Analisi Matematica 1 (A.A. 2003/2004)

Docenti: Fabio Camilli, Klaus Engel

 $Corsi\ di\ Laurea\ in\ Ingegneria\ Ambiente\ e\ Territorio,\ Chimica,\ Civile,\ Elettrica,\ Elettronica,\ Informatica-Automatica,\ Meccanica\ e\ Telecomunicazioni$

Scritto A		durata della prova: 1 ora e 30 minuti	
Cognome:		Nome:	
Matricola:		Corso di Laurea:	
Prima di iniziare le	eggere le istruzioni in f	ondo all'ultima pagina	D1
			D2
Domanda 1	[3+4 punti]		E1
(i) Dare la definizio	ne di estremo superiore d	i un insieme $A \subset \mathbb{R}$.	E2
(ii) Trovare sup e in:	f dell'insieme		E3
	$A:=\Big\{1$	$1 + \frac{(-1)^n}{n^2 + 1} : n \in \mathbb{N} \bigg\}$	E4
Risposta			\sum
(i)			
(;;)			
(ii)			

Domanda 2 [3+4 punti]

(i) Dare la definizione di punto di massimo locale per una funzione $f: \mathbb{R} \to \mathbb{R}$.
(ii) Enunciare il teorema di Fermat.
Risposta
(i)
(ii)
(**)

Esercizio 1	[4 punti]
-------------	-----------

Sia $f: \mathbb{R} \to \mathbb{R}$ di classe C^{∞} (cioé infinite volte derivabile) e sia $x_0 \in \mathbb{R}$ un punto critico per f. Allora x_0 é un punto di

- a flesso, se $f''(x_0) = 0$
- b massimo assoluto, se $f''(x_0) > 0$
- \overline{c} massimo locale, se $f''(x_0) \ge 0$
- d flesso, se $f''(x_0) = 0$ e $f'''(x_0) < 0$

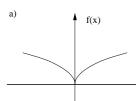
Risoluzione

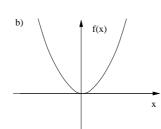
Esercizio 2 [4 punti]

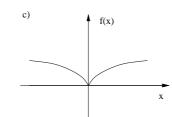
Siano $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ due successioni tali che $a_n=\sin(b_n)-b_n^2$ Allora

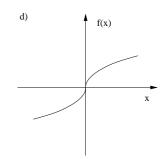
- $a_n \ge b_n \text{ per ogni } n \in \mathbb{N}$
- b $(a_n)_{n\in\mathbb{N}}$ é limitata superiormente
- $\boxed{\mathbf{c}}$ $(a_n)_{n\in\mathbb{N}}$ é limitata inferiormente
- $\boxed{\mathbf{d}} \quad \lim_{n \to \infty} a_n = +\infty$

Risoluzione


Esercizio 3 [5 punti]


Studiare la convergenza della serie


$$\sum_{n=1}^{\infty} n \cdot \sin\left(n^{-\frac{5}{2}}\right) \cdot \arctan(n^3)$$


Risoluzione

Parte del grafico di $f(x) := |\sin(x)|^{\frac{1}{2}}$ è data da

D . 1	
Risol	luzione
101001	uzione

Regole per sostenere l'esame

- Si può entrare in aula solamente con penna, matita, gomma, ...e libretto universitario (o documento di riconoscimento). In particolare, non si possono portare appunti, libri, calcolatrice e cellulare.
- Il compito viene corretto solo se la risposta alla domanda 1 è esauriente.
- Il punteggio minimo per superare la prova è 18.