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Chapter 1

Continuous population models for
single species

1.1 The Malthus’ model

Let us consider a population N(t) ≥ 0 (of animals, cells, bacteria, etc.) depending on time
t ≥ 0. The basic approach of continuous models in population dynamics requires information
on “how the population changes in time”, more precisely

dN(t)

dt
= change of the number of individuals per unit time.

It is reasonable to write the right-hand side above in terms of a rate of change, namely

dN(t)

dt
= rate of change of the number of individuals per unit time × N(t).

The effects contributing to the above rate of change can be grouped into growth mechanisms
and decrease mechanisms. The former usually account of new births, the latter of deaths
and/or migration phenomena. In the classical Malthus model [1] (dating back to 1798), the
rate is assumed to be constant. Hence, we write

dN(t)

dt
= (b− d)N(t), (1.1.1)

where b > 0 is the birth rate and d > 0 is the death rate. The linear differential equation
(1.1.1) is explicitly solvable as

N(t) = N(0)e(b−d)t .

Clearly, if b > d the population grows indefinitely as t → +∞, whereas it dies out to zero if
b < d.

1.2 The Logistic model

The indefinite growth for b > d makes (1.1.1) somewhat unrealistic, as this is not what
happens in real life. The finiteness of the available resources for the population makes a
slower growth rate more likely when the population is very large. This makes a dependency
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on N(t) of the rate of change of the population more realistic. A first example in this
direction is provided by the logistic model introduced by Verhulst in 1838 [2], in which a
carrying capacity K > 0 is introduced as a parameter accounting for the available sustainable
resources for the population N(t). The models reads

dN(t)

dt
= rN(t)

(
1− N(t)

K

)
, (1.2.1)

where r > 0 is the growth rate of the population for small values of N(t). The rate of change
of the population is now given by

r

(
1− N(t)

K

)
which depends on N and is positive for N < K and negative for N > K. In particular, if
the population is higher than the carrying capacity the growth is not sustainable and the
population decreases.

The differential equation (1.2.1) can be easily solved by separation of the variables:

dN

N
(
1− N

K

) = rdt∫ N(t)

N(0)

dN

N
(
1− N

K

) = rt∫ N(t)/K

N(0)/K

dM

M (1−M)
= rt

log

(
M

|1−M |

) ∣∣N(t)/K

N(0)/K
= rt,

which leads, after few lines of calculations, to

N(t)
∣∣∣1− N(0)

K

∣∣∣
N(0)

∣∣∣1− N(t)
K

∣∣∣ = ert .

Since the Cauchy problem for (1.2.1) admits a unique global solution (exercise!) and since
N(t) ≡ K is a stationary solution, the sign of 1− N

K is preserved in time. Therefore, we can
remove the absolute values and get

N(t) =
KN(0)ert

K −N(0) +N(0)ert
.

In this simple model we were able to find an explicit solution, which allows to detect properties
of the solution which can be interpreted with respect to the population growth problem we
are considering. For small times and for N(0) < K, N(t) behaves like

N(t) u N(0)ert

which is the solution to the Malthus equation with growth rate r. For larger times, we observe
that N(t)→ K as t→ +∞. The constant K plays somehow the role of a sustainable size of
the population given the conditions of the surrounding environment. Notice that if N0 > k
the population size is decreasing in time for all t ≥ 0. This represents a situation in which,
due to compensating effects of overcrowding, births are less than deaths and migration effect.
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1.3 General population models for one species

Depending on the specific situation we may be dealing with, we may consider a population
to be governed by

dN(t)

dt
= f(N(t)) , (1.3.1)

where [0,+∞) 3 N 7→ f(N) ∈ R is a general nonlinear function of N . We assume for
simplicity that f is C1(R). Equilibria N∗ are solutions to f(N∗) = 0. From a simple linearised
stability analysis, we perturb N∗ as

N(t) = N∗ + n(t) ,

with |n(t)| small, and we compute

dn

dt
= f(N∗ + n) ∼ f(N∗) + nf ′(N∗) + higher horder terms .

It is well known that, for small values of n, the solution n(t) is well approximated by the
solution to the linear problem

n(t) = n(0)ef
′(N∗)t,

which yields, for the solution N(t) to (1.3.1),

N(t) u N∗ + (N(0)−N∗)ef ′(N∗)t .

Hence, the steady state N∗ is asymptotically stable if f ′(N∗) < 0, whereas it is unstable is
f ′(N∗) > 0. A more general situation with more than one equilibrium can be considered. As
a simple exercise, assume there exists three stationary solutions 0 < N1 < N2 < N3. Assume

f(N)


> 0 if N ∈ [0, N1)

< 0 if N ∈ (N1, N2)

> 0 if N ∈ (N2, N3)

< 0 if N > N3 .

By choosing N(0) ∈ [0, N1), the unique solution N(t) to (1.3.1) exists at least for short times.
Moreover, since f(N1) > 0, f(N(t)) < 0 for the local-in-time existence time interval due
to the preservation of the sign for continuous functions, so N(t) will be increasing for short
times. By a simple continuation principle for differential equations, N(t) cannot cease to exist
in a finite time, because it cannot “touch the boundary of the domain of f” (that is R) and
it cannot “blow-up” because otherwise it should “touch” the line N = N1, but this would
imply more than one solution to the Cauchy problem for (1.3.1) with initial condition N1 at
the time in which N “touches” N1. Hence, N(t) exists globally and is always increasing, since
it remains in the interval [0, N1). Now, monotone functions have limits at +∞, and so does
N(t). Said limit cannot be < N1, because otherwise the time derivative of N would have a
non-zero limit at infinity. Clearly, said limit can only be positive, but this implies N(t) would
“stay above a strictly increasing straight line”, which contradicts the fact that N must stay
below N1 for all times. Hence, the only possible limit for N(t) at +∞ is N1. By a similar
argument, one can prove that a solution with N(0) ∈ (N1, N2) is always decreasing in time
and tends to N1 as t→ +∞. Hence, N1 is globally stable for initial data in [0, N2). A similar
arguments shows that N3 is globally stable for initial data in [N2,+∞). The advantage of
the global analysis performed in this example is that we can predict the asymptotic behavior
of N(t) not just for small perturbation of the equilibria but for arbitrary initial conditions.
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1.4 A model with predation: the “spruce budworm”

The stability or instability of a steady state is not the only relevant information one can get out
of a mathematical model. When the model exhibits dependency on several parameters, one
can see how those parameters affect the qualitative behavior of the model. In this example,
N(t) is the population of the “spruce budworm”, an insect which can defoliate trees, so the
control of its population is of practical interest. The model is nothing but a logistic equation
plus a predation term:

dN

dt
= rN

(
1− N

K

)
− p(N) , (1.4.1)

where

p(N) =
BN2

A2 +N2
,

which models the fact that predation (e.g. by birds) typically saturates for large N . In (1.4.1),
r,K,A,B are four positive parameters. We already know the meaning of r and K. Here B is
the “saturated” predation rate, that is the predation rate attained for large population size.
As for A, a simple exercise shows that p(N) has an inflection point at N = A√

3
, which is also

the point at which the slope of p reaches its maximum. Therefore, A is a parameter denoting
a “switch” mechanism, a threshold value in which the effect of the predation term changes
drastically, from very low to a significant one.

As we will do very often, we will now “rescale” the model (1.4.1) with the goal of reduc-
ing the number of parameters. In fact, very often the interpretation of the results involves
“groups” of parameters. There are many possible ways to rescale a model. Typically, the new
variables are dimensionless. In this case, we decide to compare N with the aforementioned
switch parameter A, which has the same dimension as N . So we set

u =
N

A
.

Quite naturally, while trying to “remove” all constants from the predation terms, we end up
with a multiplier A/B of the time derivative. Therefore, we may define a new time variable

τ =
B

A
t

and u(τ) = N(t), which gives

du

dτ
=
rA

B
u

(
1− Au

K

)
− u2

1 + u2
.

This suggests the introduction of two parameters

ρ =
rA

B
, q =

K

A
,

which make (1.4.1) re-writable in the scaled version

du

dτ
= u

[
ρ

(
1− u

q

)
− u

1 + u2

]
. (1.4.2)
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Similarly to the all the models studied so far, u = 0 is a steady state. In order to detect other
possible steady states, let us set

g(u) = ρ

(
1− u

q

)
, h(u) =

u

1 + u2
.

A nontrivial steady state u∗ is found solving the nonlinear equation g(u∗) = h(u∗). On the
positive half-line u ≥ 0, g(u) is a decreasing straight line with g(0) = ρ and with g(q) = 0.
We now compute

h′(u) =
1− u2

(1 + u2)2

which gives that h is increasing on [0, 1), it has a global maximum h(1) = 1/2, and is
decreasing on u > 1. By drawing the diagrams of h and g it is immediately seen that, with a
fixed q > 0, there is a range ρ[0, R1] in which h(u) = g(u) for only one u = u1 ∈ (0, 1). Then,
there is a critical value ρ = R1 in which h(u) is tangent to g(u) at some point u = u2 > 1.
In a suitable range ρ ∈ (R1, R2) g and h have three intersection points u1 < u2 < u3, which
will become two at ρ = R2 and just one u = u3 for ρ > R2. A simple analysis shows that the
steady states 0 and u2 are unstable, whereas u1 and u3 are stable.

The two parameters ρ and q have therefore a drastic impact on the dynamics. If ρ is very
small compared to q, which is the case for example of a very small value of the predation
switch parameter A, the only stable steady state is u = u2, which is where the population
will settle for large times regardless the initial condition. On the other hand, a very large
value of A implies the population will settle to the larger steady state u3.

1.5 Logistic model with delay

In the models treated so far, the population is assumed to react instantaneously to the
surrounding environment, since the rate of change is computed at the same time at which
it affects the growth or decrease of the population itself. In practice, this reaction to the
surrounding environment “may take some time”. In many cases this reaction time is negligible.
In other situations it is a significant intrinsic property of the model.

We shall consider the logistic model as an example. Assuming the population is affected
by the rate of change with a delay T > 0, the model looks like

dN(t)

dt
= rN(t)

(
1− N(t− T )

K

)
. (1.5.1)

Before discussing (1.5.1), we remark that a reasonable variant of said model is

dN(t)

dt
= rN(t)

(
1− 1

K

∫ t

−∞
W (t− s)N(s)ds

)
. (1.5.2)

In (1.5.2), W (τ) is a weight function having a maximum at τ = T , as an example one can
consider W (τ) = G(τ − T ) where G is a standard Gaussian distribution. Note that the
integral in (1.5.2) combines values for several times s, with the highest weight on s = t− T .
The integral only considers s ≤ t. Therefore, the signal inferred by the rate of change of
the population propagates with many possible delay times, distributed in a non-homogeneous
way among the population, the most frequent delay time being T .
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Getting back to (1.5.1), we observe that for small times t < T the rate of change is
computed on negative times, namely 1− 1

KN(t− T ) with t− T < 0. Now, with the classical
approach of imposing just and initial condition N(0) = N0, the model (1.5.1) may be not
well posed. In fact, a whole set of values N(τ) with τ ∈ [−T, 0] needs to be prescribed in
order to have the model well posed. The initial condition is not a number anymore, it is a
function. This is just to remark that (1.5.1) brings along a complexity that is much higher
that the one of a single ordinary differential equation encountered so far. We need indeed a
“functional setting” for it.

Let us now try to guess the behavior of the solution to (1.5.1) via a simple heuristic argu-
ment. Let us assume that at some time t = t1 the population N(t1) achieves the equilibrium
valueK and, for t < t1 we haveN(t) < K. By computing the time derivative ofN(t) at time t1
we see that, since N(t1−T ) < K, dN(t1)/dt is actually positive, so the population continues to
grow. In particular, it does not settle at K as it happens for instance in the case without delay.
For t > t1, there will be a time at which the time derivative becomes zero. That time is actu-
ally t = t1+T , as in this case 1−N(t−T )/K = 1−N(t1+T−T )/K = 1−N(t1)/K = 1−1 = 0.
For t > t1 + T we have a negative time derivative, since in this case N(t − T ) > K. This
situation persists until N possibly touches the value K with a negative slope. Let us call that
time t2. For t > t2 the rate of changes computes N at times in which N is larger than K,
which means N keeps on decreasing. At time t = t2 + T the rate of change is zero again and
N starts growing again after it, until eventually it gets back to K. This heuristic argument
suggests an oscillatory behavior, or periodic behavior. By assuming that all time intervals
[t1, t1 +T ], [t1 +T, t2], t2, t2 +T ], above have the same size, we expect a period of oscillations
of the order of 4T , where T is the delay time.

Let us now try a more rigorous approach to the resolution. First of all, we may rescale
the model (1.5.1) by setting

N∗ =
N

K
, t∗ = rt , T ∗ = rT .

By dropping the ∗ symbols for simplicity, we get the rescaled model

dN(t)

dt
= N(t) (1−N(t− T )) . (1.5.3)

The equation (1.5.3) has two constant steady states: N(t) ≡ 0 and N(t) ≡ 1. By performing
a standard linearisation around the zero steady state, we immediately see the that term
N(t)N(t− T ) is of higher order, therefore the linearised equation is

dN(t)

dt
= N(t)

which clearly implies that zero is an unstable steady state. Let us now perturb the steady
state N(t) ≡ 1. We set

N(t) = 1 + n(t)

and substitute in (1.5.3) to obtain

dn(t)

dt
= −(1 + n(t))n(t− T ) .

By linearising, we obtain
dn(t)

dt
= −n(t− T ) . (1.5.4)
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We look for solutions of the form

n(t) = ceλt , λ ∈ C .

Substituting said expression into (1.5.4) we get, assuming c 6= 0,

λ = −e−λT . (1.5.5)

Assuming without restriction λ 6= 0 (as λ = 0 does not solve the equation), setting z = 1/λ
we get

1 + ze−
T
z = 0 .

The complex function on the above left-hand side is holomorphic on z 6= 0 and has an
essential singularity ar z = 0. Therefore, Picard’s theorem implies it has countably many
zeroes. Hence, (1.5.5) has countably many solutions. We set λ = µ + iω, with µ ∈ R and
ω ∈ [0, 2π). Stability arises if µ > 0 for all solutions to (1.5.5), whereas instability would be
in place if µ < 0 for at least one of them. Now, first of all we want to show that all solutions
to (1.5.5) has real part that is bounded from above. To see this, assume that a subsequence
λk of solutions to (1.5.5) satisfies |λk| → +∞. As

|λk| = e−µkT → +∞

we have −µkT → +∞, which implies µk → −∞, and hence the statement. Therefore, all
eigenvalues have real part µ bounded above by some constant µ0.

We first explore the case ω = 0 in (1.5.5), which becomes in this case

µ = −e−µT , µ ∈ R .

Now, the above has clearly no solutions µ ≥ 0. It has, in fact, negative solutions only for
small enough T . Indeed, a solution µ is characterised by being a zero of g(µ) = µ + e−µT .
We compute g′(µ) = 1 − Te−µT , which implies g has a global minimum at µ = log T

T , which
equals f((log T )/T ) = (1+log T )/T , and this value is negative for T < 1/e. A negative global
minimum for g implies g has zeroes. Hence, no eigenvalues arise for ω = 0 in the unstable
range.

Let us now investigate the case ω 6= 0. Equating real and imaginary part of (1.5.5), we
get {

µ = −e−µT cos(ωT )

ω = e−µT sin(ωT )

Assuming for the moment that ω is small, so that sin(ωT ) is not zero, we recover from the
second equation above

e−µT =
ω

sin(ωT )
,

which substituted into the first equation gives

µT = −ωT cos(ωT )

sin(ωT )
.

Setting α = ωT , the function [0,+∞)α 7→ α cotα decreases from the value 1, achieved as
α↘ 0, towards the value 0 achieved at α = π/2. Hence, solutions to (1.5.5) with µ > 0 are not
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possible as long as ωT < π/2. At ωT = π/2, µ = 0 is a solution with ω = e−0T sin(π/2) = 1.
As ωT = π/2, we obtain that the “first” solution λ to (1.5.5) with µ = 0 occurs for T = π/2.
At this value, by scaling back to the original vabiable, the solution to the rescaled model (1.5.3)
is well approximated by the solution to the linearised model K(1 + ceirt). This solution is
purely oscillatory. It has period 2π/r. On the other hand, the delay T at which such solution
exists is, in the original variable, equal to π

2r . Therefore, we obtain the heuristics prediction
of the period of oscillations being equal to four times the delay time T .

1.6 A model in ecology

In this section we consider a simple model in ecology as an example of how to get useful
information from the solution of a model not just from the stability of the solutions but
rather from “structural” properties which may lead to information that are of practical use.

The context is that of the “harvesting” of a given animal population. The model is similar
to the one we considered for the spruce budworm, with the exception that we shall consider
a simpler predation term, in a way to model it via an “external” input representing the effort
performed in the harvesting. We consider

dN

dt
= rN

(
1− N

K

)
− EN , (1.6.1)

in which the constant E > 0 represents the harvesting relative effort, so that the quantity
Y (t) = EN(t) represents the total yield per unit time, at a given time t ≥ 0. We would like
to “control” the constant E in order to optimise the harvesting strategy, and we will do that
by just looking at the equilibria. It is easily seen that (1.6.1) has two steady states: N1(t) ≡ 0
and

N2(t) ≡ K
(

1− E

r

)
,

and the latter is relevant if and only if E < r. The right-hand side of (1.6.1) is a parabola,
touching the x-axis at 0 and N2. If E < r then 0 is unstable and N2 is stable (Exercise!).
On the other hand, if E > r then the only steady state zero is stable. In fact, one can prove
that in the latter case zero attracts all solutions (for arbitrary initial datum) of (1.6.1). To
see this, write

dN

dt
= rN

(
1− N

K
− E

r

)
≤ −αrN , α :=

E

r
− 1 > 0 ,

and a simple comparison principle implies

N(t) ≤ N(0)e−αt

which proves the assertion. Clearly, choosing E > r is not a good strategy as this implies
that the population dies out for large times.

In case E < r, the (globally!) stable equilibrium Nh = K
(
1− E

r

)
implies a (constant)

yield per unit time

Yh = NhE = EK

(
1− E

r

)
,
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which can be seen as a very practical formula to determine the total yield per unit time as a
function of the yield effort. A simple calculus exercise implies that the above function has a
global maximum at E = r/2 given by

YM =
rK

4
.

The corresponding steady state reads

NM = K
(

1− r

2r

)
=
K

2
.

We now try to get some useful information (from both practical and “ecological” point
of view) out of these results in the case E < r. First of all, linearising around a general
equilibrium Nh leads to

d(N(t)−Nh)

dt
u
(
r − E − 2rNh

K

)
(N(t)−Nh) = −(r − E)(N(t)−Nh)

which gives
N(t) u Nh + constant e−(r−E)t .

The quantity r−E has dimension of 1/t, and its reciprocal 1/(r−E) is the order of magnitude
of the “recovery time” of the population to adjust to equilibrium from small perturbations.
Let us call this “recovery time”

TR(E) =
1

r − E
.

Clearly, TR is a function of the relative effort E. When E = 0 (no effort, that is no harvesting),
we have TR = TR(0) = 1/r. We introduce the “normalised recovery time”

TR(E)

TR(0)
=

r

r − E
=

1

1− E
r

.

At the “optimal” equilibrium NM = K/2, in which E = r/2, we get

TR(E)

TR(0)
= 2 .

The recovery time (and it normalised variant) is clearly very important for practical uses. On
the other hand, computing it as a function of the relative effort may be not easy. This is why
we try now to compute it as a function of the total yield Yh above, which is a function of E.
By solving Y = Yh(E) with respect to E we get

E

r
=

1

2

(
1±

√
1− Y

YM

)
,

which gives
TR(E)

TR(0)
=

2

1∓
√

1− Y
YM

.

By plotting this curve as a multi-valued function of Y/YM , the latter being confined in the
interval [0, 1], we see that it has two branches L1, L+. The branch L+ grows from the value
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1 attained at Y/YM = 0 to the value 2 attained at Y/YM = 1 with infinite slope. Then the

branch L− starts from (1, 2) and approaches the line Y/YM = 0 with TR(E)
TR(0) → +∞.

Let us provide some comment. This model is totally deterministic, which clearly makes is
more like a toy model to be improved in more specific situations. In any case, it is clear that
a more refined model must include probabilistic effects. Therefore, one useful information
here is that, by considering an increasing effort in the L+ branch (E small and Y small), “we
don’t want to get too close to the critical point Y/YM = 1”, because by some stochastic effect
we may otherwise fall into the L− branch, which may result into a catastrophic behavior with
the recovery time blowing up to infinity with obvious negative repercussions.

Exercise: consider the model

dN

dt
= rN

(
1− N

K

)
− Y0 , (1.6.2)

in which the total yield per unit time is constant, independent of the population size. Analyse
(1.6.2) similarly as a above and deduce that it is definitely less convenient with respect to a
population size depending yield as in (1.6.1).
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Chapter 2

Continuous population models with
many species

In this chapter we consider more than one species, and we focus in particular on the case of
two species. The main point is that an interaction of a given species with another one may
affect the evolution of both. This is why we expect many species modelling to improve the
description of the population behavior. We shall consider three main families of interactions:

� Predator-prey interaction: one of the two species (predator) benefits form the interaction
with the other species (prey), whereas the latter is negatively affected by the predator.

� Competition interaction: both species are negatively affected by the presence of the
opposite species, for example because the use the same resources.

� Mutualism (or symbiosis) interaction: both species benefit from the interaction with
the opposite species.

2.1 The Lotka-Volterra model

A classical model first formulated by Lotka [?] and in parallel by Volterra [?] for population
dynamics purposes reads as {

dN
dt = N(a− bP )
dP
dt = P (cN − d) .

(2.1.1)

Here N is the prey population and P is the predator population. The parameters a, b, c, d are
all positive. In the first equation of (2.1.1), the rate of change of the population of the prey
N has is assumed to be constant and positive (Malthusian) in absence of P , whereas it will
decrease as P increases, because it is assumed that the prey grows without being affected by
the predator. Similarly, in the second equation the predator is assumed to have a decreasing
population with constant negative rate if there is no prey around, whereas the presence of
the prey provides a positive term in the rate of change of P .

As done before, we now rescale the model to reduce the number of parameters. We set

τ = at , α =
d

a
, u =

c

d
N , v =

b

a
P .
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System (2.1.1) becomes {
du
dτ = u(1− v)
dv
dτ = αv(u− 1) .

(2.1.2)

Hence, we are left with just one parameter α > 0. Model (2.1.2) has two equilibria (0, 0) and
(1, 1). We can analyse the trajectories in detail by dividing the second equation by the first

dv

du
= α

v(u− 1)

u(1− v)

and separating the variables to obtain

1− v
v

dv = α
u− 1

u
du .

Integrating on both sides we get

α(u− log u) + v − log v = constant =: H . (2.1.3)

As u− log u ≥ 1 for all u ≥ 0 (exercise) and the minimum is achieved at u = 1 (1− log 1 = 1),
we obtain that the orbits of system (2.1.2) are provided by the curves (2.1.3) with H ≥ 1+α.
These curves are closed and bounded. They confine wider and wider regions as H increases.
They all contain the equilibrium point (1, 1). They never touch the u = 0 or the v = 0
axis, since otherwise we would get an infinite term on the left-hand side of (2.1.3). Since, of
course, none of these trajectories touch the equilibrium point, it is easily seen that one loop
in a trajectory is performed in a finite time, and the solution is periodic in time.

We provide later on a heuristic computation to estimate the period of the oscillations,
but before that we would like to comment on a key feature of this model. The fact that the
two species cover a periodic orbit in time is not per se unrealistic. Indeed, essentially the
periodicity in time is the feature this model was introduced to represent. However, this model
is conservative, which means that the oscillatory orbit is prescribed by the initial condition
via

H = α(u(0)− log u(0)) + v(0)− log v(0) .

If we perturb the initial condition through an arbitrary direction on the u, v-plane we almost
certainly move to a separate trajectory, which makes the model somewhat “structurally un-
stable”. What we would like to achieve (see the next section) is a situation in which, for a
fairly general class of initial conditions, all solutions get closer and closer to a fixed oscillatory
profile.

In order to estimate the period of oscillations, let us study the Jacobian matrix of the
system (2.1.2). Let us set

f(u, v) = u(1− v) , g(u, v) = αv(u− 1) .

We have
D(f, g)

D(u, v)
: A =

(∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)
=

(
1− v −u
αv α(u− 1)

)
.

We immediately see, as a remark, that (0, 0) is a saddle point (and therefore it is unstable)
as in that case the eigenvalues are 1 and −α. If we consider the steady state (1, 1) we get

A =

(
0 −1
α 0

)
,
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which has ±i
√
α as eigenvalues. Therefore, purely oscillatory eigenfunctions arise in this

case with period of oscillations 2π/
√
α, which in the original variables reads 2π

√
a/d. In

particular, an increase of the linear growth of the prey and a decrease of the predator death
rate produce an extension of the period of oscillations. Quite surprisingly (to a certain extent),
the predation constants play no role in the period of oscillations.

2.2 A complex version of Lotka-Volterra

Assume we have k species of prey and k species of predator, with k a given positive integer.
A natural generalisation of (2.1.1) is the system of 2k differential equations

dNi
dt = Ni

[
ai −

∑k
j=1 bijPj

]
i = 1, . . . , k

dPi
dt = Pi

[
−di −

∑k
j=1 cijNj

]
i = 1, . . . , k .

(2.2.1)

Let us write the above system in a more compact form. We set

N = (N1, . . . , Nk) ∈ [0,+∞)k , P = (P1, . . . , Pk) ∈ [0,+∞)k ,

and introduce the column vectors

a = (a1, . . . , ak) ∈ [0,+∞)k , d = (d1, . . . , dk) ∈ [0,+∞)k

and the matrices

B = (bij)
k
i,j=1 , C = (cij)

k
i,j=1 .

Hence, (2.2.1) becomes {
dN
dt = N(t)T [a−B ·P(t)]
dP
dt = P(t)T [−d−C ·N(t)] .

(2.2.2)

System (2.2.2) has the trivial equilibrium (N∗,P∗) = (0, 0) as well as (possible) nontrivial
equilibria arising as solutions (N∗,P∗) to the linear system{

BP∗ = a

CN∗ = d .

The trivial steady state is clearly unstable as it has as eigenvalues all the entries of the vector
a and the opposite of all the entries of the vector d (saddle point). In case of nontrivial steady
state (N∗,P∗), we perturb

N = N∗ + u , P = P∗ + v ,

and consider the linearised system {
du
dt u −N∗ ·Bv
dv
dt u P∗ ·Cu .

It is easily seen that the Jacobian matrix of this system has zero trace, which means that the
sum of the eigenvalues is zero. Hence, for a given eigenvalue λ, −λ is also an eigenvalue. Now,
in case λ is imaginary as in the k = 1 case this simply means that the conjugate comples of
λ is an eigenvalue and the solution is purely oscillatory. Clearly, the larger k the more likely
the Jacobian matrix will have an eigenvalues with nontrivial real part, and this implies in this
case the existence of an eigenvalue with positive real part. This heuristic argument shows
that with this extent of complexity we should expect instability.
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2.3 Realistic version of the predator-prey system

We now try to improve the previous version of the 2× 2 version of Lotka-Volterra, in a way
to remove the structural instability discussed above. We shall introduce three main variants
making the model more reasonable and more realistic:

� We replace the Malthus growth of the prey by a logistic growth.

� We prescribe a carrying capacity of the predator which is proportional to the prey
population size.

� We require that the relative predation rate in the N equation decreases to zero for large
N .

This leads to {
dN
dt = N

[
r
(
1− N

K

)
− kP

N+D

]
dP
dt = sP

(
1− hP

N

)
,

(2.3.1)

where r, s > 0 are linear growth rate of the prey and the predator respectively, K > 0 is the
carrying capacity of the prey, k, h,D > 0 are parameters referring to the predation terms.
We rescale the above system as follows:

u =
N

K
, v =

hP

K
, τ = rt

a =
k

hr
, b =

s

r
, d =

D

K
.

Then system (2.3.1) becomes{
du
dt = f(u, v) := u

[
1− u− au

u+d

]
dv
dt = g(u, v) := bv

(
1− v

u

)
.

(2.3.2)

Let us just consider nontrivial equilibria u, v > 0. From g(u, v) = 0 and u 6= 0 we obtain
u = v, which substituted into f(u, v) = 0 gives

1− u− au

u+ d
= 0 . (2.3.3)

A simple computation leads to the two solutions

u =
1

2

[
−(a+ d− 1)±

√
(a+ d− 1)2 + 4d

]
,

in which only one is meaningful (the other one is negative), namely

u∗ =
1

2

[
−(a+ d− 1) +

√
(a+ d− 1)2 + 4d

]
.

We now perturb the steady state

u(τ) = u∗ + x(τ) , v(τ) = u∗ + y(τ) ,
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and linearise (2.3.2) around it to get(dx
dτ
dy
dτ

)
= A ·

(
x(τ)
y(τ)

)
, A =

(
1− 2u− avd

(u+d)2 − au
u+d

b v
2

u2 b− 2b vu

)∣∣∣∣∣
(u,v)=(u∗,u∗)

.

The top left term at the equilibrium can be rewritten, using (2.3.3) with u = u∗, as

1− 2u∗ − au∗d

(u∗ + d)2
= −u∗ +

au∗

u∗ + d
− au∗d

(u∗ + d)2

= u∗
[
−1 +

1

(u∗ + d)2
(au∗ + ad− ad)

]
= u∗

(
−1 +

au∗

(u∗ + d)2

)
.

Other simple computations for the other terms provide the matrix

A =

(
u∗
(

au∗

(u∗+d)2 − 1
)
− au∗

u∗+d

b −b

)
.

With the well known formula for the eigenvalues λ

λ2 − tr(A)λ+ det(A) = 0

we get that stability is achieved provided

tr(A) < 0 and det(A) > 0 .

The latter reads

0 < bu∗
[
1− au∗

(u∗ + d)2
+

a

u∗ + d

]
=

bu∗

(u∗ + d)2

[
(u∗ + d)2 + ad

]
> 0 ,

which is always satisfied. Hence, stability is equivalent to

u∗
(

au∗

(u∗ + d)2
− 1

)
< b ,

which, upon substituting the expression of u∗ and 1− u∗ = au∗

u++d
becomes

b > u∗
(

au∗

(u∗ + d)2
− 1

)
=

u∗

u∗ + d
(1− 2u∗ − d)

=
1

a
(1− u∗)(1− 2u∗ − d) =

1

a

[
a+ d+ 1−

√
(1− a− d)2 + 4d

] [
a−

√
(1− a− d)2 + 4d

]
.

(2.3.4)

Both squared brackets above are non-increasing functions of d > 0 (exercise!). Therefore, a
simple sufficient condition for the local stability of (u∗, u∗) is (2.3.4) with d = 0, namely

b >
1

a
(a+ 1− |1− a|)(a− |1− a|)

which reads

b >

{
2a− 1 if a ∈ [0, 1]

1/a if a > 1 .
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Recall that in the original variables a = k
hr and b = s

r . Hence, stability of the steady state is
ensured, for example, when the predator has a much higher linear growth rate than the prey,
or when the predation factor k in the prey equation is very small. The latter is interpreted,
for example, by the fact that with a very small predation term the prey has time to converge
to a steady state in time to prevent instabilities due to the predation term. We shall not
focus on the nature of the stability here (it may be a node or a spiral).

We will instead ask ourselves what happens in the unstable range?. We are going to
determine the behavior of our system in this case by invoking Poincaré-Bendixson Theorem,
which states as follows with the notation of our system: assume (u∗, v∗) is a fully unstable
steady state (unstable node or spiral) included in an invariant domain I, then the system
admits a stable limit cycle. The latter means that the system is asymptotically close to a
periodic trajectory for large times, and said trajectory is the same for all initial data. This is
a big improvement compared to the classical Lotka-Volterra model, it is indeed the structural
stability property we were looking for. We now observe that (u∗, u∗) is indeed fully unstable
in case (2.3.4) is not satisfied, since the determinant of A is always positive.

To find a confined set it is essential and always informative to draw the null clines of the
system, that is, the curves in the phase plane where du/dτ = 0 and dv/dτ = 0. From (2.3.2)
these are the curves f(u, v) = 0 and g(u, v) = 0 which are illustrated in Figure 2.1. The sign of
the vector components of (f(u, v), g(u, v)) indicate the direction of the vector (du/dτ, dv/dτ)
and hence the direction of the (u, v) trajectory. So if f > 0 in a domain, du/dτ > 0 and
u is thus increasing there. On DE, EA, AB and BC, the trajectories clearly point inwards
because of the signs of f(u, v) and g(u, v) on them. It can be shown that a line DC exists
such that on it n · (du/dτ, dv/dτ) < 0; that is, n · (f(u, v), g(u, v)) < 0 where n is the unit
vector perpendicular to DC. For instance, take the straight line v = αu with α > 1 on a

suitable u-interval according to Figure 2.1. On that line f = f(u, αu) = u
(

1− u+ αau
u+d

)
and

g = g(u, αu) = −αb(α − 1)u < 0. In order to point inwards we need g/f > α, which means
g − αf < 0 on the set f < 0. It is left as an exercise to prove that such a choice of α is
possible.

2.4 Competition model

In a competition model, both species N1 and N2 “penalise” the growth of the opposite species.
This results in a system like

dN1

dt
= r1N1

[
1− N1

K1
− b12N2

K1

]
dN2

dt
= r2N2

[
1− N2

K2
− b21N1

K2

]
. (2.4.1)

As above, we perform a scaling

u1 =
N1

K1
u2 =

N2

K2
τ = r1t

ρ =
r1

r2
a12 = b12

K2

K1
a21 = b21

K1

K2
,
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Figure 2.1: Null clines f(u, v) = 0, g(u, v) = 0 for the system (2.3.2); note the signs of f and
g on either side of their null clines. ABCDEA is the boundary of the invariant compact set
about (u∗, v∗) on which the trajectories all point inwards.

19



which, upon a lengthy computation, leads to the rescaled system

du1

dτ
= u1 [1− u1 − a12u2] := f1(u1, u2)

du2

dτ
= ρu2 [1− u2 − a21u1] := f2(u1, u2) . (2.4.2)

It is immediately seen that the three steady states (0, 0), (1, 0), and (0, 1) always exist. In
order to see if there is a (fourth) steady state in which both components are positive, we need
to solve the system

1− u1 − a12u2 = 0 , 1− u2 − a21u1 = 0 .

which leads to

u1 = u∗1 =
1− a12

1− a12a21
, u2 = u∗2 =

1− a21

1− a12a21
.

It is immediately seen that there are two cases in which such a steady state makes sense (only
positive values for both u1 and u2 are allowed): the first case (case a) is a12 < 1 and a21 < 1,
the second case (case b) is a12 > 1 and a21 > 1. The case c, with a12 < 1 and a21 > 1, and
in case d, with a12 > 1 and a21 < 1, the fourth steady state doesn’t exist.

Let us now analyse the stability of those states. The linearisation of system (2.4.2) leads
to the Jacobian matrix

A =

(
1− 2u1 − a12u2 −a12u1

−ρa21u2 ρ(1− 2u2 − a21u1)

)
.

Substituting (u1, u2) = (0, 0) we easily obtain the diagonal matrix with entries 1 and ρ, so
we get an unstable node. As for (u1, u2) = (1, 0), we obtain the two eigenvalues λ1 = −1,
λ2 = ρ(1 − a21), which is a stable node if a21 > 1 and a saddle point if a21 < 1. In case
(u1, u2) = (0, 1) we obtain the two eigenvalues λ1 = 1 − a12 and λ2 = −ρ, which is a stable
node if a12 > 1 and a saddle point if a12 < 1.

Let us now substitute the fourth steady state (u1, u2) = (u∗1, u
∗
2). The Jacobian matrix

becomes

A = (1− a12a21)−1

(
a12 − 1 a12(a12 − 1)

ρa21(a21 − 1) ρ(a21 − 1)

)
,

which has the two eigenvalues

λ± = [2 (1− a12a21)]−1 [ρ(a21 − 1) + a12 − 1

±
√

(ρ(a21 − 1) + a12 − 1)2 + 4ρ(a12 − 1)(a21 − 1)(a12a21 − 1)

]
. (2.4.3)

We compute the term in the squared root

(ρ(a21 − 1) + a12 − 1)2 + 4ρ(a12 − 1)(a21 − 1)(a12a21 − 1)

= ρ2(a21 − 1)2 + (a12 − 1)2 + 2ρ(a21 − 1)(a12 − 1)− 4ρ(a12 − 1)(a21 − 1) + 4ρa12a21(a12 − 1)(a21 − 1)

= [ρ(a21 − 1)− (a12 − 1)]2 + 4ρa12a21(a12 − 1)(a21 − 1) > 0 ,

therefore the two eigenvalues λ− and λ+ are real in both cases a and b (the only ones in which
the fourth steady state exists).
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In case a (a12 < 1 and a21 < 1), the expression (2.4.3) clearly shows that both eigenvalues
are negative. In this case (u∗1, u

∗
2) is a stable node, whereas both (1, 0) and (0, 1) are saddle

points. As for the latter, it is clear that the “stable” direction for (1, 0) ((0, 1) respectively) is
the one with u2 = 0 (u1 = 0 respectively). Therefore, unless the initial condition is such that
one of the two species size is zero, all trajectories move away from these two steady states.
The steady state (u∗1, u

∗
2) attracts all trajectories. The explicit formula for (u∗1, u

∗
2) shows that

both values u∗1 and u∗2 are less than one. The interpretation behind that is that the two species
tend to adjust asymptotically to a value strictly less than their respective carrying capacities.
This is possible because the two predation constants a12 and a21 are not too big (case a), so
this is a case of mild (or soft) competition, a situation in which both species survive in the
large time range.

In case b (a12 > 1 and a21 > 1), the expression (2.4.3) shows that the two eigenvalues
have opposite sign, and hence we have a saddle point. This is the same case in which the two
other non-trivial steady states (1, 0) and (0, 1) are fully stable. In this case, one could prove
the existence of a separatrix curve in {u1 > 0 , u2 > 0}, which splits the first quadrant into
two regions, I and II, with (1, 0) belonging to I and (0, 1) belonging to II. Each region is the
basin of attraction of the steady states it contains. This is the case of aggressive competition,
in which the two predation constants are high, and only one species survives depending on the
initial condition (with the only exception of an initial condition exactly on the separatrix).
This is an example of application of the principle of competitive exclusion in evolution theory.

In case c (d respectively) (1, 0) is stable (unstable respectively) and (0, 1) is unstable (stable
respectively) and there are no more steady states. This is another example of principle of
competitive exclusion. However, while in case b the final outcome is determined by the initial
condition, in cases c and d the final outcome is determined by the structural properties of the
system.

As an exercise, one can see that this system as well as an invariant region {0 ≤ u1 ≤
U1, 0 ≤ u2 ≤ U2} for suitably large constants U1, U2.

2.5 Mutualism or symbiosis

In a mutualism model, both species gain from the presence of the opposite species. A very
simply way to model this is

dN1

dt
= r1N1 + a1N1N2

dN2

dt
= r2N2 + a2N2N1, (2.5.1)

with r1, r2, a1, a2 > 0. Only one steady state occurs here, (0, 0) which is clearly unstable.
Indeed, the velocity vector points strictly away from (0, 0) unless we start from the origin
itself. More precisely

dN1

dt
(t) ≥ r1N1(t) ,

dN2

dt
(t) ≥ r2N2(t) ,

which proves by a simple comparison principle that

N1(t) ≥ N1(0)er1t N2(t) ≥ N2(0)er2t ,
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and therefore the norm of (N1(t), N2(t)) diverges unless the initial datum is the origin. Hence,
in this model both populations grow at infinity if both are initially positive, therefore this
model is not that interesting.

A better version is the following one, in which the growth of both species is modelled via
a logistic growth rate:

dN1

dt
= r1N1

(
1− N1

K1
+ b12

N2

K1

)
dN2

dt
= r2N2

(
1− N2

K2
+ b21

N1

K2

)
. (2.5.2)

By performing a similar scaling as for the competition model we get

du1

dτ
= u1 (1− u1 + a12u2) =: f1(u1, u2)

du2

dτ
= u2 (1− u2 + a21u1) =: f2(u1, u2) . (2.5.3)

The pairs (0, 0), (1, 0), and (0, 1) are steady states of (2.5.3). To detect possible further steady
states, let us solve the system

1− u1 + a12u2 = 0 , 1− u2 + a21u1 = 0

and get

u1 =
1 + a12

1− a12a21
, u2 =

1 + a21

1− a12a21
.

Clearly, the above steady state only makes sense if a12a21 < 1, which is a case of mild
symbiosis. The linearised matrix around a steady state is

A =

(
1− 2u1 + a12u2 a12u1

ρa21u2 ρ(1− 2u2 + a21u1)

)
which shows that the three steady states (0, 0), (0, 1) and (1, 0) are unstable. An easy com-
putation shows that, when it exists, the fourth steady state is stable. Hence, in case of
mild symbiosis the two species will settle to a finite value. On the other hand, when the
fourth steady state does not exists there are no stable steady states and the two species grow
indefinitely.
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Chapter 3

Dynamics of Infectious Diseases:
Epidemic Models and AIDS

The history of epidemics is an ever fascinating area. Today this subject has enormous impact
on society due to Covid-19. The modelling of the latter is producing a very dense and complex
literature. In this chapter we will consider example of classical epidemics models. We will
then consider a more complex model for AIDS, which was probably the first epidemics for
which more complex models were developed.

3.1 Simple Epidemic Models and Practical Applications

In the classical models we consider here the total population is taken to be constant. If a
small group of infected individuals is introduced into a large population, a basic problem
is to describe the spread of the infection within the population as a function of time. Of
course this depends on a variety of circumstances, including the actual disease involved, but
as a first attempt at modeling directly transmitted diseases we make some not unreasonable
general assumptions. Consider a disease which, after recovery, confers immunity which, if
lethal, includes deaths: dead individuals are still counted. Suppose the disease is such that
the population can be divided into three distinct classes: the susceptibles, S, who can catch
the disease; the infectives, I , who have the disease and can transmit it; and the removed
class, R, namely, those who have either had the disease, or are recovered, immune or isolated
until recovered. The progress of individuals is schematically represented by

S → I → R.

Such models are often called SIR models. The number of classes depends on the disease.
SI models, for example, have only susceptible and infected classes while SEIR models have
a suceptible class, S, a class in which the disease is latent, E, an infectious class, I, and a
recovered or dead class, R. The assumptions made about the transmission of the infection and
incubation period are crucial in any model; these are reflected in the terms in the equations
and the parameters. With S(t), I(t) and R(t) as the number of individuals in each class
we assume here that: (i) The gain in the infective class is at a rate proportional to the
number of infectives and susceptibles, that is, rSI, where r > 0 is a constant parameter. The
susceptibles are lost at the same rate. (ii) The rate of removal of infectives to the removed
class is proportional to the number of infectives, that is, aI where a > 0 is a constant; 1/a is a
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measure of the time spent in the infectious state. (iii) The incubation period is short enough
to be negligible; that is, a susceptible who contracts the disease is infective right away.

We now consider the various classes as uniformly mixed; that is, every pair of individuals
has equal probability of coming into contact with one another. This is a major assumption
and in many situations does not hold as in most sexually transmitted diseases (STD’s). The
model mechanism based on the above assumptions is then

dS

dt
= −rSI (3.1.1)

dI

dt
= rSI − aI (3.1.2)

dR

dt
= aI, (3.1.3)

where r > 0 is the infection rate and a > 0 the removal rate of infectives. This is the
classic Kermack–McKendrick (1927) model. We are, of course, only interested in nonnegative
solutions for S, I and R. This is a basic model but, even so, we can make some highly relevant
general comments about epidemics and, in fact, adequately describe some specific epidemics
with such a model.

The constant population size is built into the system (3.1.1)–(3.1.3) since, on adding the
equations,

dS

dt
+
dI

dt
+
dR

dt
= 0 ⇒ S(t) + I(t) +R(t) = N, (3.1.4)

where N is the total size of the population. Thus, S, I and R are all bounded above by N .
The mathematical formulation of the epidemic problem is completed given initial conditions
such as

S(0) = S0 > 0, I(0) = I0 > 0, R(0) ≥ 0. (3.1.5)

A key question in any epidemic situation is, given r, a, S0 and the initial number of infectives
I0, whether the infection will spread or not, and if it does how it develops with time, and
crucially when it will start to decline. From (3.1.2),[

dI

dt

]
t=0

= I0(rS0 − a)

{
> 0 if S0 > ρ

< 0 if S0 < ρ
, ρ =

a

r
. (3.1.6)

Since, from (3.1.1), dS/dt ≤ 0, S ≤ S0 we have, if S0 < a/r,

dI

dt
= I(rS − a) ≤ I(rS0 − a) ≤ 0, for all t ≥ 0, (3.1.7)

in which case I0 > I(t)→ 0 as t→ +∞ and so the infection dies out; that is, no epidemic can
occur. On the other hand if S0 > a/r then I(t) initially increases and we have an epidemic.
The term ‘epidemic’ means that I(t) > I0 for some t > 0; see Figure 3.1. We thus have a
threshold phenomenon. If S0 > Sc = a/r there is an epidemic while if S0 < Sc there is not.
The critical parameter ρ = a/r is sometimes called the relative removal rate and its reciprocal
σ = r/a the infection’s contact rate.

We write

R0 =
rS0

a
,
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Figure 3.1: Phase trajectories in the susceptibles (S)–infectives (I ) phase plane for the SIR
model epidemic system (3.1.1)–(3.1.3). The curves are determined by the initial conditions
I(0) = I0 and S(0) = S0. With R(0) = 0, all trajectories start on the line S + I = N and
remain within the triangle since 0 < S + I < N for all time. An epidemic situation formally
exists if I(t) > I0 for any time t > 0; this always occurs if S0 > ρ = a/r and I0 > 0
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where R0 is the basic reproduction rate of the infection, that is, the number of secondary
infections produced by one primary infection in a wholly susceptible population. Here 1/a
is the average infectious period. If more than one secondary infection is produced from
one primary infection, that is, R0 > 1, clearly an epidemic ensues. The whole question of
thresholds in epidemics is obviously important. The definition and derivation or computation
of the basic reproduction rate is crucial and can be quite complicated.

We can derive some other useful analytical results from this simple model. From (3.1.1)
and (3.1.2)

dI

dS
= −(rS − a)I

rSI
= −1 +

ρ

S
, (I 6= 0).

The singularities all lie on the I = 0 axis. Integrating the last equation gives the (I, S) phase
plane trajectories as

I + S − ρ logS = constant = I0 + S0 − ρ logS0, (3.1.8)

where we have used the initial conditions (3.1.5). The phase trajectories are sketched in Figure
3.1. Note that with (3.1.5), all initial values S0 and I0 satisfy I0 + S0 = N since R(0) = 0 (it
is reasonable to choose as initial time that in which there are no removed individuals, since
the epidemics still has to start spreading!) and so for t > 0, 0 ≤ S + I < N .

If an epidemic exists we would like to know how severe it will be. From (3.1.7) the
maximum I, Imax , occurs at S = ρ where dI/dt = 0. From (3.1.8), with S = ρ,

Imax = ρ log ρ− ρ+ I0 + S0 − ρ logS0

= I0 + (S0 − ρ) + ρ log

(
ρ

S0

)
= N − ρ+ ρ log

(
ρ

S0

)
. (3.1.9)

For any initial values I0 and S0 > ρ, the phase trajectory starts with S > ρ and we see that I
increases from I0 and hence an epidemic ensues. It may not necessarily be a severe epidemic
as is the case if I0 is close to Imax. It is also clear from Figure 3.1 that if S0 < ρ then I
decreases from I0 and no epidemic occurs.

Since the axis I = 0 is a line of singularities, on all trajectories I → 0 as t→ +∞. From
(3.1.1), S decreases since dS/dt < 0 for S 6= 0, I 6= 0. From (3.1.1) and (3.1.3),

dS

dR
= −S

ρ

⇒ S = S0e
−R/ρ ≥ S0e

−N/ρ > 0 (3.1.10)

⇒ 0 < S(+∞) ≤ N. (3.1.11)

In fact from Figure (3.1.1), 0 < S(+∞) < ρ. Since I(+∞) = 0, (3.1.4) implies that R(+∞) =
N − S(+∞). Thus, from (3.1.10),

S(+∞) = S0e
−R(+∞)/ρ = S0e

−N−S(+∞)
ρ

and so S(+∞) is the positive root 0 < z < ρ of the transcendental equation

S0e
−N−z

ρ = z. (3.1.12)
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We then get the total number of susceptibles who catch the disease in the course of the
epidemic as

Itotal = I0 + S0 − S(+∞), (3.1.13)

where S(+∞) is the positive solution z of (3.1.12). An important implication of this analysis,
namely, that I(t) → 0 and S(t) → S(+∞) > 0, is that the disease dies out from a lack of
infectives and not from a lack of susceptibles.

The threshold result for an epidemic is directly related to the relative removal rate, ρ: if
S0 > ρ an epidemic ensues whereas it does not if S0 < ρ. For a given disease, the relative
removal rate varies with the community and hence determines whether an epidemic may
occur in one community and not in another. The number of susceptibles S0 also plays a
major role, of course. For example, if the density of susceptibles is high and the removal rate,
a, of infectives is low (through ignorance, lack of medical care, inadequate isolation and so
on) then an epidemic is likely to occur. Expression (3.1.9) gives the maximum number of
infectives while (3.1.13) gives the total number who get the infection in terms of ρ = a/r, I0,
S0 and N .

In most epidemics it is difficult to determine how many new infectives there are each
day since only those that are removed, for medical aid or whatever, can be counted. Public
Health records generally give the number of infectives per day, week or month. So, to apply
the model to actual epidemic situations, in general we need to know the number removed per
unit time, namely, dR/dt, as a function of time.

From (3.1.10), (3.1.4) and (3.1.3) we get an equation for R alone; namely,

dR

dt
= aI = a(N − S −R) = a

(
N − S − S0e

−R/ρ
)
, R(0) = 0, (3.1.14)

which can only be solved analytically in a parametric way: the solution in this form
however is not particularly convenient. Of course, if we know a, r, S0 and N it is a simple
matter to compute the solution numerically. Usually we do not know all the parameters and
so we have to carry out a best fit procedure assuming, of course, the epidemic is reasonably
described by such a model. In practice, however, it is often the case that if the epidemic is
not large, R/ρ is small (at least R/ρ < 1). Following Kermack and McKendrick (1927) we
can then approximate (3.1.14) by

dR

dt
= aI = a(N − S −R) = a

[
N − S0 +

(
S0

ρ
− 1

)
R− S0R

2

2ρ2

]
.

We leave the solution of the above equation as an exercise.

3.2 Modelling Venereal Diseases

The incidence of sexually transmitted diseases (STDs), such as gonorrhea (Neisseria gonor-
rhoeae), chlamydia, syphilis and, of course, AIDS, is a major health problem in both developed
and developing countries.

In this section we present a simple classical epidemic model which incorporates some of
the basic elements in the heterosexual spread of venereal diseases. We have in mind such
diseases as gonorrhea; AIDS we discuss separately later in the chapter.

Since the incubation period for venereal diseases is usually quite short when compared
to the infectious period, we use an extension of the simple epidemic model in the previous
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section. We divide the promiscuous male population into susceptibles, S, infectives, I , and a
removed class, R; the similar female groups we denote by S∗, I∗ and R∗. If we do not include
any transition from the removed class to the susceptible group, the infection dynamics is
schematically

S → I → R

↖↙
S∗ → I∗ → R∗ (3.2.1)

Here I∗ infects S and I infects S∗.
As we noted above, the contraction of gonorrhea does not confer immunity and so an

individual removed for treatment becomes susceptible again after recovery. In this case a
better dynamics flow diagram for gonorrhea is

R

↙ ↑
S → I

↖↙
S∗ → I∗

↖ ↓
R∗. (3.2.2)

An even simpler version involving only susceptibles and infectives is

S � I

↖↙
S∗ � I∗ (3.2.3)

which, by way of illustration, we now analyze. It is a criss-cross SI model.
We take the total number of males and females to be constant and equal to N and N∗

respectively. Then, for (3.2.3),

S(t) + I(t) = N, S∗(t) + I∗(t) = N∗. (3.2.4)

As before we now take the rate of decrease of male susceptibles to be proportional to the male
susceptibles times the infectious female population with a similar form for the female rate.
We assume that once infectives have recovered they rejoin the susceptible class. A model for
(3.2.3) is then (3.2.4) together with

dS

dt
= −rSI∗ + aI,

dS∗

dt
= −r∗S∗I + a∗I∗

dI

dt
= rSI∗ − aI, dI∗

dt
= r∗S∗I − a∗I∗, (3.2.5)

where r, a, r∗ and a∗ are positive parameters. We are interested in the progress of the disease
given initial conditions

S(0) = S0, I(0) = I0, S∗(0) = S∗0 , I∗(0) = I∗0 . (3.2.6)
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Although (3.2.5) is a 4th–order system, with (3.2.4) it reduces to a 2nd–order system in either
S and S∗ or I and I∗. In the latter case we get

dI

dt
= rI∗(N − I)− aI, dI∗

dt
= r∗I(N∗ − I∗)− a∗I∗, (3.2.7)

which can be analyzed in the (I, I∗) phase plane in the standard way.
The equilibrium points, that is, the steady states of (3.2.7), are I = 0 = I∗ and

Is =
NN∗ − ρρ∗

ρ+N∗
, I∗s =

NN∗ − ρρ∗

ρ∗ +N
, ρ =

a

r
, ρ∗ =

a∗

r∗
. (3.2.8)

Thus nonzero positive steady state levels of the infective populations exist only if NN∗/ρρ∗ >
1: this is the threshold condition somewhat analogous to that found in the previous section.

With the experience gained from the previous chapters, we now expect that, if the positive
steady state exists then the zero steady state is unstable. This is indeed the case. The
eigenvalues λ for the linearization of (3.2.7) about I = 0 = I∗ are given by∣∣∣∣−a− λ rN

r∗N∗ −a∗ − λ

∣∣∣∣ = 0

⇒ 2λ = −(a+ a∗)±
[
(a+ a∗)2 + 4aa∗

(
NN∗

ρρ∗
− 1

)]1/2

.

So, if the threshold condition NN∗/ρρ∗ > 1 holds, λ1 < 0 < λ2 and the origin is a saddle point
in the (I, I∗) phase plane. If the threshold condition is not satisfied, that is, NN∗/ρρ∗ < 1,
then the origin is stable since both λ < 0. In this case positive Is and I∗s do not exist.

If Is and I∗s exist, meaning in the context here that they are positive, then linearizing
(3.2.7) about it, the eigenvalues λ satisfy∣∣∣∣−a− rI∗s − λ rN − rIs

r∗N∗ − r∗I∗s −a∗ − r∗Is − λ

∣∣∣∣ = 0,

that is,

λ∗ + λ[a+ a∗ + rT ∗S + r∗Is] + [a∗rI∗s + ar∗Is + rr∗(I∗N + IN∗) + aa∗ − rr∗NN∗] = 0,

the solutions of which have Reλ < 0 and so the positive steady state (Is, I
∗
s ) in (3.2.8) is

stable.
The threshold condition for a nonzero steady state infected population is NN∗/ρρ∗ > 1.

We can interpret each term as follows. If every male is susceptible then rN/a is the average
number of males contacted by a female infective during her infectious period; a reciprocal
interpretation holds for r∗N∗/a∗. These quantities, rN/a and r∗N∗/a∗, are the maximal
male and female contact rates respectively.

Although parameter values for contacts during an infectious stage are notoriously un-
reliable from individual questionnaires, what is abundantly clear from the statistics since
1950 is that an epidemic has occurred in a large number of countries and so NN∗/ρρ∗ > 1.
From data given by a male and a female infective, in the U.S.A. in 1973, regarding the num-
ber of contacts during a period of their infectious state, figures of maximal contact rates of
N/ρ ≈ 0.98 and N∗/ρ∗ ≈ 1.15 were calculated for the male and female respectively which
give NN∗/ρρ∗ ≈ 1.127.
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3.3 AIDS: Modelling the Transmission Dynamics of the Hu-
man Immunodeficiency Virus (HIV)

3.3.1 Human Immunodeficiency Virus (HIV). Background

The human immunodeficiency virus, HIV, leads to acquired immune deficiency syndrome,
AIDS. HIV is a retrovirus and like most of the viruses in this family of viruses, the Retroviri-
dae, only replicates in dividing cells.

Infection by the virus HIV–1, the most common variety, has many highly complex charac-
teristics, most of which are still not understood. The fact that the disease progression can last
more than 10 years from the first day of infection is just one of them. Another is that while
most viral infections can be eliminated by an immune response, HIV is only briefly controlled
by it. HIV primarily infects a class of white blood cells or lymphocytes, called CD4 T–cells,
but also infects other cells such as dendritic cells. The virus has a high affinity for a receptor
present on the cell surface of each of these cells which guides the virus to their location in
vivo. When the CD4 T–cell count, normally around 1000/µL, decreases to 200/µL or below,
a patient is characterized as having AIDS.

The reason for the fall in the T–cell count is unknown. T–cells are normally replenished
very quickly in the body, so the infection may affect the source of new T–cells or the life
span of preexisting ones. Although HIV can kill cells that it infects, only a small fraction of
CD4 T–cells are infected at any given time. Because of the central role of CD4 T–cells in
immune regulation, their depletion has widespread deleterious effects on the functioning of
the immune system as a whole and this is what leads to AIDS.

Most models describing the evolution of AIDS are deterministic, with the attempt to
reflect the dynamic changes in mean cell numbers. Such models are more applicable to later
stages of the process when the population is large. These models typically consider the
dynamics of the CD4 cells, latently infected cells and virus populations as well as the effects
of drug therapy.

Because of the ethics, among other things, of doing experiments on humans, fundamental
information has been lacking about the dynamics of HIV infection. For example, since the
disease takes an average of 10 years to develop it was widely thought that the components
of the disease process would also be slow. A combination of mathematical modeling and
experiment has shown this is not the case by showing that there are a number of different
timescales in HIV infection, from minutes to hours and days to months. The current under-
standing of the rapidity of HIV infection has totally changed the manner in which HIV is
treated in patients and has had a major impact in extending peoples’ lives.

Figure 3.2 shows a typical course of HIV infection. Immediately after infection the amount
of virus detected in the blood, V , increases rapidly. After a few weeks to months the symptoms
disappear and the virus concentration falls to a lower level. An immune response to the virus
occurs and antibodies against the virus can be detected in the blood. A test, now highly
refined, to detect these antibodies determines if a person has been exposed to HIV. If the
antibodies are detected, a person is said to be HIV–positive.

The level the virus falls to after the initial infection has been called the set–point. The
viral concentration then seems to remain at a quasi-steady state level during which the con-
centration of CD4 T–cells measured in blood slowly declines. This period in which the virus
concentration stays relatively constant but in which the T–cell count slowly falls is typically
a period in which the infected person has no disease symptoms.
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Figure 3.2: Schematic time course of a typical HIV infection in an infected adult. The
viral concentration, the level of antibodies and the CD4 T-cells are sketched as a function of
time. The early peak corresponds to the primary infection which leads to a period of latency.
Note the typical gradual decline in the level of CD4 T–cells over the years. Eventually the
symptoms of full–blown AIDS start to appear. (Taken from the Book of J. D. Murray)
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A key question then is what is going on during this asymptomatic period. Many believed
that the virus was simply quiescent or latent during this period, as seen in other viral diseases,
such as herpes. One method of determining whether or not the virus is active is to perturb
the host–virus system during the asymptomatic period. In the mid– 1990’s work started on
new antiretroviral drugs, the protease inhibitors. With their introduction it became possible
to perturb the host–virus system during the asymptomatic period. In 1994, David Ho (Aaron
Diamond AIDS Research Center) ran an experiment which examined the response of 20
patients infected with HIV to the protease inhibitor, ritonavir. The results were dramatic.
The amount of virus measured in blood plasma fell rapidly once the drug was given. Alan
Perelson (Los Alamos National Laboratory) and his colleagues then developed a model system
which was applied to the patient data and estimations of crucial parameters were obtained.
The work is reported in Ho et al. (1995).

Before discussing a model which includes protease inhibitor treatment, we first describe
an early model by Anderson et al. (1986) for pedagogical reasons since it is a common way of
constructing an epidemic model using a flow chart. It is much less specific and less directly
related to current HIV thinking than the one we discuss below in relation to the data and
qualitative behavior of the virus as shown in Figure 3.2.

3.3.2 Basic Epidemic Model for HIV Infection in a Homosexual Population

Here we are interested in the development of an AIDS epidemic in a homosexual population.
Let us assume there is a constant immigration rate B of susceptible males into a population
of size N(t). Let X(t), Y (t), A(t) and Z(t) denote respectively the number of susceptibles,
infectious males, AIDS patients and the number of HIV–positive or seropositive men who are
noninfectious. We assume susceptibles die naturally at a rate µ; if there were no AIDS, the
steady state population would then be N∗ = B/µ. We assume AIDS patients die at a rate d:
1/d is of the order of months to years, more often the latter. Figure 3.3 is a flow diagram of
the disease on which we base our model.

As in previous models we consider uniform mixing. A reasonable first model system, based
on the flow diagram in Figure 3.3, is then

dX

dt
= B − µX − λcX, λ =

βY

N
, (3.3.1)

dY

dt
= λcX − (v + µ)Y, (3.3.2)

dA

dt
= pvY − (d+ µ)A, (3.3.3)

dZ

dt
= (1− p)vY − µZ, (3.3.4)

N(t) = X(t) + Y (t) +A(t) + Z(t). (3.3.5)

Here B is the recruitment rate of susceptibles, µ is the natural (non–AIDS–related) death
rate, λ is the probability of acquiring infection from a randomly chosen partner (λ = βY/N
where β is the transmission probability), c is the number of sexual partners, d is the AIDS–
related death rate, p is the proportion of HIV–positives who are infectious and v is the rate of
conversion from infection to AIDS here taken to be constant. 1/v, equal to D say, is then the
average incubation time of the disease. (Actually λ here is more appropriately βY/(X+Y +Z)
but A is considered small in comparison with N .) Note that in this model the total population
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Figure 3.3: The flow diagram of the disease as modelled by the system (3.3.1)–(3.3.5). B
represents the recruitment of susceptibles into the homosexual community. The rate of trans-
ferral from the susceptible to the infectious class is λc, where λ is the probability of acquiring
infection from a randomly chosen partner and c is the number of sexual partners. A propor-
tion of the infectious class is assumed to become noninfectious with the rest developing AIDS.
Natural (non–AIDS induced) death is also included in the model. Parameters are defined in
the text.

33



N(t) is not constant, as was the case in the epidemic models in the previous sections. If we
add equations (3.3.1)–(3.3.5) we get

dN

dt
= B − µN − dA. (3.3.6)

An epidemic ensues if the basic reproductive rate R0 > 1: that is, the number of secondary
infections which arise from a primary infection is greater than 1. In (3.3.5) if, at t = 0, an
infected individual is introduced into an otherwise infection–free population of susceptibles,
we have initially X ≈ N and so near t = 0,

dY

dt
≈ (βc− v − µ)Y ≈ v(R0 − 1)Y (3.3.7)

since the average incubation time, 1/v, from infection to development of the disease, is very
much shorter than the average life expectancy, 1/µ, of a susceptible; that is, v � µ. Thus
the approximate threshold condition for an epidemic to start is, from the last equation,

R0 ≈
βc

v
> 1. (3.3.8)

Here the basic reproductive rate R0 is given in terms of the number of sexual partners c, the
transmission probability β and the average incubation time of the disease 1/v.

When an epidemic starts, the system (3.3.1)–(3.3.5) evolves to a steady state given by

X∗ =
(v + µ)N∗

cβ
, Y ∗ =

(d+ µ)(B − µN∗)
pvd

Z∗ =
(1− p)(d+ µ)(B − µN∗)

pdµ
, A∗ =

B − µN∗

d
(3.3.9)

N∗ =
Bβ[µ(v + d+ µ) + vd(1− p)]

[v + µ][b(d+ µ)− pv]
.

If we linearize about this steady state it can be shown that (X,Y, Z,A) tends to (X∗, Y ∗, Z∗, A∗)
in a damped oscillatory manner with a period of oscillation given in terms of the model pa-
rameters; the method to obtain this is exactly the same as described in the previous chapters
but the algebra is messy. We omit the details.

3.3.3 HIV: Modeling Combination Drug Therapy

We start this subsection with the simple, but experimentally based model, proposed by Perel-
son et al. (1996). We then develop a more complex nonlinear model which includes treatment
for HIV infection with a protease inhibitor and a reverse transcription inhibitor such as AZT.

The Ho et al. (1995) model was a simple linear first-order equation which accounted for
viral production and viral decline; namely,

dV

dt
= P − cV, (3.3.10)

where P represented a source of viral peptides and c was the viral clearance rate. While
many factors play a role in the clearance of viral peptides such as immune cells, fluid flow
and absorption into other cells, c did not distinguish between them. After introduction of
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the protease inhibitor (the specific type of drug used on the patients) it was assumed that
the drug would be completely effective, or in other words, the drug would block all viral
production after being introduced. Hence P = 0, and we are left with the simple equation

dV

dt
= −cV ⇒ V (t) = V0e

−ct, (3.3.11)

where V0 is measured as the mean viral concentration in the plasma before treatment. Plotting
lnV against t and using linear regression to determine the slope gave an estimate for c and
hence for the half–life of the virus in the plasma; namely, t1/2 = ln2/c. The mean for the
half–life was t1/2 = 2.1± 0.4 days. The experimentalists then assumed that the patients were
in a quasi–steady state before treatment: that is, the levels of viral load measured in the
plasma remained fairly constant. With this assumption, and knowing the value for c and the
initial viral concentration, V0, they were able to compute the viral production before therapy
by solving P = cV . While these results were minimal estimates, based on the assumption of
a perfect drug (with no delays), they still provided an estimate of over 1 billion viral particles
being produced daily. This important result was contrary to the belief that the viral dynamics
during this latent period was close to dormant. It is an excellent example where even simple,
mathematically trivial, models can be of immense help in extracting crucial information from
patient data.

Due to these results many more models have been developed to study the HIV. In the
rest of this section we examine one model which looks at combination drug therapy.

Protease inhibitors are drugs which target the protease enzymes in the cell and cause
newly produced viruses to be noninfectious. To date there is no single drug (nor even a
combination of them) which completely kills the HIV infection because of the ability of the
virus to mutate into a drug resistant form. It takes time, however, for a new form to evolve.
The idea behind combination drug treatment is when the virus is presented with two quite
different antiviral drugs the time it takes for a mutiple–drug resistant strain to emerge is much
longer than if the virus had to contend with only one toxic drug. The use of multiple drug
treatments, such as protease inhibitors together with AZT, has already had a major effect
(in the developed world) in significantly slowing down the progression from HIV infection to
full–blown AIDS. It has not, however, effected a cure for the disease.

We consider each drug to be less then perfect, which thus allows for viral mutation to
a resistant form if administered independently. Let np be a measure of the effectiveness of
a protease inhibitor or combination of protease inhibitors in blocking production of infec-
tious virions so this will affect the viral dynamics directly and the T–cells indirectly. Other
commonly used drugs are reverse transcriptase inhibitors, of which AZT is perhaps the best
known. After the development of the protease inhibitors, a combination, or cocktail, therapy
which included multiple drugs was prescribed. For instance, patients would take a combina-
tion of three drugs made of up of a protease inhibitor and two reverse transcriptase inhibitors.
This combination was dramatic initially in reducing the number of viral peptides detectable
in the patient and it was thought that this might be the cure for the AIDS virus. Unfortu-
nately, with a virus as complex as the HIV it was only a matter of time before the emergence
of resistant viruses. While the combination treatment is still showing promise for prolonging
the lives of infected patients, it is too early (2001) to say whether or not the virus is even
permanently controlled, far less cured.

We develop (just for illustrative purposes, we don’t develop any mathematical tool here) a
four–species model which includes an equation for uninfected T–cells, T , productively infected
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T–cells, T ∗ (not all infected T–cells produce the virus), infectious viruses, VI and noninfectious
viruses, VNI . The model consists of the following equations which we motivate in turn below.

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT − kVIT,

dT ∗

dt
= (1− nrt)kVIT − δT ∗

dVI
dt

= (1− np)NδT ∗ − cVI (3.3.12)

dVNI
dt

= npNδT
∗ − cVNI .

In the T–cell equation we consider the cells to be destroyed proportional to the number of
infected viruses and cells with clearance parameter k. In the absence of infection there is
a nonzero steady state, Ts1, so we have a quadratic polynomial in T for the uninfected T–
cell dynamics: s, p, Tmax, dT and k are positive constants. The specific form of the T–cell
kinetics, namely, with a logistic form plus another source (s) and a clearance term (−dTT ),
is because of the form of T–cell recovery after therapy as indicated by patient data. With
the reverse transcriptase (RT) drug like AZT, the RT–inhibitor acts on the source term for
productively infected T–cells with 0 ≤ nrt ≤ 1 the measure of its efficacy; if nrt = 1 it is
completely effective and prevents all production of infected T–cells while if nrt = 0 it implies
no RT–inhibitor is given. In the T ∗ equation the effect of the RT–inhibitor is to reduce the
production of the infected cells. These cells also have a natural death with a rate parameter,
δ. The protease inhibitor acts on the source of the virus and so appears in the VI equation
with np a measure of its efficacy. The specific appearance in the equations for the effects of
the drugs is due to the cellular mechanisms of each drug and the stage at which they aim to
target during infection.

When a drug is completely effective we set np = 1 or nrt = 1. In the infected virus VI
equation there is a factor N which is the bursting parameter for the viral production after lysis
(essentially the breaking up, or death, of the cell due to its penetration by the infected virus
and subsequent generation of a large number of viruses); it is of the order of 480 virions/cell
(a virion is a complete virus with all its coating, proteins and so on). The infected viruses are
considered to die naturally at a rate c. Finally the noninfectious viruses are produced with
a rate dependent on the protease drug and we assume they die off at the same rate as the
infected ones. This model lets us explore the effect of the drugs on the HIV by varying, in
particular, the parameters nrt and np. For example, if np = 0 we are using only the reverse
transcriptase, or RT–inhibitors.
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Chapter 4

Introduction to space-time
depending models

The models covered in the first half of the biomathematics course describe the evolution of
time-dependent quantities such as a total population of an animal species or the total concen-
tration of a chemical substance. Although many of them are complex enough to describe the
interplay between initial parameters and final outcome (i. e. asymptotic behavior, stability,
and so on), they are somewhat useless in those situations in which one expects the described
quantity (or quantities) to behave an a inhomogeneous way, that is, to behave differently
depending on the position of the individuals. In this case, the dependence of a space variable
x should be introduced. Depending on the context, x may be an element of Rn, n = 1, 2, 3.
For instance, in a model for the concentration of humans in a crowded tunnel, one can (with
good approximation) consider the position x to be one-dimensional. In cell biology, very often
x ∈ R2. More generally, x is a three-dimensional vector.

We shall therefore start dealing with models where the population of a certain species is
not homogeneous in the reference environment. Therefore, it has to be modeled via a density
function which depends on a space variable x besides the time variable t. Consequently, the
differential models we shall recover in this context are in terms of partial differential equa-
tions or systems. Due to the extreme complexity of the area of partial differential equations
and systems, it is not worthwhile to devote a whole section to partial differential equations
(PDE’s), whereas we shall recall the needed mathematical tools depending on the different
contexts.

4.1 Transport and reaction effects

The main distinction we emphasize between all the possible space-dependent effects considered
here is the following classification:

� Transport effects. When the total amount of individuals in an arbitrary region A ⊂
Rn changes only because of the flow through the boundary ∂A, and there is no birth-
death mechanism in the evolution, we say that individuals are subject to a transport
effect. This definition is reminiscent of the fact that the distribution of individuals at a
certain position can change only because of their movement.

� Reaction effects. When total number of individuals in A ⊂ Rn changes also in
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view of birth-death mechanisms, which produces a possible change in time of the total
population, we talk about reaction effects. The terminology comes from chemistry, and
it is reminiscent of the creation or destruction of a chemical substance after a reaction
process.

We now introduce the basic equation to describe a transport effect, namely the conti-
nuity equation. Such equation has been already introduced in the classical mechanics and
electrodynamics courses, in a non-rigorous form. Typically, the main assumption behind the
formulation of a continuity equation is the so-called continuum assumption, i.e. we assume
that the population under study (particles, bacteria, animals) can be well approximated by
a a continuum quantity, in which individuals are not distinguishable. Such an assumption
is well justified in many contexts of classical physics such as fluid mechanics and electro-
magnetism. On the other hand, the individual-based nature of models in biology and social
sciences make this assumption less trivial to accept. This is why we choose here to make a
first, partially formal, justification of the continuity equation as derived from a simple model
of moving particles, or moving agents.

We start by considering a very simple case, namely that of an individual with position
x(t) moving on a region in space, say in Rn. Here, t ≥ 0 is the time variable. We assume
that we now the velocity of x, and that such a velocity depends on the position in which x is
located and on the time t. Clearly, we have

ẋ(t) = v(t, x(t)). (4.1.1)

We assume that v has the properties that ensure existence and uniqueness for (4.1.1) with
a given initial condition x(0) = x0 ∈ Rd. Now we define an object which is known from
distribution theory, namely the Dirac’s delta measure δx. For a given test function φ ∈
C∞c (Rd), we have

〈δx, φ〉 = φ(x).

We shall use simple properties of distributions such as linearity, definition of derivatives1,
multiplication by a smooth function2. We set

µ(t) = δx(t).

Due to the time dependency, the action of the above distribution has to be defined on a
space-time space. More precisely, given φ ∈ C∞c ((0,+∞)× Rd), we have

〈µ(t), φ〉 =

∫ +∞

0
φ(t, x(t))dt.

Lemma 4.1.1 For all T ≥ 0 and for all φ ∈ C∞c ((0, T )× Rd), we have

〈µt + div(µv), φ〉 = 0,

i.e., the measure µ(t) satisfies the continuity equation

∂tµ+ div(µv) = 0,

in the sense of distributions.

1https://en.wikipedia.org/wiki/Distribution_(mathematics)#Derivatives_of_distributions
2https://en.wikipedia.org/wiki/Distribution_(mathematics)#Multiplication_by_a_smooth_

function
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Proof.
Compute, due to (4.1.1),

〈µt + div(µv), φ〉 = −〈µ, φt〉 − 〈µ, vφx〉

= −
∫ T

0
(φt(t, x(t)) + v(t, x(t))φx(t, x(t))) dt = −

∫ T

0
(φt(t, x(t)) + ẋ(t)φx(t, x(t))) dt

= −
∫ T

0

d

dt
φ(t, x(t))dt = φ(0, x(0))− φ(T, x(T )) = 0,

where the last step is due to the fact that φ is supported in a compact subset of the open
strip 0 < t < T .

The previous computation can be easily generalized to the case of N particles with mass
m1, . . . ,mN > 0, located on x1(t), . . . , xN (t). We consider the distribution

µ(t) =
N∑
i=1

miδxi(t),

and assume that
ẋi(t) = v(t, xi(t)),

which means that the individuals are moving according to a velocity field v, which is known.
We leave as an exercise to prove that µ satisfies the continuity equation µt + div(µv) = 0 in
the sense of distributions.

The above approach assumes that one can describe transport phenomena by counting the
number of individuals (with their masses) on a given region. Now, in many phenomena it
is not convenient to work with set of particles and distributions, but rather with densities.
So, we assume that our set of individuals form a continuum in space, namely particles are
infinitesimal, and they cannot be distinguished, but rather appear similar to a fluid.

If we replace then µ(t) by a density ρ(t, x), we obtain the classical continuity equation

∂tρ+ div(ρv) = 0.

It is natural to assume that the quantity∫
Rn
ρ(0, x)dx,

expressing the total amount of particles at the initial time, is finite. Now, if we assume ρ(0, ·)
to be compactly supported and that particles travel with finite speed v at all times, we easily
obtain that the support of ρ(t, ·) is compact at all times. Therefore

d

dt

∫
Rn
ρ(t, x)dx =

∫
Rn
ρt(t, x)dx = −

∫
Rn

div(ρv)dx,

and by the divergence theorem the above quantity is equal to the surface integral∫
∂Bt

ρ(t, x)v(t, x)dσxdt,
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where Bt is the support of ρ at time t. Hence, such a quantity is equal to zero, and we get

d

dt

∫
Rn
ρ(t, x)dx = 0,

which implies ∫
Rn
ρ(t, x)dx =

∫
Rn
ρ(0, x)dx

for all times. Such a property is called conservation of the total mass, and is typical of
transport phenomena.

Particularly interesting is the quantity ρv in the continuity equation. It is called the flux,
and is sometimes denoted with J = ρv. The flux has the dimension of a mass divided by a
volume (which is the dimension of a density) times a velocity, which translates into mass per
time times area of a surface. So, physically speaking, the flux on a given point x describes
the amount of mass passing through an infinitesimal surface around x. The flux is a vector
quantity, directed towards the velocity v. Given a smooth surface S, one can define the flux
of ρ on S as ∫

∂S
J(x) · ν(x)dσx,

where ν(x) is the unit normal of S on the point x. If S is a closed surface, e.g. the boundary
of a bounded domain in Rn, such a quantity describes the amount of mass that is leaving the
domain per unit time.

The continuity equation only expresses transport of individuals. It is not taking into
account of loss or gain of the total number of individuals. This is the reason behind the
conservation of the total mass. In order to deal with reaction phenomena, in which the total
mass may change, one has to consider the local rate of change of the total mass. We define

f(t, x, ρ(x))

as the growth rate of the population described by the density ρ(t, x). This means that on an
arbitrary region A ⊂ Rn we have

d

dt

∫
A
ρ(t, x)dx =

∫
A
f(t, x, ρ(x))dx−

∫
∂A
ρv · νdσx,

in which we have also considered the outgoing flux, i.e. the amount of mass leaving the region
due to the transport phenomenon. In the most general case, f depends on the position x,
on the time t, and typically in nonlinear phenomena also on the density itself. The above
identity gives ∫

A
ρt(t, x)dx+

∫
∂A
ρv · νdσx =

∫
A
f(t, x, ρ(x))dx.

Once again, the divergence theorem implies∫
A
ρt(t, x)dx+

∫
A

div(ρv)dx =

∫
A
f(t, x, ρ(x))dx.

The above identity can be rephrased as∫
A

[ρt + div(ρv)− f(t, x, ρ)] dx = 0.
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Since A is an arbitrary (measurable) set, one gets from a classical result in measure theory,
the reaction-transport equation

ρt(t, x) + div(ρ(t, x)v(t, x)) = f(t, x, ρ) (4.1.2)
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Chapter 5

Diffusion equations

The most classical phenomenon in biology accounting for a pure transport of individuals is
diffusion.

In an assemblage of particles, for example, cells, bacteria, chemicals, animals and so on,
each particle usually moves around in a random way. The particles spread out as a result
of this irregular individual particle’s motion. When this microscopic irregular movement
results in some macroscopic or gross regular motion of the group we can think of it as a
diffusion process. Of course there may be interaction between particles, for example, or the
environment may give some bias in which case the gross movement is not simple diffusion.
To get the macroscopic behavior from a knowledge of the individual microscopic behavior is
much too hard so we derive a continuum model equation for the global behavior in terms of
a particle density or concentration.

It is instructive to start with a random process which we look at probabilistically in an
elementary way, and then derive a deterministic model. Before doing that, we first provide
another classical interpretation of diffusion in terms of the celebrated Fick’s law.

5.1 Diffusion–reaction processes and Fick’s law

Diffusion mechanism models the movement of many individuals in an environment or media.
The individuals can be very small such as basic particles in physics, bacteria, molecules, or
cells, or very large objects such as animals, plants, or certain kind of events like epidemics,
or tumors. The particles reside in a region, which we call Ω and we assume that Ω is open
subset of Rn with n ≥ 1. In particular, we are interested in the cases of n = 1, 2 and 3, but
most material here are true regardless of the dimensions of the space. The main mathematical
variable we consider here is the density function of the particles ρ(t, x), where t is the time,
and x ∈ Ω is the location. The dimension of the population density usually is number of
particles or organisms per unit area (if n = 2) or unit volume (if n = 3).

The question we are interested now is how the function ρ(t, x) changes as time t evolves,
and as the location x varies. It is a natural phenomenon that a substance goes from high
density regions to low density regions. The ‘high to low’ principle means that the flux always
points to the most rapid decreasing direction of ρ(t, x), which is the negative gradient of
ρ(t, x). This principle is called Fick’s law, and it can be represented as

J(t, x) = −d(x)∇xρ(t, x) (5.1.1)
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where J is the flux of ρ, d(x) ≥ 0 is called diffusion coefficient at x.
On the other hand, the number of particles at any point may change because of other

reasons like birth, death, hunting, or chemical reactions. We assume that the rate of change
of the density function due to these reasons is f(t, x, P ), which we usually call the reaction
rate. Now we derive a differential equation using the balanced law.

In terms of the reaction-transport equation (4.1.2), here no reaction occurs, so f = 0, and
J is given by Fick’s law. The diffusion coefficient d(x) is not a constant in general since the
environment is usually heterogeneous. So, in general we get

∂ρ(t, x)

∂t
= div(d(x)∇ρ(t, x)). (5.1.2)

When the region of the diffusion is approximately homogeneous, we can assume that d(x) ≡ d,
then (5.1.2) can be simplified to

∂ρ(t, x)

∂t
= d∆ρ(t, x), (5.1.3)

where ∆ is the Laplacian operator. In classical mathematical physics, the equation ∂tT = ∆T
is called heat equation, where T is the temperature function. In our context, (5.1.3) is called
linear diffusion equation.

5.2 Simple Random Walk and Derivation of the Diffusion Equa-
tion

In an assemblage of particles, for example, cells, bacteria, chemicals, animals and so on,
each particle usually moves around in a random way. The particles spread out as a result
of this irregular individual particle’s motion. When this microscopic irregular movement
results in some macroscopic or gross regular motion of the group we can think of it as a
diffusion process. Of course there may be interaction between particles, for example, or the
environment may give some bias in which case the gross movement is not simple diffusion.
To get the macroscopic behavior from a knowledge of the individual microscopic behavior is
much too hard so we derive a continuum model equation for the global behavior in terms of
a particle density or concentration. It is instructive to start with a random process which we
look at probabilistically in an elementary way, and then derive a deterministic model.

For simplicity we consider initially only one–dimensional motion and the simplest random
walk process. The generalization to higher dimensions is then intuitively clear from the one–
dimensional equation.

Suppose a particle moves randomly backward and forward along a line in fixed steps ∆x
that are taken in a fixed time ∆t. If the motion is unbiased then it is equally probable that
the particle takes a step to the right or left. After time N∆t the particle can be anywhere
from −N∆x to N∆x if we take the starting point of the particle as the origin. The spatial
distribution is clearly not going to be uniform if we release a group of particles about x = 0
since the probability of a particle reaching x = N∆x after N steps is very small compared
with that for x nearer x = 0.

We want the probability p(m,n) that a particle reaches a point m space steps to the right
(that is, to x = m∆x) after n time–steps (that is, after a time n∆t). Let us suppose that to
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reach m∆x it has moved a steps to the right and b to the left. Then

m = a− b, a+ b = n ⇒ a =
n+m

2
, b = n− a =

n−m
2

.

The number of possible paths that a particle can reach this point x = m∆x is

n!

a!b!
=

n!

a!(n− a)!
= Cna ,

where Cna is the binomial coefficient. The total number of possible n–step paths is 2n and so
the probability p(m,n) (the favorable possibilities/total possibilities) is

p(m,n) =
1

2n
n!

a!(n− a)!
, a =

m+ n

2
, (5.2.1)

notice that n+m is always even. Note that

n∑
m=−n

p(m,n) = 1,

as it must since the sum of all probabilities must equal 1. It is clear mathematically since

n∑
m=−n

p(m,n) =
n∑

m=−n
Cna

(
1

2

)a(1

2

)n−a
=

(
1

2
+

1

2

)n
= 1,

p(m,n) is the binomial distribution.
If we now let n be large so that n±m are also large we have, asymptotically,

n! ∼ (2πn)1/2nne−n, n� 1,

which is Stirling’s formula. Using that in (5.2.1) we get

p(m,n) ∼ 1

(2π)1/2

(
n

a(n− a)

)1/2 ( n
2a

)a( n

2(n− a)

)n−a
.

From a = (n+m)/2 we infer

p(m,n) ∼
(

2

π

)1/2( n

n2 −m2

)1/2( n

n+m

)n+m
2
(

n

n−m

)n−m
2

.

We now assume that the ratio m/n tends to zero as asymptotically, which corresponds to
have the number or space-steps grow more slowly than the number of time-steps. This is a
key assumption which characterizes a diffusion process, as we shall see later on. As n→ +∞
we clearly see that (

2

π

)1/2( n

n2 −m2

)1/2

∼
(

2

πn

)1/2

.
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Moreover, the remaining factors in p(m,n) are approximated by the second order Taylor
approximation of the map x 7→ log(1 + x) around x = 0 as follows

log

(
n

n+m

)n+m
2
(

n

n−m

)n−m
2

=

(
n+m

2

)
log

(
1− m

n+m

)
+

(
n−m

2

)
log

(
1 +

m

n−m

)
= −m

2
− m2

4(n+m)
+
m

2
− m2

4(n−m)
+ o(1/n) = −m

2

2n
+ o(1/n).

Therefore,

p(m,n) ∼
(

2

πn

)1/2

e−
m2

2n , (5.2.2)

which is a Gaussian probability distribution.
Now set

m∆x = x, n∆t = t,

where x and t are the continuous space and time variables. If we anticipate letting m→ +∞,
n→ +∞, ∆t→ 0, ∆x→ 0 so that x and t are finite, then it is not appropriate to have p(m,n)
as the quantity of interest since this probability must tend to zero: the number of points on
the line tends to +∞ as ∆x → 0. The relevant dependent variable is more appropriately
u = p/(2∆x): 2u∆x is the probability of finding a particle in the interval (x, x+ ∆x) at time
t. From (5.2.2) with m = x/∆x, n = t/∆t,

u(x, t) = lim
∆x→0,∆t→0

p
(
x

∆x ,
t

∆t

)
2∆x

= lim
∆x→0,∆t→0

{
∆t

2πt(∆x)2

}1/2

e
−x

2

2t
∆t

(∆x)2 .

If we assume

lim
∆x→0,∆t→0

(∆x)2

2∆t
= D > 0, (5.2.3)

the last equation gives

u(x, t) =

(
1

4πDt

)1/2

e−
x2

4Dt . (5.2.4)

Please notice that (5.2.3) is consistent with the assumption m/n → 0 above. Here, D is the
diffusion coefficient or diffusivity of the particles; note that it has dimensions (length)2/(time).
It is a measure of how efficiently the particles disperse from a high to a low density. For exam-
ple, in blood, haemoglobin molecules have a diffusion coefficient of the order of 10.7cm2sec−1

while that for oxygen in blood is of the order of 10.5cm2sec−1.
Let us now relate this result to the classical approach to diffusion, namely, Fickian diffu-

sion. In the simplest case this gives the linear heat equation

∂c

∂t
= D

∂2c

∂x2
(5.2.5)

satisfied by the concentration of the species c.
If we release an amount Q of particles per unit area at x = 0 at t = 0, that is,

c(x, 0) = Qδ0(x)
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where δ0(x) is the Dirac delta function, then the solution of (5.2.5) is

c(x, t) =
Q

(4πDt)1/2
e−x

2/(4Dt), t > 0

which, with Q = 1, is the same result as (5.2.4), obtained from a random walk approach when
the step and time sizes are small compared with x and t.

5.3 The gaussian distribution

In this section we prove the last assertion of the previous section, namely we aim to find a
solution to the diffusion equation

ct = Dcxx, x ∈ R, t > 0, (5.3.1)

of self–similar form

c(x, t) =
C√
t
U (ξ) , ξ =

x√
t
, C > 0. (5.3.2)

In order to do that, let us plug the above expression (5.3.2) into the equation (5.3.1). After
simple computations, assuming t > 0 we recover

Uξξ +
1

2D
(ξU)ξ = 0,

which is equivalent to (
U

(
logU +

ξ2

4D

)
ξ

)
ξ = 0.

A solution can be found imposing that the term in the inner bracket is zero, namely

log
U(ξ)

C
= − ξ2

4D
,

which yields

U(ξ) = Ce−
ξ2

4D .

In the original variables, this formula gives the solution

c(x, t) = G(x, t) =
Q

(4Dtπ)

1/2

e−
x2

4Dt ,

where Q > 0 is the initial total mass of u. G is called Gaussian distribution, or Gaussian
solution to the diffusion equation.

It is an easy exercise to prove that, as t → 0, G(x, t) → 0 if x 6= 0. In case x = 0 we
clearly have G(0, t) → +∞ as t → 0. On the other hand, the mass of G is constant in time,
so that the initial datum of G must have positive mass Q. This is not possible in case the
initial datum of G is an L1 function (G(·, 0) should have zero mass because it is zero almost
everywhere). Function theory is not suitable to give an interpretation of such phenomenon
and one has to deal with distribution theory, which is not among the purposes of this course.
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In fact the initial datum of G is the Dirac delta distribution δ0, which we will consider to be
defined as the ‘function’ which satisfies∫ +∞

−∞
δ0(x)dx = 1, δ0(x) = 0 for all x 6= 0.

The idea behind the concept of a delta distribution is to model a situation in which all the
particles (individuals, cells...) are all packed together at one point (or very close to one point),
and the concentration is zero elsewhere.

The Gaussian solution models exactly the fact that particles initially concentrated at one
point start spreading as t > 0 towards regions with zero concentration, according to Fick’s
law. The maximum value of the concentration, initially +∞ achieved at x = 0 (the maximum
can be achieved at any other point just by translation, please notice that the equation (5.3.1)
is invariant after translation with respect to x), decreases as t increases. It is always achieved

at x = 0 and it is given by Q
(4Dtπ)

1/2
. Clearly, the concentration of particles at any other point

than zero increases, and the profile of the distribution takes the shape of a bell with fatter
and fatter tails as time increases, see figure 5.1.

It is straightforward to notice that at a fixed time t, the profile of G has fatter tails when
the diffusion coefficient D is larger. This corresponds to the intuition that a larger diffusion
coefficient implies a faster spreading process of the particles.

5.4 Smoothing and decay properties of the diffusion operator

The linear diffusion operator in a reaction diffusion equation (or system) accounts for the
spreading of the individuals far from each other due to Fick’s law. It is a sort of repulsive
effect. In case only diffusion is present in the model, supposing for instance that the model
is set up in a container Ω ⊂ Rn with Neumann boundary conditions, we expect that all
individuals tend more and more to distribute homogenously, eventually reaching a constant
distribution state. This is due to the fact that the initial flux of individuals from regions
with high density toward regions with low density is soon compensated by the movement of
the individuals, so that the flux intensity decreases more and more until it stabilized to a
constant values. As long as we are dealing with linear phenomena (as it is the case for the
Heat equation), one can use the method of separation of variables in order to see this fact
from the mathematical point of view. However, we shall prove this stabilization phenomenon
by a energy method, and keep the method of separation of variables for a later case. In order
to simplify the coverage, we consider the following one–dimensional problem

ut = Duxx x ∈ [0, L], t ≥ 0

u(0, x) = u0(x) x ∈ [0, L]

ux(t, 0) = ux(t, L) = 0 t ≥ 0.

(5.4.1)

Clearly, all constants u ≡ C are solutions of the heat equation ut = Duxx with homogeneous
Neumann boundary conditions ux(t, 0) = ux(t, L) = 0. However, only one constant solution
is feasible as a candidate to represent the large time behavior of the solution of the transient
problem (5.4.1), that is

u∞(t, x) ≡ 1

L

∫ L

0
u0(x)dx =

1

L

∫ L

0
u(t, x)dx =:

M

L

47



Figure 5.1: Schematic particle concentration distribution arising from Q particles released at
x = 0 at t = 0 and diffusing according to the diffusion equation (5.3.1).
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where the equality in the middle is a trivial consequence of the Neumann boundary conditions;
it expresses the fact that the total amount of individuals remains unchanged in time.

The energy method consists in evaluating the evolution of a certain functional related
to the solution u(t). This functional should contain enough information in order to infer
qualitative properties of the solution itself. A typical choice in case of linear problems if the
L2 norm of the solution u(t) ∫ L

0
u(t, x)2dx.

Actually, since we aim to prove that u(t) behaves like u∞ as time goes to infinity, a smarter
choice of the energy is

E(t) :=

∫ L

0
(u(t, x)− u∞)2 dx,

so that E(t) being small as t → +∞ implies that u(t) is approaching u∞ in some sense. As
for the interpretation of the use of the L2 norm, we refer to basic textbooks of Functional
Analysis. We just remark here that, in the present context, E(t) → 0 implies u(t, x) → u∞

for almost all x ∈ [0, L] as t→ +∞.
Let us then compute

d

dt
E(t) = 2

∫ L

0
uutdx = 2D

∫ L

0
uuxxdx = −2D

∫ L

0
u2
xdx

and the last step is due to integration by parts and the Neumann boundary conditions. The
above computation already gives an interesting result: the energy E(t) is non increasing.
Actually we can do better and use the following version of the Poincaré inequality, the proof
of which can be found for instance in the PDE book by L. C. Evans.

Theorem 5.4.1 (Poincaré inequality) Let f : [0, L]→ R such that∫ L

0
(f ′(x))2dx < +∞,

∫ L

0
f(x)dx = 0.

Then, there exists a constant C(L) depending only on L such that∫ L

0
f(x)2dx ≤ C(L)

∫ L

0
(f ′(x))2dx.

Due to the above inequality, the energy estimate becomes

d

dt
E(t) ≤ − 2D

C(L)
E(t)

and therefore the following exponential decay trivially follows

E(t) ≤ E(0)e
− 2D
C(L)

t

and in particular one has

lim
t→+∞

∫ L

0
(u(t, x)− u∞)2 dx = 0.

Notice that the fact that u and u∞ have the same mass is crucial in order to apply Poincaré
inequality.
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The exponential convergence to equilibrium states is not the only ‘nice’ property of the
heat equation. Among the others, an important one is given by the so–called smoothing effect,
a property which can be resumed as follows: no matter how singular the initial datum u0

is (discontinuous, unbounded, etc...), the solution u(t) belongs to C∞ both in space and in
time at any positive time t. In order to see this, let us recover the exact formula for u by the
method of separation of the variables. Let us choose u of the form

u(t, x) = f(x)g(t)

for certain functions f and g. Substituting the above ansatz into the equation in (5.4.1) yields

f(x)g′(t) = Df ′′(x)g(t)

and therefore
g′(t)

g(t)
= D

f ′′(x)

f(x)
= Dλ ∈ R

for a certain constant λ, because of the fact that the two sides in the first inequality above
depend only on t and x respectively. We assume that both f and g never vanish. Due to
the boundary conditions we have f ′(0) = f ′(L) = 0, therefore we have to solve the limiting
problem for all possible λ ∈ R{

f ′′ = λf x ∈ [0, L]

f ′(0) = f ′(L) = 0.

By imposing the boundary conditions one easily infer that non trivial solutions only exist if
λ ≤ 0. In particular, in case λ = 0 all constants f(x) ≡ C are solutions. In case of a negative
λ = −ω2 we have

f(x) = A cos(ωx) +B sin(ωx).

Again, the boundary condition f ′(0) = 0 implies B = 0 whereas f ′(L) = −Aω sin(ωx) = 0

implies ωL = kπ for an integer k. Therefore, all values λ = −
(
kπ
L

)2
allow for nontrivial

solutions of the form fk(x) = Ak cos
(
kπ
L x
)
. Solving the equation for g implies

g′(t) = −D
(
kπ

L

)2

g(t)

and hence we have a family of solutions indexed by the integer k

gk(t) = Eke
−D( kπL )

2
t.

Due to the superposition principle for linear PDEs, any combination of fkgk is still a solution
of the PDE in (5.4.1) endowed with the boundary conditions. Therefore, in order to achieve
the unique solution u(t) we express u in the following series expression

u(t, x) =

+∞∑
k=0

Ake
−D( kπL )

2
t cos

(
kπ

L
x

)
. (5.4.2)

The coefficients Ak are easily obtained by matching u|t=0 with the initial datum u0

u0(x) =

+∞∑
k=0

Ak cos

(
kπ

L
x

)
,
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which implies that Ak are the Fourier’s coefficients of u0. Let us assume that
∫
|u0(x)|dx <

+∞. Then, standard results on the Fourier’s series imply that all the coefficients Ak are
uniformly bounded. It is then clear that we can differentiate with respect to x and t infinitely
many times in the formula (5.4.2) and this proves the smoothing effect for the heat equa-
tion. Note that the only assumption on u0 is

∫
|u0(x)|dx < +∞, which possibly allows for

discontinuities and unboundedness in a set of zero Lebesgue measure.

Exercise 5.4.2 Use formula (5.4.2) to prove that the solution u converges toward its initial
average 1

L

∫
u0(x)dx as t→ +∞.

One can easily prove that a similar phenomenon occurs on unbounded domains as well,
in any dimensions. For instance, consider the Cauchy problem on Rn{

ut = D∆u x ∈ Rn, t ≥ 0

u(0, x) = u0(x) ≥ 0 x ∈ Rn.
(5.4.3)

It is well known (cf. classical textbooks in PDEs) that the solution u(x, t) can be represented
via convolution with the Gaussian solution, namely

u(x, t) =

∫
Rn
G(x− y, t)u0(y)dy.

Now, suppose as an example that u models the density of ants on a two dimensional ‘large’
domain such as the floor or a very large room. Suppose that a group of ants is initially
concentrated on a small tile T ⊂ R2. This means that u0 is supported on T . Let us now
consider a point x0 arbitrarily far away form the tile T , and consider a time t0 > 0 arbitrarily
close to zero. A direct evaluation of the convolution integral above shows that u(x0, t0) > 0,
which means that ants have been so fast in moving that some of them could reach x in
an arbitrarily small time. With such an argument, one can prove that ants can move with
arbitrarily large (and therefore infinite, somewhat) speed. Such phenomenon is somehow non
realistic. One possible way to improve the model in this sense is described in the following
section.

5.5 Nonlinear diffusion

Diffusion models form a reasonable basis for studying insect and animal dispersal and invasion;
one extension of the classical diffusion model which is of particular relevance to insect dispersal
is when there is an increase in diffusion due to population pressure. One such model has the
diffusion coefficient, or rather the flux J , depending on the population density n such that
the diffusivity D increases with n; that is,

J = −D(n)∇n, D′(n) > 0.

A typical form for D(n) is D0(n/n0)m, where m > 0 and D0 and n0 are positive constants.
The dispersal equation for n without any growth term is then

∂n

∂t
= D0div

[(
n

n0

)m
∇n
]
.
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In one dimension
∂n

∂t
= D0

∂

∂x

[(
n

n0

)m ∂n

∂x

]
.

After scaling the space and the time variable suitably, one can recover the following dimen-
sionless form

∂u

∂t
= ∆uγ , γ > 1. (5.5.1)

Now, for such an equation a solution of self similar form can be recovered in a similar way as
for the linear diffusion equation. We therefore look for a solution of the form

u(x, t) = t−βU(xt−α), x ∈ R, t > 0

to the one–dimensional nonlinear diffusion equation (also called Porous Medium Equation)

ut = (uγ)xx.

First of all, the conservation of the total mass easily implies∫
R
u(x, t)dx = t−β

∫
R
U(xt−α)dx = t−β+α

∫
R
U(ξ)dξ

and therefore we have β = α.
In the new variables U and ξ = xt−α we obtain

αt−α−1(ξU)ξ + t−α(m+2)(Um)ξξ = 0,

which requires the choice

α =
1

m+ 1

in order to get rid of the time variable. The above can be written as

∂x

(
U∂x

(
m

m− 1
Um−1 +

ξ2

2(m+ 1)

))
= 0.

In the domain where U > 0, we can impose

Um−1(ξ) =

(
C − m− 1

2m(m+ 1)
ξ2

)
.

Clearly, the above gives problems in case U becomes negative. Since U = 0 on an interval
solves the equation for U , we can introduce the following solution

U(ξ)

[
C − m− 1

2m(m+ 1)
ξ2

] 1
m−1

+

,

which in the original variables reads

u(x, t) = B(x, t) = t
1

m+1

[
C − m− 1

2m(m+ 1)

(
x√
t

)2
] 1
m−1

+

52



which is called Barenblatt solution. Such a solution has compact support on the interval

−t
1

m+1

√
2mC(m+ 1)

m− 1
≤ x ≤ t

1
m+1

√
2mC(m+ 1)

m− 1

which grows as t grows. Moreover, it can be easily proven that B(·, 0) is a multiple of the Dirac
delta distribution, exactly as it is the case for the Gaussian solution of the linear diffusion
equation.

Analyzing the differences with the linear diffusion case, we clearly see that the Barenblatt
solution is not smooth, opposite to the Gaussian solution to the linear diffusion equation,
which is C∞. More precisely, the Barenblatt solution has possible lack of smoothness at the
boundary of its support, where it eventually features discontinuities in a space derivative of
a certain order depending on the exponent m. At any other points, B is C∞.

A key difference between G and B is that the support of G becomes unbounded imme-
diately after t = 0 (infinite speed of propagation) whereas the support of B is compact for
all times, it travels with finite speed. This fact depends on the density dependent diffusivity
D(n) being equal to zero as n = 0. Such an assumptions corresponds to state that when
the concentration of particles is very low, particles are subject to a much lower diffusivity (in
other context we could say ‘pressure’) than in situations with higher concentration.

Later on in this course we shall devote ourselves to the existence theory for the nonlinear
diffusion equation for general initial conditions.
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Chapter 6

Reaction–diffusion models for one
single species

In this chapter we start to consider models combining the diffusion effect described in the pre-
vious chapter with reaction effects, typically corresponding with the evolutionary mechanism
described in part 1. At this first stage, we start considering only scalar equations.

6.1 Diffusive Malthus equation and critical patch size

Let us now apply the method of separation of the variables to the simplest reaction diffusion
model we can imagine, namely the one–dimensional linear Diffusive–Malthus equation

ut = Duxx + au, D > 0, a ∈ R, (6.1.1)

posed on the interval x ∈ [0, L] with initial datum u(0, x) = u0(x) and endowed with the
homogeneous Dirichlet boundary conditions u(t, 0) = u(t, L) = 0. We are therefore model-
ing a context of a population with a linear exponential growth and with diffusion, the two
phenomena being respectively quantified by the two parameters a and D. The homogeneous
Dirichlet boundary conditions are usually referred to as hostile boundary conditions, since
they model the fact that individuals are somehow pushed away from the boundary.

In order to solve (6.1.1), let us set u(t, x) = f(x)g(t). We then obtain

Df ′′(x)g(t) + af(x)g(t) = f(x)g′(t), D
f ′′

f
+ a =

g′

g
= Dλ, λ ∈ R,

which suggests looking for solutions to the two ordinary differential equations

Df ′′(x) =
(
λ− a

D

)
f(x), f(0) = f(L) = 0

g′(t) = λg(t).

Similarly to the previous calculations, we have λ− a/D < 0 (the case λ− a/D = 0 this time
only gives the zero solution due to the Dirichlet boundary data), therefore λ − a/D = −ω2,
ω ∈ R and this corresponds to

f(x) = A sin(ωx) +B cos(ωx).
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The boundary condition f(0) = 0 implies B = 0, whereas f(L) = 0 implies ωL = kπ.

Therefore, once again we have a sequence of (eigen)values λk = a −
(
kπ
L

)2
corresponding to

the sequence of (eigen)solutions

fk(x) = Ak sin

(
kπ

L
x

)
.

The equation for g then turns into

g′(t) =

[
a

D
−
(
kπ

L

)2
]
g(t)

which yields

gk(t) = Cke

[
a
D
−( kπL )

2
]
t
.

By the superposition principle, similarly to what we saw in the previous section, we get

u(t, x) =
+∞∑
k=1

Ake

[
a
D
−( kπL )

2
]
t
sin

(
kπ

L
x

)
(6.1.2)

where Ak are the Fourier’s coefficients of the initial datum u0.
The above formula (6.1.2) clearly shows that if a < 0 the zero solution is asymptotically

stable, since all the terms in the series decay to zero exponentially fast as t→ +∞. We know
that this is also the case when diffusion is absent, as we have seen at the very beginning of
the chapter ??. We shall show that the presence of diffusion improves the range of a’s for
which we have stability.

Let us then consider the case a > 0: we clearly see from the first term in the above series
that, if

L <

√
D

a
π, (6.1.3)

then the solution u(t, x) decays to zero as t → +∞ provided the usual standard conditions
are required on u0 (see the previous section). The critical value in (6.1.3) is called Critical
Patch Size. The interpretation of the condition (6.1.3) is the following. When the size of the
interval is not enough, the individuals reach the boundary soon enough to be subject to the
hostile boundary conditions (which ‘kill’ the concentration) rather than to the reaction term.
Of course, another possible interpretation of (6.1.3) can be given in terms of the relative size
of D and a. More precisely, when the ratio D/a is high enough, diffusion is the dominant
effect. Now, it is easy to check (exercise!) that u ≡ 0 is the only stationary solution to (6.1.1)
with homogeneous Dirichlet boundary conditions. Moreover, this solution is asymptotically
stable when there’s no reaction, namely when a = 0 (easy exercise! Use the representation
formula (6.1.2)). Therefore, we expect that u ≡ 0 is the asymptotic limit as t → +∞ of the
particle concentration when diffusion dominates the process. In fact, this is the case.

In case (6.1.3) is not satisfied, then the behavior of u depends on the initial datum u0. This
is clear form the representation formula (6.1.2). For instance, if the first Fourier’s coefficient

of u0, A1, is not zero, then the exponential factor e

(
a
D
− π

2

L2

)
t

appears in the solution formula.
In this case the solution u(t, x) grows to +∞ as t goes to +∞ when (6.1.3) is violated. On
the other hand, the initial datum could have a certain number of zero Fourier’s coefficients,
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say the first m > 1 coefficients, A1 = · · · = Am = 0. In this case the condition yielding decay
to zero of u would be

L < (m+ 1)

√
D

a
π (6.1.4)

since the first exponential factor appearing in (6.1.3) would be e

(
a
D
− ((m+1)π)2

L2

)
t
. Clearly,

(6.1.4) is weaker than (6.1.3), which means that the critical patch size is higher: particles
need a much higher reaction rate a in order to grow exponentially due to the Malthus term.
The interpretation of that is given in term of the Fourier series of u0

u0(x) =
∑
k≥0

Ak sin

(
kπ

L
x

)
.

The higher the order k is, the higher is the value of the gradient of u0 in absolute value,
which means the more diffusion is dominant (remember Fick’s law!). Therefore, even with a
larger interval, particles are subject to such a higher diffusion effect that we still don’t see the
growth due to the reaction as t becomes large.

6.2 Local existence of solutions to the reaction diffusion equa-
tion

We now focus on the nonlinear reaction-diffusion equation

ut = Duxx + g(u), (6.2.1)

for a general nonlinear function g ∈ C1([0,+∞)) with the assumption g(0) = 0. The presence
of a nonlinear term makes more unlikely that an explicit formula for such an equation with
given initial condition holds. On the other hand, we can make use of the so-called Duhamel
principle.

Lemma 6.2.1 Let G(t, x) = (4Dπt)1/2e−x
2/4Dt be the one-dimensional heat kernel, and let

a(t, x) be a continuous function on [0,+∞)× R and u0 ∈ L1 ∩ L∞(R). Set

u(t, x) =

∫
R
G(t, x− y)u0(y)dy +

∫ t

0

∫
R
G(t− s, x− y)a(s, y)dsdy.

Then, u ∈ C∞t,x and u solved the Cauchy problem{
ut = Duxx + a(t, x)

u(0, x) = u0(x).
(6.2.2)

Proof. We only give sketch of the proof, and leave the details as an exercise. At t = 0,
the initial condition is satisfied because G(0, ·) i the Dirac delta distribution, and hence∫
RG(t, x− y)u0(y)dy = G(t) ∗ u0(x) = u0(x). Then, the differentiation of u with respect to t

yields

ut(t, x) =

∫
R
Gt(t, x− y)u0(y)dy+

∫
R
G(0, x− y)a(t, y)dy+

∫ t

0

∫
R
Gt(t− s, x− y)a(s, y)dyds.
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Now, since G satisfies the heat equation, and since G(0, ·) = δ0, we have

ut(t, x) = D∂xx

∫
R
G(t, x−y)u0(y)dy+a(t, x)+D∂xx

∫ t

0

∫
R
G(t−s, x−y)a(s, y)dyds = Duxx+a.

Now, our goal is to use the above Lemma to solve the nonlinear problem (6.2.1), with the
idea of substituting g(ρ) to a in (6.2.2). Clearly, the formula provided by the above Lemma
will not be an explicit formula. Indeed, we get

u(t, x) =

∫
R
G(t, x− y)u0(y)dy +

∫ t

0

∫
R
G(t− s, x− y)g(u(s, y))dsdy. (6.2.3)

Formula (6.2.3) expresses a mild formulation of the problem (6.2.1) with initial condition
u(0, x) = u0(x). It is not an explicit formula, but the result in the previous Lemma shows
(upon minor modifications that are left as an exercise) that if u satisfies (6.2.3), then u solves
the Cauchy problem for (6.2.1) with initial condition u0.

Hence, in order to solve such a problem we have to solve (6.2.3). Such an equation can
be seen as a fixed point condition for an operator on a Banach space. For fixed T > 0, we set

‖|u‖|T = sup
0≤t≤T

[
‖u(t, ·)‖L1(R) + ‖u(t, ·)‖L∞(R)

]
.

Then, for another fixed constant R > 0 we set

XT,R = {f : [0, T ]× R→ R ; ‖|f‖|T ≤ R}.

We then define the linear operator A : XT,R → XT,R

(Au)(t, x) =

∫
R
G(t, x− y)u0(y)dy +

∫ t

0

∫
R
G(t− s, x− y)g(u(s, y))dsdy.

We first prove that A is well posed as an operator from XT,R to itself. Given u ∈T,R,
set M = ‖u0‖L1(R) + ‖u0‖L∞(R). We use the Young inequality for convolutions ‖f ∗ g‖Lr ≤
‖f‖Lp‖g‖Lq with 1 + 1/r = 1/p+ 1/q and recall that ‖G(t, ·)‖L1(R) = 1. We get

‖Au(t, ·)‖L1(R) ≤ ‖G(t, ·) ∗ u0‖L1(R) +

∫ t

0
‖G(t− s, ·) ∗ g(u(s, ·))‖L1(R)ds

≤M +

∫ t

0
‖g′‖L∞([0,R])‖u(s, ·)‖L1(R)ds.

Here we have use the mean value theorem and g(0) = 0 to justify g(u(s, y)) = g′(ū(s, y))u(s, y)
for some ū(s, y) ∈ [0, R], and then we easily see that g′(ū(s, y)) ≤ ‖g′‖L∞([0,R]). Such a term
is a continuous function of R on [0,+∞). Similarly, we get

‖Au(t, ·)‖L∞(R) ≤M +

∫ t

0
‖g′‖L∞([0,R])‖u(s, ·)‖L∞(R)ds.

The above computations imply

‖|Au‖|T ≤ 2M + 2T‖g′‖L∞([0,R])R.
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It is easy to see that for R large enough and for T small enough we can enforce

2M + 2T‖g′‖L∞([0,R])R ≤ R,

which is equivalent to

T ≤ R− 2M

‖g′‖L∞([0,R])R
.

With such restrictions on T and R, we have that A is well defined from XT,R to itself. We
now want to prove that for a suitable choice of T , A is a contraction on XT,R. For given
u1, u2 ∈ XT,R, let us compute

‖Au1(t, ·)−Au2(t, ·)‖L1(R) ≤ ‖g′‖L∞([0,R])

∫ t

0
‖G(t− s, ·)‖L1(R)‖u1(s, ·)− u2(s, ·)‖L1(R)ds,

and a similar computation holds for the L∞ difference ‖u1(t, ·)−u2(t, ·)‖L∞(R), and this shows

that for T < 1
2‖g
′‖L∞([0,R]) the map A is a contraction. Since the space XT,R is a closed subset

of a complete metric space, we can invoke Banach fixed point theorem to show that A has a
unique fixed point.

As we stated above, a similar proof to that of the above Lemma shows that u is a clas-
sical solution to ut = Duxx + g(u) on a time interval [0, T ]. Since u is XT,R, we have
supt∈[0,T ]

(
‖u(t)‖L1(R) + ‖u(t)‖L∞(R)

)
≤ R. We now prove that u is nonnegative on [0, T ].

Consider the negative part function

u− = max{0,−u},

and its approximation

ηn(u) =


−1
2n − u if u ≤ −1/n

nu
2

2 if −1/n ≤ u ≤ 0

0 if u ≥ 0.

It is easy to see that ηn(u) → u− as n → +∞ for all u ∈ R. Moreover ηn is non increasing
and convex. we estimate

d

dt

∫
R
ηδ(u(t, x))dx =

∫
R
η′n(u)utdx =

∫
R
η′n(u)(Duxx − g(u))dx.

Now, neglecting the boundary conditions (we omit the details, but essentially the boundary
terms are vanishing due to the fact that u decays at infinity) we can integrate by parts and
get

d

dt

∫
R
ηδ(u(t, x))dx = −D

∫
R
η′′n(u)u2

xdx+

∫
R
η′n(u)g(u)dx ≤

∫
R
η′n(u)g(u)dx.

Now, since u is bounded on [0, T ] and since g(0) = 0, we can find a constant C > 0 such that

|g(u)| ≤ C|u|,

for all t ∈ [0, T ]. Hence,

d

dt

∫
R
ηδ(u(t, x))dx ≤ C

∫
u≤0

η′n(u)|u|dx = C

∫
u≤0
|η′n(u)|u−dx.
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Integrating on [0, t] with 0 ≤ t ≤ T , we get∫
R
ηδ(u(t, x))dx ≤

∫
R
ηδ(u0(x))dx− C

∫ t

0

∫
u≤0

η′n(u)u−dx.

Now we let n→ +∞ to get∫
R

(u(t, x))−dx ≤
∫
R

(u0(x))−dx+ C

∫ t

0

∫
R

(u(t, x))−dx,

where we have used −η′n(u)u− → u− as n→ +∞. Now, if we assume that u0 is nonnegative
(as it is the case, since the initial condition expresses a density), we have (u0)− = 0, thus
Gronwall inequality implies that

∫
R(u(t, x))−dx = 0 for all t ∈ [0, T ]. Since u− is a nonnegative

function, this implies that u− = 0 on [0, T ] × R, which implies that u is never negative on
[0, T ]× R.

As we could see above, we need to choose T small in order to find a solution u to our
problem. Hence, we have proven a local existence and uniqueness result. On the other hand,
the following example shows that in general one cannot expect a global in time solution for
any g.

Example 6.2.2 Let us consider the initial boundary value problem
ut = Duxx + u2(t, x) x ∈ [0, L] t ≥ 0

u(0, x) = u0(x) x ∈ [0, L]

ux(t, 0) = ux(t, L) = 0 t ≥ 0.

Assume the initial condition is constant, i. e. u0(x) = ū. Then, let us solve the ODE{
Ut = U2 t ≥ 0

U(0) = ū.

We immediately get the solution

U(t) =
ū

1− ūt
,

which shows that u(t, x) = U(t) solves the above initial boundary value problem. Now, it is
immediately seen that u blows up as t → 1/ū, so we cannot expect global existence for all
times in general.

On the other hand, there are reasonable conditions on g which ensure global existence. Let
us estimate the L2 norm of solutions to the equation (6.2.1) on the whole real line. Neglecting
the boundary conditions (same considerations as above in the computation of the positivity
of u), we get

d

dt

∫
R
u2(t, x)dx = −

∫
R
u2
x(t, x)dx+

∫
R
g(u)udx

≤ ‖g′‖L∞(R)

∫
R
u2.

The above computations show that if either g(u) ≤ 0 for all u or g is globally Lipschitz, then
the L2 norm of u(t) if finite at all times, and therefore no blow up occurs in the L2 norm.

Exercise 6.2.3 Show that global existence in L2 holds for (6.2.1) with the logistic growth
reaction term g(u) = u(1− u).
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6.3 Asymptotic stability of constant states for general nonlin-
ear reaction diffusion equations

In this section we tackle the problem of the asymptotic stability of a constant (homogeneous)
state for the unknown variable u in a quite general context, namely we consider the nonlinear
reaction diffusion equation

ut = Duxx + g(u), (6.3.1)

where g is a general nonlinear function modeling a reaction process, D > 0 is the diffusivity.
Our goal is to prove that under certain conditions on g, a homogeneous stationary state is
asimptotically stable. Clearly, by homogeneous stationary state we mean a solution u(x, t) ≡
u∞ with g(u∞) = 0.

Going back to the scalar ODE model

u′ = g(u)

studied at the beginning of the course, we recall that a general condition for the stability of
u∞ was

g′(u∞) < 0. (6.3.2)

Therefore, hinted by the results in Section 6.1, we expect condition (6.3.2) to be sufficient for
stability as we know that diffusion contributes to reinforce stability.

6.3.1 The case with Neumann condition

We work on a bounded interval x ∈ [0, L] with homogenous Neumann boundary conditions

ux(0, t) = ux(L, t) = 0 (6.3.3)

and with an initial datum
u(x, 0) = u0(x). (6.3.4)

Of course, the presence of diffusion makes the problem of proving stability under the effect
of diffusion much more complicated, since it is a matter of stability in a functional sense, i.
e. the solution u(x, t) is seen as a curve t 7→ u(·, t) in a certain functional space (in which the
independent variable is x). In order to clarify this point, we introduce the functional spaces
we shall need in this section. The space L2([0, L]) is defined as the space of functions f on

the interval [0, L] such that
∫ L

0 f(x)2dx < +∞. Such a definition may be not completely well
posed mathematically, for instance in case the function f is not continuous. We send the
reader to a Functional Analysis textbook for a more clear explanation. To our purposes, we
can assume that all involved functions are continuous. The L2 norm of f is defined then as

‖f‖L2 =

(∫ L

0
f(x)2dx

)1/2

.

We shall need also the functional spaces Hs([0, L]), s ∈ N, namely, f ∈ Hs([0, L]) if and only
if f and its derivatives up to order s are all elements of L2, or equivalently∫ L

0
f(x)2dx+

∫ L

0
f ′(x)2dx+ . . .+

∫ L

0
Dsf(x)2dx < +∞.
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We recall the definition

‖f‖2Hs =

∫ L

0
f(x)2dx+

∫ L

0
f ′(x)2dx+ . . .+

∫ L

0
Dsf(x)2dx < +∞.

The reason why we have introduced all the above functional norms is that we want to use the
energy method to prove stability. This is probably the only way to develop a general theory
for a general g, more specific cases can be dealt with depending on the particular form of g.
In order to prove that the perturbation of the stationary state is small for large times, we
denote

u = u∞ + v

and use the Taylor expansion of g around u∞ in the equation for the perturbation v:
vt = Dvxx + g(u∞ + v) = Dvxx + g′(u∞)v + h(v)

v(x, 0) = u0(x)− u∞

vx(0, t) = vx(L, t) = 0,

(6.3.5)

where h is a continuous function satisfying h(v)/v → 0 as v → 0. Let us compute the evolution
of the squared L2–norm of v. Here we use integration by parts and the boundary conditions
in the computation of the term involving the diffusion.

d

dt

∫ L

0
v2dx = 2

∫ L

0
vvtdx = 2

∫ L

0
v(Dvxx + g′(u∞)v + h(v))dx

= −2D

∫ L

0
v2
xdx− 2D (vvx)L0 + 2g′(u∞)

∫ L

0
v2dx+ 2

∫ L

0
h(v)vdx

= −2D

∫ L

0
v2
xdx+ 2g′(u∞)

∫ L

0
v2dx+ 2

∫ L

0

h(v)

v
v2dx,

where we have used that g′(u∞) < 0 and the zero boundary conditions on v. Now, since
h(v)/v → 0 as v → 0, we can write

sup
x∈[0,L],t≥0

∣∣∣∣h(v(x, t))

v(x, t)

∣∣∣∣→ 0 as ‖v(t)‖L∞ → 0,

where the L∞–norm of v is given by ‖v(t)‖L∞ = supx∈[0,L] |v(x, t)|. Therefore we can estimate
the last term in the previous estimate as follows:

2

∫ L

0

h(v)

v
v2dx ≤ H(‖v(t)‖L∞)

∫ L

0
v2dx,

for some continuous function H such that H(x) → 0 ad x → 0. We can assume that such a
function H is increasing. For instance, once can define H as follows:

H(v) := v + sup

{
|h(z)|
z

, 0 < z ≤ v
}
, as v > 0,

and extend H to R as an even function. It is an easy exercise to prove that H ≥ 0, that
H(v)→ 0 as v → 0 and that

|H(v1)| ≤ H(|v2|) if |v1| ≤ |v2|.
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Now the monotonicity of H in the above estimate implies

d

dt

∫ L

0
v2dx ≤ −2

[
−g′(u∞)−H(‖v(t)‖L∞)

] ∫ L

0
v2dx.

It is clear from the above estimate that, in case we would be able to say a priory that ‖v(t)‖L∞
is smaller than a certain threshold, then we could prove exponential decay as in the case of the
linear diffusion equation provided g′(u∞) < 0. Of course we cannot get to such a conclusion so
far. We need some more machinery. The strategy is to estimate the L∞–norm of v, ‖v(t)‖L∞ ,
by the L2 norm of its space derivative. To this purpose we shall use the following special case
of the Sobolev inequality.

Lemma 6.3.1 (Sobolev inequality) Let f ∈ H1([0, L]). Then there exists C > 0 indepen-
dent of f such that

‖f‖L∞([0,L]) ≤ C‖f‖H1([0,L]), (6.3.6)

Proof. Suppose for simplicity that f is continuous (the general case can be proven by an
approximation argument which goes beyond the purposes of this course, see for instance the
PDE book by Evans). Then, define the average

f̄ =
1

L

∫ L

0
f(x)dx.

The mean value theorem implies that there is a point c ∈ [0, L] such that f(c) = f̄ . Let us
use the fundamental theorem of integral calculus as follows: for x ∈ [0, L] we have

f2(x) = f2(c) +

∫ x

c

d

dy
(f2(y))dy

which implies due to Cauchy-Schwarz inequality

|f2(x)| = |f2(c)|+ 2

∣∣∣∣∫ x

x0

f(y)f ′(y)dy

∣∣∣∣ ≤ 2

∫ L

0
|f(y)||f ′(y)|dy

≤ |f2(c)|+
∫ L

0
f2(y)dy +

∫ L

0
(f ′)2(y)dy = ‖f‖2H1([0,L]).

Now, Cauchy-Schwarz inequality also implies

|f2(c)| =
∣∣∣∣ 1L
∫ L

0
f(x)dx

∣∣∣∣2 ≤ 1

L

∫ L

0
f2(y)dy,

so the desired inequality (6.3.6) easily follows.
Then, we can use (6.3.6) plus the fact that H is increasing to get

H(‖v(t)‖L∞) ≤ H(C‖vx‖H1)

and therefore
d

dt

∫ L

0
v2dx ≤ −2

[
−g′(u∞)−H(C‖v(t)‖H1)

] ∫ L

0
v2dx. (6.3.7)
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Now, in order to ‘close’ such an estimate, we need to estimate the L2 norm of v as well. To
this aim, we write the equation satisfied by vx:

(vx)t = D(vx)xx + g(u∞ + v)x = D(vx)xx + g′(u∞ + v)vx = D(vx)xx + g′(u∞)vx + l(v)vx,

where we have used the Taylor expansion of g′ around u∞. Here l(v) is a continuous function
of v such that l(v) → 0 as v → 0. Let us compute, by using the same strategy as before for
the diffusion term, namely integration by parts and the boundary conditions,

d

dt

∫ L

0
v2
xdx = 2

∫ L

0
vxvxtdx = 2

∫ L

0
vx(D(vx)xx + g′(u∞)vx + l(v)vx)dx

= −2D

∫ L

0
v2
xxdx+ 2g′(u∞)

∫ L

0
v2
xdx+ 2

∫ L

0
l(v)v2

xdx

≤ −2D

∫ L

0
v2
xxdx+ 2

(
g′(u∞) + L(‖v‖L∞)

) ∫ L

0
v2
xdx,

where, as before, L is an increasing and continuous function such that L(0) = 0. We apply
once again the Sobolev inequality to get

d

dt

∫ L

0
v2
xdx ≤ −2

(
−g′(u∞)− L(C‖v‖H1)

) ∫ L

0
v2
xdx. (6.3.8)

We take the sum of (6.3.7) and (6.3.8) and we obtain

d

dt
‖v‖2H1 ≤ −2

(
−g′(u∞)

)
‖v‖2H1 + α(‖v‖2H1)‖v‖2H1 , (6.3.9)

where α is a continuous function such that α(0) = 0 obtained by combining M and N in
(6.3.7) and (6.3.8) respectively. It is now clear that we shall be able to achieve a satisfactory
sufficient condition for stability by requiring

g′(u∞) < 0. (6.3.10)

Let us therefore assume (6.3.10) holds and let E = |g′(u∞)|. We have then

d

dt
‖v‖2H1 ≤ −2E‖v‖2H1 + α(‖v‖2H1)‖v‖2H1 .

Now, by the comparison principle for ODE’s, we can estimate ‖v(t)‖2H1 from above with the
solution of the following ODE

Y ′ = −2EY + α(Y )Y, Y (0) = ‖v(0)‖2H1 .

Performing a qualitative study of the above ODE as in the first chapter of this notes, due
to the fact that α(0) = 0 we can easily see that there exists a fan A := {|Y | ≤ δ}, for some
δ > 0, such that the solutions in A all point towards the axis Y = 0, since they have a negative
derivative above the axis and a positive derivative below it. Therefore, if |Y (0)| ≤ δ, then
Y (t) → 0 as t → +∞ and by comparison principle as well ‖v(t)‖2H1 → 0 as t → +∞. By
using once again the Sobolev inequality, we obtain

‖v(t)‖L∞([0,L]) → 0 as t→ +∞,
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which proves that the perturbation from the equilibrium state converges to zero provided we
have the following additional condition:

‖v(0)‖H1 small enough.

The above condition says that the L2 norm of the perturbation and the L2 norm of its space
derivative should be less than a small enough constant in order to get asymptotic stability.
Therefore, we see that even in the case of nonlinear reaction, due to linear diffusion, we
get asymptotic stability of homogeneous states under a similar condition for the reaction
compared to the ODE case.

Now, one can wonder whether or not such an estimate is sharp, i. e. whether or not it
can be improved. The answer is no. Take a constant initial condition ū. Assume the solution
u depends only on t, say u(t, x) = U(t). We get

Ut = g(U),

so U solves an ODE. The stability results on ODEs show that U(t) − u∞ converges to zero
after small (constant in space) perturbations of the steady state u∞. Moreover, it is easy to
see that the rate of convergence is provided by the constant g′(u∞), and no contribution is
played by the diffusion term (the population is already homogeneous!).

In fact, this is not surprising. The linear diffusion term drives the population towards a
homogenized state, which is only determined by the fact that the total mass M is preserved,
while the reaction leads to the stable steady state. If reaction wouldn’t be there, the diffusion
operator would lead to the homogeneous state M/L, which is not necessarily equal to u∞.
So, the two terms lead to two different states. Now, when combined together, the two effects
interact in the following way: the mass is no longer preserved, so the diffusion operator is
only leading towards a generic constant state; it is the reaction term that ‘decides’ what this
state should be, namely the stable steady state u∞.

6.3.2 The case with Dirichlet conditions

We now consider homogeneous Dirichlet boundary conditions

u(0, t) = u(L, t) = 0, (6.3.11)

which model a hostile boundary condition as in the linear case. In this case, suggested by
the linear diffusion case, we expect that the diffusion operator drives the solution towards the
zero state. On the other hand, the reaction term can cooperate to this process only if the
steady state u∞ is the zero state. If one wants to consider a general steady state u∞ > 0, the
correct boundary conditions are

u(0, t) = u(L, t) = u∞. (6.3.12)

In this case, the perturbation
v = u− u∞

will be zero at x = 0 and x = L. Hence, v will satisfy
vt = Dvxx + g(u∞ + v) = Dvxx + g′(u∞)v + h(v)

v(x, 0) = u0(x)− u∞

v(0, t) = v(L, t) = 0,

(6.3.13)
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A similar energy estimate as in the previous case implies

d

dt

∫ L

0
v2dx = −2D

∫ L

0
v2
xdx+

(
2g′(u∞) + 2H(‖v‖∞)

) ∫ L

0
v2dx,

where H are defined as above.

Theorem 6.3.2 (Poincaré inequality, Dirichlet version) Let f : [0, L]→ R such that∫ L

0
(f ′(x))2dx < +∞, f(0) = 0.

Then, there exists a constant CD(L) depending only on L such that∫ L

0
f(x)2dx ≤ CD(L)

∫ L

0
(f ′(x))2dx.

Proof. The proof works essentially similarly to the Sobolev inequality. It is left as an
exercise.

The above inequality implies

d

dt

∫ L

0
v2dx ≤

(
− 2D

CD(L)
+ 2g′(u∞) + 2H(‖v‖∞)

)∫ L

0
v2dx.

We now have to use the same strategy used in the Neumann case to close the above estimate.
We estimate the L2 norm of vx as before:

d

dt

∫ L

0
v2
xdx ≤ −2D

∫ L

0
v2
xxdx+ 2

(
g′(u∞) + L(‖v‖L∞)

) ∫ L

0
v2
xdx.

Now, since
∫ L

0 vxdx = v(L) − v(0) = 0, we can use the usual Poincaré inequality with zero
average constraint. We get

d

dt

∫ L

0
v2
xdx ≤

(
− 2D

C(L)
+ 2g′(u∞) + L(‖v‖L∞)

)∫ L

0
v2
xdx.

Hence, it is an easy exercise to generalize the computation we did in the case of Neumann
conditions to obtain the following statement: if

g′(u∞) < 2D

(
1

CD(L)
+

1

C(L)

)
,

then the stationary state u∞ is asymptotically stable under small perturbations.
We have therefore obtained a similar result to the one on the linear case, namely the range

of possible reaction rates g′(u∞) which yield stability can slightly exceed the range of positive
real numbers provided it is not too big compared to the diffusion constant.
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6.4 Travelling waves

There is a vast number of phenomena in biology in which a key element or precursor to a
developmental process seems to be the appearance of a travelling wave of chemical concen-
tration, mechanical deformation, electrical signal and so on. Looking at almost any film of a
developing embryo it is hard not to be struck by the number of wavelike events that appear
after fertilization. Mechanical waves are perhaps the most obvious. There are, for example,
both chemical and mechanical waves which propagate on the surface of many vertebrate eggs.
In the case of the egg of the fish Medaka a calcium (Ca++) wave sweeps over the surface; it
emanates from the point of sperm entry. Chemical concentration waves are visually dramatic
examples. From the analysis on insect dispersal we can also expect wave phenomena in that
area, and in interacting population models where spatial effects are important. Another ex-
ample, related to interacting populations, is the progressing wave of an epidemic, of which
the rabies epizootic currently spreading across Europe is a dramatic and disturbing example.
The movement of microorganisms moving into a food source, chemotactically directed, is an-
other. The slime mould Dictyostelium discoideum is a particularly widely studied example of
chemotaxis; we discuss this phenomenon later.

The point to be emphasized is the widespread existence of wave phenomena in the biomed-
ical sciences which necessitates a study of traveling waves in depth and of the modeling and
analysis involved. This section (and another section in the next chapter) deal with various
aspects of wave behavior where diffusion plays a crucial role.

We must first decide what we mean by a traveling wave. Customarily a traveling wave is
taken to be a wave which travels without change of shape, and this will be our understanding
here. So, if a solution u(x, t) represents a traveling wave, the shape of the solution will be the
same for all time and the speed of propagation of this shape is a constant, which we denote
by c. If we look at this wave in a traveling frame moving at speed c it will appear stationary.
A mathematical way of saying this is that if the solution u can be represented as

u(x, t) = u(x− ct) = u(z), z = x− ct, (6.4.1)

then u(x, t) is a traveling wave, and it moves at constant speed c in the positive x–direction.
Clearly if x− ct is constant, so is u. It also means the coordinate system moves with speed c.
A wave which moves in the negative x–direction is of the form u(x+ ct) with positive c. The
wavespeed c generally has to be determined. The dependent variable z is sometimes called
the wave variable. When we look for traveling wave solutions of an equation or system of
equations in x and t in the form (6.4.1), we have

∂u

∂t
= −cdu

dz
∂u

∂x
=
du

dz
,

So partial differential equations in x and t become ordinary differential equations in z. To be
physically realistic u(z) has to be bounded for all z and nonnegative with the quantities with
which we are concerned, such as chemicals, populations, bacteria and cells.

Let us first point out that without reaction there can be no traveling waves. To see this,
consider a solution of the form (6.4.1) to the equation

ut = Duxx.
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Then we have

D
d2u

dz2
+ c

du

dz
= 0

which implies
u(x, t) = A+Be−

c
D

(x−ct)

for two constants A and B. Since u has to be bounded for all x and t, B must be zero since
the exponential becomes unbounded as x − ct → −∞. u(z) = A, a constant, is not a wave
solution. In marked contrast the parabolic reaction diffusion equation

ut = Duxx + f(u) (6.4.2)

can exhibit traveling wave solutions, depending on the form of the reaction/interaction term
f(u). This solution behavior was a major factor in starting the whole mathematical field of
reaction diffusion theory.

6.5 An example of travelling wave: the Fisher–Kolmogoroff
equation

The classic simplest case of a nonlinear reaction diffusion equation (6.4.2) is

∂n

∂t
= kn

(
1− n

K

)
+D

∂2u

∂x2
, (6.5.1)

where k, D and K are positive parameters. It was suggested by Fisher (1937) as a determin-
istic version of a stochastic model for the spatial spread of a favored gene in a population.
It is also the natural extension of the logistic growth population model discussed when the
population disperses via linear diffusion. In this sense, k represent the classical linear growth
rate and K the carrying capacity.

As a first step we can consider a first dimensionless form of (6.5.1)

∂u

∂t
= ku(1− u) +D

∂2u

∂x2
, (6.5.2)

simply obtained by putting u = n/K.
This equation and its traveling wave solutions have been widely studied, as has been the

more general form with an appropriate class of functions f(u) replacing ku(1−u). We discuss
this model equation in some detail, not because in itself it has such wide applicability but
because it is the prototype equation which admits traveling wavefront solutions. It is also
a convenient equation from which to develop many of the standard techniques for analyzing
single species models with diffusive dispersal.

Although (6.5.2) is now referred to as the Fisher–Kolmogoroff equation, the discovery,
investigation and analysis of traveling waves in chemical reactions was first reported by Luther
(1906).

It is convenient at the outset to rescale (6.5.2) by writing

t∗ = kt, x∗ = x

(
k

D

)1/2

(6.5.3)
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and, omitting the asterisks for notational simplicity, (6.5.2) becomes

∂u

∂t
= u(1− u) +

∂2u

∂x2
. (6.5.4)

In the spatially homogeneous situation the steady states are u = 0 and u = 1, which are
respectively unstable and stable. This suggests that we should look for traveling wavefront
solutions to (6.5.4) for which 0 ≤ u ≤ 1; negative u has no physical meaning with what we
have in mind for such models.

If a traveling wave solution exists it can be written in the form (6.4.1), say

u(x, t) = U(z), z = x− ct, (6.5.5)

where c is the wavespeed. We use U(z) rather than u(z) to avoid any nomenclature confusion.
Since (6.5.4) is invariant if x→ −x, c may be negative or positive. To be specific we assume
c ≥ 0. Substituting this travelling waveform into (6.5.4), U(z) satisfies

U ′′ + cU ′ + U(1− U) = 0, (6.5.6)

where primes denote differentiation with respect to z. A typical wavefront solution is where
U at one end, say, as z → −∞, is at one steady state and as z → +∞ is at the other. So here
we have an eigenvalue problem to determine the value, or values, of c such that a nonnegative
solution U of (6.5.6) exists which satisfies

lim
z→−∞

U(z) = 0, lim
z→+∞

U(z) = 1. (6.5.7)

At this stage we do not address the problem of how such a traveling wave solution might
evolve from the partial differential equation (6.5.4) with given initial conditions u(x, 0); this
point is quite interesting, but it will not covered here (see the book by J.D. Murray).

We study (6.5.6) for U in the (U, V ) phase plane where

U ′ = V, V ′ = −cV − U(1− U), (6.5.8)

which gives the phase plane trajectories as solutions of

dV

dU
=
−cV − U(1− U)

V
. (6.5.9)

This has two singular points for (U, V ), namely, (0, 0) and (1, 0): these are the steady states
of course. A linear stability analysis shows that the eigenvalues λ for the singular points are

(0, 0) : λ± =
1

2

[
−c± (c2 − 4)1/2

]
⇒

{
stable node if c2 > 4

stable spiral if c2 < 4

(1, 0) : λ± =
1

2

[
−c± (c2 + 4)1/2

]
⇒ saddle point. (6.5.10)

Figure 6.1 (a) illustrates the phase plane trajectories. If c ≥ cmin = 2 we see from (6.5.10)
that the origin is a stable node, the case when c = cmin giving a degenerate node. If c2 < 4 it
is a stable spiral; that is, in the vicinity of the origin U oscillates. By continuity arguments,
or simply by heuristic reasoning from the phase plane sketch of the trajectories in Figure 6.1
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Figure 6.1: (a) Phase plane trajectories for equation (6.5.6) for the traveling wavefront so-
lution: here c2 > 4. (b) Traveling wavefront solution for the Fisher–Kolmogoroff equation
(6.5.4): the wave velocity c ≥ 2.
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(a), there is a trajectory from (1, 0) to (0, 0) lying entirely in the quadrant U ≥ 0, U ′ ≤ 0 with
0 ≤ U ≤ 1 for all wavespeeds c ≥ cmin = 2. In terms of the original dimensional equation
(6.5.2), the range of wavespeeds satisfies

c ≥ cmin = 2(kD)1/2. (6.5.11)

Figure 6.1 (b) is a sketch of a typical travelling wave solution. There are travelling wave
solutions for c < 2 but they are physically unrealistic since U < 0, for some z, because in
this case U spirals around the origin. In these, U → 0 at the leading edge with decreasing
oscillations about U = 0.
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Chapter 7

Solution and asymptotic behaviour
of the nonlinear-diffusion equation

7.1 Solution to the Cauchy problem

We devote this chapter to show how to solve the nonlinear diffusion equation on the whole
space Rd. More precisely, we consider the Cauchy problem{

∂tρ = ∆ρm

ρ(x, 0) = ρ0(x),
(7.1.1)

in which ρ0 is taken in L∞c (Rd) and nonnegative.
A technique that recurs often in nonlinear PDEs to solve a complicated problem is to

approximate the problem with a simpler one. In this case, the problem with (7.1.1) is that
the solution may feature a singularity in the gradient similar to the one featured by the
Barenblatt solution. Such a singularity appears near the state ρ = 0 in the case of the
Barenblatt solution, so very likely such a problem would not occur if ρ would be detached
from zero. On the other hand, the only diffusion equation that we know how to solve so far is
the linear diffusion equation, therefore we need to approach the solution to (7.1.1) by several
steps.

7.1.1 Linear diffusion equation with non-degenerate coefficients

We start by solving the following problem. Let D = D(x) ≥ d > 0 a positive diffusion
coefficient that depends on x ∈ Rd. For a fixed R > 0, consider the Cauchy-Neumann
problem 

∂tρ = div(D(x, t)∇ρ) x ∈ BR(0), t ≥ 0

ρ(x, 0) = ρ0(x) x ∈ BR(0),

∂νρ(x, t) = 0 x ∈ ∂BR(0), t ≥ 0,

(7.1.2)

with ρ0(x) ≥ r > 0. The solution to such a problem can be easily found using a well known
method by Galerkin, see the Advanced Analysis course. Indeed, the operator on the right-
hand-side is uniformly parabolic due to D ≥ r > 0.
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7.1.2 Nonlinear nondegenerate diffusion equation

We now move to the problem
∂tρ = div(D(ρ)∇ρ) x ∈ BR(0), t ≥ 0

ρ(x, 0) = ρ0(x) x ∈ BR(0),

∂νρ(x, t) = 0 x ∈ ∂BR(0), t ≥ 0,

(7.1.3)

with D = D(ρ) ≥ d > 0, D(ρ) ≤ D̄, and ρ0(x) ≥ r > 0. We construct the solution via an
iterative argument. Fix T ≥ 0. Given ρ̄ ∈ L2(BR(0) × [0, T ]), we consider the semi-linear
problem 

∂tρ = div(D(ρ̄)∇ρ) x ∈ BR(0), t ≥ 0

ρ(x, 0) = ρ0(x) x ∈ BR(0),

∂νρ(x, t) = 0 x ∈ ∂BR(0), t ≥ 0,

(7.1.4)

the solution of which exists in view of the previous case. We set A[ρ̄] = ρ as the solution to
(7.1.4). We perform the following estimates. Multiply the equation in (7.1.4) by ρ, integrate
on BR(0). Integration by parts implies

1

2

d

dt

∫
|x|≤R

ρ(x, t)2dx =

∫
|x|≤R

ρdiv(D(ρ̄(x, t))∇ρ(x, t))dx

= −
∫
|x|≤R

D(ρ̄)|∇ρ(x, t)|2dx ≤ −d
∫
|x|≤R

|∇ρ(x, t)|2dx,

and integrating on t we get

1

2

∫
|x|≤R

ρ(x, t)2dx+ d

∫ t

0

∫
|x|≤R

|∇ρ(x, s)|2dxds =
1

2

∫
|x|≤R

ρ0(x)2dx. (7.1.5)

The above estimate allows to estimate ρ in the L2([0, T ]; H1(BR(0))). In particular, if we
assume that

‖ρ̄‖L2([0,T ]×BR(0)) ≤M,

then we easily obtain ∫ T

0

∫
BR(0)

ρ2(x, t)dxdt ≤ T‖ρ0‖2L2(BR(0)).

Therefore, if we choose M ≥
√
T‖ρ0‖L2(BR(0)) we get that the map A is well posed from the

set

BM =

{
ρ ∈ L2([0, T ]×BR(0)) :

∫ T

0
‖ρ(t, ·)‖2L2(BR(0))dt ≤M

}
into itself.

We also need an estimate of the time derivative. However, it will suffice to estimate ρt in
some negative Sobolev norm. We recall that, given an L2 function h, the H−1 norm of h is
found by solving

∆ψ = h

with zero homogeneous Dirichlet conditions, and by considering

‖h‖2H−1 =

∫
|∇ψ|2dx.
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In the case of ρt, we have to solve
∆ϕ = ρt,

and we get∫ T

0

∫
|∇ϕ(x, t)|2dxdt = −

∫ T

0

∫
ϕ∆ϕdxdt = −

∫ T

0

∫
ϕρtdxdt =

∫ T

0

∫
∇ϕ ·D(ρ̄)∇ρdxdt,

and by a simple weighted Young inequality we get∫ T

0

∫
|∇ϕ(x, t)|2dxdt

≤ D
∫ T

0

∫
|∇ρ(x, t)||∇ϕ(x, t)|dx ≤ 1

2

∫ T

0

∫
|∇ϕ(x, t)|2dxdt+

D2

2

∫ T

0

∫
|∇ρ(x, t)|2dxdt,

which gives ∫ T

0

∫
|∇ϕ(x, t)|2dxdt ≤ D2

∫ T

0

∫
|∇ρ(x, t)|2dxdt,

and the last term is finite in view of (7.1.5). We now invoke the so called Aubin-Lions lemma.

Theorem 7.1.1 (Aubin-Lions lemma) Let T be a positive number and Ω be a bounded
open set in Rd. Then, the set

{ρ : [0, T ]× Ω→ R : ρ ∈ L2([0, T ] ; H1(Ω)) and ρt ∈ L2([0, T ] ; H−1(Ω))}

is relatively compact in L2([0, T ]× Ω).

The above theorem implies that the above defined map A defined on BM mapping ρ̄ into
ρ is pre-compact. We then invoke another important theorem:

Theorem 7.1.2 (Schauder’s fixed point theorem) Every compact map defined on a closed,
bounded, and convex domain of a Banach space in itself has a fixed point.

Clearly, BM is a closed, bounded, and convex subset of a Banach space. Schauder’s fixed
point theorem then implies that there exists an element ρ ∈ L2([0, T ] × BR(0)) such that
Aρ = ρ, which is a classical solution to the problem (7.1.3).

We need to ensure that ρ stays nonnegative if ρ0 is nonnegative. This is something which
can be proven in exactly the same way we did for reaction-diffusion equations in the previous
sections, and is left as an exercise. Finally, we need to show that the minimum of ρ gets never
smaller than the minimum of the initial condition. To see that, let us multiply our equation
for ρ

∂tρ = div(D(ρ)∇ρ),

by a suitable approximation of (ρ− c)− with c = infx∈BR(0) ρ0(x) and proceed as above. The
details are left as an exercise.
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7.1.3 Nonlinear degenerate diffusion equations

We now tackle the main problem of this section, namely the Cauchy problem (7.1.1). Our
approximation technique works as follows. For a given initial condition ρ̄ ∈ L1 ∩L∞(Rd) and
a given R > 0, we consider

ρ̄R = 1BR(0)(x)(ρ̄(x) +
1

R
).

The PDE in (7.1.1) can be written as

∂tρ = div(D(ρ)∇ρ) , D(ρ) = mρm−1.

We now consider the following approximation of D(ρ) for all R > 0:

DR(ρ) = mmin
{

(max{ρ, 1/R})m−1 , Rm−1
}
.

For all R > 0, the problem 
∂tρ = div(DR(ρ)∇ρ)

ρ(x, 0) = ρ̄R,

∂νρ(x, t) = 0, x ∈ ∂BR(0)

(7.1.6)

has a solution ρR in view of the result in the previous subsection. This is due to the fact that
DR(ρ) is uniformly positive and uniformly bounded. Moreover, the results in the previous
subsection imply that this solution ρR satisfies ρR(x, t) ≥ 1/R. We can also provide an
L∞ estimate of the solution ρR. Let λ = ‖ρ̄‖L∞ . Consider a suitable monotone, convex
regularization ηδ(ρ) of the function (ρ− λ− 1/R)+. We get:

d

dt

∫
BR(0)

ηδ(ρR)dx =

∫
BR(0)

η′(ρR)div(mρm−1
R ∇ρR)dx = −m

∫
BR(0)

η′′(ρR)ρm−1
R |∇ρ|2dx ≤ 0,

which implies, upon sending δ ↘ 0, that∫
BR(0)

(ρR(x, t)− λ− 1/R)+dx ≤
∫
BR(0)

(ρ̄R(x)− λ− 1/R)+dx = 0,

and this implies that ρR(x, t) ≤ λ+ 1/R almost everywhere on BR(0). The above estimates
show that

DR(ρR) = D(ρR) := mρm−1
R .

We now want to prove that ρR has a limit (up to a subsequence) as R → +∞ and that
such a limit is a weak solution to (7.1.1). To perform this task, let us integrate by parts and
compute

d

dt

∫
BR(0)

ρ2
R(x, t)dx = 2

∫
BR(0)

ρρR,tdx = −2

∫
BR(0)

D(ρR)|ρR(x, t)|2dx

= −2m

∫
BR(0)

ρm−1
R |∇ρR|2dx.

A simple computation then shows

d

dt

∫
BR(0)

ρ2
R(x, t)dx = − 8m

(m+ 1)2

∫
BR(0)

|∇ρ
m+1

2 |2dx.

74



Integration on t ∈ [0, T ] then gives∫ T

0

∫
BR(0)

|∇ρ
m+1

2 |2dxdt ≤ C,

for some C depending on ‖ρ0‖L2 .
Now, it turns out that the Aubin-Lions strategy does not work here. In order to estimate

the time derivative, we have to first compute (we omit the index R)

d

dt

∫
BR(0)

|∇ρm(x, t)|2dx = 2

∫
BR(0)

∇ρm · ∇(ρm)tdx

= −2

∫
BR(0)

∆ρm(ρm)tdx = −2m

∫
BR(0)

ρm−1ρ2
tdx

= − 8

(m+ 1)2

∫
BR(0)

(
ρ(m+1)/2

)2

t
dx,

and use such estimate as follows:∫ T

0
t

∫
BR(0)

(
ρ(m+1)/2

)2

t
dxdt = −(m+ 1)2

8

∫ T

0
t
d

dt

∫
BR(0)

|∇ρm|2dxdt

=
(m+ 1)2

8

∫ T

0

∫
BR(0)

|∇ρm|2dxdt− (m+ 1)2

8
T

∫
BR(0)

|∇ρm(x, T )|2dx

≤ (m+ 1)2

8

∫ T

0

∫
BR(0)

|∇ρm|2dxdt,

and the last term above is finite in view of the above estimates. All this implies a uniform

control of ρ
(m+1)/2
R on the space

H1
x,t([δ, T ]×BR(0)),

for all δ > 0. By standard Sobolev compact embedding, we get that ρ
(m+1)/2
R is strongly

compact in L2([δ, T ] × BR(0)), and therefore, up to a subsequence, ρ
(m+1)/2
R → ρ(m+1)/2

almost everywhere and in L2
loc([δ, T ] × Rd), and consequently ρR → ρ almost everywhere on

[δ, T ]×Rd for some measurable function ρ. By taking a diagonal procedure, i.e. by choosing
δ = 1/R, we easily get almost everywhere convergence of ρR up to the initial line t = 0.
Actually, this convergence holds in all Lploc([0, T ]×Rd) spaces by Lp interpolation taking into
account that ρR is uniformly bounded in L∞. The details are left as an exercise.

Since ρR solves the approximated version of the PDE, consider a test function ψ ∈
C2
c ([0, T )× Rd) and compute∫ T

0

∫
Rd
ρψtdxdt+

∫ T

0

∫
Rd
ρm∆ψdxdt+

∫
Rd
ρ0(x)ψ(x, 0)dx

= lim
R→+∞

∫ T

0

∫
Rd
ρRψtdxdt+

∫ T

0

∫
Rd
ρmR∆ψdxdt+

∫
Rd
ρ0(x)ψ(x, 0)dx = 0.

Hence, ρ is a weak distributional solution to the Cauchy problem (7.1.1).
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7.2 Intermediate asymptotic behaviour

We now pose the problem of the asymptotic behavior for large times for the Cauchy problem
(7.1.1). Similarly to what happens for the linear diffusion equation, due to the fact that
the total mass is conserved and that the effect of diffusion is that of stabilizing the solution
around a constant state, we expect u to converge to zero as t→ +∞. Now, we know a special
solution to the nonlinear diffusion equation given by the Barenblatt profile. This is actually
a self-similar profile. Although we cannot solve the Cauchy problem (7.1.1), we will prove
that all solutions to (7.1.1) actually behave as the Barenblatt profile. The actual statement is
the following. Given u the solution to (7.1.1), given B(·, t) the Barenblatt profile, we aim at
proving that

‖u(·, )−B(·, t)‖L1(Rd) → 0 as t→ +∞ . (7.2.1)

This result is very important, because it says that no matter what the initial condition is,
from a qualitative point of view, all solutions behave as the Barenblatt solution for large
times, with an error that goes to zero in the L1 norm.

We now outline the proof of (7.2.1) under the condition on the initial datum u(x, 0) =
u0(x) with u0 ∈ L∞(Rd) and u0 compactly supported. We perform the scaling

u(x, t) = α(t)dv(α(t)x, β(t)) (7.2.2)

with α and β to be determined. Note that the above ansatz provides a mass preserving
function u with respect to time. We have to choose α and β such that the equation for
v = v(y, τ) is totally self-consistent, with y = α(t)x and τ = β(t). We compute

ut = dαd−1α′v + αdα′∇yv · x+ αdvτβ
′ = αd−1

[
α′divy(yv) + αβ′vτ

]
∆xu

m = αdm+2∆vm

and impose
α′(t) = −αd(m−1)+3(t) , β′(t) = αd(m−1)+2(t) ,

with initial conditions α(0) = 1 and β(0) = 0. The differential equation for α yields

α(t) = (1 + λt)−1/λ , λ = d(m− 1) + 2 .

Hence, we obtain
β′(t) = (1 + λt)−1 , β(0) = 0 ,

which implies

β(t) =
1

λ
log(1 + λt) .

In particular, we obtain

τ =
1

λ
eλt − 1 .

The equation in (7.1.1) then becomes

vτ = div(yv +∇vm), (7.2.3)

which can also be rewritten as

vτ = div

(
v∇
(
|y|2

2
+

m

m− 1
vm−1

))
.
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The equation (7.2.3) is called nonlinear Fokker-Planck equation. Why are we considering this
equation? The reason is all in the scaling (7.2.2), which actually reads

u(x, t) = (1 + λt)−d/λv(y, τ). (7.2.4)

One can easily check that this is the same scaling factor we put in front of the solution in
order to recover the Barenblatt self-similar profile. Moreover, by looking for a stationary state
for (7.2.3) we recover, as done for the self-similar profile,

|y|2

2
+

m

m− 1
vm−1 = C

which gives

v(y) = v∞(y) =

(
C − 2m

m− 1
|y|2
)1/(m−1)

+

.

A simple computation shows that

u∞(x, t) = (1 + λt)−d/λv∞

(
(1 + λt)−1/λx

)
coincides with a time-translated version of the Barenblatt solution to the nonlinear diffusion
equation. More precisely, instead of featuring a Dirac’s delta as initial condition, u∞ is equal
to v∞ as t = 0, which coincides with the original Barenblatt profile at some fixed positive
time. We observe that the nonlinear diffusion equation is invariant after time translations,
therefore u∞ still is a solution. As for the initial conditions, by observing that β(0) = 0, we
get

v(·, 0) = u0(·) ,

that is, v and u have the same initial condition.
Now, our goal is to use some kind of functional estimate to prove that v(·, τ) converges to

v∞ as τ → +∞. We define the entropy functional

E[v] :=
1

m− 1

∫
vm(y)dy +

1

2

∫
|y|2v(y)dy ,

and the relative entropy
RE[v] := E[v]− E[v∞] .

The estimate below is somehow formal, because in it we differentiate the solution v to (7.2.3)
assuming it is a classical solution. The way to make this estimate rigorous relies on similar
approximations we used to construct the solution to the Cauchy problem (7.1.1), we omit the
details. Let us then compute

d

dτ
E[v(·, τ)] =

d

dτ

(
1

m− 1

∫
vm(y)dy +

1

2

∫
|y|2v(y)dy

)
=

m

m− 1

∫
vm−1vτdy +

1

2

∫
|y|2vτdy

=

∫ (
m

m− 1
vm−1 +

1

2
|y|2
)

div

(
v∇
(
|y|2

2
+

m

m− 1
vm−1

))
dy .
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Integrating by parts and neglecting the boundary conditions, which could be made rigorous
as mentioned above by prescribing zero Neumann conditions, we obtain

d

dτ
E[v(·, τ)] = −

∫
v

∣∣∣∣∇( |y|22
+

m

m− 1
vm−1

)∣∣∣∣2 dy .
We now set

I[v] :=

∫
v

∣∣∣∣∇( |y|22
+

m

m− 1
vm−1

)∣∣∣∣2 dy
and write

d

dτ
RE[v(·, τ)] = −I[v(·, τ)] .

We integrate in τ and obtain

RE[v(·, τ)] +

∫ τ

0
I[v(·, s)]ds = RE[u0] , (7.2.5)

which implies ∫ τ

0
I[v(·, s)]ds ≤ E[u0]− E[v(·, τ)] .

It is easily seen that E[v] ≥ 0 for all v ≥ 0, but v ≥ 0 is a consequence of u0 ≥ 0 and of the
fact that v is a rescaled version of u and the latter is nonnegative. Hence, by imposing

E[u0] < +∞ ,

which is equivalent to

u0 ∈ Lm(Rd) and ,

∫
Rd
|y|2u0(y)dy < +∞ ,

we get ∫ τ

0
I[v(·, s)]ds ≤ E[u0] < +∞ .

As the above right hand side is independent of τ we obtain∫ +∞

0
I[v(·, s)]ds < +∞ . (7.2.6)

We now claim that

I[v] = 0 and

∫
v(y)dy = M > 0 if and only if v = v∞ and

∫
v(y)dy = M > 0 .

Indeed, if I[v] = 0 then the assumption on the mass implies v is not identically zero, therefore

∇
(
|y|2

2
+

m

m− 1
vm−1

)
= 0

and this implies v equals v∞ with the constant C > 0 chosen such that the mass is equal to
M . Vice-versa, it is immediately seen that I[v∞] = 0. Now, (7.2.6) implies that there exists a
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sequence τn → +∞ such that I[v(·, τn)]→ 0. To lighten the notation we denote vn = v(·, τn).
We compute

I[vn] =

∫
vn

∣∣∣∣∇( m

m− 1
vm−1
n

)
+ y

∣∣∣∣2 dy
=

∫
vn

∣∣∣∣∇( m

m− 1
vm−1
n

)∣∣∣∣2 dy +

∫
vn|y|2dy + 2

∫
vny · ∇

(
m

m− 1
vm−1
n

)
dy

=

∫
vn
∣∣mvm−2

n ∇vn
∣∣2 dy +

∫
vn|y|2dy + 2m

∫
vm−1
n y · ∇vndy

= m2

∫ ∣∣∣vm−3/2
n ∇vn

∣∣∣2 dy +

∫
vn|y|2dy + 2

∫
y · ∇vmn dy

=
m2

(m− 1/2)2

∫ ∣∣∣∇vm−1/2
n

∣∣∣2 dy +

∫
vn|y|2dy − 2d

∫
vmn dy ,

where we have integrated by parts in the last identity. Now, the identity (7.2.5) implies

1

m− 1

∫
vn(y, τ)mdy +

1

2

∫
|y|2v(y, τ)dy

is uniformly bounded with respect to τ , and since both terms in the above estimate are
nonnegative, both terms are uniformly bounded. Hence, since I[vn(·)] is also bounded as
n→ +∞, we get that the quantity ∫ ∣∣∣∇vm−1/2

n

∣∣∣2 dy
is uniformly bounded. We observe

∇vmn = ∇
(
vm−1/2
n

) m
m−1/2

=
2m

2m− 1

(
vm−1/2
n

) 2m
2m−1

−1
∇vm−1/2

n

=
2m

2m− 1

(
v(2m−1)/2
n

) 1
2m−1 ∇vm−1/2

n =
2m

2m− 1

√
vn∇vm−1/2

n .

Hence, a simple Hoelder inequality implies∫
|∇vmn | dy =

2m

2m− 1

∫ √
vn

∣∣∣∇vm−1/2
n

∣∣∣ dy ≤ 2m

2m− 1

(∫
vndy

)1/2(∫ ∣∣∣∇vm−1/2
n

∣∣∣2 dy)1/2

,

and since the total mass of vn is constantly equal to M we get that∫
|∇vmn | dy

is uniformly bounded. Since the ‖ · ‖Lm norm of vn is also uniformly bounded, we get that
vmn is uniformly bounded in the Sobolev space W 1,1(Rd). Since the embedding of L1 in W 1,1

is compact on compact subsets of Rd, we get the existence of a subsequence of vmn - which by
abuse of notation we shall still refer to as vmn - converging to some h ∈W 1,1 almost everywhere
and locally strongly in L1. The almost everywhere convergence implies

vn → h1/m := v.
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Moreover, we easily get that vn → v strongly in L1 on compact sets.
The above computation has shown the strong convergence of vn to some limit v strongly

locally on compact sets. This is not enough to conclude our convergence argument because
of the locality of the estimate, in particular, we are not yet guaranteed that the tails of
vn behave nicely and, as a consequence, the total mass of vn converges to the total mass
of v. We address this task in the following. We observe that vn is uniformly bounded in
Wm,1(Rd). Now, according to Morrey’s inequality and to Gagliardo-Nirenberg’s inequality,
we may easily find q > m such that vn is uniformly bounded in Lq (exercise). We now use
the uniform control on

∫
|y|vn(y)dy as follows. For some δ > 0 we get∫

|y|δvmn dy =

∫
|y|δvδ/2n vm−δ/2n dy

=

∫ (
|y|2vn

)δ/2
vm−δ/2n dy

and by Hoelder’s inequality∫
|y|δvmn dy ≤

(∫
|y|2vndy

)δ/2(∫ (
vm−δ/2n

) 2
2−δ

dy

) 2−δ
2

.

We compute the exponent

(m− δ/2)
2

2− δ
=

2m− δ
2− δ

=: p

and observe that p > m for every δ > 0. We choose δ such that p = q and we obtain that∫
|y|δvmn dy

is uniformly bounded. Now, we apply Dunford-Pettis theorem, according to which if a se-
quence Un is uniformly bounded in L1 and is equi-integrable, that is, if for every ε > 0 there
exist δ > 0 and R > 0 such that for all x0 ∈ Rd,∫

Bδ(x0)
|Un(x)|dx < ε and

∫
|x|≥R

|Un(x)|dx < ε for all n ∈ N,

then the sequence Un is weakly compact in L1. We apply the theorem to Un := vmn . Given
q > m such that vn is uniformly bounded in Lq, frmo Hoelder’s inequality we get∫

Bδ(x0)
vmn dy ≤

(∫
Bδ(x0)

vqndy

)m
q

m(Bδ(x0))
1−m

q ≤ Cm(Bδ(x0))
1−m

q

for some C, and the first equi-integrability estimate follows by choosing δ such that Cm(Bδ(x0))
1−m

q <
ε. As for the second estimate, we compute∫

|y|≥R
vmn dy =

∫
|y|≥R

1

|y|δ
|y|δvmn dy ≤

1

Rδ

∫
Rd
|y|δvmn dy ≤

C

Rδ

for some suitable constant C as from the above estimates. Hence, we choose R such that
C
Rδ

< ε to obtain equi-integrability. we have therefore proven that vmn is weakly compact in
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L1(Rd). In a similar way and using that
∫
|y|2vndy and

∫
vmn dy are uniformly bounded, one

can prove that vn is also weakly compact in L1(Rd). As a consequence, we obtain∫
Rd
vmn dy →

∫
Rd
vmdy∫

Rd
vndy →

∫
Rd
vdy .

The uniform bound of ∇vm−1/2
n in L2 gives (possibly by extracting another subsequence) that

∇vm−1/2
n converges weakly in L2(Rd) to some function W . We claim that W = ∇vm−1/2.

The weak convergence gives, for all test functions ϕ,

−
∫
Rd
vm−1/2
n divϕdy →

∫
Rd
Wϕdy .

Moreover, v
m−1/2
n has a uniformly bounded Lp norm with p = m

m−1/2 > 1, and is therefore
weakly compact in Lp. Therefore,∫

Rd
vm−1/2
n divϕdy →

∫
vm−1/2divϕdy

and hence ∇vm−1/2 = W in the weak sense. Gathering all the above information, we get by
Fatou’s Lemma and by weak-lower semicontinuity of the L2 norm,

0 ≤ I[v] =
m2

(m− 1/2)2

∫ ∣∣∣∇vm−1/2
∣∣∣2 dy +

∫
v|y|2dy − 2d

∫
vmdy

≤ lim inf
n→+∞

(
m2

(m− 1/2)2

∫ ∣∣∣∇vm−1/2
n

∣∣∣2 dy +

∫
vn|y|2dy

)
− 2d lim

→+∞

∫
vmn dy

= lim inf
n→+∞

I[vn] = 0 ,

and the additional information that
∫
vndy → M , which implies that v coincides with the

Barenblatt stationary state v∞ with mass equal to M . Hence, we have proven vn converges
up to a subsequence to v∞ strongly in L1

loc(Rd). To prove convergence in the whole of L1(Rd)
we fix ε > 0 arbitrary and compute∫

Rd
|vn − v∞|dy =

∫
|y|≤R

|vn − v∞|dy +

∫
|y|>R

1

|y|2
|y|2|vn − v∞|dy

≤
∫
|y|≤R

|vn − v∞|dy +
1

R2

(∫
Rd
|y|2vn(y)dy +

∫
Rd
|y|2v∞(y)dy

)
≤ CR−2 +

∫
|y|≤R

|vn − v∞|dy,

for some suitable constant C, and letting n→ +∞ the strong L1loc convergence implies

lim sup
n→+∞

∫
Rd
|vn − v∞|dy ≤ CR−2

and the latter can be made smaller than ε for suitably large R. Hence,

lim
n→+∞

∫
Rd
|vn − v∞|dy = 0 .

81



Now, the assertion is almost proven. We have found a sequence of times τn → +∞ such that
v(τn)→ v∞ strongly in L1(Rd). In order to prove that this is in fact true for all t ≥ 0, namely
that limτ→+∞ v(τ) = v∞ in L1(Rd), we need to use the monotonicity of the relative entropy
functional RE[v(·, τ)]. Assuming that there exists another subsequence τ ′n → +∞ such that
v′n := v(·, τ ′n) → V ′ with V ′ 6= v∞, the monotonicity of the relative entropy would imply a
uniform bound for the Lm norm of v′n and for the second moment

∫
|y|2v′ndy, and hence the

continuity of the Lm-norm of v′n with an argument similar to above. Hence,∫
(v′n)mdy →

∫
(V ′)mdy .

We claim that ∫
|y|2v′ndy →

∫
|y|2(V ′)mdy .

To see this, we leave as an exercise the estimate

d

dt

∫
Rd
|y|2+δv(y, τ)dy = (2 + δ)(d+ δ)

∫
Rd
|y|δvm(y, τ)dy − (2 + δ)

∫
Rd
|y|2+δv(y, τ)dy

which can be proven by using directly the Fokker-Planck equations and integrating by parts.
Since

∫
Rd |y|

δvm(y, τ)dy is uniformly bounded (see the above estimates), a simple variations
of constants formula and comparison principle implies that∫

Rd
|y|2+δv(y, τ)dy

is uniformly bounded in time. Hence, similarly to above we can show that |y|2v′n(y) is weakly
compact in L1 by the Dunford-Pettis theorem, and then∫

Rd
|y|2v′n(y)dy →

∫
Rd
|y|2V ′(y)dy .

We have therefore proven that

RE[v′n]→ RE[V ′] 6= 0 .

With exactly the same argument, though, one has that

RE[vn]→ RE[v∞] = 0

for the previous sequence, but this is not possible, because RE[v(·, τ)] is monotone in τ , and
hence it cannot have two distinct limit points. Hence, the assertion

lim
τ→+∞

‖v(·, τ)− v∞‖L1(Rd) = 0

is proven. To prove (7.2.1), we use the change of variable y = (1 + λt)−1/λx∫
Rd
|u(x, t)− u∞(x, t)|dx

= (1 + λt)−d/λ
∫
Rd
|v((1 + λt)−1/λx, τ)− v∞((1 + λt)−1/λx)|dx =

∫
Rd
|v(y, τ)− v∞(y)|dy

→ 0

as t→ +∞, which is equivalent to τ → +∞.
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Chapter 8

Reaction–diffusion systems

When more than one species interact via reaction mechanisms such as predator–prey, mu-
tualism, competition, reaction kinetics etc. and they all diffuse with different (in general)
diffusivity constants, we are in a situation to be modeled via a reaction–diffusion system. As
a general rule, when two or more species interact and diffuse, the latter mechanism may be
affected, for each species, by the gradient of any species. More precisely, a given species may
experience a self-diffusion mechanism, through which individuals are “repelled” by individ-
ual of the same species, and a cross-diffusion mechanism, by which their movement is biased
(negatively or positively) by the change of concentration of the other species.

In this course we will just deal with the case of two species, because this case is represen-
tative of all the mathematical challenges that arise with many species systems with diffusion.
In order to understand at a preliminary stage the impact of self-diffusion and cross-diffusion
on the mathematical properties of the system, we consider the following simple one-space
dimensional system

∂ρ1(x, t)

∂t
=

∂

∂x

(
d11

∂ρ1(x, t)

∂x
+ d12

∂ρ2(x, t)

∂x

)
+R1(ρ1, ρ2)

∂ρ2(x, t)

∂t
=

∂

∂x

(
d22

∂ρ2(x, t)

∂x
+ d21

∂ρ1(x, t)

∂x

)
+R2(ρ1, ρ2) ,

(8.0.1)

where d11 > 0 and d22 > 0 are self-diffusion constants, whereas d12 and d21 are cross-diffusion
constants. Here R1 and R2 are reaction terms, which we will assume to be zero for the time
being because we just want to understand the structure of the diffusion part. Let us assume
x ∈ R and compute, via integration by parts and neglecting the boundary terms as usual,

d

dt

[∫
ρ2

1(x, t)dx+

∫
ρ2

2(x, t)dx

]
= 2

∫
ρ1∂tρ1dx+ 2

∫
ρ2∂tρ2dx

= 2

∫
ρ1∂x(d11∂xρ1 + d12∂xρ2)dx+ 2

∫
ρ2∂x(d22∂xρ2 + d21∂xρ1)dx

= −2d11

∫
(ρ1)2

xdx− 2d22

∫
(ρ2)2

xdx− 2d12d21

∫
(ρ1)x(ρ2)xdx .

In order to get global stability in the L2 sense, we need the right hand side to be non-positive.
The latter can be written as minus a quadratic form with matrix

A =

(
d11

d12+d21
2

d12+d21
2 d22

)
.
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Since the trace of the above matrix is positive, the associated quadratic form is positive
definite if and only if detA > 0, which reads

d11d22 −
1

4
(d12 + d21)2 > 0 .

Such a condition is quite enlightening, as it unveils the fact that self-diffusion is a stabilising
term, where as cross-diffusion is potentially producing instability even in case of positive
cross-diffusion constants. In some sense, a “dominating” self-diffusion part produces stability
for the system.

8.1 Turing instability and spatial patterns

Turing (1952) suggested that, under certain conditions, chemicals can react and diffuse in such
a way as to produce steady state heterogeneous spatial patterns of chemical or morphogen
concentration. This section is mainly concerned with models for two chemical species, ρ1(x, t)
and ρ2(x, t) say. The equation system is then of the form

∂ρ1

∂t
= d1∆ρ1 +R1(ρ1, ρ2) (8.1.1)

∂ρ2

∂t
= d2∆ρ2 +R2(ρ1, ρ2) (8.1.2)

where R1 and R2 are the reaction kinetics, and d1, d2 > 0 are the diffusion constants. Notice
that this model only features self-diffusion terms.

Turing’s (1952) idea is a simple but profound one. He said that, if in the absence of
diffusion (effectively d1 = d2 = 0), ρ1 and ρ2 tend to a linearly stable uniform steady state
then, under certain conditions, which we shall derive, spatially inhomogeneous patterns can
evolve by diffusion driven instability if d1 6= d2. Diffusion (in particular self-diffusion, as from
the previous section) is usually considered a stabilizing process which is why this was such
a novel concept. To see intuitively how diffusion can be destabilizing consider the following,
albeit unrealistic, but informative analogy.

Consider a field of dry grass in which there is a large number of grasshoppers which can
generate a lot of moisture by sweating if they get warm. Now suppose the grass is set alight
at some point and a flame front starts to propagate. We can think of the grasshopper as
an inhibitor and the fire as an activator. If there were no moisture to quench the flames
the fire would simply spread over the whole field which would result in a uniform charred
area. Suppose, however, that when the grasshoppers get warm enough they can generate
enough moisture to dampen the grass so that when the flames reach such a pre-moistened
area the grass will not burn. The scenario for spatial pattern is then as follows. The fire
starts to spread - it is one of the “reactants”, the activator, with a “diffusion” coefficient
DF say. When the grasshoppers, the inhibitor “reactant”, ahead of the flame front feel it
coming they move quickly well ahead of it; that is, they have a “diffusion” coefficient, DG say,
which is much larger than DF . The grasshoppers then sweat profusely and generate enough
moisture to prevent the fire spreading into the moistened area. In this way the charred area
is restricted to a finite domain which depends on the diffusion coefficients of the reactants
- fire and grasshoppers - and various reaction parameters. If, instead of a single initial fire,
there were a random scattering of them we can see how this process would result in a final
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spatially heterogeneous steady state distribution of charred and uncharred regions in the field
and a spatial distribution of grasshoppers, since around each fire the above scenario would
take place. If the grasshoppers and flame front diffused at the same speed no such spatial
pattern could evolve. It is clear how to construct other analogies.

In the following section we describe the process in terms of reacting and diffusing mor-
phogens and derive the necessary conditions on the reaction kinetics and diffusion coefficients.

A reaction diffusion system exhibits diffusion-driven instability, sometimes called Turing
instability, if the homogeneous steady state is stable to small perturbations in the absence of
diffusion but unstable to small spatial perturbations when diffusion is present. The concept
of instability in biology is often in the context of ecology, where a uniform steady state
becomes unstable to small perturbations and the populations typically exhibit some temporal
oscillatory behavior. The instability we are concerned with here is of a quite different kind.
The main process driving the spatially inhomogeneous instability is diffusion: the mechanism
determines the spatial pattern that evolves. How the pattern or mode is selected is an
important aspect of the analysis, a topic we do not have time to develop here.

We derive here the necessary and sufficient conditions for diffusion-driven instability of
the steady state and the initiation of spatial pattern for the system (8.1.2). For simplicity, we
shall deal with a linear system, which will translate into something to be applied to linearised
versions of nonlinear reactions. We consider then{

ρ1,t = d1ρ1,xx + αρ1 + βρ2

ρ2,t = d2ρ2,xx + γρ1 + δρ2 .
(8.1.3)

We shall work on a one-dimensional bounded interval x ∈ [0, L] with zero-flux boundary
conditions

ρ1,x(0, t) = ρ1,x(L, t) = ρ2,x(0, t) = ρ2,x(L, t) = 0 .

The system can be written in vector form as follows. Set

U =

(
ρ1

ρ2

)
A =

(
α β
γ δ

)
D =

(
d1 0
0 d2

)
.

We get
Ut = DUxx +AU .

To have a Turing instability we first need to require that A is a stable reaction matrix. The
eigenvalues of A solve

λ2 − (trA)λ+ detA = 0

which implies that stability holds provided that both

trA = α+ δ < 0

and
detA = αδ − βγ > 0 .

Now, we are going to look for solutions in a way that is very similar to the separation of
variables method used for the single species case. We start with the ansatz

ρi(x, t) =
+∞∑
k=0

cike
λkt cos(ωkx) , for i = 1, 2 .
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By superposition principle, we substitute each of the above terms in the system in order to
detect the values of ωk and λk. As usual, the constants cik will depend on the initial data.
Let us substitute first

Uk(x, t) = eλkt(cos(ωkx), cos(ωkx))

into the boundary conditions and obtain, with ∂x cos(ωkx) = −ωk sin(ωkx),

−ωk sin(ωk0) = 0

which is always satisfied, and
−ωk sin(ωkL) = 0

which implies

ωk =
kπ

L
, k = 0, 1, 2, . . .

In order to obtain the values of λk, we now substitute Uk in the system and, with simple
calculations and using

∂te
λkt cos(ωkx) = eλkt cos(ωkx)

and
∂2
xxe

λkt cos(ωkx) = −ω2
ke
λkt cos(ωkx) ,

we obtain

λkUk = −ω2
k

(
d1 0
0 d2

)
Uk +

(
α β
γ δ

)
Uk .

The above cam be re-written as[
λkI + ω2

k

(
d1 0
0 d2

)
−
(
α β
γ δ

)]
Uk = 0

which means that λk is an eigenvalue for the matrix

B = −ω2
k

(
d1 0
0 d2

)
+

(
α β
γ δ

)
=

(
α− ω2

kd1 β
γ δ − ω2

kd2

)
.

A simple computation for the eigenvalues of B yields they are roots to the equation

λ2 + bkλ+ hk = 0

with

bk = ω2
k(d1 + d2)− trA

hk = ω4
kd1d2 − ω2

k(δd1 + αd2) + detA .

The roots are

λ± =
−bk ±

√
b2k − 4hk

2
.

Now, the values λ = λk impact on the solution Uk in the exponential time dependent factor.
In particular, <λ > 0 for at least one of the two roots corresponds to instability, which is what
we want to achieve here. Clearly, this is possible if one of two conditions below are satisfied:

bk < 0 hk < 0 .

86



Since the trace of A is negative (due to the stability of the reaction matrix), we clearly have
bk > 0. Therefore, instability can only be obtained if hk < 0. Now, with the notation ξ? = ω2

k,
ξ ≥ 0, we can write hk = hk(ξ) as the parabola

hk(ξ) = d1d2ξ
2 − (δd1 + αd2)ξ + detA .

Since detA > 0, the above parabola may attain some negative values for some ξ > 0 only if

δd1 + αd2 > 0 .

The above can be seen as a necessary condition for instability. It is immediately clear that
such a condition cannot be achieved if d1 = d2, because we know α+δ < 0 due to the stability
of the reaction part. Hence, already at this stage we see how Turing instability can appear
only if the two diffusion coefficients are different, consistently with the grasshoppers example.

We now aim at deriving a sufficient condition. A simple computation shows that the
minimum of the above parabola is

hmin = detA− 1

4d1d2
(δd1 + αd2)2 .

Hence, said parabola will achieve negative values if and only if

4d1d2(αδ − βγ) < δ2d2
1 + α2d2

2 + 2αδd1d2 .

Now, remember that ξ = ω2
k. Hence, only some discrete values of the above parabola are

actually achieved. Hence, further to the above condition we must ensure that there are
“enough discrete values” of ωk, in particular to make sure that some of them falls into the
interval in which hk is negative. Recalling the expression of ωk, we see that this is possible if
L is large enough.

Some final remarks about this model. This is a linear model. Is it possible for this model
to produce actual patterns which do not blow up at infinity? The answer is: yes as long as
Reλk = 0. This is something that happens very unlikely, as one of the discrete values of ωk
must coincide with a zero of the parabola hk. There is another, more efficient interpretation
behind the formation of patterns as a consequence of a Turing instability, which is the fact
that with no cross-diffusion in the system and a stable nonlinear reaction, a steady state would
be globally stable, so there would be no blow up. On the other hand, the local instability of
a steady state would give that no homogeneous constant states are formed, so the formation
of patterns is in fact the only possibility in the large time limit, we omit the details.
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Chapter 9

Chemotaxis

A large number of insects and animals (including humans) rely on an acute sense of smell
for conveying information between members of the species. Chemicals which are involved in
this process are called pheromones. For example, the female silk moth Bombyx mori exudes
a pheromone, called bombykol, as a sex attractant for the male, which has a remarkably
efficient antenna filter to measure the bombykol concentration, and it moves in the direction
of increasing concentration.

The acute sense of smell of many deep sea fish is particularly important for communication
and predation. Other than for territorial demarcation one of the simplest and important
exploitations of pheromone release is the directed movement it can generate in a population.
Here we model this chemically directed movement, which is called chemotaxis, which, unlike
diffusion, directs the motion up a concentration gradient.

It is not only in animal and insect ecology that chemotaxis is important. It can be
equally crucial in biological processes where there are numerous examples. For example,
when a bacterial infection invades the body it may be attacked by movement of cells towards
the source as a result of chemotaxis. Convincing evidence suggests that leukocyte cells in
the blood move towards a region of bacterial inflammation, to counter it, by moving up a
chemical gradient caused by the infection.

A widely studied chemotactic phenomenon is that exhibited by the slime mould Dic-
tyostelium discoideum where single–cell amoebae move towards regions of relatively high con-
centrations of a chemical called cyclic-AMP which is produced by the amoebae themselves.
The kinetics involved have been modeled by several authors. As more was found out about
the biological system the models necessarily changed.

Most mathematical models for spatial patterning in Dictyostelium discoideum are based on
continuum models for the chemoattractants and the cells. Let us suppose that the presence
of a gradient in an attractant, a(x, t), gives rise to a movement, of the cells say, up the
gradient. The flux of cells will increase with the number of cells, n(x, t), present. Thus we
may reasonably take as the chemotactic flux

J = nχ(a)∇a (9.0.1)

where χ(a) is a function of the attractant concentration. In the general conservation equation
for n(x, t), namely,

∂n

∂t
+ divJ = f(n)
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where f(n) represents the growth term for the cells, the flux

J = Jdiffusion + Jchemotaxis,

where the diffusion contribution is given by Fick’s law Jdiffusion = −D∇n with the chemotaxis
flux from (9.0.1).

Thus a basic reaction–diffusion–chemotaxis equation is

∂n

∂t
= f(n) +D∆n− div(nχ(a)∇a) (9.0.2)

where D is the diffusion coefficient of the cells.
Since the attractant a(x, t) is a chemical it also diffuses and is produced, by the amoebae,

for example, so we need a further equation for a(x, t). Typically

∂a

∂t
= g(a, n) + divDa∇a, (9.0.3)

where Da is the diffusion coefficient of a and g(a, n) is the kinetics/source term, which may
depend on n and a. Normally we would expect Da > D. If several species or cell types
all respond to the attractant the governing equation for the species vector is an obvious
generalization of (9.0.2) to a vector form with χ(a) probably different for each species.

In the seminal model of Keller and Segel (1971) for slime mould, g(a, n) = hn − ka,
where h, k are positive constants. Here hn represents the spontaneous production of the
attractant and is proportional to the number of amoebae n, while −ka represents decay of
attractant activity; that is, there is an exponential decay if the attractant is not produced by
the cells. One simple version of the model has f(n) = 0; that is, the amoebae production rate
is negligible. This is the case during the pattern formation phase in the mould’s life cycle.
The chemotactic term χ(a) is taken to be a positive constant χ0. The form of this term has
to be determined from experiment. With constant diffusion coefficients, together with the
above linear form for g(a, n), the model becomes the nonlinear system

∂n

∂t
= D∆n− χdiv (n∇a) ,

∂a

∂t
= Da∆a+ hn− ka. (9.0.4)

There we consider n to be a bacterial population and a the food which it consumes.
Before leaving this introduction, note the difference in sign in (9.0.2) and (9.0.4) in the

diffusion and chemotaxis terms. More precisely, expanding the equation for n gives

∂n

∂t
= D∆n− χn∆a− χ∇n · ∇c.

Here, both n and c have a Laplacian contribution but with different sign. This suggests that
whereas diffusion is generally a stabilizing force, chemotaxis is generally destabilizing, like a
kind of negative diffusion. At this stage, therefore, it is reasonable to suppose that the balance
between stabilizing and destabilizing forces in the model system (9.0.4) could result in some
steady state spatial patterns in n and a, or in some unsteady wavelike spatially heterogeneous
structure. That is, nonuniform spatial patterns in the cell density appear. On the other hand
if the chemotactic effect is sufficiently strong there could be a possibility of solution blow-up.
This in fact can happen in certain cases, as we shall see below.
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9.1 Diffusion vs. Chemotaxis: stability vs. instability

Let us consider system (9.0.4) in one space dimension on the whole R, namely{
nt = Dnxx − χ (nax)x
at = Daaxx + hn− ka.

(9.1.1)

We want to analyze the linear stability of constant steady states. The procedure will be
similar to that used for Turing instability. Since we are on the whole space, we can make such
procedure simpler by employing the Fourier’s transform

f̂(ξ, t) =

∫
R
e−2πixξf(x, t)dx.

Let (n∞, a∞) be a constant steady state. The second equation in (9.1.1) yields

hn∞ − ka∞ = 0,

and therefore the steady state is of the form

(n∞, a∞) =

(
n∞,

hn∞

k

)
,

and the value n∞ is arbitrary. Let us linearize system (9.1.1) around (n∞, a∞), namely let
n = n∞ + u, a = a∞ + v. We easily obtain the following system as first order approximation{

ut = Duxx − χn∞vxx
vt = Davxx + hu− kv.

(9.1.2)

Let us first point out that, in case D = Da = χ = 0, i. e. no diffusion and no chemotaxis
(chemotaxis can be seen as a cross-diffusion), the system becomes{

ut = 0

vt = hu− kv,

which can be solved explicitly to give the solution

u(t) ≡ u0, v(t) = v0e
−kt +

hu0

k
(1− e−kt)

which clearly proves that the steady state is stable (neutrally, not asymptotically) without
diffusion (Exercise!).

Let us now apply the Fourier transform to (9.1.2) in order to analyze the linear stability
of system (9.1.1). We have the following system for û(ξ, t) and v̂(ξ, t):{

ût = −Dξ2û+ χn∞ξ2v̂

v̂t = −Daξ
2v̂ + hû− kv̂,

(9.1.3)

which can be rewritten in matrix form as follows

Û = (û, v̂), A(ξ) :=

(
−Dξ2 χn∞ξ2

h −Daξ
2 − k

)
∂tÛ(ξ, t) = A(ξ)Û(ξ, t). (9.1.4)
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The linear stability of the steady state (n∞, a∞) for system (9.1.1) in L2 is clearly equivalent
to the L2 stability of the zero state Û = (0, 0) for system (9.1.4). This fact is a trivial
consequence of the Plancherel Theorem ‖f‖L2 = ‖f̂‖L2 , which can be found in any PDE
textbook (cf. for instance the book by L.C. Evans). Therefore, since the right-hand-side
in the equation in (9.1.4) does not contain derivatives with respect to ξ, all we have to do
is compute the eigenvalues of the matrix A(ξ) and check whether they imply stability of
instability. We immediately see that

TrA(ξ) < 0 for all ξ ∈ R.

Let us compute
detA(ξ) = ξ2(DDaξ

2 + kD − χhn∞).

If

n∞ <
kD

χh
,

then detA(ξ) > 0 for all ξ ∈ R and therefore the eigenvalues of A(ξ) are both strictly negative
for all ξ and therefore we have stability. On the other hand, if

n∞ >
kD

χh
,

then there exists an interval ξ ∈ [0, ξ̄] on which A(ξ) has one positive eigenvalue, which
implies linear instability. We have therefore obtained a threshold condition for stability,
which involves n∞, D, χ and k. One way to see such a condition is that if the ratio D/χ is
large enough, then diffusion dominates and we have stability, whereas if D/χ is small enough
then chemotaxis dominates and we have instability.

Let us remark than, in the case in which we have instability, this is actually a Touring
instability since the same steady state is always stable without diffusion. The dichotomy
between diffusion and chemotaxis seen as a dichotomy between stability and instability will
be more clear in the next paragraph, in which we shall consider a simplified version of Keller–
Segel system.

9.2 Diffusion vs. Chemotaxis: stability and blow–up

In this section we shall consider the following Keller–Segel simplified version of the Keller–
Segel system, 

nt = ∆n− div(n∇c)
0 = ∆c+ n

n(t, 0) = n0(x).

(9.2.1)

With respect to (9.0.4), we have dropped the time derivative of the chemoattractant c. This
can be justified in a similar way as we saw in the chapter devoted to chemical reaction kinetics
(Michaelis–Menten approximation). Actually, in many applications the rate of change in the
chemical has a fast scale in which it stabilizes to zero and it can be reasonably considered at
equilibrium. Moreover, we have dropped the decay term for c and set all parameters equal to
1 for simplicity.
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We shall study the model in dimension 2 (this is consistent with many applications) and
on the whole R2 without boundary conditions. In this case, c can be recovered via the
convolution

c(t, x) = − 1

2π

∫
log |x− y|n(y)dy,

which implies

∇xc(t, x) = − 1

2π

∫
x− y
|x− y|2

n(y)dy.

A key parameter in this context is total mass of n, which is conserved along the flow,
namely,

M :=

∫
R2

n(x, t)dx =

∫
R2

n(x, 0)dx, for all t.

Another important parameter here is the center of mass of n∫
xn(t, x)dx

which is also conserved in time, as easily seen in the following computation.

d

dt

∫
xn(t, x)dx =

∫
xnt(x, t)dx =

∫
xdiv(∇n)dx+

1

2π

∫ ∫
xdiv

(
x− y
|x− y|2

n(y)n(x)

)
dydx.

Here we integrate by parts in both the integral terms above and implicitly assume that n
vanish as |x| → +∞. This is quite reasonable because of the assumption of finite total mass
of n. We also use that divx = 2 in dimension 2 to get

d

dt

∫
xn(t, x)dx = −2

∫
∇ndx− 1

π

∫ ∫ (
x− y
|x− y|2

n(y)n(x)

)
dydx.

Now, since the first integral is clearly zero because of the fundamental theorem of calculus and
because n vanish as |x| → +∞. The second term can be easily seen to be zero by expanding
the ratio as the sum of two terms. This proves the assertion

d

dt

∫
xn(t, x)dx = 0.

For simplicity, we assume that
∫
xn(t, x)dx = 0 initially, and therefore for all times.

Now, we want to show here a very interesting phenomena, which does not appear in any of
the PDE models considered before. Namely, the asymptotic behavior here depends crucially
on the total mass of n. More precisely, if the initial total number of cells is lower than a
certain value, diffusion dominates to create stability. When the total mass is higher than
such value, then chemotaxis dominates to create aggregation of the cells to a single point.
This facts reflects the behavior of the linearized system as seen in the previous section.

We account first of the former case, namely we prove that when the mass is small enough,
the zero stationary state is stable in some energy sense, which is actually what happens for a
diffusion equation without chemotaxis). To see this, let us compute the evolution of the L2–
norm of n:

d

dt

∫
n2(x, t)dx = 2

∫
nntdx = 2

∫
n(∆n− div(n∇c))dx

= −2

∫
|∇n|2dx+ 2

∫
n∇c · ∇ndx. (9.2.2)
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We have used the integration by parts and the fact that everything vanishes as |x| → +∞
as usual. Now, we expand the last term in the above computation as follows (integrating by
parts once again in the second step):

2

∫
n∇c · ∇ndx =

∫
∇n2 · ∇cdx = −

∫
n2∆cdx =

∫
n3(x, t)dx.

In the last step we have used the Poisson’s equation in (9.2.1). Putting all together in (9.2.2)
we get

d

dt

∫
n2(x, t)dx = −2

∫
|∇n|2dx+

∫
n3(x, t)dx. (9.2.3)

Now we use the following Gagliardo–Nirenberg interpolation inequality (see, for instance, the
PDE book of Evans): ∫

R2

f3 ≤ Cgn
∫
R2

|∇f |2dx
∫
R2

fdx, f ≥ 0. (9.2.4)

Using (9.2.4) in the last step of (9.2.3) implies

d

dt

∫
n2(x, t)dx ≤ −2

∫
|∇n|2dx+ Cgn

∫
|∇n|2dx

∫
ndx = (MCgn − 2)

∫
|∇n|2dx.

Therefore, if the total mass M is smaller than 2/Cgn, then the right hand side above is
negative and the L2 norm of n is decreasing in time, which proves stability in the L2 sense.
Since the stability in L2 is a typical behavior of the diffusion equation, this shows that when
the initial mass is small enough, cells are not enough to produce a significant aggregation
phenomenon, and therefore diffusion prevails.

We now want to prove that the solution n exhibits some concentration phenomenon in case
the initial mass is too high. To see this, we first introduce the second moment (or variance)
of n, namely

I(t) :=

∫
|x|2n(t, x)dx.

This quantity accounts for how much the distribution of the particles of the species n is ‘far’
from its (zero) center of mass. To be more precise with such statement, let us consider the
following example. Consider the following family of Gaussian distributions indexed by λ > 0

Gλ(x) :=
1

4πλ
e−
|x|2
4πλ , x ∈ R2.

It is an easy exercise to prove that
∫
R2 Gλ(x)dx = 1 for all λ > 0. Since Gλ is radial, we

clearly have ∫
xGλ(x)dx = 0

for all λ > 0. Now, let us compute the second moment of Gλ:

M(λ) :=

∫
R2

|x|2Gλ(x)dx =
1

4πλ

∫
R2

|x|2e−
|x|2
4πλ dx = 4πλ

∫
R2

|y|2e−|y|2dy =: Cλ

where C := 4π
∫
R2 |y|2e−|y|

2
dy > 0. Now, this computation shows that the second moment

of Gλ is proportional to λ, which implies for instance that M(λ) → 0 as λ → 0. Drawing
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the graph of a Gaussian shows that Gλ is more and more concentrated around its center of
mass (zero, in this case) for small λ’s. This examples shows that the second moment can
be taken in general as a tool to measure concentrations around the center of mass. When
concentration arises, we have aggregation prevailing with respect to diffusion (remember that
diffusion implies spreading, which is opposite to aggregation).

Another important point is that no function f(x) ≥ 0 with positive mass
∫
f(x) = M > 0

can have zero second moment. Indeed, if this would be the case we would have∫
R2

|x|2f(x)dx = 0

and the integrand above is nonnegative and not identically zero. Therefore, we have once
again to use the theory of distribution in order to represent a function with unit mass and
zero second moment. In fact, the limiting case λ = 0 in the above example gives G0 = δ0

where δ0 is the Dirac’s delta distribution.
Let us now go back to our Keller–Segel model and let us compute the second moment of

the solution n, namely M(t) =
∫
R2 |x|2n(x, t)dx.

d

dt
M(t) =

∫
|x|2ntdx =

∫
|x|2(∆n− div(n∇c))dx = −2

∫
x · ∇ndx+ 2

∫
nx · ∇cdx

= 4

∫
ndx− 1

π

∫ ∫
x · x− y
|x− y|2

n(y)n(x)dydx

= 4M − 1

2π

∫ ∫
(x− y) · x− y

|x− y|2
n(y)n(x)dydx

= 4M − M2

2π
= M

(
4− M

2π

)
.

Therefore, if M > 8π, we have d
dtM(t) < −c < 0 and c > 0 is a fixed constant depending on

M . Hence, M(t), initially positive, will reach the value 0 in a finite time T > 0 (which can
be computed explicitly: Exercise!).

Therefore, we have proven that, if M > 8π the second moment (variance) of n becomes
zero in a finite time. This phenomenon intuitively implies that the solution is concentrating
to a Dirac’s delta as t → T for some finite time T > 0. Such phenomenon is also known as
blow-up, because one can also see that the L∞ norm of n diverges as t → T . To see this,
suppose by contradiction that

sup
t∈[0,T ]

‖n(t)‖L∞ ≤ C.

Then,

0 =

∫
|x|2n(x, T )dx

implies that n(x, T ) = 0 everywhere except in x = 0. But then this implies that the mass of
n at time T is zero, since n is zero everywhere except at one point. This is a contradiction
with the conservation of the mass (the mass is initially nonzero). The contradiction is due
to the fact that we assumed n to be a bounded function near t = T . This is actually not the
case, and therefore n blows up at x = 0 when t approaches T .

The blow-up in a finite time is a typical nonlinear phenomenon which accounts for insta-
bility. The great advantage in the previous computation is that it is purely nonlinear (without
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linearizing!). Blow-up and Touring instability are different phenomena in principle, but in
this context they are somewhat related as it is shown by the result in this section and in
the previous one. In both cases one gets instability vs. stability by means of a threshold
phenomena which involves the total amount of individuals (the total mass in this section, the
steady state in the previous section).

9.3 Chemotaxis with nonlinear diffusion

In section 5.5 we have seen that a more realistic way to model diffusion is provided by the
Darcy’s law

J = −D(n)∇n

for the diffusive flux of individuals in some animal populations. Here D(n) increases with
respect to n. In this framework, the diffusivity depends on the density in such a way that
individuals tend to spread faster for higher densities. Such a phenomenon has been exper-
imentally observed in some specific situations in which the repulsive effect due to diffusion
becomes stronger and stronger when the distance between two individuals gets smaller and
smaller. Moreover, such an assumption can be motivated by a volume filling effect, namely,
when the density is very high individuals sense each other more intensely due to their positive
volume.

Several authors have recently addressed the use of nonlinear diffusion also in the con-
text of chemotaxis, with the aim of achieving a more refined balance between diffusion and
chemotaxis, in which (possibly) the competition between the two effects result in possible
existence of steady states (or non trivial patterns) when chemotaxis prevails. In a few words,
one would like to see a pattern formation instead of a blow up effect as a consequence of a
chemotaxis–dominated regime. We shall see that the use of the Darcy’s law is one of the
possible ways to produce (at least) a solution to the Keller–Segel model which never blows
up (no matter how large the initial mass is) and which is always bounded uniformly in time.
This suggests the formation of nontrivial patterns for large times.

Let us then consider once again the Keller–Segel system described in the above section
with a nonlinear diffusion instead of a linear one. We shall choose

D(n) = Cnm−1, m > 1, C > 0,

which represents a general case of a diffusivity with polynomial growth for large densities.
Since div(nm−1∇m) = 1

m∆nm, we can normalize constants to obtain
nt = ∆nm − div(n∇c)
0 = ∆c+ n

n(t, 0) = n0(x).

(9.3.1)

We somewhat expect that being D(n) larger and larger for high densities helps the diffusion
effects to prevail, thus pushing down the density in case of strong aggregation.

We shall prove here that this is actually the case, namely the density n does not blow-up
as it did in the case with linear diffusion. For simplicity we shall work once again in the whole
space x ∈ R2. We shall assume further that the solution n is initially compactly supported.
Due to the fact that the diffusion is nonlinear (like a porous medium type diffusion), we
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expect that the support remains compact at any time t. This fact should be actually proven
rigorously, but the proof goes beyond our purposes. We shall therefore assume that supp(n(t))
is finite at any t ≥ 0. Let us now consider the energy functional

E(n, c) :=
1

m− 1

∫
nmdx− χ

2

∫
ncdx.

Let us compute the evolution of E(n(t), c(t)):

d

dt
E(n(t), c(t)) =

m

m− 1

∫
R2

nm−1ntdx−
χ

2

∫
ntcdx−

χ

2

∫
nctdx.

Now, let us recall that we can actually solve the Poisson equation ∆c = −n on R2 as follows:

c(x, t) = − 1

2π

∫
log |x− y|n(y, t)dy.

Therefore, we have∫
n(x, t)ct(x, t)dx = − 1

2π

∫ ∫
∂t (log |x− y|n(y, t))n(x, t)dydx

= − 1

2π

∫ ∫
log |x− y|nt(y, t)n(x, t)dydx

and since log |x− y| is invariant after the change of variable (x, y) 7→ (y, x), we have∫
n(x, t)ct(x, t)dx = − 1

2π

∫ ∫
log |x− y|n(y, t)nt(x, t)dydx =

∫
nt(x, t)c(x, t)dx.

Therefore, going back to the evolution of the energy,

d

dt
E(n(t), c(t)) =

m

m− 1

∫
R2

nm−1ntdx−χ
∫
ntcdx =

∫
R2

nt

(
m

m− 1
nm−1 − χc

)
dx. (9.3.2)

Now let us write the continuity equation for n as follows:

nt = div (∇nm − χn∇c) = div

(
n∇

(
m

m− 1
nm−1 − χc

))
,

which on substituting into (9.3.2) yields

d

dt
E(n(t), c(t)) =

∫
R2

(
m

m− 1
nm−1 − χc

)
div

(
n∇

(
m

m− 1
nm−1 − χc

))
dx.

Now, assuming (as usual) that the quantity
(

m
m−1n

m−1 − χc
)

goes to zero as |x| → +∞, we

can integrate by parts in the above expression to get

d

dt
E(n(t), c(t)) = −

∫
R2

n

∣∣∣∣∇( m

m− 1
nm−1 − χc

)∣∣∣∣2 dx ≤ 0.

This means that the energy is non increasing along the solutions to (9.3.1). Assuming further
that the initial energy is finite, we have

1

m− 1

∫
nm(x, t)dx− χ

2

∫
n(x, t)c(x, t)dx ≤ E(n0, c0) < +∞
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which shows that the energy E(n(t), c(t)) is bounded from above by a finite quantity uniformly
in time. We want to prove that actually E(n(t), c(t)) is bounded. We shall actually prove a
stronger result, namely that the quantity

1

m− 1

∫
nm(x, t)dx

is bounded from above. In order to prove that we shall make use of the following logarithmic
Hardy–Littlewood–Sobolev inequality

−
∫
R2

∫
R2

f(x) log |x− y|f(y)dydx ≤ M

2

∫
R2

f(x) log f(x) + C,

which holds for all f ≥ 0 such that
∫
f log f < +∞. Here, M is the total mass of f and C is

a positive constant depending on M . With such inequality at hand, we obtain

E(n(t), c(t)) ≥ 1

m− 1

∫
nm(x, t)dx− Mχ

8π

∫
n(x, t) log n(x, t)dx− χC

4π

=

∫
R2

(
1

m− 1
nm(x, t)− Mχ

8π
n(x, t) log n(x, t)

)
dx− χC

4π
.

Now, we observe that the function

[0,+∞) 3 n 7→ g(n) :=
1

m− 1
nm−1 − Mχ

8π
log n

satisfies
lim

n→+∞
g(n) = +∞.

Then, there exists a constant K ∈ R such that

g(n) ≥ K for all n ≥ 0.

Hence, we can write

E[n, c] ≥
∫
ng(n)dx− χC

4π
≥ KM − χC

4π
> −∞

which proves E is bounded from below too. Now, for a similar reason, there exist two constants
L,R > 0 such that

g(n) ≥ Lnm−1 for all n > R .

Hence,

L

∫
n(x, t)mdx = L

∫
x : n(x,t)≤R

nnm−1dx+ L

∫
x : n(x,t)>R

nnm−1dx

≤ LRm−1M +

∫
ng(n)dx−

∫
x : n(x,t)≤R

ng(n)dx

≤ LRm−1M −KM +

∫
ng(n)dx ≤ LRm−1M −KM +

Cξ

4π
+ E[n0, c0] .
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We have therefore obtained a global-in-time uniform bound for the Lm norm of n(·, t). This
last assertion is a valid argument to deduce that n cannot become a Dirac’s delta in a finite
time. Indeed, otherwise n could not remain bounded in Lm for m > 1.

With the above argument have therefore proven (although in a quite sketchy way) that
no finite-time blow up can occur if we replace the classical linear diffusion with a porous
medium type diffusion in the Keller–Segel system. Unfortunately, such an argument does not
provide any information about possible formation of patterns in the large time. Moreover,
we don’t know whether stationary solutions exists or not. We still would like to see some
complexity in the model, namely, to produce multiple behavior by changing the initial data
or the parameters of the model.

9.4 Models with maximal density

Another recent approach (due to Hillen and Painter) aiming at preventing concentration of
the density of individuals in chemotaxis systems consists in prescribing a maximal density.
More precisely, one assumes there exists a value nmax such that

0 ≤ n(x, t) ≤ nmax, for all (x, t) ∈ Rd × [0,+∞).

As a matter of fact, the model (and the initial conditions) should be modified in such a way
that such a property is satisfied by the solution for all times. One possible way to perform
this task is to consider the following modified equation for the density of individuals

nt = D∆n− χdiv (n(nmax − n)∇c)

in which we have taken the chemotactic sensitivity to be depending on the density n in a way
that the chemotaxis effect shuts off when n reach the density nmax. In fact one can easily
prove (we shall not do it here) that if the initial datum satisfies 0 ≤ n0(x) ≤ nmax, then the
solution satisfies 0 ≤ n(x, t) ≤ nmax for all x and t.

Although possibly more realistic, such a model turns out to be quite uninteresting from
the point of view of complexity. Indeed, one can easily prove, for instance, that the one
dimensional model {

nt = nxx − χ(n(nmax − n)cx)x

0 = cxx − αc+ βn, χ, α, β > 0,

does not admit nontrivial steady states on the whole R. To prove that, suppose by contra-
diction that (n∞, c∞) is a steady state. Then

0 = n∞xx − χ(n∞(nmax − n∞)c∞x )x =

(
n∞(nmax − n∞)

(
log

n∞

nmax − n∞
− χc

)
x

)
x

.

Since n∞ should be integrable at |x| → +∞, the term

n∞(nmax − n∞)

(
log

n∞

nmax − n∞
− χc

)
x

should be zero (it is constant, but the constant can only be zero). Therefore, either n∞ = 0,
or n∞ = nmax, or

log
n∞

nmax − n∞
= χc∞ + C
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for some constant C ∈ R. Now, clearly the steady state n∞ should be continuous (this is a
consequence of the smoothing effect of the diffusion operator, we omit the details). Therefore,
in case n∞(x) = nmax at some point x, there must be a sequence of points xk → x such that
n∞(xk)→ nmax and n∞(xk) < nmax. By substituting above we get

log
n∞(xk)

nmax − n∞(xk)
= χc∞(xk) + C

and the term in the left hand side diverges to +∞. Therefore c(xk)→ +∞. This is impossible,
because we can prove that c is uniformly bounded. To see this, multiply the equation for c
by c and integrate on R:

0 =

∫
ccxxdx− α

∫
c2dx+ β

∫
cndx.

Integration by parts implies∫
c2
xdx+ α

∫
c2dx = β

∫
cndx ≤ α

2

∫
c2dx+ C(α, β)

∫
n2dx,

where we have used the weighted Young’s inequality on the right hand side. Recalling the
definition of the Sobolev H1 norm we obtain

‖c(t)‖2H1 ≤ C0(α, β)

∫
n2dx

and the last term is uniformly bounded. Recalling the Sobolev inequality 6.3.1, we obtain

‖c(t)‖L∞ uniformly bounded for all t ≥ 0.

We have therefore proven that n∞ can never touch the value nmax. On the other hand, with
a similar argument we can prove that n∞ cannot touch the value 0, because otherwise we
would have the logarithmic term above unbounded once again. This cannot happen also when
|x| → +∞. Therefore, the steady state should be such that n∞ ∈ [ε, 1 − ε] for some ε > 0,
but this fact contradicts the integrability of n∞.

A valid alternative of the above model is the following one{
nt = div (n(nmax − n)∇ (Dn− χc))
0 = ∆c− αc+ βn.

(9.4.1)

Let us point out that the chemical c can be recovered by solving the elliptic equation above
as follows. For simplicity, we shall solve such a problem in one space dimension. One can
easily prove (we shall not do it here) that if the initial datum n0 satisfies 0 ≤ n0 ≤ nmax,
then 0 ≤ n(x, t) ≤ nmax.

Let us apply the Fourier’s transform to the equation

0 = cxx − αc+ βn,

to obtain
0 = −(4π2ξ2 + α)ĉ+ βn̂.
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This implies that

ĉ(ξ, t) =
β

4π2ξ2 + α
n̂ =

β

α
· 1

4π2(ξ/
√
α)2 + 1

n̂.

Now, we leave as en exercise for the reader to compute the inverse Fourier transform

F−1

(
1

4π2(ξ/
√
α)2 + 1

)
(x) =

∫ +∞

−∞
eixξ

1

4π2(ξ/
√
α)2 + 1

dξ =

√
α

2
e−|
√
αx| =: Kα(x).

Then, the convolution property of the Fourier transform implies

c(x, t) =
β

α
F−1

(
K̂α(ξ)n̂(ξ, t)

)
=
β

α
Kα ∗ n(x, t) =

β

2
√
α

∫ +∞

−∞
e−
√
α|x−y|n(y, t)dy.

Let us define the energy

E(n, c) =

∫
n(Dn− χc)dx,

and compute its evolution

d

dt
E(n(t), c(t)) = 2D

∫
nntdx− 2χ

∫
cntdx = 2

∫
nt(Dn− χc)dx

= 2

∫
(Dn− χc)div (n(nmax − n)∇ (Dn− χc)) =

= −2

∫
n(nmax − n) |∇ (Dn− χc)|2 dx ≤ 0,

where we have used integration by parts in the last step and the fact that
∫
ntcdx =

∫
nct,

which analogous to what we have seen for the Keller–Segel system with nonlinear diffu-
sion. The term on the right-hand-side is called energy production, and we shall denote it by
−I(n(t), c(t)). More precisely, we shall write

d

dt
E(n(t), c(t)) = −2I(n(t), c(t)).

Let us now consider two separate cases, namely D < βχ
α and D > βχ

α .

Case D < βχ
α . In this case we can prove (or, at least, give a sketch of the proof) that

there exists a non-trivial, continuous stationary solution to the model (9.4.1) in one space
dimension. To see that, decouple system (9.4.1) by using the above convolution method and
consider a stationary solution n∞ (c∞ can be recovered by convolution):

0 = (n∞(nmax − n∞)(Dn∞ − βχ

α
Kα ∗ n∞)x)x.

By the usual argument, we impose the argument of the above space derivative equals zero.
This is possible if one of the three following conditions hold: either n∞ = 0, or n∞ = nmax,
or

εn∞ −Kαn
∞ = C ,

with

ε =
Dα

βχ
< 1 .
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Assuming n∞ is not identically zero (which is obvious given that we are looking for non
trivial steady states), even if we assume n = n∞ on some interval, due to the continuity of
the steady state there must be a non trivial interval I = [a, b] on which εn∞ −Kαn

∞ = C
on I. Assuming n∞ is an even symmetric function which is also “radially decreasing”, that
is n∞x ≤ 0 on [0,+∞), we may assume the above equation holds only on two intervals I and
−I. Given u = n∞x , we get on the whole R,

εu−Kαu = 0 .

Under the above mentioned conditions, the last equation is in fact equivalent to u = n∞x and
n∞ being a steady state. We may apply the Fourier transform and get

(ε− K̂α)û = 0 .

Multiplying by û and integrating on R we get∫
(ε− K̂α(ξ))û2(ξ)dξ = 0 .

Since K̂α(0) = 1 =
∫
Kαdx, the weight function ε− K̂α(ξ) is negative for small ξ, and since

Kα → 0 at infinity, the same weight is positive for large ξ. It is therefore possible to find a
nontrivial û that satisfies the above equation by choosing two “bumps”, suitably supported
on the negative and on the positive parts of ε− K̂α(ξ) respectively, we omit the details.

Case D > βχ
α . In this case we can (once again, by a sketch) prove that there exist

no compactly supported stationary solutions other than n∞ = 0. To see this, with the
computations in the previous case we obtain∫

(ε− K̂α(ξ))û2(ξ)dξ = 0 ,

this time with the weight ε−K̂α(ξ) > 0 for all ξ ∈ R. Therefore, the only possibility to satisfy
that equation is û = 0, which corresponds to n∞ constant, and the only possible constant is
zero due to the finite mass.
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Chapter 10

Nonlocal transport models for
swarms

In this chapter we describe nonlocal models aiming at describing the dynamics of animal
“swarms” (herds, flocks, schools, etc.) in population dynamics. This is a rapidly emerging
research fields, with many applications in robotics too, and most recently also in the dynamics
of epidemics. We refer to the paper by Mogilner and Edelstein-Keshet on J. Math. Biology
in 1999 for an introduction to the subject. These equations can describe interactions at a
distance, e.g. due to vision, hearing, and other senses.

We consider an integro-differential equation model that is simple enough to be treated
analytically. The model captures the idea of attraction-repulsion interactions between organ-
isms.

Let us assume we have a group of individuals, whose density is described by ρ = ρ(x, t).
The individuals are subject to diffusion, seen as a repulsive effect, which for simplicity we
shall assume to be linear with constant D > 0. The “attraction” part is modelled through
an interaction kernel K : R2 → [0,+∞) which is assumed to be smooth, at least C2 in this
chapter, radial, that is K(x) = k(|x|), and radially decreasing, that is k′(r) < 0 if r > 0.
Putting all this together we get

ρt = D∆ρ− div(ρ∇K ∗ ρ) . (10.0.1)

The equation is as usual coupled with an initial condition ρ0 ∈ L1
+(Rd). We shall work on

x ∈ Rd. The nonlocal part is understood as follows. The velocity in the continuity equation
has a nonlocal part

v(x, t) = −∇K ∗ ρ(x, t) =

∫
Rd
∇K(x− y)ρ(y, t)dy .

In short, every individual set on position x interacts with all other individuals at all positions
y depending on the distance |x− y|, which is in fact the only quantity affecting the kernel.

10.1 The purely nonlocal case D = 0

. In this case, the models looks like

ρt = −div(ρ∇K ∗ ρ) . (10.1.1)
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There are many ways to solve this model. We shall adopt the one which in fact one of the main
reasons why this model is so popular. We shall prove that the solution ρ can be expressed
as the approximation of the “empirical measure” of a finite number of individuals. Let us
explain this in detail.

Consider N individuals with positions x1(t), . . . , xN (t) ∈ Rd and set vi(t) = ẋi(t) as
their velocities. We need some way to describe the evolution of the whole set of individuals
“jointly”. To this purpose, we introduce the empirical measure

µN (t) =
1

N

N∑
i=1

δxi(t) .

To be more precise, µN is the distribution on the space D′((0,+∞) × Rd) acting as follows
on test functions ϕ ∈ C∞c ((0,+∞)× Rd):

〈µN , ϕ〉 =
1

N

∫ +∞

0

N∑
i=1

ϕ(xi(t), t)dt .

Our purpose is to set up an evolution for the set of individuals such that the empirical
measure µN satisfies (10.1.1). The correct way to do that, inspired by the particular form of
the velocity field in the continuity equation (10.1.1), is the following one:

ẋi(t) =
1

N

N∑
k=1

∇W (xi(t)− xj(t)) , i = 1, . . . , N . (10.1.2)

We claim that, assuming xi satisfy (10.1.2), the empirical measure µN is a solution to (10.1.1)
in the sense of distributions. We first compute the convolution

∇W ∗ µN (x, t) =

∫
Rd
∇W (x− y)dµ(y) = 〈µN ,∇W (x− ·)〉

=
1

N

N∑
j=1

〈δxi(t),∇W (x− ·)〉 =
1

N

N∑
j=1

∇W (x− xj(t)) .

Now, in order to prove that µN (t) satisfies (10.1.1), by a formal integration by parts we need
to show that, for all ϕ ∈ C∞c ((0,+∞)× Rd),

−
∫ +∞

0
〈µ, ϕt〉dt−

∫ +∞

0
〈µ,∇W ∗ µ · ∇ϕ〉dt = 0 .

The left hand side reads

−
∫ +∞

0

1

N

N∑
i=1

ϕt(xi(t), t)dt−
∫ +∞

0

1

N

N∑
i=1

∇W ∗ µN (xi(t), t) · ∇ϕ(xi(t), t)dt,

and the above computation on the convolution implies the right hand side equals

−
∫ +∞

0

1

N

N∑
i=1

ϕt(xi(t), t)dt−
∫ +∞

0

1

N

N∑
i=1

ẋi(t) · ∇ϕ(xi(t), t)dt
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and the above equals

− 1

N

N∑
i=1

∫ +∞

0

D

Dt
ϕ(xi(t), t)dt = − 1

N

N∑
i=1

(ϕ(xi(+∞),+∞)−$(xi(0), 0))

which equals zero since ϕ has compact support.
Hence, if the initial condition of the PDE (10.1.1) has the form of an empirical measure

µ = 1
N

∑N
i=1 δxi,0 , we know how to solve the model by considering the empirical measure µN

with xi solving (10.1.2) and having initial conditions xi(0) = xi,0. By the way, the ODE
system (10.1.2) has a unique local solution provided W is C2 according to Cauchy-Lipschitz
theorem.

Now, in order to solve the PDE for a general initial condition ρ0 ∈ L∞ with compact
support we adopt a formal “particle method”. We approximate ρ0 by an empirical measure
µN,0. We omit the details, but this is possible for example in one space dimension by dividing
the subgraph of ρ0 by N regions with equal mass, and place a particle at each left (or each
right) edge of the resulting intervals. The details are in the hand-written notes.

Then, we prove the family of corresponding empirical measure is compact in the space of
measures thanks to a uniform estimate of the support, see the hand-written notes. Finally,
we prove consistency in the limit thanks to Prokhorov’s Theorem, see the hand-written notes.

10.2 The diffusive case D > 0

.
See the hand-written notes.

10.3 Collapse in finite time for the case D = 0

.
See the hand-written notes.
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Chapter 11

Structured population dynamics

Many problems arising in biology may be described, at a first stage, using differential equa-
tions. This means that the model has been elaborated after averaging some population in
order to keep only the time variable. This average usually hides some character that can vary
from an individual to the other. Taking in to account this character leads to the so–called
structured population dynamic equations.

We shall give some example from ecology, of population structured by a parameter de-
scribing a biological character of the individuals. When this character is inherent to the
individual, i. e. it is fixed at the very beginning of its life, we refer to it as a trait (phenotype
alternatively). The theory which focuses on phenotypic evolution driven by small mutations
in replication, while ignoring both sex and genes, is known by the name Adaptive Dynamics
and is part of Evolution theory.

The two main ingredients in this theory are (i) the selection principle which prescribes the
population with best adapted trait, and (ii) mutations which allow off-springs to have slightly
different traits than their mother. The combination of the two effects is studied by adaptive
dynamics. This turns out to be an extremely complicated theory on which several possible
mathematical approaches are possible. One of the reasons is that it is merely impossible
to consider this problem without introducing small parameters (mutations can be small or
rare for instance, population should be large in any case but relative death rates can vary).
Therefore adaptive evolution can be studied with various mathematical tools.

In this chapter, we give a first and very elementary point of view based on structuring
an ODE in this context. Our main goal is to perform the corresponding asymptotic theory
and show how the concept of monomorphic population arises naturally in the limit of small
mutations over a long time compared to one generation length. Moreover, we shall prove a
similar result in a continuous model.

11.1 An example in ecology: competition for resources

We consider the dynamics of several micro-organisms under the action of a chemostat, i.
e. a single substrate acting as a nutrient. An inflow with rate R of pure chemostat with
concentration S0 is compensated by an outflow with the same rate containing both the micro-
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organisms and the nutrient. In this situation, the system is given by
Ṡ(t) = R(S0 − S)−

∑I
j=1 ηj(S)Nj

Ṅi(t) = Ni(ηi(S)−R)

S(0) = S0 > 0

Ni(0) = N0
i > 0, i = 1, . . . , I.

(11.1.1)

The variable S(t) denotes the single substrate of nutrient (in terms of the mass of a given
representative constituent), Ni(t) is the biomass of the i-th micro-organism in the chemostat
(written in terms of the same constituent), R is the dilution rate of the input flow of nutrient
concentration S0. Finally, the ability for the i-th organism to use the nutrient S depends
only on S in the simplest model, and is denoted by ηi(S) (uptake rates).

One usually assumes that ηi is increasing with respect to S, more precisely we shall require

η′i(S) ≥ α > 0, for all i = 1, . . . , I, and S ≥ 0. (11.1.2)

Moreover, we assume that ηi(S0) > R for all i = 1, . . . , I. The latter indicates that the initial
amount S0 of chemostat is enough to produce a growth for all the species. Also, assume that
the numbers η−1

i (R) are all different. Then there are I + 1 steady states. The first one is the
trivial one Ni ≡ 0, S = S0. To find the non trivial ones, suppose

ηk(S) = R

for some k ∈ {1, . . . , I}, which corresponds to have Nk non zero. Then, since ηj(S) 6= R for
all j 6= k, we have Nj = 0 for all j 6= k. Therefore, the steady equation for S implies

0 = R(S0 − S)−RNk

which gives
Nk = S0 − η−1

k (R).

Hence, besides the trivial steady state we have the I states composed of a single micro-
organism

(0, . . . , 0, N i, 0, . . . , 0) S = η−1
i (R) < S0,

with N i = S0 − η−1
i (R).

We shall prove now that, among these steady states, only one is asymptotically stable.
More precisely, among the I species of micro-organisms, only one will survive in the large
time asymptotics. Such species is somehow determined as the one with the ‘largest’ growth
rate for a given amount of nutrient S. More precisely, let us denote by i0 the index such that

S∗ := min
1≤i≤I

η−1
i (R) = η−1

i0
(R).

Then, we shall prove that

Ni0(t)→ N i0 = S0 − S∗, S(t)→ S∗

as t→ +∞.
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As a first step let us prove the following balance law. Let us add all equations in (11.1.1).
We obtain

d

dt

[
S(t) +

I∑
i=1

Ni(t)

]
= R(S0 − S)−

I∑
j=1

ηj(S)Nj +
I∑
i=1

Ni(ηi(S)−R)

= −R

[
S(t) +

I∑
i=1

Ni(t)

]
+RS0.

Therefore, by solving the above linear ODE for the quantity in the squared bracket, we obtain

S(t) +

I∑
i=1

Ni(t) = e−Rt

(
S0 +

I∑
i=1

N0
i +RS0

∫ t

0
eRsds

)

= e−Rt

(
S0 +

I∑
i=1

N0
i + S0(eRs − 1)

)
= S0 +Q0e

−Rt, (11.1.3)

with

Q0 = −S0 + S0 +
I∑
i=1

N0
i .

The above property also proves that all the quantities N1, . . . , NI , S are uniformly bounded
in t.

As a second step, we prove that the sum of all the populations of micro-organisms is
bounded from below for large times. To see this, let us take the sum of all equations for Ni:

d

dt

I∑
i=1

Ni(t) =

I∑
i=1

Ni(t)(ηi(S)−R).

Let us define
η(S) := min

i=1,...,I
ηi(S),

with η(S) > 0 for all S (check!). Then, we have

d

dt

I∑
i=1

Ni(t) ≥ (η(S)−R)

I∑
i=1

Ni(t).

Now, if
∑I

i=1Ni(t) tends to zero as t → +∞, then (11.1.3) implies that S(t) → S0. Since,
due to the assumption ηi(S0) > R for all i = 1, . . . , I we have (η(S0) − R > 0, then we can

conclude that (η(S)−R) is uniformly positive for large times and therefore
∑I

i=1Ni(t) grows
exponentially for large times, which contradicts the fact that all Ni are uniformly bounded.
Therefore, we have proven that

lim inf
t→+∞

I∑
i=1

Ni(t) = M > 0. (11.1.4)

We now prove that S(t) has a limit as t→ +∞. Such a procedure is usually referred to as
convergence, which must be complemented with consistency in order to prove that a certain
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time dependent quantity has a certain limit as t→ +∞. The former only solve the problem
of the existence of a limit, i. e. of a unique limit point. From the first step we know that

Ṡ +
I∑
i=1

Ṅi = −RQ0e
−Rt,

which yields, after taking the time derivative of Ṡ,

d

dt
Ṡ(t) =

d

dt

R(S0 − S)−
I∑
j=1

ηj(S)Nj


= −RṠ −

I∑
i=1

η′i(S)ṠNi −
I∑
i=1

ηi(S)Ṅi

= −
I∑
i=1

(ηi(S)−R)Ṅi − Ṡ
I∑
i=1

η′i(S)Ni +R2Q0e
−Rt

= −
I∑
i=1

(ηi(S)−R)2Ni − Ṡ
I∑
i=1

η′i(S)Ni +R2Q0e
−Rt.

We now multiply the above identity by

sign+(Ṡ) =

{
1 if Ṡ ≥ 0

0 otherwise

to obtain

d

dt
(Ṡ)+ = sign+(Ṡ)

d

dt
Ṡ

= sign+(Ṡ)

(
−

I∑
i=1

(ηi(S)−R)2Ni − Ṡ
I∑
i=1

η′i(S)Ni +R2Q0e
−Rt

)

≤ −(Ṡ)+

I∑
i=1

η′i(S)Ni +R2Q0e
−Rt.

We recall that, for z ∈ R,
(z)+ = max{z, 0}.

Due to the assumption (11.1.2) and to (11.1.4), therefore obtain

d

dt
(Ṡ)+ ≤ −αM(Ṡ)+ +R2Q0e

−Rt.

Let us integrate the last inequality on the time interval [0, T ]:

αM

∫ T

0
(Ṡ(T ))+dt ≤ R2Q0

∫ T

0
e−Rtdt+ (Ṡ(0))+ − (Ṡ(T ))+.

We then send T → +∞ and recover that∫ +∞

0
(Ṡ(T ))+dt < +∞.
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In a similar way (we omit the details) one can prove that∫ +∞

0
(Ṡ(T ))−dt < +∞,

where
(z)− = max{−z, 0}.

We also recall that, for all z ∈ R,

|z| = (z)+ + (z)−.

Hence, we have proven that ∫ +∞

0
|Ṡ(T ))|dt < +∞,

which is equivalent to require that S(t) is a function with bounded variation on the time half
line [0,+∞). Standard results in functional analysis (cf. the book by Perthame and the PDE
book by Evans) imply that there exists the limit limt→+∞ S(t).

The next step is the consistency, i. e. the identification of the limit for S(t) as t→ +∞.
We aim to prove that

lim
t→+∞

S(t) = S∗.

Assume first that
lim

t→+∞
S(t) > S∗.

Then, by definition of S∗,
lim

t→+∞
ηi0(S) > R

and therefore, using the equation for Ni0 we deduce that Ni0 grows exponentially fast to +∞,
which is a contradiction with all species being uniformly bounded. Let us then assume that

lim
t→+∞

S(t) < S∗.

Now, the definition of ηi0 and the fact that all ηi are strictly increasing easily imply that

ηi(S
∗) ≤ ηi0(S∗) = R, for all i = 1, . . . , I,

and therefore
lim

t→+∞
ηi(S) ≤ ηi(S∗) < R

and using the equation for Ni we deduce that all species Ni decay to zero as t→ +∞. This
is clear because

Ṅi = Ni(ηi(S)−R)

and lim→+∞(ηi(S)−R) = −l < 0 for some positive l, which implies that Ni behaves like the
solution to

Ṅi = −lNi

for large times. This fact is a contradiction because of (11.1.4): the sum of the species
∑
Ni

cannot converge to zero for large times. Therefore, the unique possible behavior for S is

lim
t→+∞

S(t) = S∗.
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As a consequence of that, ηi0(S) − R tends to zero as t → +∞, whereas all the values
ηi(S) − R for i 6= i0 achieve negative values in the limit. This implies that Ni0 is the only
species not converging to zero in the limit. Since the limit of the whole dynamical system
(11.1.1) is a steady state, the only possible limiting value for Ni0 is N∗.

11.2 Continuous traits

A natural generalization of the model (11.1.1) is that of a family of species indexed by a
continuous trait (uptake ability, in this case) x > 0. The system (11.1.1) is replaced by the
following system of integro–partial differential equations, in which the discrete variable i is
replaced by a continuous variable x,

Ṡ = R(S0 − S)−
∫ +∞

0
η(x, S)n(x, t)dx, t ≥ 0, x ≥ 0

∂

∂t
n(x, t) = n(x, t)(η(x, S)−R),

S(0) = S0 > 0,

n(x, 0) = n0(x) > 0, n0 ∈ L1 ∩ L∞([0,+∞))

(11.2.1)

Under similar assumptions to those prescribed for the discrete model (11.1.1), one can
prove that the solution n(x, t) to (11.2.1) concentrates around one single trait x0. More
precisely, assuming that η(x, S) is increasing with respect to S, that η(x, S0) > R for all x ≥ 0,
and assuming the existence of a unique point x0 > 0 such that S∗ := η−1(x0, R) < η−1(x, S)
for all x 6= x0 (here η−1 denotes the inverse with respect to S), one can prove that, as t→ +∞,

n(x, t)→ (S0 − S∗)δx0(x), S(t)→ S∗.

Such a limiting population (with a single trait) is called monomorphic.
We shall not prove the above result. On the other hand, in the next subsection we shall

tackle a similar problem from evolution theory with a mathematical structure very similar to
(11.2.1).

11.3 Evolutionary stable strategy in a continuous model

The next question we address here is to give a mathematical description of the process in
which some specific trait is selected in a given environment. It is the best adapted trait
in terms of using resources and that trait is called an Evolutionary Stable Strategy (ESS in
short). The origin of this denomination comes from evolution theory; no other mutant with
a different trait can invade a population with the trait corresponding to an ESS. An example
of the selection principle has already been mentioned, in the case of the chemostat. Here we
give an easy example that can be treated by explicit computations.

For simplicity we shall consider a variant of the logistic equation which we structure with a
trait x ∈ R and we illustrate the selection principle on this very simple example. We consider
that the reproduction rate depends on the trait, i.e., b = b(x) > 0 (b a continuous function),
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and that the death rate is proportional to the total population number. We arrive at
∂

∂t
n(x, t) = b(x)n(x, t)− ρ(t)n(x, t),

ρ(t) =

∫ +∞

−∞
n(x, t)dx,

n(x, 0) = n0(x) ≥ 0,

(11.3.1)

and we assume that
n0(x) > 0 if and only if x ∈ (xm, xM ),

for given xm, xM ∈ R. Such an assumption implies that only the range of traits (xm, xM ) is
initially present. We state that such a set of traits is actually invariant. More precisely, we
prove that n(x, t) = 0 for all x which do not belong to the set (xm, xM ). Let x /∈ [xm, xM ],
then we have

∂

∂t
n(x, t) ≤ Cn(x, t)

because b is bounded on [xm, xM ]. Therefore, by comparison principle (exercise!) we have

n(x, t) ≤ n0(x)eCt = 0

because n0(x) = 0 in this case. This proves the assertion.
Before proving our asymptotic result on (11.3.1), let us (partially) justify the use of such

an equation in the context of models with a chemostat of the form (11.2.1). As already
pointed out about chemotaxis models, it is customary to assume that the chemostat diffuse
much faster than the other species. Therefore, the evolution of the chemostat can be supposed
to be approximately at equilibrium, i. e. the system (11.2.1) can be replaced by

0 = R(S0 − S)−
∫ +∞

0
η(x, S)n(x, t)dx, t ≥ 0, x ≥ 0

∂

∂t
n(x, t) = n(x, t)(η(x, S)−R),

S(0) = S0 > 0,

n(x, 0) = n0(x) > 0, n0 ∈ L1 ∩ L∞([0,+∞)).

(11.3.2)

Let us assume the simple case of a function η linearly depending on S as follows

η(S, x) = ξ(x)S.

We can therefore decouple the above system in the following way

S(t) = S0 −
S(t)

R

∫ +∞

−∞
ξ(x)n(x, t)dx

⇒ S(t) =
S0

1 +
1

R

∫ +∞

−∞
ξ(x)n(x, t)dx

=: Q

(∫ +∞

−∞
ξ(x)n(x, t)dx

)
.

Hence, the system (11.3.2) reduces to

∂

∂t
n(x, t) = n(x, t)

(
ξ(x)Q

(∫ +∞

−∞
ξ(x)n(x, t)dx

)
−R

)
.
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In the case of a constant function ξ (for instance ξ(x) ≡ 1) one would recover a nonlocal
equation in which the evolution of n depend on the total population, in a similar fashion as
(11.3.1), namely

∂

∂t
n(x, t) = n(x, t) (ξ(x)Q (ρ(t))−R) , ρ(t) =

∫ +∞

−∞
n(x, t)dx.

We shall now devote on detecting the asymptotic behavior of (11.3.1) as t → +∞. In
order to prove our result, we shall require the following conditions: b continuous, b(x) ≥ b̄ > 0,
n0 > 0, and

b(x0) = max
x∈[xm,xM ]

b(x) is attained for a single x̄ ∈ [xm, xM ]. (11.3.3)

Please notice that the condition (11.3.3) depends not only on b but also on the support of
the initial condition n0. We shall prove that only the trait x̄ will survive at t → +∞. More
precisely, we shall prove that

ρ(t)→ ρ̄ := b(x̄), n(x, t)→ b(x̄)δx̄(x), as t→ +∞. (11.3.4)

Notice that the equation ((11.3.1)) admits many steady states, namely n(x) = b(y)δy
for any y, therefore the result (11.3.4) really selects the best trait, the ESS. One should
understand it as the trait that realizes

max
x

[b(x)− ρ̄] = b(x̄)− ρ̄ = 0.

This result also indicates that the natural setting for structured population models should
differ from that for differential equations because functional spaces (measures here) appear
to play a role.

We give a proof of (11.3.4) that relies on a simple computation, another proof is possible
based on more general arguments. We define

N(x, t) = n(x, t)e
∫ t
0 ρ(s)ds. (11.3.5)

This satisfies
dN(x, t)

dt
= b(x)N(x, t),

and thus N(x, t) = n0(x)eb(x)t. We deduce from (11.3.5) that

d

dt
e
∫ t
0 ρ(s)ds = ρ(t)e

∫ t
0 ρ(s)ds =

∫ +∞

−∞
N(x, t)dx =

∫ +∞

−∞
n0(x)eb(x)tdx.

Therefore, integrating the above identity along the time interval [0, t], using Fubini’s theorem
we obtain

e
∫ t
0 ρ(s)ds =

∫ t

0

∫ +∞

−∞
n0(x)eb(x)sdxds =

∫ +∞

−∞

n0(x)

b(x)
eb(x)tdx+K,

K = 1−
∫ +∞

−∞

n0(x)

b(x)
dx.∫ t

0
ρ(s)ds = log

(∫ +∞

−∞

n0(x)

b(x)
eb(x)tdx+K

)
,

ρ(t) =

∫ +∞
−∞ n0(x)eb(x)tdx∫ +∞

−∞
n0(x)
b(x) e

b(x)tdx+K
,
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and we notice that the constant K may be negative but the denominator above is larger than
1. This is a Laplace type of formula which we can analyze as follows. We have

ρ(t) =

∫ +∞
−∞ b(x)n

0(x)
b(x) e

b(x)tdx∫ +∞
−∞

n0(x)
b(x) e

b(x)tdx+K
≤ b(x̄)

∫ +∞
−∞

n0(x)
b(x) e

b(x)tdx∫ +∞
−∞

n0(x)
b(x) e

b(x)tdx+K

and since the integral term above diverges to +∞ as t→ +∞, we have

lim sup
t→+∞

ρ(t) ≤ b(x̄) lim
t→+∞

∫ +∞
−∞

n0(x)
b(x) e

b(x)tdx∫ +∞
−∞

n0(x)
b(x) e

b(x)tdx+K
= b(x̄).

To prove the reverse inequality, we fix an ε > 0 and define

I(ε) := {x ∈ R : b(x) ≥ b(x̄)− ε} .

Then,

ρ(t) ≥

∫
I(ε) n

0(x)eb(x)tdx∫ +∞
−∞

n0(x)
b(x) e

b(x)tdx+K

=

∫
I(ε) b(x)n

0(x)
b(x) e

b(x)tdx∫ +∞
−∞

n0(x)
b(x) e

b(x)tdx+K

≥ (b(x̄)− ε)

∫
I(ε)

n0(x)
b(x) e

b(x)tdx∫ +∞
−∞

n0(x)
b(x) e

b(x)tdx+K
. (11.3.6)

Now, it can be easily seen that∫
R\I(ε)

n0(x)
b(x) e

b(x)tdx∫
I(ε)

n0(x)
b(x) e

b(x)tdx
→ 0 as t→ +∞. (11.3.7)

Indeed, ∫
R\I(ε)

n0(x)
b(x) e

b(x)tdx∫
I(ε)

n0(x)
b(x) e

b(x)tdx
=

∫
R\I(ε)

n0(x)
b(x) e

(−b(x̄)+ε+b(x))tdx∫
I(ε)

n0(x)
b(x) e

(−b(x̄)+ε+b(x))tdx

and the definition of I(ε) gives (11.3.7). Therefore, we can take the lim inft→+∞ in (11.3.6)
to obtain

lim inf
t→+∞

ρ(t) ≥ lim inf
t→+∞

(b(x̄)− ε)

1 +

∫
R\I(ε)

n0(x)
b(x) e

b(x)tdx∫
I(ε)

n0(x)
b(x) e

b(x)tdx
+

K∫
I(ε)

n0(x)
b(x) e

b(x)tdx

−1

= b(x̄)− ε.

Since ε is arbitrary, we obtain

lim sup
t→+∞

ρ(t) ≤ b(x̄) ≤ lim inf
t→+∞

ρ(t)

which proves the first formula of (11.3.4). Finally, from (11.3.5) and the expression of N(x, t),
we deduce

n(x, t) = n0(x)eb(x)t−
∫ t
0 ρ(s)ds.

Now, let x 6= x̄. Then, it is clear that b(x)t−
∫ t

0 ρ(s)ds tends to −∞ as t→ +∞. Therefore
n(x, t)→ 0 as t→ +∞. This proves (11.3.4).
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