint
actuator generalized forces) are performed in the joint space. This fact nat-
urally leads to considering two kinds of general control schemes, namely, a
joint space control scheme (Fig. 8.1) and an operational space control scheme
(Fig. 8.2). In both schemes, the control structure has closed loops to exploit
the good features provided by feedback, i.e., robustness to modelling uncer-
tainties and reduction of disturbance effects. In general terms, the following
considerations should be made.

The joint space control problem is actually articulated in two subprob-
lems. First, manipulator inverse kinematics is solved to transform the motion
requirements xd from the operational space into the corresponding motion qd

in the joint space. Then, a joint space control scheme is designed that allows
the actual motion q to track the reference inputs. However, this solution has
the drawback that a joint space control scheme does not influence the opera-
tional space variables xe which are controlled in an open-loop fashion through
the manipulator mechanical structure. It is then clear that any uncertainty of
the structure (construction tolerance, lack of calibration, gear backlash, elas-
ticity) or any imprecision in the knowledge of the end-effector pose relative
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Fig. 8.2. General scheme of operational space control

to an object to manipulate causes a loss of accuracy on the operational space
variables.

The operational space control problem follows a global approach that re-
quires a greater algorithmic complexity; notice that inverse kinematics is now
embedded into the feedback control loop. Its conceptual advantage regards the
possibility of acting directly on operational space variables; this is somewhat
only a potential advantage, since measurement of operational space variables
is often performed not directly, but through the evaluation of direct kinematics
functions starting from measured joint space variables.

On the above premises, in the following, joint space control schemes for
manipulator motion in the free space are presented first. In the sequel, op-
erational space control schemes will be illustrated which are logically at the
basis of control of the interaction with the environment.

8.2 Joint Space Control

In Chap. 7, it was shown that the equations of motion of a manipulator in
the absence of external end-effector forces and, for simplicity, of static friction
(difficult to model accurately) are described by

B(q)q̈ + C(q, q̇)q̇ + F vq̇ + g(q) = τ (8.1)

with obvious meaning of the symbols. To control the motion of the manipula-
tor in free space means to determine the n components of generalized forces —
torques for revolute joints, forces for prismatic joints — that allow execution
of a motion q(t) so that

q(t) = qd(t),

as closely as possible, where qd(t) denotes the vector of desired joint trajectory
variables.

The generalized forces are supplied by the actuators through proper trans-
missions to transform the motion characteristics. Let qm denote the vector
of joint actuator displacements; the transmissions — assumed to be rigid and
with no backlash — establish the following relationship:

Krq = qm, (8.2)
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Fig. 8.3. Block scheme of the manipulator and drives system as a voltage-controlled
system

where Kr is an (n×n) diagonal matrix, whose elements are defined in (7.22)
and are much greater than unity.1

In view of (8.2), if τm denotes the vector of actuator driving torques, one
can write

τm = K−1
r τ . (8.3)

With reference to (5.1)–(5.4), the n driving systems can be described in
compact matrix form by the equations:

K−1
r τ = Ktia (8.4)
va = Raia + Kvq̇m (8.5)
va = Gvvc. (8.6)

In (8.4), Kt is the diagonal matrix of torque constants and ia is the vector
of armature currents of the n motors; in (8.5), va is the vector of armature
voltages, Ra is the diagonal matrix of armature resistances,2 and Kv is the
diagonal matrix of voltage constants of the n motors; in (8.6), Gv is the
diagonal matrix of gains of the n amplifiers and vc is the vector of control
voltages of the n servomotors.

On reduction of (8.1), (8.2), (8.4), (8.5), (8.6), the dynamic model of the
system given by the manipulator and drives is described by

B(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = u (8.7)

where the following positions have been made:

F = F v + KrKtR
−1
a KvKr (8.8)

u = KrKtR
−1
a Gvvc. (8.9)

From (8.1), (8.7), (8.8), (8.9) it is

KrKtR
−1
a Gvvc = τ + KrKtR

−1
a KvKrq̇ (8.10)

1 Assuming a diagonal Kr leads to excluding the presence of kinematic couplings
in the transmission, that is the motion of each actuator does not induce motion
on a joint other than that actuated.

2 The contribution of the inductance has been neglected.
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Fig. 8.4. Block scheme of the manipulator and drives system as a torque-controlled
system

and thus
τ = KrKtR

−1
a (Gvvc − KvKrq̇). (8.11)

The overall system is then voltage-controlled and the corresponding block
scheme is illustrated in Fig. 8.3. If the following assumptions hold:

• the elements of matrix Kr, characterizing the transmissions, are much
greater than unity;

• the elements of matrix Ra are very small, which is typical in the case of
high-efficiency servomotors;

• the values of the torques τ required for the execution of the desired motions
are not too large;

then it can be assumed that

Gvvc ≈ KvKrq̇. (8.12)

The proportionality relationship obtained between q̇ and vc is independent
of the values attained by the manipulator parameters; the smaller the joint
velocities and accelerations, the more valid this assumption. Hence, velocity
(or voltage) control shows an inherent robustness with respect to parameter
variations of the manipulator model, which is enhanced by the values of the
gear reduction ratios.

In this case, the scheme illustrated in Fig. 8.3 can be taken as the reference
structure for the design of the control system. Having assumed that

vc ≈ G−1
v KvKrq̇ (8.13)

implies that the velocity of the i-th joint depends only on the i-th control volt-
age, since the matrix G−1

v KvKr is diagonal. Therefore, the joint position
control system can be designed according to a decentralized control structure,
since each joint can be controlled independently of the others. The results,
evaluated in the terms of the tracking accuracy of the joint variables with
respect to the desired trajectories, are improved in the case of higher gear re-
duction ratios and less demanding values of required speeds and accelerations.

On the other hand, if the desired manipulator motion requires large joint
speeds and/or accelerations, the approximation (8.12) no longer holds, in view
of the magnitude of the required driving torques; this occurrence is even more
evident for direct-drive actuation (Kr = I).
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In this case, by resorting to an inverse dynamics technique, it is possible
to find the joint torques τ (t) needed to track any specified motion in terms of
the joint accelerations q̈(t), velocities q̇(t) and positions q(t). Obviously, this
solution requires the accurate knowledge of the manipulator dynamic model.
The determination of the torques to be generated by the drive system can thus
refer to a centralized control structure, since to compute the torque history at
the i-th joint it is necessary to know the time evolution of the motion of all
the joints. By recalling that

τ = KrKtia, (8.14)

to find a relationship between the torques τ and the control voltages vc,
using (8.5), (8.6) leads to

τ = KrKtR
−1
a Gvvc − KrKtR

−1
a KvKrq̇. (8.15)

If the actuators have to provide torque contributions computed on the basis
of the manipulator dynamic model, the control voltages — to be determined
according to (8.15) — depend on the torque values and also on the joint
velocities; this relationship depends on the matrices Kt, Kv and R−1

a , whose
elements are influenced by the operating conditions of the motors. To reduce
sensitivity to parameter variations, it is worth considering driving systems
characterized by a current control rather than by a voltage control. In this case
the actuators behave as torque-controlled generators; the equation in (8.5)
becomes meaningless and is replaced by

ia = Givc, (8.16)

which gives a proportional relation between the armature currents ia (and
thus the torques τ ) and the control voltages vc established by the constant
matrix Gi. As a consequence, (8.9) becomes

τ = u = KrKtGivc (8.17)

which shows a reduced dependence of u on the motor parameters. The overall
system is now torque-controlled and the resulting block scheme is illustrated
in Fig. 8.4.

The above presentation suggests resorting for the decentralized structure
— where the need for robustness prevails — to feedback control systems, while
for the centralized structure — where the computation of inverse dynamics is
needed — it is necessary to refer to control systems with feedforward actions.
Nevertheless, it should be pointed out that centralized control still requires
the use of error contributions between the desired and the actual trajectory,
no matter whether they are implemented in a feedback or in a feedforward
fashion. This is a consequence of the fact that the considered dynamic model,
even though a quite complex one, is anyhow an idealization of reality which
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does not include effects, such as joint Coulomb friction, gear backlash, di-
mension tolerance, and the simplifying assumptions in the model, e.g., link
rigidity, and so on.

As already pointed out, the drive systems is anyhow inserted into a feed-
back control system. In the case of decentralized control, the drive will be
characterized by the model describing its behaviour as a velocity-controlled
generator. Instead, in the case of centralized control, since the driving torque
is to be computed on a complete or reduced manipulator dynamic model, the
drive will be characterized as a torque-controlled generator.

8.3 Decentralized Control

The simplest control strategy that can be thought of is one that regards the
manipulator as formed by n independent systems (the n joints) and con-
trols each joint axis as a single-input/single-output system. Coupling effects
between joints due to varying configurations during motion are treated as
disturbance inputs.

In order to analyze various control schemes and their performance, it is
worth considering the model of the system manipulator with drives in terms
of mechanical quantities at the motor side; in view of (8.2), (8.3), it is

K−1
r B(q)K−1

r q̈m + K−1
r C(q, q̇)K−1

r q̇m + K−1
r F vK−1

r + K−1
r g(q) = τm.

(8.18)
By observing that the diagonal elements of B(q) are formed by constant terms
and configuration-dependent terms (functions of sine and cosine for revolute
joints), one can set

B(q) = B̄ + ΔB(q) (8.19)

where B̄ is the diagonal matrix whose constant elements represent the result-
ing average inertia at each joint. Substituting (8.19) into (8.1) yields

K−1
r B̄K−1

r q̈m + F mq̇m + d = τm (8.20)

where
F m = K−1

r F vK−1
r (8.21)

represents the matrix of viscous friction coefficients about the motor axes, and

d = K−1
r ΔB(q)K−1

r q̈m + K−1
r C(q, q̇)K−1

r q̇m + K−1
r g(q) (8.22)

represents the contribution depending on the configuration.
As illustrated by the block scheme of Fig. 8.5, the system of manipulator

with drives is actually constituted by two subsystems; one has τm as input
and qm as output, the other has qm, q̇m, q̈m as inputs, and d as output. The
former is linear and decoupled , since each component of τm influences only the
corresponding component of qm. The latter is nonlinear and coupled , since

310 8 Motion Control

Fig. 8.5. Block scheme of the system of manipulator with drives

it accounts for all those nonlinear and coupling terms of manipulator joint
dynamics.

On the basis of the above scheme, several control algorithms can be derived
with reference to the detail of knowledge of the dynamic model. The simplest
approach that can be followed, in case of high-gear reduction ratios and/or
limited performance in terms of required velocities and accelerations, is to
consider the component of the nonlinear interacting term d as a disturbance
for the single joint servo.

The design of the control algorithm leads to a decentralized control struc-
ture, since each joint is considered independently of the others. The joint
controller must guarantee good performance in terms of high disturbance re-
jection and enhanced trajectory tracking capabilities. The resulting control
structure is substantially based on the error between the desired and actual
output, while the input control torque at actuator i depends only on the error
of output i.

Therefore, the system to control is Joint i drive corresponding to the single-
input/single-output system of the decoupled and linear part of the scheme in
Fig. 8.5. The interaction with the other joints is described by component i of
the vector d in (8.22).
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Fig. 8.6. Block scheme of general independent joint control

Assumed that the actuator is a rotary electric DC motor, the general
scheme of drive control is that in Fig. 5.9 where Im is the average inertia
reported to the motor axis (Imi = b̄ii/k

2
ri).

3

8.3.1 Independent Joint Control

To guide selection of the controller structure, start noticing that an effective
rejection of the disturbance d on the output ϑm is ensured by:

• a large value of the amplifier gain before the point of intervention of the
disturbance,

• the presence of an integral action in the controller so as to cancel the effect
of the gravitational component on the output at steady state (constant
ϑm).

These requisites clearly suggest the use of a proportional-integral (PI) con-
trol action in the forward path whose transfer function is

C(s) = Kc
1 + sTc

s
; (8.23)

this yields zero error at steady state for a constant disturbance, and the pres-
ence of the real zero at s = −1/Tc offers a stabilizing action. To improve
dynamic performance, it is worth choosing the controller as a cascade of ele-
mentary actions with local feedback loops closed around the disturbance.

Besides closure of a position feedback loop, the most general solution is
obtained by closing inner loops on velocity and acceleration. This leads to
the scheme in Fig. 8.6, where CP (s), CV (s), CA(s) respectively represent
position, velocity , acceleration controllers, and the inmost controller should

3 Subscript i is to be dropped for notation compactness.
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be of PI type as in (8.23) so as to obtain zero error at steady state for a
constant disturbance. Further, kTP , kTV , kTA are the respective transducer
constants, and the amplifier gain Gv has been embedded in the gain of the
inmost controller. In the scheme of Fig. 8.6, notice that ϑr is the reference
input, which is related to the desired output ϑmd as

ϑr = kTPϑmd.

Further, the disturbance torque D has been suitably transformed into a volt-
age by the factor Ra/kt.

In the following, a number of possible solutions that can be derived from
the general scheme of Fig. 8.6 are presented; at this stage, the issue arising
from possible lack of measurement of physical variables is not considered yet.
Three case studies are considered which differ in the number of active feedback
loops.4

Position feedback

In this case, the control action is characterized by

CP (s) = KP
1 + sTP

s
CV (s) = 1 CA(s) = 1

kTV = kTA = 0.

With these positions, the structure of the control scheme in Fig. 8.6 leads to
the scheme illustrated in Fig. 5.10. From this scheme the transfer function of
the forward path is

P (s) =
kmKP (1 + sTP )
s2(1 + sTm)

,

while that of the return path is

H(s) = kTP .

A root locus analysis can be performed as a function of the gain of the po-
sition loop kmKP kTPTP /Tm. Three situations are illustrated for the poles
of the closed-loop system with reference to the relation between TP and Tm

(Fig. 8.7). Stability of the closed-loop feedback system imposes some con-
straints on the choice of the parameters of the PI controller. If TP < Tm,
the system is inherently unstable (Fig. 8.7a). Then, it must be TP > Tm

(Fig. 8.7b). As TP increases, the absolute value of the real part of the two
roots of the locus tending towards the asymptotes increases too, and the sys-
tem has faster time response. Hence, it is convenient to render TP � Tm

(Fig. 8.7c). In any case, the real part of the dominant poles cannot be less
than −1/2Tm.
4 See Appendix C for a brief brush-up on control of linear single-input/single-output

systems.
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Fig. 8.7. Root loci for the position feedback control scheme

The closed-loop input/output transfer function is

Θm(s)
Θr(s)

=

1
kTP

1 +
s2(1 + sTm)

kmKP kTP (1 + sTP )

, (8.24)

which can be expressed in the form

W (s) =

1
kTP

(1 + sTP )(
1 +

2ζs
ωn

+
s2

ω2
n

)
(1 + sτ)

,

where ωn and ζ are respectively the natural frequency and damping ratio of
the pair of complex poles and −1/τ locates the real pole. These values are
assigned to define the joint drive dynamics as a function of the constant TP ;
if TP > Tm, then 1/ζωn > TP > τ (Fig. 8.7b); if TP � Tm (Fig. 8.7c), for
large values of the loop gain, then ζωn > 1/τ ≈ 1/TP and the zero at −1/TP

in the transfer function W (s) tends to cancel the effect of the real pole.
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The closed-loop disturbance/output transfer function is

Θm(s)
D(s)

= −
sRa

ktKP kTP (1 + sTP )

1 +
s2(1 + sTm)

kmKP kTP (1 + sTP )

, (8.25)

which shows that it is worth increasing KP to reduce the effect of disturbance
on the output during the transient. The function in (8.25) has two complex
poles (−ζωn,±j

√
1 − ζ2ωn), a real pole (−1/τ), and a zero at the origin. The

zero is due to the PI controller and allows the cancellation of the effects of
gravity on the angular position when ϑm is a constant.

In (8.25), it can be recognized that the term KP kTP is the reduction
factor imposed by the feedback gain on the amplitude of the output due to
disturbance; hence, the quantity

XR = KP kTP (8.26)

can be interpreted as the disturbance rejection factor , which in turn is de-
termined by the gain KP . However, it is not advisable to increase KP too
much, because small damping ratios would result leading to unacceptable os-
cillations of the output. An estimate TR of the output recovery time needed
by the control system to recover the effects of the disturbance on the angular
position can be evaluated by analyzing the modes of evolution of (8.25). Since
τ ≈ TP , such estimate is expressed by

TR = max
{
TP ,

1
ζωn

}
. (8.27)

Position and velocity feedback

In this case, the control action is characterized by

CP (s) = KP CV (s) = KV
1 + sTV

s
CA(s) = 1

kTA = 0;

with these positions, the structure of the control scheme in Fig. 8.6 leads to
scheme illustrated in Fig. 5.11. To carry out a root locus analysis as a function
of the velocity feedback loop gain, it is worth reducing the velocity loop in
parallel to the position loop by following the usual rules for moving blocks.
From the scheme in Fig. 5.11 the transfer function of the forward path is

P (s) =
kmKPKV (1 + sTV )

s2(1 + sTm)
,
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Fig. 8.8. Root locus for the position and velocity feedback control scheme

while that of the return path is

H(s) = kTP

(
1 + s

kTV

KP kTP

)
.

The zero of the controller at s = −1/TV can be chosen so as to cancel the
effects of the real pole of the motor at s = −1/Tm. Then, by setting

TV = Tm,

the poles of the closed-loop system move on the root locus as a function of the
loop gain kmKV kTV , as shown in Fig. 8.8. By increasing the position feedback
gain KP , it is possible to confine the closed-loop poles into a region of the
complex plane with large absolute values of the real part. Then, the actual
location can be established by a suitable choice of KV .

The closed-loop input/output transfer function is

Θm(s)
Θr(s)

=

1
kTP

1 +
skTV

KP kTP
+

s2

kmKP kTPKV

, (8.28)

which can be compared with the typical transfer function of a second-order
system

W (s) =

1
kTP

1 +
2ζs
ωn

+
s2

ω2
n

. (8.29)

It can be recognized that, with a suitable choice of the gains, it is possible to
obtain any value of natural frequency ωn and damping ratio ζ. Hence, if ωn

and ζ are given as design requirements, the following relations can be found:

KV kTV =
2ζωn

km
(8.30)
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Fig. 8.9. Block scheme of position, velocity and acceleration feedback control

KP kTPKV =
ω2

n

km
. (8.31)

For given transducer constants kTP and kTV , once KV has been chosen to
satisfy (8.30), the value of KP is obtained from (8.31).

The closed-loop disturbance/output transfer function is

Θm(s)
D(s)

= −
sRa

ktKP kTPKV (1 + sTm)

1 +
skTV

KP kTP
+

s2

kmKP kTPKV

, (8.32)

which shows that the disturbance rejection factor is

XR = KP kTPKV (8.33)

and is fixed, once KP and KV have been chosen via (8.30), (8.31). Concerning
disturbance dynamics, the presence of a zero at the origin introduced by the
PI, of a real pole at s = −1/Tm, and of a pair of complex poles having real
part −ζωn should be noticed. Hence, in this case, an estimate of the output
recovery time is given by the time constant

TR = max
{
Tm,

1
ζωn

}
; (8.34)

which reveals an improvement with respect to the previous case in (8.27),
since Tm � TP and the real part of the dominant poles is not constrained by
the inequality ζωn < 1/2Tm.
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Fig. 8.10. Root locus for the position, velocity and acceleration feedback control
scheme

Position, velocity and acceleration feedback

In this case, the control action is characterized by

CP (s) = KP CV (s) = KV CA(s) = KA
1 + sTA

s
.

After some manipulation, the block scheme of Fig. 8.6 can be reduced to that
of Fig. 8.9 where G′(s) indicates the following transfer function:

G′(s) =
km

(1 + kmKAkTA)

⎛⎜⎜⎝1 +
sTm

(
1 + kmKAkTA

TA

Tm

)
(1 + kmKAkTA)

⎞⎟⎟⎠
.

The transfer function of the forward path is

P (s) =
KPKV KA(1 + sTA)

s2
G′(s),

while that of the return path is

H(s) = kTP

(
1 +

skTV

KP kTP

)
.

Also in this case, a suitable pole cancellation is worthy which can be achieved
either by setting

TA = Tm,

or by making
kmKAkTATA � Tm kmKAkTA � 1.
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Fig. 8.11. Block scheme of a first-order filter

The two solutions are equivalent as regards dynamic performance of the con-
trol system. In both cases, the poles of the closed-loop system are constrained
to move on the root locus as a function of the loop gain kmKPKV KA/(1 +
kmKAkTA) (Fig. 8.10). A close analogy with the previous scheme can be
recognized, in that the resulting closed-loop system is again of second-order
type.

The closed-loop input/output transfer function is

Θm(s)
Θr(s)

=

1
kTP

1 +
skTV

KP kTP
+

s2(1 + kmKAkTA)
kmKP kTPKV KA

, (8.35)

while the closed-loop disturbance/output transfer function is

Θm(s)
D(s)

= −
sRa

ktKP kTPKV KA(1 + sTA)

1 +
skTV

KP kTP
+

s2(1 + kmKAkTA)
kmKP kTPKV KA

. (8.36)

The resulting disturbance rejection factor is given by

XR = KP kTPKV KA, (8.37)

while the output recovery time is given by the time constant

TR = max
{
TA,

1
ζωn

}
(8.38)

where TA can be made less than Tm, as pointed out above.
With reference to the transfer function in (8.29), the following relations

can be established for design purposes, once ζ, ωn, XR have been specified:

2KP kTP

kTV
=

ωn

ζ
(8.39)

kmKAkTA =
kmXR

ω2
n

− 1 (8.40)

KP kTPKV KA = XR. (8.41)
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For given kTP , kTV , kTA, KP is chosen to satisfy (8.39), KA is chosen to
satisfy (8.40), and then KV is obtained from (8.41). Notice how admissible
solutions for the controller typically require large values for the rejection fac-
tor XR. Hence, in principle, not only does the acceleration feedback allow the
achievement of any desired dynamic behaviour but, with respect to the pre-
vious case, it also allows the prescription of the disturbance rejection factor
as long as kmXR/ω2

n > 1.
In deriving the above control schemes, the issue of measurement of feed-

back variables was not considered explicitly. With reference to the typical
position control servos that are implemented in industrial practice, there
is no problem of measuring position and velocity, while a direct measure-
ment of acceleration, in general, either is not available or is too expensive to
obtain. Therefore, for the scheme of Fig. 8.9, an indirect measurement can
be obtained by reconstructing acceleration from direct velocity measurement
through a first-order filter (Fig. 8.11). The filter is characterized by a band-
width ω3f = kf . By choosing this bandwidth wide enough, the effects due
to measurement lags are not appreciable, and then it is feasible to take the
acceleration filter output as the quantity to feed back. Some problem may
occur concerning the noise superimposed on the filtered acceleration signal,
though.

Resorting to a filtering technique may be useful when only the direct posi-
tion measurement is available. In this case, by means of a second-order state
variable filter, it is possible to reconstruct velocity and acceleration. However,
the greater lags induced by the use of a second-order filter typically degrade
the performance with respect to the use of a first-order filter, because of lim-
itations imposed on the filter bandwidth by numerical implementation of the
controller and filter.

Notice that the above derivation is based on an ideal dynamic model, i.e.,
when the effects of transmission elasticity as well as those of amplifier and
motor electrical time constants are neglected. This implies that satisfaction
of design requirements imposing large values of feedback gains may not be
verified in practice, since the existence of unmodelled dynamics — such as
electric dynamics, elastic dynamics due to non-perfectly rigid transmissions,
filter dynamics for the third scheme — might lead to degrading the system and
eventually driving it to instability. In summary, the above solutions constitute
design guidelines whose limits should be emphasized with regard to the specific
application.

8.3.2 Decentralized Feedforward Compensation

When the joint control servos are required to track reference trajectories with
high values of speed and acceleration, the tracking capabilities of the scheme in
Fig. 8.6 are unavoidably degraded. The adoption of a decentralized feedforward
compensation allows a reduction of the tracking error. Therefore, in view
of the closed-loop input/output transfer functions in (8.24), (8.28), (8.35),
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Fig. 8.12. Block scheme of position feedback control with decentralized feedforward
compensation

the reference inputs to the three control structures analyzed in the previous
section can be respectively modified into

Θ′
r(s) =

(
kTP +

s2(1 + sTm)
kmKP (1 + sTP )

)
Θmd(s) (8.42)

Θ′
r(s) =

(
kTP +

skTV

KP
+

s2

kmKPKV

)
Θmd(s) (8.43)

Θ′
r(s) =

(
kTP +

skTV

KP
+

s2(1 + kmKAkTA)
kmKPKV KA

)
Θmd(s); (8.44)

in this way, tracking of the desired joint position Θmd(s) is achieved, if not
for the effect of disturbances. Notice that computing time derivatives of the
desired trajectory is not a problem, once ϑmd(t) is known analytically. The
tracking control schemes, resulting from simple manipulation of (8.42), (8.43),
(8.44) are reported respectively in Figs. 8.12, 8.13, 8.14, where M(s) indicates
the motor transfer function in (5.11), with km and Tm as in (5.12).

All the solutions allow the input trajectory to be tracked within the range
of validity and linearity of the models employed. It is worth noticing that, as
the number of nested feedback loops increases, a less accurate knowledge of
the system model is required to perform feedforward compensation. In fact,
Tm and km are required for the scheme of Fig. 8.12, only km is required for
the scheme of Fig. 8.13, and km again — but with reduced weight — for the
scheme of Fig. 8.14.

It is worth recalling that perfect tracking can be obtained only under the
assumption of exact matching of the controller and feedforward compensation
parameters with the process parameters, as well as of exact modelling and
linearity of the physical system. Deviations from the ideal values cause a
performance degradation that should be analyzed case by case.
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Fig. 8.13. Block scheme of position and velocity feedback control with decentralized
feedforward compensation

Fig. 8.14. Block scheme of position, velocity and acceleration feedback control with
decentralized feedforward compensation

The presence of saturation blocks in the schemes of Figs. 8.12, 8.13, 8.14
is to be intended as intentional nonlinearities whose function is to limit rele-
vant physical quantities during transients; the greater the number of feedback
loops, the greater the number of quantities that can be limited (velocity, ac-
celeration, and motor voltage). To this end, notice that trajectory tracking is
obviously lost whenever any of the above quantities saturates. This situation
often occurs for industrial manipulators required to execute point-to-point
motions; in this case, there is less concern about the actual trajectories fol-
lowed, and the actuators are intentionally taken to operate at the current
limits so as to realize the fastest possible motions.

After simple block reduction on the above schemes, it is possible to de-
termine equivalent control structures that utilize position feedback only and
regulators with standard actions. It should be emphasized that the two solu-
tions are equivalent in terms of disturbance rejection and trajectory tracking.
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Fig. 8.15. Equivalent control scheme of PI type

Fig. 8.16. Equivalent control scheme of PID type

However, tuning of regulator parameters is less straightforward, and the elim-
ination of inner feedback loops prevents the possibility of setting saturations
on velocity and/or acceleration. The control structures equivalent to those
of Figs. 8.12, 8.13, 8.14 are illustrated in Figs. 8.15, 8.16, 8.17, respectively;
control actions of PI, PID, PIDD2 type are illustrated which are respectively
equivalent to the cases of: position feedback; position and velocity feedback;
position, velocity and acceleration feedback.

It is worth noticing that the equivalent control structures in Figs. 8.15–8.17
are characterized by the presence of the feedforward action (Tm/km)ϑ̈md +
(1/km)ϑ̇md. If the motor is current-controlled and not voltage-controlled, by
recalling (5.13), the feedforward action is equal to (ki/kt)(Imϑ̈md + Fmϑ̇md).
If ϑ̇m ≈ ϑ̇md, ϑ̈m ≈ ϑ̈md and the disturbance is negligible, the term Imϑ̈d +
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Fig. 8.17. Equivalent control scheme of PIDD2 type

Fmϑ̇d represents the driving torque providing the desired velocity and accel-
eration, as indicated by (5.3). By setting

iad =
1
kt

(Imϑ̈md + Fmϑ̇md),

the feedforward action can be rewritten in the form kiiad. This shows that, in
the case the drive is current-controlled, it is possible to replace the acceleration
and velocity feedforward actions with a current and thus a torque feedforward
action, which is to be properly computed with reference to the desired motion.

This equivalence is illustrated in Fig. 8.18, where M(s) has been replaced
by the block scheme of an electric drive of Fig. 5.2, where the parameters of
the current loop are chosen so as to realize a torque-controlled generator. The
feedforward action represents a reference for the motor current, which im-
poses the generation of the nominal torque to execute the desired motion; the
presence of the position reference allows the closure of a feedback loop which,
in view of the adoption of a standard regulator with transfer function CR(s),
confers robustness to the presented control structure. In summary, the perfor-
mance that can be achieved with velocity and acceleration feedforward actions
and voltage-controlled actuator can be achieved with a current-controlled ac-
tuator and a desired torque feedforward action.

The above schemes can incorporate the typical structure of the controllers
actually implemented in the control architectures of industrial robots. In these
systems it is important to choose the largest possible gains so that model
inaccuracy and coupling terms do not appreciably affect positions of the single
joints. As pointed out above, the upper limit on the gains is imposed by
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Fig. 8.18. Control scheme with current-controlled drive and current feedforward
action

all those factors that have not been modelled, such as implementation of
discrete-time controllers in lieu of the continuous-time controllers analyzed
in theory, presence of finite sampling time, neglected dynamic effects (e.g.,
joint elasticity, structural resonance, finite transducer bandwidth), and sensor
noise. In fact, the influence of such factors in the implementation of the above
controllers may cause a severe system performance degradation for much too
large values of feedback gains.

8.4 Computed Torque Feedforward Control

Define the tracking error e(t) = ϑmd(t) − ϑm(t). With reference to the most
general scheme (Fig. 8.17), the output of the PIDD2 regulator can be written
as

a2ë + a1ė + a0e + a−1

∫ t

e(ς)dς

which describes the time evolution of the error. The constant coefficients
a2, a1, a0, a−1 are determined by the particular solution adopted. Summing
the contribution of the feedforward actions and of the disturbance to this
expression yields

Tm

km
ϑ̈md +

1
km

ϑ̇md − Ra

kt
d,

where
Tm

km
=

ImRa

kt
km =

1
kv

.

The input to the motor (Fig. 8.6) has then to satisfy the following equation:

a2ë+a1ė+a0e+a−1

∫ t

e(ς)dς +
Tm

km
ϑ̈md +

1
km

ϑ̇md −
Ra

kt
d =

Tm

km
ϑ̈m +

1
km

ϑ̇m.

With a suitable change of coefficients, this can be rewritten as

a′2ë + a′1ė + a′0e + a′−1

∫ t

e(ς)dς =
Ra

kt
d.
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Fig. 8.19. Block scheme of computed torque feedforward control

This equation describes the error dynamics and shows that any physically
executable trajectory is asymptotically tracked only if the disturbance term
d(t) = 0. With the term physically executable it is meant that the saturation
limits on the physical quantities, e.g., current and voltage in electric motors,
are not violated in the execution of the desired trajectory.

The presence of the term d(t) causes a tracking error whose magnitude is
reduced as much as the disturbance frequency content is located off to the left
of the lower limit of the bandwidth of the error system. The disturbance/error
transfer function is given by

E(s)
D(s)

=

Ra

kt
s

a′2s3 + a′1s2 + a′0s + a′−1

,

and thus the adoption of loop gains which are not realizable for the above
discussed reasons is often required.

Nevertheless, even if the term d(t) has been introduced as a disturbance,
its expression is given by (8.22). It is then possible to add a further term to
the previous feedforward actions which is able to compensate the disturbance
itself rather than its effects. In other words, by taking advantage of model
knowledge, the rejection effort of an independent joint control scheme can be
lightened with notable simplification from the implementation viewpoint.

Let qd(t) be the desired joint trajectory and qmd(t) the corresponding
actuator trajectory as in (8.2). By adopting an inverse model strategy, the
feedforward action RaK−1

t dd can be introduced with

dd = K−1
r ΔB(qd)K

−1
r q̈md + K−1

r C(qd, q̇d)K
−1
r q̇md + K−1

r g(qd), (8.45)

where Ra and Kt denote the diagonal matrices of armature resistances and
torque constants of the actuators. This action tends to compensate the actual
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disturbance expressed by (8.22) and in turn allows the control system to
operate in a better condition.

This solution is illustrated in the scheme of Fig. 8.19, which conceptually
describes the control system of a manipulator with computed torque control.
The feedback control system is representative of the n independent joint con-
trol servos; it is decentralized , since controller i elaborates references and mea-
surements that refer to single Joint i. The interactions between the various
joints, expressed by d, are compensated by a centralized action whose function
is to generate a feedforward action that depends on the joint references as well
as on the manipulator dynamic model. This action compensates the nonlinear
coupling terms due to inertial, Coriolis, centrifugal, and gravitational forces
that depend on the structure and, as such, vary during manipulator motion.

Although the residual disturbance term d̃ = dd − d vanishes only in the
ideal case of perfect tracking (q = qd) and exact dynamic modelling, d̃ is
representative of interaction disturbances of considerably reduced magnitude
with respect to d. Hence, the computed torque technique has the advantage to
alleviate the disturbance rejection task for the feedback control structure and
in turn allows limited gains. Notice that expression (8.45) in general imposes a
computationally demanding burden on the centralized part of the controller.
Therefore, in those applications where the desired trajectory is generated in
real time with regard to exteroceptive sensory data and commands from higher
hierarchical levels of the robot control architecture,5 on-line computation of
the centralized feedforward action may require too much time.6

Since the actual controller is to be implemented on a computer with a
finite sampling time, torque computation has to be carried out during this
interval of time; in order not to degrade dynamic system performance, typical
sampling times are of the order of the millisecond.

Therefore, it may be worth performing only a partial feedforward action
so as to compensate those terms of (8.45) that give the most relevant con-
tributions during manipulator motion. Since inertial and gravitational terms
dominate velocity-dependent terms (at operational joint speeds not greater
than a few radians per second), a partial compensation can be achieved by
computing only the gravitational torques and the inertial torques due to the
diagonal elements of the inertia matrix. In this way, only the terms depending
on the global manipulator configuration are compensated while those deriving
from motion interaction with the other joints are not.

Finally, it should be pointed out that, for repetitive trajectories, the above
compensating contributions can be computed off-line and properly stored on
the basis of a trade-off solution between memory capacity and computational
requirements of the control architecture.

5 See also Chap. 6.
6 In this regard, the problem of real-time computation of compensating torques can

be solved by resorting to efficient recursive formulations of manipulator inverse
dynamics, such as the Newton–Euler algorithm presented in Chap. 7.
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8.5 Centralized Control

In the previous sections several techniques have been discussed that allow
the design of independent joint controllers. These are based on a single-
input/single-output approach, since interaction and coupling effects between
the joints have been considered as disturbances acting on each single joint
drive system.

On the other hand, when large operational speeds are required or direct-
drive actuation is employed (Kr = I), the nonlinear coupling terms strongly
influence system performance. Therefore, considering the effects of the com-
ponents of d as a disturbance may generate large tracking errors. In this case,
it is advisable to design control algorithms that take advantage of a detailed
knowledge of manipulator dynamics so as to compensate for the nonlinear
coupling terms of the model. In other words, it is necessary to eliminate the
causes rather than to reduce the effects induced by them; that is, to generate
compensating torques for the nonlinear terms in (8.22). This leads to central-
ized control algorithms that are based on the (partial or complete) knowledge
of the manipulator dynamic model.

Whenever the robot is endowed with the torque sensors at the joint motors
presented in Sect. 5.4.1, those measurements can be conveniently utilized to
generate the compensation action, thus avoiding the on-line computation of
the terms of the dynamic model.

As shown by the dynamic model (8.1), the manipulator is not a set of
n decoupled system but it is a multivariable system with n inputs (joint
torques) and n outputs (joint positions) interacting between them by means
of nonlinear relations.7

In order to follow a methodological approach which is consistent with
control design, it is necessary to treat the control problem in the context of
nonlinear multivariable systems. This approach will obviously account for the
manipulator dynamic model and lead to finding nonlinear centralized control
laws, whose implementation is needed for high manipulator dynamic perfor-
mance. On the other hand, the above computed torque control can be inter-
preted in this framework, since it provides a model-based nonlinear control
term to enhance trajectory tracking performance. Notice, however, that this
action is inherently performed off line, as it is computed on the time history
of the desired trajectory and not of the actual one.

In the following, the problem of the determination of the control law u
ensuring a given performance to the system of manipulator with drives is
tackles. Since (8.17) can be considered as a proportional relationship between
vc and u, the centralized control schemes below refer directly to the generation
of control toques u.

7 See Appendix C for the basic concepts on control of nonlinear mechanical systems.
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8.5.1 PD Control with Gravity Compensation

Let a constant equilibrium posture be assigned for the system as the vector of
desired joint variables qd. It is desired to find the structure of the controller
which ensures global asymptotic stability of the above posture.

The determination of the control input which stabilizes the system around
the equilibrium posture is based on the Lyapunov direct method.

Take the vector [ q̃T q̇T ]T as the system state, where

q̃ = qd − q (8.46)

represents the error between the desired and the actual posture. Choose the
following positive definite quadratic form as Lyapunov function candidate:

V (q̇, q̃) =
1
2
q̇T B(q)q̇ +

1
2
q̃T KP q̃ > 0 ∀q̇, q̃ �= 0 (8.47)

where KP is an (n× n) symmetric positive definite matrix. An energy-based
interpretation of (8.47) reveals a first term expressing the system kinetic en-
ergy and a second term expressing the potential energy stored in the system
of equivalent stiffness KP provided by the n position feedback loops.

Differentiating (8.47) with respect to time, and recalling that qd is con-
stant, yields

V̇ = q̇T B(q)q̈ +
1
2
q̇T Ḃ(q)q̇ − q̇T KP q̃. (8.48)

Solving (8.7) for Bq̈ and substituting it in (8.48) gives

V̇ =
1
2
q̇T

(
Ḃ(q) − 2C(q, q̇)

)
q̇ − q̇T F q̇ + q̇T

(
u − g(q) − KP q̃

)
. (8.49)

The first term on the right-hand side is null since the matrix N = Ḃ − 2C
satisfies (7.49). The second term is negative definite. Then, the choice

u = g(q) + KP q̃, (8.50)

describing a controller with compensation of gravitational terms and a pro-
portional action, leads to a negative semi-definite V̇ since

V̇ = 0 q̇ = 0,∀q̃.

This result can be obtained also by taking the control law

u = g(q) + KP q̃ − KDq̇, (8.51)

with KD positive definite, corresponding to a nonlinear compensation action
of gravitational terms with a linear proportional-derivative (PD) action. In
fact, substituting (8.51) into (8.49) gives

V̇ = −q̇T (F + KD)q̇, (8.52)
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Fig. 8.20. Block scheme of joint space PD control with gravity compensation

which reveals that the introduction of the derivative term causes an increase
of the absolute values of V̇ along the system trajectories, and then it gives an
improvement of system time response. Notice that the inclusion of a derivative
action in the controller, as in (8.51), is crucial when direct-drive manipulators
are considered. In that case, in fact, mechanical viscous damping is practi-
cally null, and current control does not allow the exploitation of the electrical
viscous damping provided by voltage-controlled actuators.

According to the above, the function candidate V decreases as long as
q̇ �= 0 for all system trajectories. It can be shown that the system reaches an
equilibrium posture. To find such posture, notice that V̇ ≡ 0 only if q̇ ≡ 0.
System dynamics under control (8.51) is given by

B(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = g(q) + KP q̃ − KDq̇. (8.53)

At the equilibrium (q̇ ≡ 0, q̈ ≡ 0) it is

KP q̃ = 0 (8.54)

and then
q̃ = qd − q ≡ 0

is the sought equilibrium posture. The above derivation rigorously shows that
any manipulator equilibrium posture is globally asymptotically stable under
a controller with a PD linear action and a nonlinear gravity compensating
action. Stability is ensured for any choice of KP and KD, as long as these are
positive definite matrices. The resulting block scheme is shown in Fig. 8.20.

The control law requires the on-line computation of the term g(q). If com-
pensation is imperfect, the above discussion does not lead to the same result;
this aspect will be revisited later with reference to robustness of controllers
performing nonlinear compensation.
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Fig. 8.21. Exact linearization performed by inverse dynamics control

8.5.2 Inverse Dynamics Control

Consider now the problem of tracking a joint space trajectory. The reference
framework is that of control of nonlinear multivariable systems. The dynamic
model of an n-joint manipulator is expressed by (8.7) which can be rewritten
as

B(q)q̈ + n(q, q̇) = u, (8.55)

where for simplicity it has been set

n(q, q̇) = C(q, q̇)q̇ + F q̇ + g(q). (8.56)

The approach that follows is founded on the idea to find a control vector u, as
a function of the system state, which is capable of realizing an input/output
relationship of linear type; in other words, it is desired to perform not an
approximate linearization but an exact linearization of system dynamics ob-
tained by means of a nonlinear state feedback . The possibility of finding such
a linearizing controller is guaranteed by the particular form of system dynam-
ics. In fact, the equation in (8.55) is linear in the control u and has a full-rank
matrix B(q) which can be inverted for any manipulator configuration.

Taking the control u as a function of the manipulator state in the form

u = B(q)y + n(q, q̇), (8.57)

leads to the system described by

q̈ = y

where y represents a new input vector whose expression is to be determined
yet; the resulting block scheme is shown in Fig. 8.21. The nonlinear control
law in (8.57) is termed inverse dynamics control since it is based on the com-
putation of manipulator inverse dynamics. The system under control (8.57)
is linear and decoupled with respect to the new input y. In other words, the
component yi influences, with a double integrator relationship, only the joint
variable qi, independently of the motion of the other joints.
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Fig. 8.22. Block scheme of joint space inverse dynamics control

In view of the choice (8.57), the manipulator control problem is reduced
to that of finding a stabilizing control law y. To this end, the choice

y = −KP q − KDq̇ + r (8.58)

leads to the system of second-order equations

q̈ + KDq̇ + KP q = r (8.59)

which, under the assumption of positive definite matrices KP and KD, is
asymptotically stable. Choosing KP and KD as diagonal matrices of the
type

KP = diag{ω2
n1, . . . , ω

2
nn} KD = diag{2ζ1ωn1, . . . , 2ζnωnn},

gives a decoupled system. The reference component ri influences only the joint
variable qi with a second-order input/output relationship characterized by a
natural frequency ωni and a damping ratio ζi.

Given any desired trajectory qd(t), tracking of this trajectory for the out-
put q(t) is ensured by choosing

r = q̈d + KDq̇d + KP qd. (8.60)

In fact, substituting (8.60) into (8.59) gives the homogeneous second-order
differential equation

¨̃q + KD
˙̃q + KP q̃ = 0 (8.61)

expressing the dynamics of position error (8.46) while tracking the given tra-
jectory. Such error occurs only if q̃(0) and/or ˙̃q(0) are different from zero
and converges to zero with a speed depending on the matrices KP and KD

chosen.
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The resulting block scheme is illustrated in Fig. 8.22, in which two feed-
back loops are represented; an inner loop based on the manipulator dynamic
model, and an outer loop operating on the tracking error. The function of
the inner loop is to obtain a linear and decoupled input/output relationship,
whereas the outer loop is required to stabilize the overall system. The con-
troller design for the outer loop is simplified since it operates on a linear and
time-invariant system. Notice that the implementation of this control scheme
requires computation of the inertia matrix B(q) and of the vector of Coriolis,
centrifugal, gravitational, and damping terms n(q, q̇) in (8.56). Unlike com-
puted torque control, these terms must be computed on-line since control is
now based on nonlinear feedback of the current system state, and thus it is
not possible to precompute the terms off line as for the previous technique.

The above technique of nonlinear compensation and decoupling is very at-
tractive from a control viewpoint since the nonlinear and coupled manipulator
dynamics is replaced with n linear and decoupled second-order subsystems.
Nonetheless, this technique is based on the assumption of perfect cancellation
of dynamic terms, and then it is quite natural to raise questions about sensi-
tivity and robustness problems due to unavoidably imperfect compensation.

Implementation of inverse dynamics control laws indeed requires that pa-
rameters of the system dynamic model are accurately known and the complete
equations of motion are computed in real time. These conditions are difficult
to verify in practice. On one hand, the model is usually known with a certain
degree of uncertainty due to imperfect knowledge of manipulator mechani-
cal parameters, existence of unmodelled dynamics, and model dependence on
end-effector payloads not exactly known and thus not perfectly compensated.
On the other hand, inverse dynamics computation is to be performed at sam-
pling times of the order of a millisecond so as to ensure that the assumption
of operating in the continuous time domain is realistic. This may pose severe
constraints on the hardware/software architecture of the control system. In
such cases, it may be advisable to lighten the computation of inverse dynamics
and compute only the dominant terms.

On the basis of the above remarks, from an implementation viewpoint,
compensation may be imperfect both for model uncertainty and for the ap-
proximations made in on-line computation of inverse dynamics. In the follow-
ing, two control techniques are presented which are aimed at counteracting
the effects of imperfect compensation. The first consists of the introduction of
an additional term to an inverse dynamics controller which provides robust-
ness to the control system by counteracting the effects of the approximations
made in on-line computation of inverse dynamics. The second adapts the pa-
rameters of the model used for inverse dynamics computation to those of the
true manipulator dynamic model.
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8.5.3 Robust Control

In the case of imperfect compensation, it is reasonable to assume in (8.55) a
control vector expressed by

u = B̂(q)y + n̂(q, q̇) (8.62)

where B̂ and n̂ represent the adopted computational model in terms of es-
timates of the terms in the dynamic model. The error on the estimates, i.e.,
the uncertainty , is represented by

B̃ = B̂ − B ñ = n̂ − n (8.63)

and is due to imperfect model compensation as well as to intentional simplifi-
cation in inverse dynamics computation. Notice that by setting B̂ = B̄ (where
B̄ is the diagonal matrix of average inertia at the joint axes) and n̂ = 0, the
above decentralized control scheme is recovered where the control action y
can be of the general PID type computed on the error.

Using (8.62) as a nonlinear control law gives

Bq̈ + n = B̂y + n̂ (8.64)

where functional dependence has been omitted. Since the inertia matrix B is
invertible, it is

q̈ = y + (B−1B̂ − I)y + B−1ñ = y − η (8.65)

where
η = (I − B−1B̂)y − B−1ñ. (8.66)

Taking as above

y = q̈d + KD(q̇d − q̇) + KP (qd − q),

leads to
¨̃q + KD

˙̃q + KP q̃ = η. (8.67)

The system described by (8.67) is still nonlinear and coupled, since η is a
nonlinear function of q̃ and ˙̃q; error convergence to zero is not ensured by the
term on the left-hand side only.

To find control laws ensuring error convergence to zero while tracking a
trajectory even in the face of uncertainties, a linear PD control is no longer
sufficient. To this end, the Lyapunov direct method can be utilized again for
the design of an outer feedback loop on the error which should be robust to
the uncertainty η.

Let the desired trajectory qd(t) be assigned in the joint space and let
q̃ = qd − q be the position error. Its first time-derivative is ˙̃q = q̇d − q̇, while
its second time-derivative in view of (8.65) is

¨̃q = q̈d − y + η. (8.68)
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By taking

ξ =
[

q̃
˙̃q

]
, (8.69)

as the system state, the following first-order differential matrix equation is
obtained:

ξ̇ = Hξ + D(q̈d − y + η), (8.70)

where H and D are block matrices of dimensions (2n × 2n) and (2n × n),
respectively:

H =
[

O I
O O

]
D =

[
O
I

]
. (8.71)

Then, the problem of tracking a given trajectory can be regarded as the prob-
lem of finding a control law y which stabilizes the nonlinear time-varying error
system (8.70).

Control design is based on the assumption that, even though the uncer-
tainty η is unknown, an estimate on its range of variation is available. The
sought control law y should guarantee asymptotic stability of (8.70) for any
η varying in the above range. By recalling that η in (8.66) is a function of q,
q̇, q̈d, the following assumptions are made:

supt≥0 ‖q̈d‖ < QM < ∞ ∀q̈d (8.72)

‖I − B−1(q)B̂(q)‖ ≤ α ≤ 1 ∀q (8.73)

‖ñ‖ ≤ Φ < ∞ ∀q, q̇. (8.74)

Assumption (8.72) is practically satisfied since any planned trajectory cannot
require infinite accelerations.

Regarding assumption (8.73), since B is a positive definite matrix with
upper and lower limited norms, the following inequality holds:

0 < Bm ≤ ‖B−1(q)‖ ≤ BM < ∞ ∀q, (8.75)

and then a choice for B̂ always exists which satisfies (8.73). In fact, by setting

B̂ =
2

BM + Bm
I,

from (8.73) it is

‖B−1B̂ − I‖ ≤ BM −Bm

BM + Bm
= α < 1. (8.76)

If B̂ is a more accurate estimate of the inertia matrix, the inequality is satisfied
with values of α that can be made arbitrarily small (in the limit, it is B̂ = B
and α = 0).
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Finally, concerning assumption (8.74), observe that ñ is a function of q and
q̇. For revolute joints a periodical dependence on q is obtained, while for pris-
matic joints a linear dependence is obtained, but the joint ranges are limited
and then the above contribution is also limited. On the other hand, regarding
the dependence on q̇, unbounded velocities for an unstable system may arise
in the limit, but in reality saturations exist on the maximum velocities of the
motors. In summary, assumption (8.74) can be realistically satisfied, too.

With reference to (8.65), choose now

y = q̈d + KD
˙̃q + KP q̃ + w (8.77)

where the PD term ensures stabilization of the error dynamic system matrix,
q̈d provides a feedforward term, and the term w is to be chosen to guarantee
robustness to the effects of uncertainty described by η in (8.66).

Using (8.77) and setting K = [KP KD ] yields

ξ̇ = H̃ξ + D(η − w), (8.78)

where

H̃ = (H − DK) =
[

O I
−KP −KD

]
is a matrix whose eigenvalues all have negative real parts — KP and KD

being positive definite — which allows the desired error system dynamics to
be prescribed. In fact, by choosing KP = diag{ω2

n1, . . . , ω
2
nn} and KD =

diag{2ζ1ωn1, . . . , 2ζnωnn}, n decoupled equations are obtained as regards the
linear part. If the uncertainty term vanishes, it is obviously w = 0 and the
above result with an exact inverse dynamics controller is recovered (B̂ = B
and n̂ = n).

To determine w, consider the following positive definite quadratic form as
Lyapunov function candidate:

V (ξ) = ξT Qξ > 0 ∀ξ �= 0, (8.79)

where Q is a (2n×2n) positive definite matrix. The derivative of V along the
trajectories of the error system (8.78) is

V̇ = ξ̇
T
Qξ + ξT Qξ̇ (8.80)

= ξT (H̃
T
Q + QH̃)ξ + 2ξT QD(η − w).

Since H̃ has eigenvalues with all negative real parts, it is well-known that for
any symmetric positive definite matrix P , the equation

H̃
T
Q + QH̃ = −P (8.81)

gives a unique solution Q which is symmetric positive definite as well. In view
of this, (8.80) becomes

V̇ = −ξT Pξ + 2ξT QD(η − w). (8.82)
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Fig. 8.23. Block scheme of joint space robust control

The first term on the right-hand side of (8.82) is negative definite and then
the solutions converge if ξ ∈ N (DT Q). If instead ξ �∈ N (DT Q), the control
w must be chosen so as to render the second term in (8.82) less than or equal
to zero. By setting z = DT Qξ, the second term in (8.82) can be rewritten as
zT (η − w). Adopting the control law

w =
ρ

‖z‖z ρ > 0 (8.83)

gives8

zT (η − w) = zT η − ρ

‖z‖zT z

≤ ‖z‖‖η‖ − ρ‖z‖
= ‖z‖(‖η‖ − ρ). (8.84)

Then, if ρ is chosen so that

ρ ≥ ‖η‖ ∀q, q̇, q̈d, (8.85)

the control (8.83) ensures that V̇ is less than zero along all error system
trajectories.

In order to satisfy (8.85), notice that, in view of the definition of η in (8.66)
and of assumptions (8.72)–(8.74), and being ‖w‖ = ρ, it is

‖η‖ ≤ ‖I − B−1B̂‖(‖q̈d‖ + ‖K‖ ‖ξ‖ + ‖w‖) + ‖B−1‖ ‖ñ‖
8 Notice that it is necessary to divide z by the norm of z so as to obtain a linear

dependence on z of the term containing the control zT w, and thus to effectively
counteract, for z → 0, the term containing the uncertainty zT η which is linear
in z.
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≤ αQM + α‖K‖ ‖ξ‖ + αρ + BMΦ. (8.86)

Therefore, setting

ρ ≥ 1
1 − α

(αQM + α‖K‖‖ξ‖ + BMΦ) (8.87)

gives

V̇ = −ξT Pξ + 2zT

(
η − ρ

‖z‖z

)
< 0 ∀ξ �= 0. (8.88)

The resulting block scheme is illustrated in Fig. 8.23.
To summarize, the presented approach has lead to finding a control law

which is formed by three different contributions:

• The term B̂y+n̂ ensures an approximate compensation of nonlinear effects
and joint decoupling .

• The term q̈d + KD
˙̃q + KP q̃ introduces a linear feedforward action (q̈d +

KDq̇d+KP qd) and linear feedback action (−KDq̇−KP q) which stabilizes
the error system dynamics.

• The term w = (ρ/‖z‖)z represents the robust contribution that counter-
acts the indeterminacy B̃ and ñ in computing the nonlinear terms that
depend on the manipulator state; the greater the uncertainty, the greater
the positive scalar ρ. The resulting control law is of the unit vector type,
since it is described by a vector of magnitude ρ aligned with the unit vector
of z = DT Qξ, ∀ξ.

All the resulting trajectories under the above robust control reach the sub-
space z = DT Qξ = 0 that depends on the matrix Q in the Lyapunov function
V . On this attractive subspace, termed sliding subspace, the control w is ide-
ally commuted at an infinite frequency and all error components tend to zero
with a transient depending on the matrices Q, KP , KD. A characterization
of an error trajectory in the two-dimensional case is given in Fig. 8.24. Notice
that in the case ξ(0) �= 0, with ξ(0) �∈ N (DT Q), the trajectory is attracted
on the sliding hyperplane (a line) z = 0 and tends towards the origin of the
error state space with a time evolution governed by ρ.

In reality, the physical limits on the elements employed in the controller
impose a control signal that commutes at a finite frequency, and the trajec-
tories oscillate around the sliding subspace with a magnitude as low as the
frequency is high.

Elimination of these high-frequency components (chattering) can be achie-
ved by adopting a robust control law which, even if it does not guarantee error
convergence to zero, ensures bounded-norm errors. A control law of this type
is

w =

⎧⎪⎨⎪⎩
ρ

‖z‖z per ‖z‖ ≥ ε

ρ

ε
z per ‖z‖ < ε.

(8.89)
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Fig. 8.24. Error trajectory with robust control

In order to provide an intuitive interpretation of this law, notice that (8.89)
gives a null control input when the error is in the null space of matrix DT Q.
On the other hand, (8.83) has an equivalent gain tending to infinity when z
tends to the null vector, thus generating a control input of limited magnitude.
Since these inputs commute at an infinite frequency, they force the error
system dynamics to stay on the sliding subspace. With reference to the above
example, control law (8.89) gives rise to a hyperplane z = 0 which is no
longer attractive, and the error is allowed to vary within a boundary layer
whose thickness depends on ε (Fig. 8.25).

The introduction of a contribution based on the computation of a suitable
linear combination of the generalized error confers robustness to a control
scheme based on nonlinear compensation. Even if the manipulator is accu-
rately modeled, indeed, an exact nonlinear compensation may be computa-
tionally demanding, and thus it may require either a sophisticated hardware
architecture or an increase of the sampling time needed to compute the con-
trol law. The solution then becomes weak from an engineering viewpoint, due
either to infeasible costs of the control architecture, or to poor performance
at decreased sampling rates. Therefore, considering a partial knowledge of the
manipulator dynamic model with an accurate, pondered estimate of uncer-
tainty may suggest robust control solutions of the kind presented above. It
is understood that an estimate of the uncertainty should be found so as to
impose control inputs which the mechanical structure can bear.

8.5.4 Adaptive Control

The computational model employed for computing inverse dynamics typically
has the same structure as that of the true manipulator dynamic model, but
parameter estimate uncertainty does exist. In this case, it is possible to devise
solutions that allow an on-line adaptation of the computational model to the
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Fig. 8.25. Error trajectory with robust control and chattering elimination

dynamic model , thus performing a control scheme of the inverse dynamics
type.

The possibility of finding adaptive control laws is ensured by the property
of linearity in the parameters of the dynamic model of a manipulator. In
fact, it is always possible to express the nonlinear equations of motion in a
linear form with respect to a suitable set of constant dynamic parameters as
in (7.81). The equation in (8.7) can then be written as

B(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = Y (q, q̇, q̈)π = u, (8.90)

where π is a (p × 1) vector of constant parameters and Y is an (n × p)
matrix which is a function of joint positions, velocities and accelerations. This
property of linearity in the dynamic parameters is fundamental for deriving
adaptive control laws, among which the technique illustrated below is one of
the simplest.

At first, a control scheme which can be derived through a combined com-
puted torque/inverse dynamics approach is illustrated. The computational
model is assumed to coincide with the dynamic model.

Consider the control law

u = B(q)q̈r + C(q, q̇)q̇r + F q̇r + g(q) + KDσ, (8.91)

with KD a positive definite matrix. The choice

q̇r = q̇d + Λq̃ q̈r = q̈d + Λ ˙̃q, (8.92)

with Λ a positive definite (usually diagonal) matrix, allows the nonlinear com-
pensation and decoupling terms to be expressed as a function of the desired
velocity and acceleration, corrected by the current state (q and q̇) of the ma-
nipulator. In fact, notice that the term q̇r = q̇d + Λq̃ weighs the contribution
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that depends on velocity, not only on the basis of the desired velocity but also
on the basis of the position tracking error. A similar argument also holds for
the acceleration contribution, where a term depending on the velocity tracking
error is considered besides the desired acceleration.

The term KDσ is equivalent to a PD action on the error if σ is taken as

σ = q̇r − q̇ = ˙̃q + Λq̃. (8.93)

Substituting (8.91) into (8.90) and accounting for (8.93) yields

B(q)σ̇ + C(q, q̇)σ + Fσ + KDσ = 0. (8.94)

Consider the Lyapunov function candidate

V (σ, q̃) =
1
2
σT B(q)σ +

1
2
q̃T Mq̃ > 0 ∀σ, q̃ �= 0, (8.95)

where M is an (n × n) symmetric positive definite matrix; the introduction
of the second term in (8.95) is necessary to obtain a Lyapunov function of the
entire system state which vanishes for q̃ = 0 and ˙̃q = 0. The time derivative
of V along the trajectories of system (8.94) is

V̇ = σT B(q)σ̇ +
1
2
σT Ḃ(q)σ + q̃T M ˙̃q

= −σT (F + KD)σ + q̃T M ˙̃q, (8.96)

where the skew-symmetry propertyv of the matrix N = Ḃ − 2C has been
exploited. In view of the expression of σ in (8.93), with diagonal Λ and KD,
it is convenient to choose M = 2ΛKD; this leads to

V̇ = −σT Fσ − ˙̃q
T
KD

˙̃q − q̃T ΛKDΛq̃. (8.97)

This expression shows that the time derivative is negative definite since it
vanishes only if q̃ ≡ 0 and ˙̃q ≡ 0; thus, it follows that the origin of the state
space [ q̃T σT ]T = 0 is globally asymptotically stable. It is worth noticing
that, unlike the robust control case, the error trajectory tends to the subspace
σ = 0 without the need of a high-frequency control.

On the basis of this notable result, the control law can be made adaptive
with respect to the vector of parameters π.

Suppose that the computational model has the same structure as that of
the manipulator dynamic model, but its parameters are not known exactly.
The control law (8.91) is then modified into

u = B̂(q)q̈r + Ĉ(q, q̇)q̇r + F̂ q̇r + ĝ + KDσ (8.98)
= Y (q, q̇, q̇r, q̈r)π̂ + KDσ,
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where π̂ represents the available estimate on the parameters and, accordingly,
B̂, Ĉ, F̂ , ĝ denote the estimated terms in the dynamic model. Substituting
control (8.98) into (8.90) gives

B(q)σ̇ + C(q, q̇)σ + Fσ + KDσ = −B̃(q)q̈r − C̃(q, q̇)q̇r − F̃ q̇r − g̃(q)
= −Y (q, q̇, q̇r, q̈r)π̃, (8.99)

where the property of linearity in the error parameter vector

π̃ = π̂ − π (8.100)

has been conveniently exploited. In view of (8.63), the modelling error is
characterized by

B̃ = B̂ − B C̃ = Ĉ − C F̃ = F̂ − F g̃ = ĝ − g. (8.101)

It is worth remarking that, in view of position (8.92), the matrix Y does not
depend on the actual joint accelerations but only on their desired values; this
avoids problems due to direct measurement of acceleration.

At this point, modify the Lyapunov function candidate in (8.95) into the
form

V (σ, q̃, π̃) =
1
2
σT B(q)σ + q̃T ΛKDq̃ +

1
2
π̃T Kππ̃ > 0 ∀σ, q̃, π̃ �= 0,

(8.102)
which features an additional term accounting for the parameter error (8.100),
with Kπ symmetric positive definite. The time derivative of V along the
trajectories of system (8.99) is

V̇ = −σT Fσ − ˙̃q
T
KD

˙̃q − q̃T ΛKDΛq̃ + π̃T (
Kπ

˙̃π − Y T (q, q̇, q̇r, q̈r)σ
)
.

(8.103)
If the estimate of the parameter vector is updated as in the adaptive law

˙̂π = K−1
π Y T (q, q̇, q̇r, q̈r)σ, (8.104)

the expression in (8.103) becomes

V̇ = −σT Fσ − ˙̃q
T
KD

˙̃q − q̃T ΛKDΛq̃

since ˙̂π = ˙̃π — π is constant.
By an argument similar to above, it is not difficult to show that the tra-

jectories of the manipulator described by the model

B(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = u,

under the control law

u = Y (q, q̇, q̇r, q̈r)π̂ + KD( ˙̃q + Λq̃)
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Fig. 8.26. Block scheme of joint space adaptive control

and the parameter adaptive law

˙̂π = K−1
π Y T (q, q̇, q̇r, q̈r)( ˙̃q + Λq̃),

globally asymptotically converge to σ = 0 and q̃ = 0, which implies conver-
gence to zero of q̃, ˙̃q, and boundedness of π̂. The equation in (8.99) shows
that asymptotically it is

Y (q, q̇, q̇r, q̈r)(π̂ − π) = 0. (8.105)

This equation does not imply that π̂ tends to π; indeed, convergence of param-
eters to their true values depends on the structure of the matrix Y (q, q̇, q̇r, q̈r)
and then on the desired and actual trajectories. Nonetheless, the followed ap-
proach is aimed at solving a direct adaptive control problem, i.e., finding a
control law that ensures limited tracking errors, and not at determining the
actual parameters of the system (as in an indirect adaptive control problem).
The resulting block scheme is illustrated in Fig. 8.26. To summarize, the above
control law is formed by three different contributions:

• The term Y π̂ describes a control action of inverse dynamics type which
ensures an approximate compensation of nonlinear effects and joint decou-
pling .

• The term KDσ introduces a stabilizing linear control action of PD type
on the tracking error .

• The vector of parameter estimates π̂ is updated by an adaptive law of
gradient type so as to ensure asymptotic compensation of the terms in the
manipulator dynamic model; the matrix Kπ determines the convergence
rate of parameters to their asymptotic values.

Notice that, with σ ≈ 0, the control law (8.98) is equivalent to a pure
inverse dynamics compensation of the computed torque type on the basis of
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desired velocities and accelerations; this is made possible by the fact that
Y π̂ ≈ Y π.

The control law with parameter adaptation requires the availability of a
complete computational model and it does not feature any action aimed at
reducing the effects of external disturbances. Therefore, a performance degra-
dation is expected whenever unmodelled dynamic effects, e.g., when a reduced
computational model is used, or external disturbances occur. In both cases,
the effects induced on the output variables are attributed by the controller to
parameter estimate mismatching; as a consequence, the control law attempts
to counteract those effects by acting on quantities that did not provoke them
originally.

On the other hand, robust control techniques provide a natural rejection
to external disturbances, although they are sensitive to unmodelled dynamics;
this rejection is provided by a high-frequency commuted control action that
constrains the error trajectories to stay on the sliding subspace. The resulting
inputs to the mechanical structure may be unacceptable. This inconvenience
is in general not observed with the adoption of adaptive control techniques
whose action has a naturally smooth time behaviour.

8.6 Operational Space Control

In all the above control schemes, it was always assumed that the desired tra-
jectory is available in terms of the time sequence of the values of joint position,
velocity and acceleration. Accordingly, the error for the control schemes was
expressed in the joint space.

As often pointed out, motion specifications are usually assigned in the op-
erational space, and then an inverse kinematics algorithm has to be utilized to
transform operational space references into the corresponding joint space ref-
erences. The process of kinematic inversion has an increasing computational
load when, besides inversion of direct kinematics, inversion of first-order and
second-order differential kinematics is also required to transform the desired
time history of end-effector position, velocity and acceleration into the corre-
sponding quantities at the joint level. It is for this reason that current indus-
trial robot control systems compute the joint positions through kinematics
inversion, and then perform a numerical differentiation to compute velocities
and accelerations.

A different approach consists of considering control schemes developed
directly in the operational space. If the motion is specified in terms of opera-
tional space variables, the measured joint space variables can be transformed
into the corresponding operational space variables through direct kinematics
relations. Comparing the desired input with the reconstructed variables allows
the design of feedback control loops where trajectory inversion is replaced with
a suitable coordinate transformation embedded in the feedback loop.
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Fig. 8.27. Block scheme of Jacobian inverse control

All operational space control schemes present considerable computational
requirements, in view of the necessity to perform a number of computations
in the feedback loop which are somewhat representative of inverse kinematics
functions. With reference to a numerical implementation, the presence of a
computationally demanding load requires sampling times that may lead to
degrading the performance of the overall control system.

In the face of the above limitations, it is worth presenting operational
space control schemes, whose utilization becomes necessary when the prob-
lem of controlling interaction between the manipulator and the environment
is of concern. In fact, joint space control schemes suffice only for motion con-
trol in the free space. When the manipulator’s end-effector is constrained by
the environment, e.g., in the case of end-effector in contact with an elastic
environment, it is necessary to control both positions and contact forces and
it is convenient to refer to operational space control schemes. Hence, below
some solutions are presented; these are worked out for motion control, but
they constitute the premise for the force/position control strategies that will
be illustrated in the next chapter.

8.6.1 General Schemes

As pointed out above, operational space control schemes are based on a direct
comparison of the inputs, specifying operational space trajectories, with the
measurements of the corresponding manipulator outputs. It follows that the
control system should incorporate some actions that allow the transformation
from the operational space, in which the error is specified, to the joint space,
in which control generalized forces are developed.

A possible control scheme that can be devised is the so-called Jacobian
inverse control (Fig. 8.27). In this scheme, the end-effector pose in the op-
erational space xe is compared with the corresponding desired quantity xd,
and then an operational space deviation Δx can be computed. Assumed that
this deviation is sufficiently small for a good control system, Δx can be trans-
formed into a corresponding joint space deviation Δq through the inverse of
the manipulator Jacobian. Then, the control input generalized forces can be
computed on the basis of this deviation through a suitable feedback matrix
gain. The result is a presumable reduction of Δq and in turn of Δx. In other
words, the Jacobian inverse control leads to an overall system that intuitively
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Fig. 8.28. Block scheme of Jacobian transpose control

behaves like a mechanical system with a generalized n-dimensional spring in
the joint space, whose constant stiffness is determined by the feedback matrix
gain. The role of such system is to take the deviation Δq to zero. If the matrix
gain is diagonal, the generalized spring corresponds to n independent elastic
elements, one for each joint.

A conceptually analogous scheme is the so-called Jacobian transpose con-
trol (Fig. 8.28). In this case, the operational space error is treated first through
a matrix gain. The output of this block can then be considered as the elas-
tic force generated by a generalized spring whose function in the operational
space is that to reduce or to cancel the position deviation Δx. In other words,
the resulting force drives the end-effector along a direction so as to reduce Δx.
This operational space force has then to be transformed into the joint space
generalized forces, through the transpose of the Jacobian, so as to realize the
described behaviour.

Both Jacobian inverse and transpose control schemes have been derived
in an intuitive fashion. Hence, there is no guarantee that such schemes are
effective in terms of stability and trajectory tracking accuracy. These problems
can be faced by presenting two mathematical solutions below, which will be
shown to be substantially equivalent to the above schemes.

8.6.2 PD Control with Gravity Compensation

By analogy with joint space stability analysis, given a constant end-effector
pose xd, it is desired to find the control structure so that the operational space
error

x̃ = xd − xe (8.106)

tends asymptotically to zero. Choose the following positive definite quadratic
form as a Lyapunov function candidate:

V (q̇, x̃) =
1
2
q̇T B(q)q̇ +

1
2
x̃T KP x̃ > 0 ∀q̇, x̃ �= 0, (8.107)

with KP a symmetric positive definite matrix. Differentiating (8.107) with
respect to time gives

V̇ = q̇T B(q)q̈ +
1
2
q̇T Ḃ(q)q̇ + ˙̃x

T
KP x̃.
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Fig. 8.29. Block scheme of operational space PD control with gravity compensation

Since ẋd = 0, in view of (3.62) it is

˙̃x = −JA(q)q̇

and then
V̇ = q̇T B(q)q̈ +

1
2
q̇T Ḃ(q)q̇ − q̇T JT

A(q)KP x̃. (8.108)

By recalling the expression of the joint space manipulator dynamic model
in (8.7) and the property in (7.49), the expression in (8.108) becomes

V̇ = −q̇T F q̇ + q̇T
(
u − g(q) − JT

A(q)KP x̃
)
. (8.109)

This equation suggests the structure of the controller; in fact, by choosing
the control law

u = g(q) + JT
A(q)KP x̃ − JT

A(q)KDJA(q)q̇ (8.110)

with KD positive definite, (8.109) becomes

V̇ = −q̇T F q̇ − q̇T JT
A(q)KDJA(q)q̇. (8.111)

As can be seen from Fig. 8.29, the resulting block scheme reveals an anal-
ogy with the scheme of Fig. 8.28. Control law (8.110) performs a nonlin-
ear compensating action of joint space gravitational forces and an operational
space linear PD control action. The last term has been introduced to enhance
system damping; in particular, if measurement of ẋ is deduced from that of
q̇, one can simply choose the derivative term as −KDq̇.

The expression in (8.111) shows that, for any system trajectory, the Lya-
punov function decreases as long as q̇ �= 0. The system then reaches an equi-
librium posture. By a stability argument similar to that in the joint space
(see (8.52)–(8.54)) this posture is determined by

JT
A(q)KP x̃ = 0. (8.112)
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Fig. 8.30. Block scheme of operational space inverse dynamics control

From (8.112) it can be recognized that, under the assumption of full-rank
Jacobian, it is

x̃ = xd − xe = 0,

i.e., the sought result.
If measurements of xe and ẋe are made directly in the operational space,

k(q) and JA(q) in the scheme of Fig. 8.45 are just indicative of direct kine-
matics functions; it is, however, necessary to measure q to update both JT

A(q)
and g(q) on-line. If measurements of operational space quantities are indirect,
the controller has to compute the direct kinematics functions, too.

8.6.3 Inverse Dynamics Control

Consider now the problem of tracking an operational space trajectory. Recall
the manipulator dynamic model in the form (8.55)

B(q)q̈ + n(q, q̇) = u,

where n is given by (8.56). As in (8.57), the choice of the inverse dynamics
linearizing control

u = B(q)y + n(q, q̇)

leads to the system of double integrators

q̈ = y. (8.113)

The new control input y is to be designed so as to yield tracking of a trajectory
specified by xd(t). To this end, the second-order differential equation in the
form (3.98)

ẍe = JA(q)q̈ + J̇A(q, q̇)q̇
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suggests, for a nonredundant manipulator, the choice of the control law —
formally analogous to (3.102) —

y = J−1
A (q)

(
ẍd + KD

˙̃x + KP x̃ − J̇A(q, q̇)q̇
)

(8.114)

with KP and KD positive definite (diagonal) matrices. In fact, substitut-
ing (8.114) into (8.113) gives

¨̃x + KD
˙̃x + KP x̃ = 0 (8.115)

which describes the operational space error dynamics, with KP and KD

determining the error convergence rate to zero. The resulting inverse dynamics
control scheme is reported in Fig. 8.30, which confirms the anticipated analogy
with the scheme of Fig. 8.27. Again in this case, besides xe and ẋe, q and q̇ are
also to be measured. If measurements of xe and ẋe are indirect, the controller
must compute the direct kinematics functions k(q) and JA(q) on-line.

A critical analysis of the schemes in Figs. 8.29, 8.30 reveals that the design
of an operational space controller always requires computation of manipulator
Jacobian. As a consequence, controlling a manipulator in the operational space
is in general more complex than controlling it in the joint space. In fact, the
presence of singularities and/or redundancy influences the Jacobian, and the
induced effects are somewhat difficult to handle with an operational space
controller. For instance, if a singularity occurs for the scheme of Fig. 8.29 and
the error enters the null space of the Jacobian, the manipulator gets stuck
at a different configuration from the desired one. This problem is even more
critical for the scheme of Fig. 8.30 which would require the computation of a
DLS inverse of the Jacobian. Yet, for a redundant manipulator, a joint space
control scheme is naturally transparent to this situation, since redundancy
has already been solved by inverse kinematics, whereas an operational space
control scheme should incorporate a redundancy handling technique inside
the feedback loop.

As a final remark, the above operational space control schemes have been
derived with reference to a minimal description of orientation in terms of
Euler angles. It is understood that, similar to what is presented in Sect. 3.7.3
for inverse kinematics algorithms, it is possible to adopt different definitions
of orientation error, e.g., based on the angle and axis or the unit quaternion.
The advantage is the use of the geometric Jacobian in lieu of the analytical
Jacobian. The price to pay, however, is a more complex analysis of the stability
and convergence characteristics of the closed-loop system. Even the inverse
dynamics control scheme will not lead to a homogeneous error equation, and
a Lyapunov argument should be invoked to ascertain its stability.
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8.7 Comparison Among Various Control Schemes

In order to make a comparison between the various control schemes presented,
consider the two-link planar arm with the same data of Example 7.2:

a1 = a2 = 1 m �1 = �2 = 0.5 m m�1 = m�2 = 50 kg I�1 = I�2 = 10 kg·m2

kr1 = kr2 = 100 mm1 = mm2 = 5 kg Im1 = Im2 = 0.01 kg·m2.

The arm is assumed to be driven by two equal actuators with the following
data:

Fm1 = Fm2 = 0.01 N·m·s/rad Ra1 = Ra2 = 10 ohm

kt1 = kt2 = 2 N·m/A kv1 = kv2 = 2 V·s/rad;

it can be verified that Fmi
� kvikti/Rai for i = 1, 2.

The desired tip trajectories have a typical trapezoidal velocity profile, and
thus it is anticipated that sharp torque variations will be induced. The tip path
is a motion of 1.6 m along the horizontal axis, as in the path of Example 7.2. In
the first case (fast trajectory), the acceleration time is 0.6 s and the maximum
velocity is 1 m/s. In the second case (slow trajectory), the acceleration time is
0.6 s and the maximum velocity is 0.25 m/s. The motion of the controlled arm
was simulated on a computer, by adopting a discrete-time implementation of
the controller with a sampling time of 1 ms.

The following control schemes in the joint space and in the operational
space have been utilized; an (analytic) inverse kinematics solution has been im-
plemented to generate the reference inputs to the joint space control schemes:

A. Independent joint control with position and velocity feedback (Fig. 5.11)
with the following data for each joint servo:

KP = 5 KV = 10 kTP = kTV = 1,

corresponding to ωn = 5 rad/s and ζ = 0.5.
B. Independent joint control with position, velocity and acceleration feedback

(Fig. 8.9) with the following data for each joint servo:

KP = 5 KV = 10 KA = 2 kTP = kTV = kTA = 1,

corresponding to ωn = 5 rad/s, ζ = 0.5, XR = 100. To reconstruct accel-
eration, a first-order filter has been utilized (Fig. 8.11) characterized by
ω3f = 100 rad/s.

C. As in scheme A with the addition of a decentralized feedforward action
(Fig. 8.13).

D. As in scheme B with the addition of a decentralized feedforward action
(Fig. 8.14).

E. Joint space computed torque control (Fig. 8.19) with feedforward com-
pensation of the diagonal terms of the inertia matrix and of gravitational
terms, and decentralized feedback controllers as in scheme A.
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F. Joint space PD control with gravity compensation (Fig. 8.20), modified
by the addition of a feedforward velocity term KDq̇d, with the following
data:

KP = 3750I2 KD = 750I2.

G. Joint space inverse dynamics control (Fig. 8.22) with the following data:

KP = 25I2 KD = 5I2.

H. Joint space robust control (Fig. 8.23), under the assumption of constant
inertia (B̂ = B̄) and compensation of friction and gravity (n̂ = F vq̇ +g),
with the following data:

KP = 25I2 KD = 5I2 P = I2 ρ = 70 ε = 0.004.

I. As in case H with ε = 0.01.
J. Joint space adaptive control (Fig. 8.26) with a parameterization of the

arm dynamic model (7.82) as in (7.83), (7.84). The initial estimate of the
vector π̂ is computed on the basis of the nominal parameters. The arm
is supposed to carry a load which causes the following variations on the
second link parameters:

Δm2 = 10 kg Δm2�C2 = 11 kg·m ΔÎ2 = 12.12 kg·m2.

This information is obviously utilized only to update the simulated arm
model. Further, the following data are set:

Λ = 5I2 KD = 750I2 Kπ = 0.01I8.

K. Operational space PD control with gravity compensation (Fig. 8.29), mod-
ified by the addition of a feedforward velocity term KDẋd, with the fol-
lowing data:

KP = 16250I2 KD = 3250I2.

L. Operational space inverse dynamics control (Fig. 8.30) with the following
data:

KP = 25I2 KD = 5I2.

It is worth remarking that the adopted model of the dynamic system of arm
with drives is that described by (8.7). In the decentralized control schemes A–
E, the joints have been voltage-controlled as in the block scheme of Fig. 8.3,
with unit amplifier gains (Gv = I). On the other hand, in the centralized
control schemes F–L, the joints have been current-controlled as in the block
scheme of Fig. 8.4, with unit amplifier gains (Gi = I).

Regarding the parameters of the various controllers, these have been cho-
sen in such a way as to allow a significant comparison of the performance of
each scheme in response to congruent control actions. In particular, it can be
observed that:
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Fig. 8.31. Time history of the joint positions and torques and of the tip position
errors for the fast trajectory with control scheme A
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Fig. 8.32. Time history of the joint torques and of the norm of tip position error
for the fast trajectory; left : with control scheme C, right: with control scheme D
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Fig. 8.33. Time history of the joint torques and of the norm of tip position error
for the fast trajectory with control scheme E
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Fig. 8.34. Time history of the joint positions and torques and of the norm of tip
position error for the fast trajectory with control scheme F
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Fig. 8.35. Time history of the joint torques and of the norm of tip position error
for the fast trajectory with control scheme G
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Fig. 8.36. Time history of the joint torques and of the norm of tip position error
for the fast trajectory; left : with control scheme H, right : with control scheme I

• The dynamic behaviour of the joints is the same for schemes A–E.
• The gains of the PD actions in schemes G, H, I and L have been chosen

so as to obtain the same natural frequency and damping ratios as those of
schemes A–E.

The results obtained with the various control schemes are illustrated in
Figs. 8.31–8.39 for the fast trajectory and in Figs. 8.40–8.48 for the slow
trajectory, respectively. In the case of two quantities represented in the same
plot notice that:

• For the joint trajectories, the dashed line indicates the reference trajectory
obtained from the tip trajectory via inverse kinematics, while the solid line
indicates the actual trajectory followed by the arm.

• For the joint torques, the solid line refers to Joint 1 while the dashed line
refers to Joint 2.

• For the tip position error, the solid line indicates the error component along
the horizontal axis while the dashed line indicates the error component
along the vertical axis.

Finally, the representation scales have been made as uniform as possible
in order to allow a more direct comparison of the results.

Regarding performance of the various control schemes for the fast trajec-
tory, the obtained results lead to the following considerations.
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Fig. 8.37. Time history of the norm of tip position error and of the norm of pa-
rameter error vector for the fast trajectory with control scheme J
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Fig. 8.38. Time history of the joint torques and of the norm of tip position error
for the fast trajectory with control scheme K
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Fig. 8.39. Time history of the joint torques and of the norm of tip position error
for the fast trajectory with control scheme L

Deviation of the actual joint trajectories from the desired ones shows that
tracking performance of scheme A is quite poor (Fig. 8.31). It should be
noticed, however, that the largest contribution to the error is caused by a
time lag of the actual trajectory behind the desired one, while the distance
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Fig. 8.40. Time history of the joint positions and torques and of the tip position
errors for the slow trajectory with control scheme A
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Fig. 8.41. Time history of the joint torques and of the norm of tip position error
for the slow trajectory; left : with control scheme C, right : with control scheme D
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Fig. 8.42. Time history of the joint torques and of the norm of tip position error
for the slow trajectory with control scheme E
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Fig. 8.43. Time history of the joint positions and torques and of the norm of tip
position error for the slow trajectory with control scheme F
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Fig. 8.44. Time history of the joint torques and of the norm of tip position error
for the slow trajectory with control scheme G
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Fig. 8.45. Time history of the joint torques and of the norm of tip position error
for the slow trajectory; left : with control scheme H, right : with control scheme I

of the tip from the geometric path is quite contained. Similar results were
obtained with scheme B, and then they have not been reported.

With schemes C and D, an appreciable tracking accuracy improvement is
observed (Fig. 8.32), with better performance for the second scheme, thanks
to the outer acceleration feedback loop that allows a disturbance rejection
factor twice as much as for the first scheme. Notice that the feedforward
action yields a set of torques which are closer to the nominal ones required to
execute the desired trajectory; the torque time history has a discontinuity in
correspondence of the acceleration and deceleration fronts.

The tracking error is further decreased with scheme E (Fig. 8.33), by virtue
of the additional nonlinear feedforward compensation.

Scheme F guarantees stable convergence to the final arm posture with a
tracking performance which is better than that of schemes A and B, thanks to
the presence of a velocity feedforward action, but worse than that of schemes
C–E, in view of lack of an acceleration feedforward action (Fig. 8.34).

As would be logical to expect, the best results are observed with scheme G
for which the tracking error is practically zero, and it is mainly due to numer-
ical discretization of the controller (Fig. 8.35).

It is then worth comparing the performance of schemes H and I (Fig. 8.36).
In fact, the choice of a small threshold value for ε (scheme H) induces high-
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Fig. 8.46. Time history of the norm of tip position error and of the norm of pa-
rameter error vector for the slow trajectory with control scheme J
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Fig. 8.47. Time history of the joint torques and of the norm of tip position error
for the slow trajectory with control scheme K
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Fig. 8.48. Time history of the joint torques and of the norm of tip position error
for the slow trajectory with control scheme L

frequency components in Joint 1 torque (see the thick portions of the torque
plot) at the advantage of a very limited tracking error. As the threshold value is
increased (scheme I), the torque assumes a smoother behaviour at the expense
of a doubled norm of tracking error, though.
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For scheme J, a lower tracking error than that of scheme F is observed,
thanks to the effectiveness of the adaptive action on the parameters of the
dynamic model. Nonetheless, the parameters do not converge to their nominal
values, as confirmed by the time history of the norm of the parameter error
vector that reaches a non-null steady-state value (Fig. 8.37).

Finally, the performance of schemes K and L is substantially comparable
to that of corresponding schemes F and G (Figs. 8.38 and 8.39).

Performance of the various control schemes for the slow trajectory is glob-
ally better than that for the fast trajectory. Such improvement is particularly
evident for the decentralized control schemes (Figs. 8.40–8.42), whereas the
tracking error reduction for the centralized control schemes is less dramatic
(Figs. 8.43–8.48), in view of the small order of magnitude of the errors already
obtained for the fast trajectory. In any case, as regards performance of each
single scheme, it is possible to make a number of remarks analogous to those
previously made.
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Problems

8.1. With reference to the block scheme with position feedback in Fig. 5.10,
find the transfer functions of the forward path, the return path, and the
closed-loop system.

8.2. With reference to the block scheme with position and velocity feedback
in Fig. 5.11, find the transfer functions of the forward path, the return path,
and the closed-loop system.

8.3. With reference to the block scheme with position, velocity and accelera-
tion feedback in Fig. 8.9, find the transfer functions of the forward path, the
return path, and the closed-loop system.

8.4. For a single joint drive system with the data: I = 6 kg·m2, Ra = 0.3 ohm,
kt = 0.5 N·m/A, kv = 0.5 V·s/rad, Fm = 0.001 N·m·s/rad, find the parameters
of the controller with position feedback (unit transducer constant) that yield a
closed-loop response with damping ratio ζ ≥ 0.4. Discuss disturbance rejection
properties.

8.5. For the drive system of Problem 8.4, find the parameters of the controller
with position and velocity feedback (unit transducer constants) that yield
a closed-loop response with damping ratio ζ ≥ 0.4 and natural frequency
ωn = 20 rad/s. Discuss disturbance rejection properties.

8.6. For the drive system of Problem 8.4, find the parameters of the controller
with position, velocity and acceleration feedback (unit transducer constants)
that yield a closed-loop response with damping ratio ζ ≥ 0.4, natural fre-
quency ωn = 20 rad/s and disturbance rejection factor XR = 400. Also, design
a first-order filter that allows acceleration measurement reconstruction.

8.7. Verify that the control schemes in Figs. 8.12, 8.13, 8.14 correspond to
realizing (8.42), (8.43), (8.44), respectively.

8.8. Verify that the standard regulation schemes in Figs. 8.15, 8.16, 8.17 are
equivalent to the schemes in Figs. 8.12, 8.13, 8.14, respectively.

8.9. Prove inequality (8.76).

8.10. For the two-link planar arm with the same data as in Sect. 8.7, design a
joint control of PD type with gravity compensation. By means of a computer
simulation, verify stability for the following postures q = [π/4 −π/2 ]T and
q = [−π −3π/4 ]T , respectively. Implement the control in discrete-time with
a sampling time of 1 ms.

8.11. For the two-link planar arm with the same data as in Sect. 8.7, under
the assumption of a concentrated tip payload of mass mL = 10 kg, design
an independent joint control with feedforward computed torque. Perform a
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computer simulation of the motion of the controlled arm along the joint space
rectilinear path from qi = [ 0 π/4 ]T to qf = [π/2 π/2 ]T with a trapezoidal
velocity profile and a trajectory duration tf = 1 s. Implement the control in
discrete-time with a sampling time of 1 ms.

8.12. For the two-link planar arm of Problem 8.11, design an inverse dynamics
joint control. Perform a computer simulation of the motion of the controlled
arm along the trajectory specified in Problem 8.11. Implement the control in
discrete-time with a sampling time of 1 ms.

8.13. For the two-link planar arm of Problem 8.11, design a robust joint con-
trol. Perform a computer simulation of the motion of the controlled arm along
the trajectory specified in Problem 8.11. Implement the control in discrete-
time with a sampling time of 1 ms.

8.14. For the two-link planar arm of Problem 8.11, design an adaptive joint
control, on the basis of a suitable parameterization of the arm dynamic model.
Perform a computer simulation of the motion of the controlled arm along the
trajectory specified in Problem 8.11. Implement the control in discrete-time
with a sampling time of 1 ms.

8.15. For the two-link planar of Problem 8.11, design a PD control in the
operational space with gravity compensation. By means of a computer sim-
ulation, verify stability for the following postures p = [ 0.5 0.5 ]T and
p = [ 0.6 −0.2 ]T , respectively. Implement the control in discrete-time with
a sampling time of 1 ms.

8.16. For the two-link planar arm of Problem 8.11, design an inverse dynamics
control in the operational space. Perform a computer simulation of the motion
of the controlled arm along the operational space rectlinear path from p(0) =
[ 0.7 0.2 ]T to p(1) = [ 0.1 −0.6 ]T with a trapezoidal velocity profile and a
trajectory duration tf = 1 s. Implement the control in discrete-time with a
sampling time of 1 ms.

A

Linear Algebra

Since modelling and control of robot manipulators requires an extensive use
of matrices and vectors as well as of matrix and vector operations, the goal
of this appendix is to provide a brush-up of linear algebra.

A.1 Definitions

A matrix of dimensions (m× n), with m and n positive integers, is an array
of elements aij arranged into m rows and n columns:

A = [aij ] i = 1, . . . , m
j = 1, . . . , n

=

⎡⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

⎤⎥⎥⎦ . (A.1)

If m = n, the matrix is said to be square; if m < n, the matrix has more
columns than rows; if m > n the matrix has more rows than columns. Further,
if n = 1, the notation (A.1) is used to represent a (column) vector a of
dimensions (m× 1);1 the elements ai are said to be vector components.

A square matrix A of dimensions (n× n) is said to be upper triangular if
aij = 0 for i > j:

A =

⎡⎢⎢⎣
a11 a12 . . . a1n

0 a22 . . . a2n
...

...
. . .

...
0 0 . . . ann

⎤⎥⎥⎦ ;

the matrix is said to be lower triangular if aij = 0 for i < j.

1 According to standard mathematical notation, small boldface is used to denote
vectors while capital boldface is used to denote matrices. Scalars are denoted by
roman characters.
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An (n×n) square matrix A is said to be diagonal if aij = 0 for i �= j, i.e.,

A =

⎡⎢⎢⎣
a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann

⎤⎥⎥⎦ = diag{a11, a22, . . . , ann}.

If an (n× n) diagonal matrix has all unit elements on the diagonal (aii = 1),
the matrix is said to be identity and is denoted by In.2 A matrix is said to be
null if all its elements are null and is denoted by O. The null column vector
is denoted by 0.

The transpose AT of a matrix A of dimensions (m × n) is the matrix of
dimensions (n×m) which is obtained from the original matrix by interchanging
its rows and columns:

AT =

⎡⎢⎢⎣
a11 a21 . . . am1

a12 a22 . . . am2
...

...
. . .

...
a1n a2n . . . amn

⎤⎥⎥⎦ . (A.2)

The transpose of a column vector a is the row vector aT .
An (n× n) square matrix A is said to be symmetric if AT = A, and thus

aij = aji:

A =

⎡⎢⎢⎣
a11 a12 . . . a1n

a12 a22 . . . a2n
...

...
. . .

...
a1n a2n . . . ann

⎤⎥⎥⎦ .

An (n × n) square matrix A is said to be skew-symmetric if AT = −A, and
thus aij = −aji for i �= j and aii = 0, leading to

A =

⎡⎢⎢⎣
0 a12 . . . a1n

−a12 0 . . . a2n
...

...
. . .

...
−a1n −a2n . . . 0

⎤⎥⎥⎦ .

A partitioned matrix is a matrix whose elements are matrices (blocks) of
proper dimensions:

A =

⎡⎢⎢⎣
A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
Am1 Am2 . . . Amn

⎤⎥⎥⎦ .

2 Subscript n is usually omitted if the dimensions are clear from the context.
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A partitioned matrix may be block-triangular or block-diagonal. Special par-
titions of a matrix are that by columns

A = [a1 a2 . . . an ]

and that by rows

A =

⎡⎢⎢⎢⎢⎣
aT

1

aT
2

...

aT
m

⎤⎥⎥⎥⎥⎦ .

Given a square matrix A of dimensions (n×n), the algebraic complement
A(ij) of element aij is the matrix of dimensions ((n − 1) × (n − 1)) which is
obtained by eliminating row i and column j of matrix A.

A.2 Matrix Operations

The trace of an (n × n) square matrix A is the sum of the elements on the
diagonal:

Tr(A) =
n∑

i=1

aii. (A.3)

Two matrices A and B of the same dimensions (m×n) are equal if aij =
bij . If A and B are two matrices of the same dimensions, their sum is the
matrix

C = A + B (A.4)

whose elements are given by cij = aij + bij . The following properties hold:

A + O = A

A + B = B + A

(A + B) + C = A + (B + C).

Notice that two matrices of the same dimensions and partitioned in the same
way can be summed formally by operating on the blocks in the same position
and treating them like elements.

The product of a scalar α by an (m×n) matrix A is the matrix αA whose
elements are given by αaij . If A is an (n× n) diagonal matrix with all equal
elements on the diagonal (aii = a), it follows that A = aIn.

If A is a square matrix, one may write

A = As + Aa (A.5)

where
As =

1
2
(A + AT ) (A.6)
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is a symmetric matrix representing the symmetric part of A, and

Aa =
1
2
(A − AT ) (A.7)

is a skew-symmetric matrix representing the skew-symmetric part of A.
The row-by-column product of a matrix A of dimensions (m × p) by a

matrix B of dimensions (p× n) is the matrix of dimensions (m× n)

C = AB (A.8)

whose elements are given by cij =
∑p

k=1 aikbkj . The following properties hold:

A = AIp = ImA

A(BC) = (AB)C
A(B + C) = AB + AC

(A + B)C = AC + BC

(AB)T = BT AT .

Notice that, in general, AB �= BA, and AB = O does not imply that A = O
or B = O; further, notice that AC = BC does not imply that A = B.

If an (m× p) matrix A and a (p× n) matrix B are partitioned in such a
way that the number of blocks for each row of A is equal to the number of
blocks for each column of B, and the blocks Aik and Bkj have dimensions
compatible with product, the matrix product AB can be formally obtained by
operating by rows and columns on the blocks of proper position and treating
them like elements.

For an (n× n) square matrix A, the determinant of A is the scalar given
by the following expression, which holds ∀i = 1, . . . , n:

det(A) =
n∑

j=1

aij(−1)i+jdet
(
A(ij)

)
. (A.9)

The determinant can be computed according to any row i as in (A.9); the
same result is obtained by computing it according to any column j. If n = 1,
then det(a11) = a11. The following property holds:

det(A) = det(AT ).

Moreover, interchanging two generic columns p and q of a matrix A yields

det
(
[ a1 . . .ap . . .aq . . .an ]

)
= −det

(
[ a1 . . .aq . . .ap . . .an ]

)
.

As a consequence, if a matrix has two equal columns (rows), then its deter-
minant is null. Also, it is det(αA) = αndet(A).

Given an (m×n) matrix A, the determinant of the square block obtained
by selecting an equal number k of rows and columns is said to be k-order minor
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of matrix A. The minors obtained by taking the first k rows and columns of
A are said to be principal minors.

If A and B are square matrices, then

det(AB) = det(A)det(B). (A.10)

If A is an (n× n) triangular matrix (in particular diagonal), then

det(A) =
n∏

i=1

aii.

More generally, if A is block-triangular with m blocks Aii on the diagonal,
then

det(A) =
m∏

i=1

det(Aii).

A square matrix A is said to be singular when det(A) = 0.
The rank �(A) of a matrix A of dimensions (m × n) is the maximum

integer r so that at least a non-null minor of order r exists. The following
properties hold:

�(A) ≤ min{m,n}
�(A) = �(AT )
�(AT A) = �(A)
�(AB) ≤ min{�(A), �(B)}.

A matrix so that �(A) = min{m,n} is said to be full-rank .
The adjoint of a square matrix A is the matrix

AdjA = [(−1)i+jdet(A(ij))]Ti = 1, . . . , n
j = 1, . . . , n

. (A.11)

An (n × n) square matrix A is said to be invertible if a matrix A−1 exists,
termed inverse of A, so that

A−1A = AA−1 = In.

Since �(In) = n, an (n × n) square matrix A is invertible if and only if
�(A) = n, i.e., det(A) �= 0 (nonsingular matrix). The inverse of A can be
computed as

A−1 =
1

det(A)
AdjA. (A.12)

The following properties hold:

(A−1)−1 = A

(AT )−1 = (A−1)T .
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If the inverse of a square matrix is equal to its transpose

AT = A−1 (A.13)

then the matrix is said to be orthogonal ; in this case it is

AAT = AT A = I. (A.14)

A square matrix A is said idempotent if

AA = A. (A.15)

If A and B are invertible square matrices of the same dimensions, then

(AB)−1 = B−1A−1. (A.16)

Given n square matrices Aii all invertible, the following expression holds:(
diag{A11, . . . ,Ann}

)−1 = diag{A−1
11 , . . . ,A−1

nn}.

where diag{A11, . . . ,Ann} denotes the block-diagonal matrix.
If A and C are invertible square matrices of proper dimensions, the fol-

lowing expression holds:

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1,

where the matrix DA−1B + C−1 must be invertible.
If a block-partitioned matrix is invertible, then its inverse is given by the

general expression[
A D
C B

]−1

=
[

A−1 + EΔ−1F −EΔ−1

−Δ−1F Δ−1

]
(A.17)

where Δ = B−CA−1D, E = A−1D and F = CA−1, under the assumption
that the inverses of matrices A and Δ exist. In the case of a block-triangular
matrix, invertibility of the matrix requires invertibility of the blocks on the
diagonal. The following expressions hold:[

A O
C B

]−1

=
[

A−1 O
−B−1CA−1 B−1

]
[

A D
O B

]−1

=
[

A−1 −A−1DB−1

O B−1

]
.

The derivative of an (m × n) matrix A(t), whose elements aij(t) are dif-
ferentiable functions, is the matrix

Ȧ(t) =
d

dt
A(t) =

[
d

dt
aij(t)

]
i = 1, . . . , m
j = 1, . . . , n

. (A.18)
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If an (n × n) square matrix A(t) is so that �(A(t)) = n ∀t and its elements
aij(t) are differentiable functions, then the derivative of the inverse of A(t)
is given by

d

dt
A−1(t) = −A−1(t)Ȧ(t)A−1(t). (A.19)

Given a scalar function f(x), endowed with partial derivatives with respect
to the elements xi of the (n × 1) vector x, the gradient of function f with
respect to vector x is the (n× 1) column vector

∇xf(x) =
(
∂f(x)
∂x

)T

=
[
∂f(x)
∂x1

∂f(x)
∂x2

. . .
∂f(x)
∂xn

]T

. (A.20)

Further, if x(t) is a differentiable function with respect to t, then

ḟ(x) =
d

dt
f(x(t)) =

∂f

∂x
ẋ = ∇T

xf(x)ẋ. (A.21)

Given a vector function g(x) of dimensions (m × 1), whose elements gi are
differentiable with respect to the vector x of dimensions (n×1), the Jacobian
matrix (or simply Jacobian) of the function is defined as the (m× n) matrix

Jg(x) =
∂g(x)
∂x

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂g1(x)
∂x

∂g2(x)
∂x
...

∂gm(x)
∂x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.22)

If x(t) is a differentiable function with respect to t, then

ġ(x) =
d

dt
g(x(t)) =

∂g

∂x
ẋ = Jg(x)ẋ. (A.23)

A.3 Vector Operations

Given n vectors xi of dimensions (m × 1), they are said to be linearly inde-
pendent if the expression

k1x1 + k2x2 + . . . + knxn = 0

holds true only when all the constants ki vanish. A necessary and sufficient
condition for the vectors x1,x2 . . . ,xn to be linearly independent is that the
matrix

A = [x1 x2 . . . xn ]
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has rank n; this implies that a necessary condition for linear independence
is that n ≤ m. If instead �(A) = r < n, then only r vectors are linearly
independent and the remaining n − r vectors can be expressed as a linear
combination of the previous ones.

A system of vectors X is a vector space on the field of real numbers IR if
the operations of sum of two vectors of X and product of a scalar by a vector
of X have values in X and the following properties hold:

x + y = y + x ∀x,y ∈ X
(x + y) + z = x + (y + z) ∀x,y,z ∈ X
∃0 ∈ X : x + 0 = x ∀x ∈ X
∀x ∈ X , ∃(−x) ∈ X : x + (−x) = 0

1x = x ∀x ∈ X
α(βx) = (αβ)x ∀α, β ∈ IR ∀x ∈ X
(α + β)x = αx + βx ∀α, β ∈ IR ∀x ∈ X
α(x + y) = αx + αy ∀α ∈ IR ∀x,y ∈ X .

The dimension of the space dim(X ) is the maximum number of linearly inde-
pendent vectors x in the space. A set {x1,x2, . . . ,xn} of linearly independent
vectors is a basis of vector space X , and each vector y in the space can be
uniquely expressed as a linear combination of vectors from the basis

y = c1x1 + c2x2 + . . . + cnxn, (A.24)

where the constants c1, c2, . . . , cn are said to be the components of the vector
y in the basis {x1,x2, . . . ,xn}.

A subset Y of a vector space X is a subspace Y ⊆ X if it is a vector space
with the operations of vector sum and product of a scalar by a vector, i.e.,

αx + βy ∈ Y ∀α, β ∈ IR ∀x,y ∈ Y.

According to a geometric interpretation, a subspace is a hyperplane passing
by the origin (null element) of X .

The scalar product < x,y > of two vectors x and y of dimensions (m ×
1) is the scalar that is obtained by summing the products of the respective
components in a given basis

< x,y >= x1y1 + x2y2 + . . . + xmym = xT y = yT x. (A.25)

Two vectors are said to be orthogonal when their scalar product is null:

xT y = 0. (A.26)

The norm of a vector can be defined as

‖x‖ =
√

xT x. (A.27)
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It is possible to show that both the triangle inequality

‖x + y‖ ≤ ‖x‖ + ‖y‖ (A.28)

and the Schwarz inequality

|xT y| ≤ ‖x‖ ‖y‖. (A.29)

hold. A unit vector x̂ is a vector whose norm is unity, i.e., x̂T x̂ = 1. Given a
vector x, its unit vector is obtained by dividing each component by its norm:

x̂ =
1

‖x‖x. (A.30)

A typical example of vector space is the Euclidean space whose dimension is
3; in this case a basis is constituted by the unit vectors of a coordinate frame.

The vector product of two vectors x and y in the Euclidean space is the
vector

x × y =

⎡⎣x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

⎤⎦ . (A.31)

The following properties hold:

x × x = 0

x × y = −y × x

x × (y + z) = x × y + x × z.

The vector product of two vectors x and y can be expressed also as the
product of a matrix operator S(x) by the vector y. In fact, by introducing
the skew-symmetric matrix

S(x) =

⎡⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤⎦ (A.32)

obtained with the components of vector x, the vector product x × y is given
by

x × y = S(x)y = −S(y)x (A.33)

as can be easily verified. Moreover, the following properties hold:

S(x)x = ST (x)x = 0

S(αx + βy) = αS(x) + βS(y).

Given three vectors x, y, z in the Euclidean space, the following expres-
sions hold for the scalar triple products:

xT (y × z) = yT (z × x) = zT (x × y). (A.34)

If any two vectors of three are equal, then the scalar triple product is null;
e.g.,

xT (x × y) = 0.
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A.4 Linear Transformation

Consider a vector space X of dimension n and a vector space Y of dimension
m with m ≤ n. The linear transformation (or linear map) between the vectors
x ∈ X and y ∈ Y can be defined as

y = Ax (A.35)

in terms of the matrix A of dimensions (m× n). The range space (or simply
range) of the transformation is the subspace

R(A) = {y : y = Ax, x ∈ X} ⊆ Y, (A.36)

which is the subspace generated by the linearly independent columns of matrix
A taken as a basis of Y. It is easy to recognize that

�(A) = dim(R(A)). (A.37)

On the other hand, the null space (or simply null) of the transformation is
the subspace

N (A) = {x : Ax = 0, x ∈ X} ⊆ X . (A.38)

Given a matrix A of dimensions (m× n), the notable result holds:

�(A) + dim(N (A)) = n. (A.39)

Therefore, if �(A) = r ≤ min{m,n}, then dim(R(A)) = r and dim(N (A)) =
n− r. It follows that if m < n, then N (A) �= ∅ independently of the rank of
A; if m = n, then N (A) �= ∅ only in the case of �(A) = r < m.

If x ∈ N (A) and y ∈ R(AT ), then yT x = 0, i.e., the vectors in the null
space of A are orthogonal to each vector in the range space of the transpose
of A. It can be shown that the set of vectors orthogonal to each vector of
the range space of AT coincides with the null space of A, whereas the set of
vectors orthogonal to each vector in the null space of AT coincides with the
range space of A. In symbols:

N (A) ≡ R⊥(AT ) R(A) ≡ N⊥(AT ) (A.40)

where ⊥ denotes the orthogonal complement of a subspace.
If the matrix A in (A.35) is square and idempotent, the matrix represents

the projection of space X into a subspace.
A linear transformation allows the definition of the norm of a matrix A

induced by the norm defined for a vector x as follows. In view of the property

‖Ax‖ ≤ ‖A‖ ‖x‖, (A.41)

the norm of A can be defined as

‖A‖ = sup
x �=0

‖Ax‖
‖x‖ (A.42)
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which can also be computed as

max
‖x‖=1

‖Ax‖.

A direct consequence of (A.41) is the property

‖AB‖ ≤ ‖A‖ ‖B‖. (A.43)

A different norm of a matrix is the Frobenius norm defined as

‖A‖F =
(
Tr(AT A)

)1/2

(A.44)

A.5 Eigenvalues and Eigenvectors

Consider the linear transformation on a vector u established by an (n × n)
square matrix A. If the vector resulting from the transformation has the same
direction of u (with u �= 0), then

Au = λu. (A.45)

The equation in (A.45) can be rewritten in matrix form as

(λI − A)u = 0. (A.46)

For the homogeneous system of equations in (A.46) to have a solution different
from the trivial one u = 0, it must be

det(λI − A) = 0 (A.47)

which is termed a characteristic equation. Its solutions λ1, . . . , λn are the
eigenvalues of matrix A; they coincide with the eigenvalues of matrix AT . On
the assumption of distinct eigenvalues, the n vectors ui satisfying the equation

(λiI − A)ui = 0 i = 1, . . . , n (A.48)

are said to be the eigenvectors associated with the eigenvalues λi.
The matrix U formed by the column vectors ui is invertible and constitutes

a basis in the space of dimension n. Further, the similarity transformation
established by U

Λ = U−1AU (A.49)

is so that Λ = diag{λ1, . . . , λn}. It follows that det(A) =
∏n

i=1 λi.
If the matrix A is symmetric, its eigenvalues are real and Λ can be written

as
Λ = UT AU ; (A.50)

hence, the eigenvector matrix U is orthogonal.
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A.6 Bilinear Forms and Quadratic Forms

A bilinear form in the variables xi and yj is the scalar

B =
m∑

i=1

n∑
j=1

aijxiyj

which can be written in matrix form

B(x,y) = xT Ay = yT AT x (A.51)

where x = [x1 x2 . . . xm ]T , y = [ y1 y2 . . . yn ]T , and A is the (m×
n) matrix of the coefficients aij representing the core of the form.

A special case of bilinear form is the quadratic form

Q(x) = xT Ax (A.52)

where A is an (n × n) square matrix. Hence, for computation of (A.52), the
matrix A can be replaced with its symmetric part As given by (A.6). It follows
that if A is a skew-symmetric matrix, then

xT Ax = 0 ∀x.

The quadratic form (A.52) is said to be positive definite if

xT Ax > 0 ∀x �= 0 xT Ax = 0 x = 0. (A.53)

The matrix A core of the form is also said to be positive definite. Analogously,
a quadratic form is said to be negative definite if it can be written as −Q(x) =
−xT Ax where Q(x) is positive definite.

A necessary condition for a square matrix to be positive definite is that
its elements on the diagonal are strictly positive. Further, in view of (A.50),
the eigenvalues of a positive definite matrix are all positive. If the eigenvalues
are not known, a necessary and sufficient condition for a symmetric matrix to
be positive definite is that its principal minors are strictly positive (Sylvester
criterion). It follows that a positive definite matrix is full-rank and thus it is
always invertible.

A symmetric positive definite matrix A can always be decomposed as

A = UT ΛU (A.54)

where U is an orthogonal matrix of eigenvectors (UT U = I) and Λ is the
diagonal matrix of the eigenvalues of A.

Let λmin(A) and λmax(A) respectively denote the smallest and largest
eigenvalues of a positive definite matrix A (λmin, λmax > 0). Then, the
quadratic form in (A.52) satisfies the following inequality:

λmin(A)‖x‖2 ≤ xT Ax ≤ λmax(A)‖x‖2. (A.55)

A Linear Algebra 575

An (n× n) square matrix A is said to be positive semi-definite if

xT Ax ≥ 0 ∀x. (A.56)

This definition implies that �(A) = r < n, and thus r eigenvalues of A
are positive and n − r are null. Therefore, a positive semi-definite matrix A
has a null space of finite dimension, and specifically the form vanishes when
x ∈ N (A). A typical example of a positive semi-definite matrix is the matrix
A = HT H where H is an (m× n) matrix with m < n. In an analogous way,
a negative semi-definite matrix can be defined.

Given the bilinear form in (A.51), the gradient of the form with respect
to x is given by

∇xB(x,y) =
(
∂B(x,y)

∂x

)T

= Ay, (A.57)

whereas the gradient of B with respect to y is given by

∇yB(x,y) =
(
∂B(x,y)

∂y

)T

= AT x. (A.58)

Given the quadratic form in (A.52) with A symmetric, the gradient of the
form with respect to x is given by

∇xQ(x) =
(
∂Q(x)
∂x

)T

= 2Ax. (A.59)

Further, if x and A are differentiable functions of t, then

Q̇(x) =
d

dt
Q(x(t)) = 2xT Aẋ + xT Ȧx; (A.60)

if A is constant, then the second term obviously vanishes.

A.7 Pseudo-inverse

The inverse of a matrix can be defined only when the matrix is square and
nonsingular. The inverse operation can be extended to the case of non-square
matrices. Consider a matrix A of dimensions (m×n) with �(A) = min{m,n}

If m < n, a right inverse of A can be defined as the matrix Ar of dimen-
sions (n×m) so that

AAr = Im.

If instead m > n, a left inverse of A can be defined as the matrix Al of
dimensions (n×m) so that

AlA = In.
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If A has more columns than rows (m < n) and has rank m, a special right
inverse is the matrix

A†
r = AT (AAT )−1 (A.61)

which is termed right pseudo-inverse, since AA†
r = Im. If W r is an (n × n)

positive definite matrix, a weighted right pseudo-inverse is given by

A†
r = W−1

r AT (AW−1
r AT )−1. (A.62)

If A has more rows than columns (m > n) and has rank n, a special left
inverse is the matrix

A†
l = (AT A)−1AT (A.63)

which is termed left pseudo-inverse, since A†
l A = In.3 If W l is an (m ×m)

positive definite matrix, a weighted left pseudo-inverse is given by

A†
l = (AT W lA)−1AT W l. (A.64)

The pseudo-inverse is very useful to invert a linear transformation y = Ax
with A a full-rank matrix. If A is a square nonsingular matrix, then obviously
x = A−1y and then A†

l = A†
r = A−1.

If A has more columns than rows (m < n) and has rank m, then the
solution x for a given y is not unique; it can be shown that the expression

x = A†y + (I − A†A)k, (A.65)

with k an arbitrary (n × 1) vector and A† as in (A.61), is a solution to the
system of linear equations established by (A.35). The term A†y ∈ N⊥(A) ≡
R(AT ) minimizes the norm of the solution ‖x‖. The term (I −A†A)k is the
projection of k in N (A) and is termed homogeneous solution; as k varies,
all the solutions to the homogeneous equation system Ax = 0 associated
with (A.35) are generated.

On the other hand, if A has more rows than columns (m > n), the equation
in (A.35) has no solution; it can be shown that an approximate solution is given
by

x = A†y (A.66)

where A† as in (A.63) minimizes ‖y−Ax‖. If instead y ∈ R(A), then (A.66)
is a real solution.

Notice that the use of the weighted (left or right) pseudo-inverses in the
solution to the linear equation systems leads to analogous results where the
minimized norms are weighted according to the metrics defined by matrices
W r and W l, respectively.

The results of this section can be easily extended to the case of (square
or nonsquare) matrices A not having full-rank. In particular, the expres-
sion (A.66) (with the pseudo-inverse computed by means of the singular value
decomposition of A) gives the minimum-norm vector among all those mini-
mizing ‖y − Ax‖.
3 Subscripts l and r are usually omitted whenever the use of a left or right pseudo-

inverse is clear from the context.

A Linear Algebra 577

A.8 Singular Value Decomposition

For a nonsquare matrix it is not possible to define eigenvalues. An extension
of the eigenvalue concept can be obtained by singular values. Given a matrix
A of dimensions (m × n), the matrix AT A has n nonnegative eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 (ordered from the largest to the smallest) which can
be expressed in the form

λi = σ2
i σi ≥ 0.

The scalars σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 are said to be the singular values of
matrix A. The singular value decomposition (SVD) of matrix A is given by

A = UΣV T (A.67)

where U is an (m×m) orthogonal matrix

U = [u1 u2 . . . um ] , (A.68)

V is an (n× n) orthogonal matrix

V = [v1 v2 . . . vn ] (A.69)

and Σ is an (m× n) matrix

Σ =
[

D O
O O

]
D = diag{σ1, σ2, . . . , σr} (A.70)

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0. The number of non-null singular values is
equal to the rank r of matrix A.

The columns of U are the eigenvectors of the matrix AAT , whereas the
columns of V are the eigenvectors of the matrix AT A. In view of the partitions
of U and V in (A.68), (A.69), it is Avi = σiui, for i = 1, . . . , r and Avi = 0,
for i = r + 1, . . . , n.

Singular value decomposition is useful for analysis of the linear transforma-
tion y = Ax established in (A.35). According to a geometric interpretation,
the matrix A transforms the unit sphere in IRn defined by ‖x‖ = 1 into the set
of vectors y = Ax which define an ellipsoid of dimension r in IRm. The sin-
gular values are the lengths of the various axes of the ellipsoid. The condition
number of the matrix

κ =
σ1

σr

is related to the eccentricity of the ellipsoid and provides a measure of
ill-conditioning (κ � 1) for numerical solution of the system established
by (A.35).

It is worth noticing that the numerical procedure of singular value de-
composition is commonly adopted to compute the (right or left) pseudo-
inverse A†, even in the case of a matrix A not having full rank. In fact,
from (A.67), (A.70) it is

A† = V Σ†UT (A.71)
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with

Σ† =
[

D† O
O O

]
D† = diag

{
1
σ1

,
1
σ2

, . . . ,
1
σr

}
. (A.72)
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B

Rigid-body Mechanics

The goal of this appendix is to recall some fundamental concepts of rigid body
mechanics which are preliminary to the study of manipulator kinematics,
statics and dynamics.

B.1 Kinematics

A rigid body is a system characterized by the constraint that the distance
between any two points is always constant.

Consider a rigid body B moving with respect to an orthonormal reference
frame O–xyz of unit vectors x, y, z, called fixed frame. The rigidity assump-
tion allows the introduction of an orthonormal frame O′–x′y′z′ attached to
the body, called moving frame, with respect to which the position of any point
of B is independent of time. Let x′(t), y′(t), z′(t) be the unit vectors of the
moving frame expressed in the fixed frame at time t.

The orientation of the moving frame O′–x′y′z′ at time t with respect to
the fixed frame O–xyz can be expressed by means of the orthogonal (3 × 3)
matrix

R(t) =

⎡⎣x′T (t)x y′T (t)x z′T (t)x
x′T (t)y y′T (t)y z′T (t)y
x′T (t)z y′T (t)z z′T (t)z

⎤⎦ , (B.1)

which is termed rotation matrix defined in the orthonormal special group
SO(3) of the (3 × 3) matrices with orthonormal columns and determinant
equal to 1. The columns of the matrix in (B.1) represent the components
of the unit vectors of the moving frame when expressed in the fixed frame,
whereas the rows represent the components of the unit vectors of the fixed
frame when expressed in the moving frame.

Let p′ be the constant position vector of a generic point P of B in the
moving frame O′–x′y′z′. The motion of P with respect to the fixed frame
O–xyz is described by the equation

p(t) = pO′(t) + R(t)p′, (B.2)
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where pO′(t) is the position vector of origin O′ of the moving frame with
respect to the fixed frame.

Notice that a position vector is a bound vector since its line of application
and point of application are both prescribed, in addition to its direction; the
point of application typically coincides with the origin of a reference frame.
Therefore, to transform a bound vector from a frame to another, both trans-
lation and rotation between the two frames must be taken into account.

If the positions of the points of B in the moving frame are known, it follows
from (B.2) that the motion of each point of B with respect to the fixed frame
is uniquely determined once the position of the origin and the orientation
of the moving frame with respect to the fixed frame are specified in time.
The origin of the moving frame is determined by three scalar functions of
time. Since the orthonormality conditions impose six constraints on the nine
elements of matrix R(t), the orientation of the moving frame depends only
on three independent scalar functions, three being the minimum number of
parameters to represent SO(3).1

Therefore, a rigid body motion is described by arbitrarily specifying six
scalar functions of time, which describe the body pose (position + orientation).
The resulting rigid motions belong to the special Euclidean group SE(3) =
IR3 × SO(3).

The expression in (B.2) continues to hold if the position vector pO′(t) of
the origin of the moving frame is replaced with the position vector of any
other point of B, i.e.,

p(t) = pQ(t) + R(t)(p′ − p′
Q) (B.3)

where pQ(t) and p′
Q are the position vectors of a point Q of B in the fixed

and moving frames, respectively.
In the following, for simplicity of notation, the dependence on the time

variable t will be dropped.
Differentiating (B.3) with respect to time gives the known velocity com-

position rule
ṗ = ṗQ + ω × (p − pQ), (B.4)

where ω is the angular velocity of rigid body B. Notice that ω is a free vector
since its point of application is not prescribed. To transform a free vector from
a frame to another, only rotation between the two frames must be taken into
account.

By recalling the definition of the skew-symmetric operator S(·) in (A.32),
the expression in (B.4) can be rewritten as

ṗ = ṗQ + S(ω)(p − pQ)
= ṗQ + S(ω)R(p′ − p′

Q).

1 The minimum number of parameters represent a special orthonormal
group SO(m) is equal to m(m − 1)/2.
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Comparing this equation with the formal time derivative of (B.3) leads to the
result

Ṙ = S(ω)R. (B.5)

In view of (B.4), the elementary displacement of a point P of the rigid body
B in the time interval (t, t + dt) is

dp = ṗdt =
(
ṗQ + ω × (p − pQ)

)
dt (B.6)

= dpQ + ωdt× (p − pQ).

Differentiating (B.4) with respect to time yields the following expression
for acceleration:

p̈ = p̈Q + ω̇ × (p − pQ) + ω × (
ω × (p − pQ)

)
. (B.7)

B.2 Dynamics

Let ρdV be the mass of an elementary particle of a rigid body B, where ρ
denotes the density of the particle of volume dV . Also let VB be the body
volume and m =

∫
VB

ρdV its total mass assumed to be constant. If p denotes
the position vector of the particle of mass ρdV in the frame O–xyz, the centre
of mass of B is defined as the point C whose position vector is

pC =
1
m

∫
VB

pρdV . (B.8)

In the case when B is the union of n distinct parts of mass m1, . . . ,mn and
centres of mass pC1 . . .pCn, the centre of mass of B can be computed as

pC =
1
m

n∑
i=1

mipCi

with m =
∑n

i=1 mi.
Let r be a line passing by O and d(p) the distance from r of the particle

of B of mass ρdV and position vector p. The moment of inertia of body B
with respect to line r is defined as the positive scalar

Ir =
∫

VB
d2(p)ρdV .

Let r denote the unit vector of line r; then, the moment of inertia of B with
respect to line r can be expressed as

Ir = rT

(∫
VB

ST (p)S(p)ρdV
)

r = rT IOr, (B.9)
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where S(·) is the skew-symmetric operator in (A.31), and the symmetric,
positive definite matrix

IO =

⎡⎢⎣
∫

VB
(p2

y + p2
z)ρdV − ∫

VB
pxpyρdV − ∫

VB
pxpzρdV

∗ ∫
VB

(p2
x + p2

z)ρdV − ∫
VB

pypzρdV

∗ ∗ ∫
VB

(p2
x + p2

y)ρdV

⎤⎥⎦

=

⎡⎢⎣ IOxx −IOxy −IOxz

∗ IOyy −IOyz

∗ ∗ IOzz

⎤⎥⎦ (B.10)

is termed inertia tensor of body B relative to pole O.2 The (positive) elements
IOxx, IOyy, IOzz are the inertia moments with respect to three coordinate axes
of the reference frame, whereas the elements IOxy, IOxz, IOyz (of any sign)
are said to be products of inertia.

The expression of the inertia tensor of a rigid body B depends both on the
pole and the reference frame. If orientation of the reference frame with origin
at O is changed according to a rotation matrix R, the inertia tensor I ′

O in
the new frame is related to IO by the relationship

IO = RI ′
ORT . (B.11)

The way an inertia tensor is transformed when the pole is changed can be
inferred by the following equation, also known as Steiner theorem or parallel
axis theorem:

IO = IC + mST (pC)S(pC), (B.12)

where IC is the inertia tensor relative to the centre of mass of B, when ex-
pressed in a frame parallel to the frame with origin at O and with origin at
the centre of mass C.

Since the inertia tensor is a symmetric positive definite matrix, there al-
ways exists a reference frame in which the inertia tensor attains a diagonal
form; such a frame is said to be a principal frame (relative to pole O) and
its coordinate axes are said to be principal axes. In the case when pole O
coincides with the centre of mass, the frame is said to be a central frame and
its axes are said to be central axes.

Notice that if the rigid body is moving with respect to the reference frame
with origin at O, then the elements of the inertia tensor IO become a func-
tion of time. With respect to a pole and a reference frame attached to the
body (moving frame), instead, the elements of the inertia tensor represent six
structural constants of the body which are known once the pole and reference
frame have been specified.

2 The symbol ‘∗’ has been used to avoid rewriting the symmetric elements.
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Let ṗ be the velocity of a particle of B of elementary mass ρdV in frame
O–xyz. The linear momentum of body B is defined as the vector

l =
∫

VB
ṗρdV = mṗC . (B.13)

Let Ω be any point in space and pΩ its position vector in frame O–xyz;
then, the angular momentum of body B relative to pole Ω is defined as the
vector

kΩ =
∫

VB
ṗ × (pΩ − p)ρdV .

The pole can be either fixed or moving with respect to the reference frame.
The angular momentum of a rigid body has the following notable expression:

kΩ = ICω + mṗC × (pΩ − pC), (B.14)

where IC is the inertia tensor relative to the centre of mass, when expressed
in a frame parallel to the reference frame with origin at the centre of mass.

The forces acting on a generic system of material particles can be distin-
guished into internal forces and external forces.

The internal forces, exerted by one part of the system on another, have
null linear and angular momentum and thus they do not influence rigid body
motion.

The external forces, exerted on the system by an agency outside the sys-
tem, in the case of a rigid body B are distinguished into active forces and
reaction forces.

The active forces can be either concentrated forces or body forces. The
former are applied to specific points of B, whereas the latter act on all ele-
mentary particles of the body. An example of body force is the gravitational
force which, for any elementary particle of mass ρdV , is equal to g0ρdV where
g0 is the gravity acceleration vector.

The reaction forces are those exerted because of surface contact between
two or more bodies. Such forces can be distributed on the contact surfaces or
they can be assumed to be concentrated.

For a rigid body B subject to gravitational force, as well as to active and
or reaction forces f1 . . .fn concentrated at points p1 . . .pn, the resultant of
the external forces f and the resultant moment μΩ with respect to a pole Ω
are respectively

f =
∫

VB
g0ρdV +

n∑
i=1

f i = mg0 +
n∑

i=1

f i (B.15)

μΩ =
∫

VB
g0 × (pΩ − p)ρdV +

n∑
i=1

f i × (pΩ − pi)

= mg0 × (pΩ − pC) +
n∑

i=1

f i × (pΩ − pi). (B.16)
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In the case when f and μΩ are known and it is desired to compute the
resultant moment with respect to a point Ω′ other than Ω, the following
relation holds:

μΩ′ = μΩ + f × (pΩ′ − pΩ). (B.17)

Consider now a generic system of material particles subject to external
forces of resultant f and resultant moment μΩ . The motion of the system
in a frame O–xyz is established by the following fundamental principles of
dynamics (Newton laws of motion):

f = l̇ (B.18)
μΩ = k̇Ω (B.19)

where Ω is a pole fixed or coincident with the centre of mass C of the system.
These equations hold for any mechanical system and can be used even in the
case of variable mass. For a system with constant mass, computing the time
derivative of the momentum in (B.18) gives Newton equations of motion in
the form

f = mp̈C , (B.20)

where the quantity on the right-hand side represents the resultant of inertia
forces.

If, besides the assumption of constant mass, the assumption of rigid system
holds too, the expression in (B.14) of the angular momentum with (B.19) yield
Euler equations of motion in the form

μΩ = IΩω̇ + ω × (IΩω), (B.21)

where the quantity on the right-hand side represents the resultant moment of
inertia forces.

For a system constituted by a set of rigid bodies, the external forces obvi-
ously do not include the reaction forces exerted between the bodies belonging
to the same system.

B.3 Work and Energy

Given a force f i applied at a point of position pi with respect to frame O–xyz,
the elementary work of the force f i on the displacement dpi = ṗidt is defined
as the scalar

dWi = fT
i dpi.

For a rigid body B subject to a system of forces of resultant f and resultant
moment μQ with respect to any point Q of B, the elementary work on the
rigid displacement (B.6) is given by

dW = (fT ṗQ + μT
Qω)dt = fT dpQ + μT

Qωdt. (B.22)
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The kinetic energy of a body B is defined as the scalar quantity

T =
1
2

∫
VB

ṗT ṗρdV

which, for a rigid body, takes on the notable expression

T =
1
2
mṗT

C ṗC +
1
2
ωT ICω (B.23)

where IC is the inertia tensor relative to the centre of mass expressed in a
frame parallel to the reference frame with origin at the centre of mass.

A system of position forces, i.e., the forces depending only on the positions
of the points of application, is said to be conservative if the work done by each
force is independent of the trajectory described by the point of application of
the force but it depends only on the initial and final positions of the point of
application. In this case, the elementary work of the system of forces is equal
to minus the total differential of a scalar function termed potential energy ,
i.e.,

dW = −dU . (B.24)

An example of a conservative system of forces on a rigid body is the gravita-
tional force, with which is associated the potential energy

U = −
∫

VB
gT

0 pρdV = −mgT
0 pC . (B.25)

B.4 Constrained Systems

Consider a system Br of r rigid bodies and assume that all the elements of Br

can reach any position in space. In order to find uniquely the position of all the
points of the system, it is necessary to assign a vector x = [x1 . . . xp ]T

of 6r = p parameters, termed configuration. These parameters are termed
Lagrange or generalized coordinates of the unconstrained system Br, and p
determines the number of degrees of freedom (DOFs).

Any limitation on the mobility of the system Br is termed constraint . A
constraint acting on Br is said to be holonomic if it is expressed by a system
of equations

h(x, t) = 0, (B.26)

where h is a vector of dimensions (s × 1), with s < m. On the other hand,
a constraint in the form h(x, ẋ, t) = 0 which is nonintegrable is said to
be nonholonomic. For simplicity, only equality (or bilateral) constraints are
considered. If the equations in (B.26) do not explicitly depend on time, the
constraint is said to be scleronomic.

On the assumption that h has continuous and continuously differentiable
components, and its Jacobian ∂h/∂x has full rank, the equations in (B.26)
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allow the elimination of s out of m coordinates of the system Br. With the
remaining n = m − s coordinates it is possible to determine uniquely the
configurations of Br satisfying the constraints (B.26). Such coordinates are
the Lagrange or generalized coordinates and n is the number of degrees of
freedom of the unconstrained system Br.3

The motion of a system Br with n DOFs and holonomic equality con-
straints can be described by equations of the form

x = x(q(t), t), (B.27)

where q(t) = [ q1(t) . . . qn(t) ]T is a vector of Lagrange coordinates.
The elementary displacement of system (B.27) relative to the interval (t, t+

dt) is defined as

dx =
∂x(q, t)

∂q
q̇dt +

∂x(q, t)
∂t

dt. (B.28)

The virtual displacement of system (B.27) at time t, relative to an increment
δλ, is defined as the quantity

δx =
∂x(q, t)

∂q
δq. (B.29)

The difference between the elementary displacement and the virtual displace-
ment is that the former is relative to an actual motion of the system in an
interval (t, t + dt) which is consistent with the constraints, while the latter is
relative to an imaginary motion of the system when the constraints are made
invariant and equal to those at time t.

For a system with time-invariant constraints, the equations of motion
(B.27) become

x = x(q(t)), (B.30)

and then, by setting δλ = dλ = λ̇dt, the virtual displacements (B.29) coincide
with the elementary displacements (B.28).

To the concept of virtual displacement can be associated that of virtual
work of a system of forces, by considering a virtual displacement instead of
an elementary displacement.

If external forces are distinguished into active forces and reaction forces, a
direct consequence of the principles of dynamics (B.18), (B.19) applied to the
system of rigid bodies Br is that, for each virtual displacement, the following
relation holds:

δWm + δWa + δWh = 0, (B.31)

where δWm, δWa, δWh are the total virtual works done by the inertia, active,
reaction forces, respectively.

3 In general, the Lagrange coordinates of a constrained system have a local validity;
in certain cases, such as the joint variables of a manipulator, they can have a global
validity.
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In the case of frictionless equality constraints, reaction forces are exerted
orthogonally to the contact surfaces and the virtual work is always null. Hence,
(B.31) reduces to

δWm + δWa = 0. (B.32)

For a steady system, inertia forces are identically null. Then the condition
for the equilibrium of system Br is that the virtual work of the active forces
is identically null on any virtual displacement, which gives the fundamental
equation of statics of a constrained system

δWa = 0 (B.33)

known as principle of virtual work . Expressing (B.33) in terms of the incre-
ment δλ of generalized coordinates leads to

δWa = ζT δq = 0 (B.34)

where ζ denotes the (n× 1) vector of active generalized forces.
In the dynamic case, it is worth distinguishing active forces into conserva-

tive (that can be derived from a potential) and nonconservative. The virtual
work of conservative forces is given by

δWc = −∂U
∂q

δq, (B.35)

where U(λ) is the total potential energy of the system. The work of noncon-
servative forces can be expressed in the form

δWnc = ξT δq, (B.36)

where ξ denotes the vector of nonconservative generalized forces. It follows
that the vector of active generalized forces is

ζ = ξ −
(
∂U
∂q

)T

. (B.37)

Moreover, the work of inertia forces can be computed from the total kinetic
energy of system T as

δWm =
(
∂T
∂q

− d

dt

∂T
∂q̇

)
δq. (B.38)

Substituting (B.35), (B.36), (B.38) into (B.32) and observing that (B.32) holds
true for any increment δλ leads to Lagrange equations

d

dt

(
∂L
∂q̇

)T

−
(
∂L
∂q

)T

= ξ, (B.39)

where
L = T − U (B.40)
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is the Lagrangian function of the system. The equations in (B.39) completely
describe the dynamic behaviour of an n-DOF system with holonomic equality
constraints.

The sum of kinetic and potential energy of a system with time-invariant
constraints is termed Hamiltonian function

H = T + U . (B.41)

Conservation of energy dictates that the time derivative of the Hamiltonian
must balance the power generated by the nonconservative forces acting on the
system, i.e.,

dH
dt

= ξT q̇. (B.42)

In view of (B.37), (B.41), the equation in (B.42) becomes

dT
dt

= ζT q̇. (B.43)
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C

Feedback Control

As a premise to the study of manipulator decentralized control and centralized
control, the fundamental principles of feedback control of linear systems are
recalled, and an approach to the determination of control laws for nonlinear
systems based on the use of Lyapunov functions is presented.

C.1 Control of Single-input/Single-output Linear
Systems

According to classical automatic control theory of linear time-invariant single-
input/single-output systems, in order to servo the output y(t) of a system to
a reference r(t), it is worth adopting a negative feedback control structure.
This structure indeed allows the use of approximate mathematical models to
describe the input/output relationship of the system to control, since negative
feedback has a potential for reducing the effects of system parameter variations
and nonmeasurable disturbance inputs d(t) on the output.

This structure can be represented in the domain of complex variable s as in
the block scheme of Fig. C.1, where G(s), H(s) and C(s) are the transfer func-
tions of the system to control, the transducer and the controller, respectively.
From this scheme it is easy to derive

Y (s) = W (s)R(s) + WD(s)D(s), (C.1)

where

W (s) =
C(s)G(s)

1 + C(s)G(s)H(s)
(C.2)

is the closed-loop input/output transfer function and

WD(s) =
G(s)

1 + C(s)G(s)H(s)
(C.3)

is the disturbance/output transfer function.
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Fig. C.1. Feedback control structure

The goal of the controller design is to find a control structure C(s) ensuring
that the output variable Y (s) tracks a reference input R(s). Further, the
controller should guarantee that the effects of the disturbance input D(s) on
the output variable are suitably reduced. The goal is then twofold, namely,
reference tracking and disturbance rejection.

The basic problem for controller design consists of the determination of an
action C(s) which can make the system asymptotically stable. In the absence
of positive or null real part pole/zero and zero/pole cancellation in the open-
loop function F (s) = C(s)G(s)H(s), a necessary and sufficient condition for
asymptotic stability is that the poles of W (s) and WD(s) have all negative
real parts; such poles coincide with the zeros of the rational transfer function
1+F (s). Testing for this condition can be performed by resorting to stability
criteria, thus avoiding computation of the function zeros.

Routh criterion allows the determination of the sign of the real parts of
the zeros of the function 1+F (s) by constructing a table with the coefficients
of the polynomial at the numerator of 1 + F (s) (characteristic polynomial).

Routh criterion is easy to apply for testing stability of a feedback system,
but it does not provide a direct relationship between the open-loop function
and stability of the closed-loop system. It is then worth resorting to Nyquist
criterion which is based on the representation, in the complex plane, of the
open-loop transfer function F (s) evaluated in the domain of real angular fre-
quency (s = jω,−∞ < ω < +∞).

Drawing of Nyquist plot and computation of the number of circles made by
the vector representing the complex number 1 + F (jω) when ω continuously
varies from −∞ to +∞ allows a test on whether or not the closed-loop system
is asymptotically stable. It is also possible to determine the number of positive,
null and negative real part roots of the characteristic polynomial, similarly to
application of Routh criterion. Nonetheless, Nyquist criterion is based on the
plot of the open-loop transfer function, and thus it allows the determination of
a direct relationship between this function and closed-loop system stability. It
is then possible from an examination of the Nyquist plot to draw suggestions
on the controller structure C(s) which ensures closed-loop system asymptotic
stability.
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If the closed-loop system is asymptotically stable, the steady-state response
to a sinusoidal input r(t), with d(t) = 0, is sinusoidal, too. In this case, the
function W (s), evaluated for s = jω, is termed frequency response function;
the frequency response function of a feedback system can be assimilated to
that of a low-pass filter with the possible occurrence of a resonance peak inside
its bandwidth.

As regards the transducer, this should be chosen so that its bandwidth
is much greater than the feedback system bandwidth, in order to ensure
a nearly instantaneous response for any value of ω inside the bandwidth
of W (jω). Therefore, setting H(jω) ≈ H0 and assuming that the loop gain
|C(jω)G(jω)H0| � 1 in the same bandwidth, the expression in (C.1) for
s = jω can be approximated as

Y (jω) ≈ R(jω)
H0

+
D(jω)

C(jω)H0
.

Assuming R(jω) = H0Yd(jω) leads to

Y (jω) ≈ Yd(jω) +
D(jω)

C(jω)H0
; (C.4)

i.e., the output tracks the desired output Yd(jω) and the frequency compo-
nents of the disturbance in the bandwidth of W (jω) produce an effect on the
output which can be reduced by increasing |C(jω)H0|. Furthermore, if the
disturbance input is a constant, the steady-state output is not influenced by
the disturbance as long as C(s) has at least a pole at the origin.

Therefore, a feedback control system is capable of establishing a propor-
tional relationship between the desired output and the actual output, as evi-
denced by (C.4). This equation, however, requires that the frequency content
of the input (desired output) be inside the frequency range for which the loop
gain is much greater than unity.

The previous considerations show the advantage of including a proportional
action and an integral action in the controller C(s), leading to the transfer
function

C(s) = KI
1 + sTI

s
(C.5)

of a proportional-integral controller (PI); TI is the time constant of the integral
action and the quantity KITI is called proportional sensitivity.

The adoption of a PI controller is effective for low-frequency response of
the system, but it may involve a reduction of stability margins and/or a reduc-
tion of closed-loop system bandwidth. To avoid these drawbacks, a derivative
action can be added to the proportional and integral actions, leading to the
transfer function

C(s) = KI
1 + sTI + s2TDTI

s
(C.6)

of a proportional-integral-derivative controller (PID); TD denotes the time
constant of the derivative action. Notice that physical realizability of (C.6)
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demands the introduction of a high-frequency pole which little influences the
input/output relationship in the system bandwidth. The transfer function
in (C.6) is characterized by the presence of two zeros which provide a stabi-
lizing action and an enlargement of the closed-loop system bandwidth. Band-
width enlargement implies shorter response time of the system, in terms of
both variations of the reference signal and recovery action of the feedback
system to output variations induced by the disturbance input.

The parameters of the adopted control structure should be chosen so as
to satisfy requirements on the system behaviour at steady state and during
the transient . Classical tools to determine such parameters are the root locus
in the domain of the complex variable s or the Nichols chart in the domain
of the real angular frequency ω. The two tools are conceptually equivalent.
Their potential is different in that root locus allows a control law to be found
which assigns the exact parameters of the closed-loop system time response,
whereas Nichols chart allows a controller to be specified which confers good
transient and steady-state behaviour to the system response.

A feedback system with strict requirements on the steady-state and tran-
sient behaviour, typically, has a response that can be assimilated to that of a
second-order system. In fact, even for closed-loop functions of greater order,
it is possible to identify a pair of complex conjugate poles whose real part
absolute value is smaller than the real part absolute values of the other poles.
Such a pair of poles is dominant in that its contribution to the transient re-
sponse prevails over that of the other poles. It is then possible to approximate
the input/output relationship with the transfer function

W (s) =
kW

1 +
2ζs
ωn

+
s2

ω2
n

(C.7)

which has to be realized by a proper choice of the controller. Regarding
the values to assign to the parameters characterizing the transfer function
in (C.7), the following remarks are in order. The constant kW represents the
input/output steady-state gain, which is equal to 1/H0 if C(s)G(s)H0 has at
least a pole at the origin. The natural frequency ωn is the modulus of the
complex conjugate poles, whose real part is given by −ζωn where ζ is the
damping ratio of the pair of poles.

The influence of parameters ζ and ωn on the closed-loop frequency re-
sponse can be evaluated in terms of the resonance peak magnitude

Mr =
1

2ζ
√

1 − ζ2
,

occurring at the resonant frequency

ωr = ωn

√
1 − 2ζ2,
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Fig. C.2. Feedback control structure with feedforward compensation

and of the 3 dB bandwidth

ω3 = ωn

√
1 − 2ζ2 +

√
2 − 4ζ2 + 4ζ4.

A step input is typically used to characterize the transient response in the
time domain. The influence of parameters ζ and ωn on the step response can
be evaluated in terms of the percentage of overshoot

s% = 100 exp(−πζ/
√

1 − ζ2),

of the rise time
tr ≈ 1.8

ωn

and of the settling time within 1%

ts =
4.6
ζωn

.

The adoption of a feedforward compensation action represents a feasible
solution both for tracking a time-varying reference input and for enhancing
rejection of the effects of a disturbance on the output. Consider the general
scheme in Fig. C.2. Let R(s) denote a given input reference and Dc(s) de-
note a computed estimate of the disturbance D(s); the introduction of the
feedforward action yields the input/output relationship

Y (s) =
(

C(s)G(s)
1 + C(s)G(s)H(s)

+
F (s)G(s)

1 + C(s)G(s)H(s)

)
R(s) (C.8)

+
G(s)

1 + C(s)G(s)H(s)
(
D(s) −Dc(s)

)
.

By assuming that the desired output is related to the reference input by a
constant factor Kd and regarding the transducer as an instantaneous system
(H(s) ≈ H0 = 1/Kd) for the current operating conditions, the choice

F (s) =
Kd

G(s)
(C.9)
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Fig. C.3. Feedback control structure with inverse model technique

yields the input/output relationship

Y (s) = Yd(s) +
G(s)

1 + C(s)G(s)H0

(
D(s) −Dc(s)

)
. (C.10)

If |C(jω)G(jω)H0| � 1, the effect of the disturbance on the output is further
reduced by means of an accurate estimate of the disturbance.

Feedforward compensation technique may lead to a solution, termed in-
verse model control , illustrated in the scheme of Fig. C.3. It should be re-
marked, however, that such a solution is based on dynamics cancellation,
and thus it can be employed only for a minimum-phase system, i.e., a system
whose poles and zeros have all strictly negative real parts. Further, one should
consider physical realizability issues as well as effects of parameter variations
which prevent perfect cancellation.

C.2 Control of Nonlinear Mechanical Systems

If the system to control does not satisfy the linearity property, the control
design problem becomes more complex. The fact that a system is qualified
as nonlinear , whenever linearity does not hold, leads to understanding how
it is not possible to resort to general techniques for control design, but it is
necessary to face the problem for each class of nonlinear systems which can
be defined through imposition of special properties.

On the above premise, the control design problem of nonlinear systems
described by the dynamic model

H(x)ẍ + h(x, ẋ) = u (C.11)

is considered, where [ xT ẋT ]T denotes the (2n × 1) state vector of the
system, u is the (n × 1) input vector, H(x) is an (n × n) positive definite
(and thus invertible) matrix depending on x, and h(x, ẋ) is an (n× 1) vector
depending on state. Several mechanical systems can be reduced to this class,
including manipulators with rigid links and joints.

The control law can be found through a nonlinear compensating action
obtained by choosing the following nonlinear state feedback law (inverse dy-
namics control):

u = Ĥ(x)v + ĥ(x, ẋ) (C.12)
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where Ĥ(x) and ĥ(x) respectively denote the estimates of the terms H(x)
and h(x), computed on the basis of measures on the system state, and v is a
new control input to be defined later. In general, it is

Ĥ(x) = H(x) + ΔH(x) (C.13)

ĥ(x, ẋ) = h(x, ẋ) + Δh(x, ẋ) (C.14)

because of the unavoidable modelling approximations or as a consequence of
an intentional simplification in the compensating action. Substituting (C.12)
into (C.11) and accounting for (C.13), (C.14) yields

ẍ = v + z(x, ẋ,v) (C.15)

where
z(x, ẋ,v) = H−1(x)

(
ΔH(x)v + Δh(x, ẋ)

)
.

If tracking of a trajectory (xd(t), ẋd(t), ẍd(t)) is desired, the tracking error
can be defined as

e =
[

xd − x
ẋd − ẋ

]
(C.16)

and it is necessary to derive the error dynamics equation to study convergence
of the actual state to the desired one. To this end, the choice

v = ẍd + w(e), (C.17)

substituted into (C.15), leads to the error equation

ė = Fe − Gw(e) − Gz(e,xd, ẋd, ẍd), (C.18)

where the (2n× 2n) and (2n× n) matrices, respectively,

F =
[

O I
O O

]
G =

[
O
I

]
follow from the error definition in (C.16). Control law design consists of finding
the error function w(e) which makes (C.18) globally asymptotically stable,1

i.e.,
lim

t→∞
e(t) = 0.

In the case of perfect nonlinear compensation (z(·) = 0), the simplest choice
of the control action is the linear one

w(e) = −KP (xd − x) − KD(ẋd − ẋ) (C.19)
= [−KP −KD ] e,

1 Global asymptotic stability is invoked to remark that the equilibrium state is
asymptotically stable for any perturbation.



596 C Feedback Control

where asymptotic stability of the error equation is ensured by choosing positive
definite matrices KP and KD. The error transient behaviour is determined
by the eigenvalues of the matrix

A =
[

O I
−KP −KD

]
(C.20)

characterizing the error dynamics

ė = Ae. (C.21)

If compensation is imperfect , then z(·) cannot be neglected and the error
equation in (C.18) takes on the general form

ė = f(e). (C.22)

It may be worth choosing the control law w(e) as the sum of a nonlinear term
and a linear term of the kind in (C.19); in this case, the error equation can
be written as

ė = Ae + k(e), (C.23)

where A is given by (C.20) and k(e) is available to make the system globally
asymptotically stable. The equations in (C.22), (C.23) express nonlinear dif-
ferential equations of the error. To test for stability and obtain advise on the
choice of suitable control actions, one may resort to Lyapunov direct method
illustrated below.

C.3 Lyapunov Direct Method

The philosophy of the Lyapunov direct method is the same as that of most
methods used in control engineering to study stability, namely, testing for
stability without solving the differential equations describing the dynamic
system.

This method can be presented in short on the basis of the following rea-
soning. If it is possible to associate an energy-based description with a (linear
or nonlinear) autonomous dynamic system and, for each system state with the
exception of the equilibrium state, the time rate of such energy is negative,
then energy decreases along any system trajectory until it attains its mini-
mum at the equilibrium state; this argument justifies an intuitive concept of
stability.

With reference to (C.22), by setting f(0) = 0, the equilibrium state is
e = 0. A scalar function V (e) of the system state, continuous together with
its first derivative, is defined a Lyapunov function if the following properties
hold:

V (e) > 0 ∀e �= 0
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V (e) = 0 e = 0

V̇ (e) < 0 ∀e �= 0

V (e) → ∞ ‖e‖ → ∞.

The existence of such a function ensures global asymptotic stability of the equi-
librium e = 0. In practice, the equilibrium e = 0 is globally asymptotically
stable if a positive definite, radially unbounded function V (e) is found so that
its time derivative along the system trajectories is negative definite.

If positive definiteness of V (e) is realized by the adoption of a quadratic
form, i.e.,

V (e) = eT Qe (C.24)

with Q a symmetric positive definite matrix, then in view of (C.22) it follows

V̇ (e) = 2eT Qf(e). (C.25)

If f(e) is so as to render the function V̇ (e) negative definite, the function
V (e) is a Lyapunov function, since the choice (C.24) allows system global
asymptotic stability to be proved. If V̇ (e) in (C.25) is not negative definite
for the given V (e), nothing can be inferred on the stability of the system,
since the Lyapunov method gives only a sufficient condition. In such cases
one should resort to different choices of V (e) in order to find, if possible, a
negative definite V̇ (e).

In the case when the property of negative definiteness does not hold, but
V̇ (e) is only negative semi-definite

V̇ (e) ≤ 0,

global asymptotic stability of the equilibrium state is ensured if the only sys-
tem trajectory for which V̇ (e) is identically null (V̇ (e) ≡ 0) is the equilibrium
trajectory e ≡ 0 (a consequence of La Salle theorem).

Finally, consider the stability problem of the nonlinear system in the
form (C.23); under the assumption that k(0) = 0, it is easy to verify that
e = 0 is an equilibrium state for the system. The choice of a Lyapunov func-
tion candidate as in (C.24) leads to the following expression for its derivative:

V̇ (e) = eT (AT Q + QA)e + 2eT Qk(e). (C.26)

By setting
AT Q + QA = −P , (C.27)

the expression in (C.26) becomes

V̇ (e) = −eT Pe + 2eT Qk(e). (C.28)

The matrix equation in (C.27) is said to be a Lyapunov equation; for any
choice of a symmetric positive definite matrix P , the solution matrix Q exists
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and is symmetric positive definite if and only if the eigenvalues of A have
all negative real parts. Since matrix A in (C.20) verifies such condition, it
is always possible to assign a positive definite matrix P and find a positive
definite matrix solution Q to (C.27). It follows that the first term on the
right-hand side of (C.28) is negative definite and the stability problem is
reduced to searching a control law so that k(e) renders the total V̇ (e) negative
(semi-)definite.

It should be underlined that La Salle theorem does not hold for time-
varying systems (also termed non-autonomous) in the form

ė = f(e, t).

In this case, a conceptually analogous result which might be useful is the
following, typically referred to as Barbalat lemma — of which it is indeed a
consequence. Given a scalar function V (e, t) so that

1. V (e, t) is lower bounded
2. V̇ (e, t) ≤ 0
3. V̇ (e, t) is uniformly continuous

then it is lim t→∞ V̇ (e, t) = 0. Conditions 1 and 2 imply that V (e, t) has a
bounded limit for t → ∞. Since it is not easy to verify the property of uniform
continuity from the definition, Condition 3 is usually replaced by

3’. V̈ (e, t) is bounded

which is sufficient to guarantee validity of Condition 3. Barbalat lemma can
obviously be used for time-invariant (autonomous) dynamic systems as an
alternative to La Salle theorem, with respect to which some conditions are
relaxed; in particular, V (e) needs not necessarily be positive definite.
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D

Differential Geometry

The analysis of mechanical systems subject to nonholonomic constraints, such
as wheeled mobile robots, requires some basic concepts of differential geometry
and nonlinear controllability theory, that are briefly recalled in this appendix.

D.1 Vector Fields and Lie Brackets

For simplicity, the case of vectors x ∈ IRn is considered. The tangent space
at x (intuitively, the space of velocities of trajectories passing through x) is
hence denoted by Tx(IRn). The presented notions are however valid in the
more general case in which a differentiable manifold (i.e., a space that is
locally diffeomorphic to IRn) is considered in place of a Euclidean space.

A vector field g : IRn �→ Tx(IRn) is a mapping that assigns to each point
x ∈ IRn a tangent vector g(x) ∈ Tx(IRn). In the following it is always assumed
that vector fields are smooth, i.e., such that the associated mappings are of
class C∞.

If the vector field g(x) is used to define a differential equation as in

ẋ = g(x), (D.1)

the flow φ
g
t (x) of g is the mapping that associates to each point x the value

at time t of the solution of (D.1) evolving from x at time 0, or

d

dt
φ

g
t (x) = g(φg

t (x)). (D.2)

The family of mappings {φg
t } is a one-parameter (i.e., t) group under the

composition operator
φg

t1
◦ φg

t2
= φg

t1+t2
.

For example, for time-invariant linear systems it is g(x) = Ax and the flow
is the linear operator φg

t = eAt.
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Fig. D.1. The net displacement of system (D.4) under the input sequence (D.5) is
directed as the Lie bracket of the two vector fields g1 and g2

Given two vector fields g1 and g2, the composition of their flows is non-
commutative in general:

φ
g1
t ◦ φ

g2
s �= φ

g2
s ◦ φ

g1
t .

The vector field [g1, g2] defined as

[g1, g2](x) =
∂g2

∂x
g1(x) − ∂g1

∂x
g2(x) (D.3)

is called Lie bracket of g1 and g2. The two vector field g1 and g2 commute if
[g1, g2] = 0.

The Lie bracket operation has an interesting interpretation. Consider the
driftless dynamic system

ẋ = g1(x)u1 + g2(x)u2 (D.4)

associated with the vector fields g1 and g2. If the inputs u1 and u2 are never
active simultaneously, the solution of the differential equation (D.4) can be
obtained by composing the flows of g1 and g2. In particular, consider the
following input sequence:

u(t) =

⎧⎪⎨⎪⎩
u1(t) = +1, u2(t) = 0 t ∈ [0, ε)
u1(t) = 0, u2(t) = +1 t ∈ [ε, 2ε)
u1(t) = −1, u2(t) = 0 t ∈ [2ε, 3ε)
u1(t) = 0, u2(t) = −1 t ∈ [3ε, 4ε),

(D.5)

where ε is an infinitesimal time interval. The solution of (D.4) at time t = 4ε
can be obtained by following first the flow of g1, then of g2, then of −g1, and
finally of −g2 (see Fig. D.1). By computing x(ε) through a series expansion
at x0 = x(0) along g1, then x(2ε) as a series expansion at x(ε) along g2, and
so on, one obtains

x(4ε) = φ
−g2
ε ◦ φ

−g1
ε ◦ φ

g2
ε ◦ φ

g1
ε (x0)

= x0 + ε2

(
∂g2

∂x
g1(x0) −

∂g1

∂x
g2(x0)

)
+ O(ε3).
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If g1 and g2 commute, the net displacement resulting from the input se-
quence (D.5) is zero.

The above expression shows that, at each point x, infinitesimal motion
of the driftless system (D.4) is possible not only in the directions belonging
to the linear span of g1(x) and g2(x), but also in the direction of their Lie
bracket [g1, g2](x). It can be proven that more complicated input sequences
can be used to generate motion in the direction of higher-order Lie brackets,
such as [g1, [g1, g2]].

Similar constructive procedures can be given for systems with a drift1

vector field, such as the following:

ẋ = f(x) + g1(x)u1 + g2(x)u2. (D.6)

Using appropriate input sequences, it is possible to generate motion in the
direction of Lie brackets involving the vector field f as well as gj , j = 1, 2.

Example D.1

For a single-input linear system

ẋ = A x + b u,

the drift and input vector fields are f (x) = Ax and g(x) = b, respectively. The
following Lie brackets:

−[f , g] = Ab

[f , [f , g]] = A2b

− [f , [f , [f , g]]] = A3b

...

represent well-known directions in which it is possible to move the system.

The Lie derivative of the scalar function α : IRn �→ IR along vector field g
is defined as

Lg α(x) =
∂α

∂x
g(x). (D.7)

The following properties of Lie brackets are useful in computation:

[f , g] = −[g,f ] (skew-symmetry)
[f , [g,h]] + [h, [f , g]] + [g, [h,f ]] = 0 (Jacobi identity)
[αf , βg] = αβ[f , g] + α(Lfβ)g − β(Lgα)f (chain rule)

1 This term emphasizes how the presence of f will in general force the system to
move (ẋ �= 0) even in the absence of inputs.
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with α, β: IRn �→ IR. The vector space V(IRn) of smooth vector fields on IRn,
equipped with the Lie bracket operation, is a Lie algebra.

The distribution Δ associated with the m vector fields {g1, . . . , gm} is the
mapping that assigns to each point x ∈ IRn the subspace of Tx(IRn) defined
as

Δ(x) = span{g1(x), . . . , gm(x)}. (D.8)

Often, a shorthand notation is used:

Δ = span{g1, . . . , gm}.

The distribution Δ is nonsingular if dimΔ(x) = r, with r constant for all
x. In this case, r is called the dimension of the distribution. Moreover, Δ is
called involutive if it is closed under the Lie bracket operation:

[gi, gj ] ∈ Δ ∀ gi, gj ∈ Δ.

The involutive closure Δ̄ of a distribution Δ is its closure under the Lie bracket
operation. Hence, Δ is involutive if and only if Δ̄ = Δ. Note that the distri-
bution Δ = span{g} associated with a single vector field is always involutive,
because [g, g](x) = 0.

Example D.2

The distribution

Δ = span{g1, g2} = span

{[
cos x3

sin x3

0

]
,

(
0
0
1

)}

is nonsingular and has dimension 2. It is not involutive, because the Lie bracket

[g1, g2](x) =

[
sin x3

−cos x3

0

]
is always linearly independent of g1(x) and g2(x). Its involutive closure is therefore

Δ̄ = span{g1, g2, [g1, g2]}.
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D.2 Nonlinear Controllability

Consider a nonlinear dynamic system of the form

ẋ = f(x) +
m∑

j=1

gj(x)uj , (D.9)

that is called affine in the inputs uj . The state x takes values in IRn, while
each component uj of the control input u ∈ IRm takes values in the class U
of piecewise-constant functions.

Denote by x(t, 0,x0,u) the solution of (D.9) at time t ≥ 0, corresponding
to an input u: [0, t] → U and an initial condition x(0) = x0. Such a solution
exists and is unique provided that the drift vector field f and the input vector
fields gj are of class C∞. System (D.9) is said to be controllable if, for any
choice of x1, x2 in IRn, there exists a time instant T and an input u: [0, T ] → U
such that x(T, 0,x1,u) = x2.

The accessibility algebra A of system (D.9) is the smallest subalgebra of
V(IRn) that contains f , g1, . . . , gm. By definition, all the Lie brackets that can
be generated using these vector fields belong to A. The accessibility distribu-
tion ΔA of system (D.9) is defined as

ΔA = span{v|v ∈ A}. (D.10)

In other words, ΔA is the involutive closure of Δ = span{f , g1, . . . , gm}.
The computation of ΔA may be organized as an iterative procedure

ΔA = span {v|v ∈ Δi,∀i ≥ 1} ,

with

Δ1 = Δ = span{f , g1, . . . , gm}
Δi = Δi−1 + span{[g,v]| g ∈ Δ1,v ∈ Δi−1}, i ≥ 2.

This procedure stops after κ steps, where κ is the smallest integer such that
Δκ+1 = Δκ = ΔA. This number is called the nonholonomy degree of the
system and is related to the ‘level’ of Lie brackets that must be included in
ΔA. Since dimΔA ≤ n, it is κ ≤ n−m necessarily.

If system (D.9) is driftless

ẋ =
m∑

i=1

gi(x)ui, (D.11)

the accessibility distribution ΔA associated with vector fields g1, . . . , gm char-
acterizes its controllability. In particular, system (D.11) is controllable if and
only if the following accessibility rank condition holds:

dimΔA(x) = n. (D.12)
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Note that for driftless systems the iterative procedure for building ΔA starts
with Δ1 = Δ = span{g1, . . . , gm}, and therefore κ ≤ n−m + 1.

For systems in the general form (D.9), condition (D.12) is only necessary
for controllability. There are, however, two notable exceptions:

• If system (D.11) is controllable, the system with drift obtained by per-
forming a dynamic extension of (D.11)

ẋ =
m∑

i=1

gi(x)vi (D.13)

v̇i = ui, i = 1, . . . ,m, (D.14)

i.e., by adding an integrator on each input channel, is also controllable.
• For a linear system

ẋ = Ax +
m∑

j=1

bjuj = Ax + Bu

(D.12) becomes

� ([B AB A2B . . . An−1B ]) = n, (D.15)

i.e., the well-known necessary and sufficient condition for controllability
due to Kalman.
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derivative, 601

link
acceleration, 285
centre of mass, 249
inertia, 251
velocity, 108

local
minima, 550, 551
planner, 542

Lyapunov
direct method, 596
equation, 597
function, 135, 328, 335, 340, 341, 345,

368, 431, 446, 449, 452, 506, 513,
596

manipulability
dynamic, 299
ellipsoid, 152
measure, 126, 153

manipulability ellipsoid
dynamic, 299
force, 156
velocity, 153

manipulator
anthropomorphic, 8
Cartesian, 4
cylindrical, 5
DLR, 79
end-effector, 4
humanoid, 81
joint, 58
joints, 4
link, 58
links, 4
mechanical structure, 4
mobile, 14
parallel, 9
posture, 58
redundant, 4, 87, 124, 134, 142, 296
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SCARA, 7
spherical, 6
Stanford, 76, 115
with spherical wrist, 94
wrist, 4

matrix
adjoint, 567
algebraic complement, 565
block-partitioned, 564
calibration, 217, 229
compliance, 366
condition number, 577
damped least-squares, 127
damped least-squares inverse, 282
derivative, 568
determinant, 566
diagonal, 564
eigenvalues, 573
eigenvectors, 573
essential, 434
homogeneous transformation, 56
idempotent, 568
identity, 564
inertia, 254
interaction, 424
inverse, 567
Jacobian, 569
left pseudo-inverse, 90, 281, 386, 428,

431, 452, 576
minor, 566
negative definite, 574
negative semi-definite, 575
norm, 572
null, 564
operations, 565
orthogonal, 568, 579
positive definite, 255, 574, 582
positive semi-definite, 575
product, 566
product of scalar by, 565
projection, 389, 572
right pseudo-inverse, 125, 299, 576
rotation, 40, 579
selection, 389
singular value decomposition, 577
skew-symmetric, 257, 564
square, 563
stiffness, 366
sum, 565

symmetric, 251, 255, 564
trace, 565
transpose, 564
triangular, 563

mobile robot
car-like, 13, 482
control, 502
differential drive, 12, 479
dynamic model, 486
kinematic model, 476
legged, 11
mechanical structure, 10
omnidirectional, 13
path planning, 492
planning, 489
second-order kinematic model, 488
synchro drive, 12, 479
trajectory planning, 498
tricycle-like, 12, 482
wheeled, 10, 469

moment
image, 416
inertia, 262, 581
inertia first, 262
resultant, 583

motion
constrained, 363, 384
control, 303
equations, 255
internal, 296
planning, 523
point-to-point, 163
primitives, 545
through a sequence of points, 168

motion planning
canonical problem, 523
multiple-query, 535
off-line, 524
on-line, 524
probabilistic, 541
query, 535
reactive, 551
sampling-based, 541
single-query, 543
via artificial potentials, 546
via cell decomposition, 536
via retraction, 532

motor
electric, 193

Index 629

hydraulic, 193
pneumatic, 193

navigation function, 553
Newton–Euler

equations, 584
formulation, 282, 292
recursive algorithm, 286

nonholonomy, 469

octree, 541
odometric localization, 514
operational

space, 84, 445
operator

Laplacian, 415
Roberts, 414
Sobel, 414

orientation
absolute, 436
end-effector, 187
error, 137
minimal representation, 49
rigid body, 40
trajectory, 187

parameters
Denavit–Hartenberg, 63
dynamic, 259
extrinsic, 229, 440
intrinsic, 229, 440
uncertainty, 332, 444

path
circular, 183
geometrically admissible, 490
minimum, 607
primitive, 181
rectilinear, 182

plane
epipolar, 435
osculating, 181

points
feature, 417
path, 169
via, 186, 539
virtual, 173

polynomial
cubic, 164, 169
interpolating, 169

sequence, 170, 172, 175
Pontryagin

minimum principle, 499
pose

estimation, 418
regulation, 345
rigid body, 39

position
control, 206, 312
end-effector, 184
feedback, 312, 314, 317
rigid body, 39
trajectory, 184
transducer, 210

posture
manipulator, 58
regulation, 328, 503, 512

potential
artificial, 546
attractive, 546
repulsive, 547
total, 549

power
amplifier, 197
supply, 198

principle
conservation of energy, 259
virtual work, 147, 385, 587

PRM (Probabilistic Roadmap), 541
programming

environment, 238
language, 238
object-oriented, 242
robot-oriented, 241
teaching-by-showing, 240

quadtree, 540

range
sensor, 219

reciprocity, 387
redundancy

kinematic, 121
analysis, 121
kinematic, 87
resolution, 123, 298

Reeds–Shepp
curves, 501

regulation
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Cartesian, 511
discontinuous and/or time-varying,

514
pose, 345
posture, 328, 503, 512

Remote Centre of Compliance (RCC),
366

resolver, 213
retraction, 534
rigid body

angular momentum, 583
angular velocity, 580
inertia moment, 581
inertia product, 582
inertia tensor, 582
kinematics, 579
linear momentum, 583
mass, 581
orientation, 40
pose, 39, 580
position, 39
potential energy, 585

roadmap, 532
robot

applications, 18
field, 26
industrial, 17
manipulator, 4
mobile, 10
origin, 1
service, 27

robotics
advanced, 25
definition, 2
fundamental laws, 2
industrial, 15

rotation
elementary, 41
instantaneous centre, 480
matrix, 40, 579
vector, 44

rotation matrix
composition, 45
derivative, 106

RRT (Rapidly-exploring Random Tree),
543

segmentation
binary, 412

image, 411
sensor

exteroceptive, 3, 215, 517
laser, 222
proprioceptive, 3, 209, 516
range, 219
shaft torque, 216
sonar, 219
vision, 225
wrist force, 216

servomotor
brushless DC, 194
electric, 193
hydraulic, 195
permanent-magnet DC, 194

simulation
force control, 382
hybrid visual servoing, 464
impedance control, 376
inverse dynamics, 269
inverse kinematics algorithms, 143
motion control schemes, 349
pose estimation, 432
regulation for mobile robots, 514
trajectory tracking for mobile robots,

508
visual control schemes, 453
visual servoing, 453

singularity
arm, 119
classification, 116
decoupling, 117
kinematic, 116, 127
representation, 130
wrist, 119

space
configuration, 470
joint, 83, 84, 162
null, 122, 149
operational, 83, 84, 296, 343
projection, 572
range, 122, 149, 572
vector, 570
work, 85

special group
Euclidean, 57, 580
orthonormal, 41, 49, 579

stability, 133, 135, 141, 328, 368, 446,
447, 452, 590, 595, 596
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statics, 147, 587
Steiner

theorem, 260, 582
stiffness

matrix, 366

tachometer, 214
torque

actuating, 257
computed, 324
controlled generator, 200
driving, 199, 203
friction, 257
joint, 147, 248
limit, 294
reaction, 199
sensor, 216

tracking
error, 504
reference, 590
trajectory, 503, 595
via input/output linearization, 507
via linear control, 505
via nonlinear control, 506

trajectory
dynamic scaling, 294
joint space, 162
operational space, 179
orientation, 187
planning, 161, 179
position, 184
tracking, 503

transducer
position, 210
velocity, 214

transformation
coordinate, 56
force, 151
homogeneous, 56
linear, 572
matrix, 56
perspective, 227
similarity, 573
velocity, 149

transmission, 192
triangulation, 435

unicycle
chained-form transformation, 484

dynamic model, 488
flat outputs, 491
kinematic model, 478
minimum-time trajectories, 500
optimal trajectories, 499
second-order kinematic model, 489

unit quaternion, 54, 140
unit vector

approach, 59
binormal, 181
control, 337
normal, 59, 181
sliding, 59
tangent, 181

vector
basis, 570
bound, 580
column, 563
components, 570
feature, 418
field, 599
homogeneous representation, 56
linear independence, 569
norm, 570
null, 564
operations, 569
product, 571
product of scalar by, 570
representation, 42
rotation, 44
scalar product, 570
scalar triple product, 571
space, 570
subspace, 570
sum, 570
unit, 571

velocity
controlled generator, 200
controlled subspace, 387
feedback, 314, 317
link, 108
transducer, 214
transformation, 149
trapezoidal profile, 165
triangular profile, 167

vision
sensor, 225
stereo, 409, 433
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visual servoing
hybrid, 460
image-based, 449
PD with gravity compensation, 446,

449
position-based, 445
resolved-velocity, 447, 451

Voronoi
generalized diagram, 533

wheel
caster, 11

fixed, 11

Mecanum, 13

steerable, 11

work

elementary, 584

virtual, 147, 385, 586

workspace, 4, 14

wrist

force sensor, 216

singularity, 119

spherical, 75, 99


