Istituzioni di Geometria Superiore I

Undicesimo foglio di esercizi

Esercizio 1. Calcolare il gruppo fondamentale di un toro e di un toro meno un punto.

Esercizio 2. Si consideri il sottospazio di \mathbb{R}^2

$$E := (\mathbb{R} \times \mathbb{Z}) \big[J(\mathbb{Z} \times \mathbb{R}).$$

Dimostrare che E non è semplicemente connesso. (Suggerimento: Far vedere che E riveste il bouquet di due circonferenze).

Esercizio 3. Determinare il gruppo fondamentale delle seguenti quadriche in \mathbb{R}^3 :

- (i) Iperboloide iperbolico: $x^2 + y^2 z^2 1 = 0$;
- (ii) Paraboloide ellittico: $x^2 + y^2 z = 0$;
- (iii) Paraboloide iperbolico: $x^2 y^2 z = 0$;
- (iv) Cilindro ellittico $x^2 + y^2 1 = 0$;
- (v) Cono a due falde $x^2 + y^2 z^2 = 0$.

Esercizio 4. Determinare il gruppo fondamentale di \mathbb{R}^3 meno i tre assi coordinati.

Esercizio 5. Sia $P \in \mathbb{P}^n(\mathbb{R})$. Determinare un generatore del gruppo fondamentale $\pi_1(\mathbb{P}^n(\mathbb{R}), P)$.

Esercizio 6. Calcolare il gruppo fondamentale di $\mathbb{P}^2(\mathbb{R})$ meno un punto.

Esercizio 7. In \mathbb{R}^3 si considerino il cilindro S di equazione $y^2 + z^2 = 1$ e la retta r di equazioni x = z = 0. Determinare il gruppo fondamentale di $X = S \cup r$.

Esercizio 8. Si consideri la mappa razionale $\pi: \mathbb{P}^3(\mathbb{C}) \dashrightarrow \mathbb{P}^2(\mathbb{C})$ data da $\pi([x_0:x_1:x_2:x_3]) = [x_0 - x_3:x_1:x_2].$

- (i) Determinare il dominio di π e spiegare perchè π è una proiezione.
- (ii) Sia $\Gamma \subset \mathbb{P}^3(\mathbb{C})$ la cubica gobba (cioè l'immagine della mappa di Veronese $v_{1,3}$) e sia $C = \pi(\Gamma)$. Determinare $I_{\mathbb{P}}(C)$.
- (iii) Determinare gli eventuali punti singolari di C.
- (iv) Dimostrare che $\pi|_{\Gamma}:\Gamma\to C$ è un morfismo birazionale ma non un isomorfismo.

Esercizio 9. Si consideri l'applicazione $\Phi: \mathbb{P}^2 \dashrightarrow \mathbb{P}^4$ definita da

$$\Phi([x_0:x_1:x_2:x_3]) = [x_0x_1:x_0x_2:x_1^2:x_1x_2:x_2^2]$$

e sia $Y = \overline{\Phi(\mathbb{P}^2)}$.

- (i) Determinare il dominio di $\Phi.$
- (ii) Dimostrare che Φ ammette un'inversa regolare $\Phi^{-1}: Y \to \mathbb{P}^2$.
- (iii) φ^{-1} è lo scoppiamento di \mathbb{P}^2 in un punto?