Istituzioni di Geometria Superiore I

Esercizi su spazi e sottospazi proiettivi

Esercizio 1. Verificare che i seguenti punti di $\mathbb{P}^2(\mathbb{R})$ sono allineati e determinare un'equazione cartesiana della retta che li contiene:

$$A = [1:2:2], B = [3:1:4], C = [2:-1:2].$$

Esercizio 2. Si considerino i punti A = [1:0:2:3], B = [1:2:0:0], C = [0:1:0:1] di $\mathbb{P}^3(\mathbb{R})$.

- (i) Dimostrare che A, B e C sono in posizione generale.
- (ii) Determinare equazioni cartesiane di $\langle A, B, C \rangle$ e $\langle A, B \rangle$ nel sistema di riferimento standard di $\mathbb{P}^3(\mathbb{R})$.
- (iii) Trovare un sistema di riferimento proiettivo \mathcal{R} su $\langle A, B, C \rangle$ rispetto al quale A, B, C siano i punti fondamentali.
- (iv) Determinare un'equazione cartesiane per $\langle A, B \rangle \subset \langle A, B, C \rangle$ nel riferimento proiettivo \mathcal{R} .

Esercizio 3. Sia $\mathbb{P}(V)$ uno spazio proiettivo di dimensione n e si fissi un riferimento proiettivo \mathcal{R} di $\mathbb{P}(V)$. Dati n punti P_0, \ldots, P_{n-1} di $\mathbb{P}(V)$ linearmente indipendenti, sia H l'iperpiano da essi generato. Dimostrare che, se $[P_i]_{\mathcal{R}} = [p_{i0} : \ldots : p_{in}]$ per $0 \le i \le n-1$, allora

$$\begin{vmatrix} x_0 & x_1 & \dots & x_n \\ p_{00} & p_{01} & \dots & p_{0n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n-10} & p_{n-11} & \dots & p_{n-1n} \end{vmatrix} = 0$$

è un'equazione cartesiana di H rispetto a \mathcal{R} .

Esercizio 4. Dimostrare che, comunque date tre rette r, r', r'' di $\mathbb{P}^4(\mathbb{K})$, a due a due sghembe e non contenute in uno stesso iperpiano, esiste un'unica retta s incidente r, r' e r''.

Esercizio 5. Siano H e K due sottospazi proiettivi non vuoti di uno spazio proiettivo $\mathbb{P}(V)$. Dimostrare che

$$\langle H, K \rangle = \bigcup_{P \in H, Q \in K} \langle P, Q \rangle.$$

Esercizio 6. Provare che in $\mathbb{P}^{2r}(\mathbb{K})$ esiste una ed una sola retta passante per un dato punto P ed incidente due sottospazi sghembi di dimensione r e r-1 non passanti per P.

Esercizio 7. Determinare il punto in comune delle due rette di $\mathbb{P}^2(\mathbb{C})$ ottenute come chiusure proiettive (rispetto a j_0) delle rette r, s di $\mathbb{A}^2(\mathbb{C})$ di equazioni:

$$r: x_1 - 3x_2 - i = 0$$
, $s: x_1 - 3x_2 + 4 = 0$.

Esercizio 8. Determinare un'equazione cartesiana del piano $\pi \subset \mathbb{P}^3(\mathbb{R})$ passante per il punto P = [1:1:0:1] e per i punti impropri (rispetto a j_0) delle rette r, s di $\mathbb{A}^3(\mathbb{R})$ di equazioni:

$$r: x_1 + x_2 + x_3 - 1 = 2x_1 - x_2 - x_3 = 0, \quad s: 2x_1 - x_2 - 2x_3 + 1 = x_2 + x_3 - 1 = 0.$$