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Abstract

The present PhD thesis deals with diffusive relaxation limits and long time
asymptotics for several partial differential equations or systems of equations
of hyperbolic or parabolic type. Most of the models considered arise from
compressible gas dynamics; some of them take into account of heat radiation
phenomena, some others involve the presence of porous media. We make use
of classical techniques, such as Friedrichs symmetrization for quasi linear hy-
perbolic systems and energy estimates, as well as of more recently developed
tools, such as the entropy dissipation method and the optimal transportation
approach.
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Chapter 1

Introduction

1.1 General outline

The present PhD thesis is concerned with the asymptotic analysis of hyper-
bolic and parabolic partial differential equations and systems of equations,
mainly models in continuum mechanics and physics such as compressible
gas–dynamics, flow through porous media, motion of radiating gases, vis-
coelastic materials, general nonlinear diffusion phenomena. The present the-
sis is devoted to investigate qualitative properties of the solutions of initial
value problems for the previously mentioned models, in one or several space
dimension. More precisely, we focus our attention mainly on two kinds of
problems:

(i) The former regards the analysis of the limiting behavior of solutions
with respect to some singular parameter appearing in the model. This
parameter may arise either from relaxation phenomena or as a result of
an internal rescaling. In both the cases, our strategy is to determine an
equilibrium or limit problem, then to justify rigorously the convergence
process.

(ii) The latter concerns with the analysis of the long time behavior of the
solutions and the appearance of intermediate asymptotic states enjoy-
ing a self–similar structure. In most of the models studied, we will be
also interested in determining the optimal rate of convergence in some
Lp or Sobolev spaces.

The link between (i) and (ii) can be intuitively understood by means
of the following example, representing a simplified model for radiation gas
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dynamics (we will analyze this model in Chapters 4 and 8){
ut + uux = −qx
−qxx + q = −ux.

(1.1)

In this case (as in many more cases throughout our work), the rescaling
process we perform in order to detect the an asymptotic approximation is of
the form

uε(x, t) =
1

ε
u

(
x

ε
,
t

ε2

)
, qε(x, t) =

1

ε2
u

(
x

ε
,
t

ε2

)
. (1.2)

Here the formal limit is represented by the viscous Burgers’ equation for
the variable u (we skip the details, see Chapter 4). Hence, since the scaling
factor for the time variable t grows faster than the scaling factor for the
space variable x as ε approaches zero, one can pose the problem of detecting a
diffusive limiting behavior also in a framework of pure long time asymptotics.

This introductive chapter is organized as follows. In the section 1.2 we
explain some basic ideas of relaxation limits for hyperbolic problems, by fo-
cusing in particular on the diffusive relaxation limits. In the section 1.3 we
shall discuss one of the most classical models which motivates the study of
diffusive relaxation hyperbolic systems, namely the Euler equations of com-
pressible fluids thorugh of porous media. In the section 1.4 we introduce a
relaxation model for viscoelasticity, and in the section 1.5 we shall give a
brief introduction to the mathematical theory for the models in radiation
gas dynamics. The section 1.6 is devoted to the porous medium equation,
while the section 1.7 will provide an outline of the entropy methods recently
used to analyze the long time asymptotics for nonlinear diffusion equations.
The section 1.8 contains an introduction to another simplified model for
compressible gas dynamics, i.e. the viscous Burgers’ equation. Finally, the
section 1.9 is devoted to another tool used recently in the study nonlinear
diffusion, i.e. the Wasserstein distance. In our introduction, the most im-
portant results contained in the present thesis will be presented and framed
into their natural context. We remark that the references reported here are
obtained as the result of a selection done in relation with the topics and with
the results contained in this thesis. Hence, the literature presented later will
be not complete and will not appropriately describe the general subject.

1.2 Relaxation limits for hyperbolic models.

Relaxation phenomena arise typically in cases of perturbations of an equi-
librium state for a given physical model. The simplest cases is the following
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linear hyperbolic system{
ut + vx = 0

vt + λux = 1
ε
(αu− v) ,

where the equilibrium is represented by the equation

ut + αux = 0

and by the relation
αu− v = 0.

In this simple case a straightforward computation shows that the convergence
towards equilibrium occurs if and only if λ2 ≥ α2 (this is known as the sub-
characteristic condition). The typical general form for a hyperbolic systems
with relaxation in the framework of smooth solutions is the following,

∂tU +
d∑
j=1

Aj(U)∂xj
U =

1

ε
Q(U) (1.1)

where the unknown U is a function of x ∈ Rd and t ≥ 0 with values in an open
subset A of Rk, Aj and Q are smooth functions of U . The quasi linear system
above is usually supposed to be symmetrizable hyperbolic in the sense of
Friedrichs (see [Fri54, Maj84]), i.e. there exists a symmetric positive definite
matrix valued function A0(U) that symmetrizes simultaneously Aj(U) for all
j = 1, . . . , d (see [Fri54, Lax57, Kat75, Maj84]).

The source term 1
ε
Q(U) is often referred to as the relaxation term. This

term is supposed to be endowed with two operators. The first one, which
we denote by P , is called the projection on the momenta. In a simplified
situation, P can be assumed to be a constant linear operator from Rk to Rn

with n < k, such that PQ(U) = 0 for all U ∈ A. This structural assumption
express the fact that n equations in system (1.1) can be rewritten in the
homogeneous form

∂tPU +
d∑
j=1

PAj(U)∂xj
U = 0.

The second operator is a map M defined on an open set of Rn with values
in Rk (often called the Maxwellian operator) such that QM(u) = 0 and
PM(u) = u. Under certain hypothesis (see [Nat99] for further details), one
may expect that the unknown U converges in some sense, as ε → 0, to the
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equilibrium M(u) where the vector valued function u satisfies the reduced
system

∂tu+
d∑
j=1

PAj(M(u))∂xj
M(u) = 0.

A quite general theory for these kinds of systems has been recently developed
by W.A. Yong (see [Yon99]). There exist then a large variety of interesting
physical examples where relaxation schemes can be applied, such as singu-
lar perturbations of the wave equation, traffic flow models, and the kinetic
Broadwell model. For a detailed explanations of these models we refer to
the survey paper by Natalini [Nat99], where also a huge list of references
can be found, together with detailed proofs of more recent and advanced
results on these topics. One of the main scopes of relaxation schemes is to
construct admissible weak solutions to the reduced hyperbolic equations or
systems. A typical case is the relaxation towards a scalar conservation laws
(see [Nat99, Daf00] and the references therein). In this sense, this approach
is quite similar to the kinetic formulation of a conservation law (see [Daf00]).
For the basic theory of linear relaxation schemes we refer to the pioneering
book by Whitham [Whi74]. The corner stone for the nonlinear theory is the
fundamental paper by Tai Ping Liu [Liu87] (see also [CLL94]).

In the recent years, hyperbolic systems relaxing towards diffusive models
have been the subject of a wide investigation. A very simple (linear) example
in this sense is provided by the dissipative wave equation

utt −∆u+
1

ε
ut = 0.

By rescaling a solution to that equation as follows

u(x, t) =
1

ε
v

(
x,
t

ε

)
,

it can be proven that v converges (e.g. in Hs) to the solutions of the linear
heat equation vt = ∆v. We explain hereafter the basic ideas of diffusive
relaxation processes, without taking care of all the structural assumptions
and the technical details, for which we refer to the paper by Marcati and
Rubino [MR00]. Let us consider a quasi linear hyperbolic system in vector
form {

Ut + F (U, V )x = 0

Vt +G(U, V )x = H(U, V )

We then perform the parabolic scaling

U ε(x, t) = U

(
x√
ε
,
t

ε

)
V ε(x, t) =

1√
ε
V

(
x√
ε
,
t

ε

)
(1.2)
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for any ε > 0. Then, by substituting the new variables into the original
system and by taking the formal limit as ε → 0 (under more structural
assumptions), see [MR00]), one recovers the reduced system{

Ut + (FV (U, 0)V )x = 0

G(U, 0)x = HV (U, 0)V

Under the extra assumption detHV (U, 0) 6= 0, one can rewrite the above
reduced system as

Ut +
(
FV (U, 0) (HV (U, 0))−1G(U, 0)x

)
x

= 0,

which is a parabolic system in the sense of Petrowski (see the book of Kreiss
and Lorentz [KL89]).

The parabolic scaling we use here is the classical transformation one needs
to apply to a nonhomogeneous hyperbolic system to detect its parabolic be-
havior time–asymptotically. Among all, in this framework, we recall the
papers of Kurtz [Kur73] and McKean [McK75], where for the first time this
feature for hyperbolic systems has been put into evidence. Afterwards, we
recall the papers of Marcati with various collaborators (see [MR00, DM00]
and the references therein), where the above scaling has been used for several
systems and the convergence has been obtained for weak solutions with the
aid of the compensated compactness. Moreover, we recall the paper of Lions
and Toscani [LT97], where the same parabolic behavior has been pointed out
for Boltzmann kinetic models with a finite number of velocities, proving in
particular the convergence towards the porous media equation. In [LN02],
the authors proposed a BGK approximation for strongly parabolic systems
verifying certain conditions and they proved the convergence of weak solu-
tions, again using compensated compactness. The study of Hs solutions,
with a detailed analysis of the initial layer phenomenon, has been carried
out in [LY01], for hyperbolic relaxation systems with a strongly parabolic
equilibrium system.

1.3 The Euler equations for compressible gas

dynamics

The inviscid flow of a compressible fluid is described by the Euler equations
ρt + div(ρu) = 0

(ρu)t + div(ρu⊗ u+ pI) = 0{
ρ
(
e+ |u|2

2

)}
t
+ div

{
ρu
(
e+ |u|2

2

)
+ pu

}
= 0,

(1.1)
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where the three equations express conservation of mass, momentum and en-
ergy respectively. We refer to the book of Courant and Friedrichs [CF48] for
a detailed derivation of several models in compressible gas–dynamics. The
study of system (1.1) is a classical topic. Such system enjoys a quasi–linear
symmetric hyperbolic structure, in such a way that the local–in–time ex-
istence of Hs solutions is guaranteed by the existence of a Friedrichs type
symmetrizer (see Friedrichs [Fri54] and the book of Majda [Maj84]). Then,
the formation of shock waves in finite time may occur. This phenomenon is
best understood in one space dimension, where the method of characteris-
tics can be employed (see Courant–Friedrichs [CF48] and Whitham [Whi74]).
The formation of singularities in several space variables has been the topic of
more recent investigations, see [Sid85, Sid91, Sid97, MUK86, Ali93, Ali95].

In Chapter 2 we will concern with a class of smooth solutions to the oned-
imensional isentropic compressible inviscid Euler equations through porous
media. In this case, a dissipative nonhomogeneous term in the balance law
of the momentum appears, because of the friction due to the presence of a
porous medium. The model then readsρτ + (ρu)x = 0

uτ + uux +
p(ρ)x
ρ

= −u
ε
.

(1.2)

As was first proven by Nishida (see [Nis68]), the presence of the damping term
−u
ε

prevents the formation of singularities for small initial data belonging in
certain Sobolev spaces (of course the smallness needed to preserve regularity
depends on the amplitude of the positive parameter ε). This result has been
only recently extended to the three dimensional case in the paper [STW03].
In both cases, to ensure global existence and smoothness of the solutions, an
abstract continuation principle must be satisfied (see [Maj84] for its precise
formulation), which is basically a global (w.r.t. to time) energy estimate
for the space derivatives of the solutions up to a certain order. In Chapter
2 we will show, in particular, that the global–in–time existence of smooth
solutions for system (1.2) can be extended to small perturbations of a special
class of diffusion waves (see Remark 2.1.3).

After the scaling

ρε(x, t) = ρ(x, t/ε) uε(x, t) =
1

ε
u(x, t/ε),

system (1.2) can be rewritten as followsρ
ε
t + (ρεuε)y = 0

uεt + uεuεy +
p(ρε)y
ε2ρε

= −u
ε

ε2
.

(1.3)
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Hence, the density ρε formally converges as ε → 0 to a solution of the non-
linear diffusion equation ρt = p(ρ)xx. This was first proven by Marcati and
Milani in [MM90] in a framework of weak solutions, by means of techniques
based upon compensated compactness tools. This paper provided a contri-
bution in understanding the hyperbolic nature of porous media flows. Let us
remark that the previous scaling, even though apparently different from the
usual parabolic scaling (1.2), gives raise to the same reduced system even in
the general framework of diffusive relaxation limits (see the introduction to
[MR00]).

The study developed in Chapter 2 goes in the same direction as [MM90],
but in a context of smooth solutions, as already pointed out before. In
the present case, we have to do with solutions far from vacuum, i.e. such
that ρ ≥ ρ̄ > 0. In particular, the initial data must satisfy certain limiting
conditions at ±∞ in order to ensure absence of vacuum for large x. We will
study the behavior of the solutions as the parameter ε goes to zero, and show
that, under some assumption on the initial data and on the limiting states
at infinity, the density in (1.3) converges in a suitable norm to a caloric self
similar solution to the generalized Porous Medium equation (see also Section
1.6)

ρ̃t = p(ρ̃)yy. (1.4)

Such solutions depend only on the similarity variable x/t1/2, and satisfy the
same limiting conditions as the density in (1.3). The existence of such caloric
self–similar solutions has been the subject of many papers starting from the
seventies, see [AP71, AP74, vDP77, vDP77]. We will show in Chapter 6 that
these caloric profiles are asymptotically stable states for equation (1.4) if the
initial datum is a small perturbation of them.

We remark that our result holds in a well–prepared initial data regime,
i.e. the initial data satisfy the equilibrium relation

p(ρ)x = −ρu,

which in this case is known as Darcy’s law. In this sense, we do not deal with
the so called initial layer problem, which is one of the main issues of some
other papers in the literature (see Lattanzio and Yong [LY01] e.g.).

Besides what mentioned above for the compressible Euler system, a par-
allel study of the asymptotic behavior for large times for the damped com-
pressible Euler flow, both in Lagrangian and in Eulerian coordinates, has
been developed by Hsiao and Liu [HL92], [HL93] and by Nishihara [Nis96],
where the above mentioned caloric self similar profiles were recovered to be
asymptotically stable states under small perturbations for the damped oned-
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imensional p–system {
ut − vx = 0

vt − p(u)x = −v
(1.5)

Moreover, a result concerning the 2-D perturbation of this problem was
proved by Lattanzio and Marcati in [LM99]. Recently in [NWY00], Nishi-
hara, Wang and Yang proved a sharper result on the Lp–convergence (2 ≤
p ≤ ∞) by means of a Green function technique. We also mention [MP01],
in which an analogous result is proven for a compressible adiabatic flow, and
[MN03], where the authors recover sharp Lp–Lq estimates for the damped
wave equation and apply them to the asymptotic study of the damped p–
system (1.5). The book by Hsiao [Hsi97] collects many results in these di-
rections, most of them are based on energy estimate and Green functions
techniques and hold in a small perturbation setting. In Eulerian coordi-
nates, the first convergence result to self similar solutions including vacuum
has been carried out in [HMP]. We remark that although in both the Eule-
rian and the Lagrangian case the limiting profiles satisfy the Porous Media
equation, the two cases cover different physical situations.

The results in Chapter 2 are contained in the author’s paper (joint with
Marcati) [DFM02]. In particular, a convergence result in Sobolev norm has
been proven under the assumption of well prepared initial data. The tech-
nique used is based on the standard symmetric hyperbolic systems framework
developed by Friedrichs, Lax, Majda and many more in [CF48, Lax57, KM81,
KM82, Maj84].

1.4 Diffusive relaxation model for a system

of viscoelasticity

We analyze here the following semilinear hyperbolic system with relaxation
term 

Us − Vy = 0

Vs − Zy = 0

Zs − µVy = −Z + ε2σ(U),

(1.1)

where U , V , Z ∈ R, y ∈ R, s > 0, µ is a strictly positive parameter and ε > 0
denotes the relaxation time. Our goal is to detect the diffusive relaxation
limit for the system (1.1) as ε ↓ 0. To perform this task, we scale both the
dependent and the independent variables with respect to the relaxation time
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ε in the following way

u(x, t) = U

(
x

ε
,
t

ε2

)
v(x, t) =

1

ε
V

(
x

ε
,
t

ε2

)
z(x, t) =

1

ε2
Z

(
x

ε
,
t

ε2

)
.

With the above diffusive scaling, the system (1.1) becomes
ut − vx = 0

vt − zx = 0

ε2zt − µvx = −z + σ(u),

(1.2)

which, with ε = 0, formally reduces to{
ut − vx = 0

vt − σ(u)x = µvxx.
(1.3)

In Chapter 3 we will prove that solutions of (1.2) converge to solutions of
(1.3), giving in this way a rigorous justification of the relaxation limit.

We shall assume the function σ in the relaxation term of (1.2) to be
globally Lipschitz, namely

sup
u∈R

|σ′(u)| < +∞. (1.4)

We recall that condition (1.4) represents the soft hardening condition for
the stress–strain function σ in system (1.3). Moreover, at this stage we do
not need to require the positivity of σ′, namely we can approximate also
incompletely parabolic systems where the corresponding inviscid first order
system is not necessarily hyperbolic. We emphasize this is the first rigorous
proof of a relaxation limit from a hyperbolic toward an hyperbolic parabolic
system.

This semilinear relaxation approximation has another physical interpre-
tation in terms of mathematical models in the study of viscoelastic materials
[RHN87]. Indeed, the system (1.2) can be rewritten as follows

ut − vx = 0

vt − zx = 0(
z − µ

ε2
u
)
t
= − 1

ε2
(z − σ(u)) ,

(1.5)

that is, a system of viscoelasticity with memory. In the system (1.5), the
stress function z is given by the following relation

z =
µ

ε2
u−

∫ t

−∞

1

ε2
e−

t−τ

ε2

( µ
ε2
u− σ(u)

)
(τ)dτ,

9



while in the limit (1.3), the stress is given by the relation

z = σ(u) + µvx,

which is the case of viscoelasticity of the rate type. Therefore, our relaxation
limit can be viewed as the passage from the viscosity of the memory type to
the viscosity of the rate type in the study of viscoelastic materials. To detect
this phenomenon, in the definition of the stress z, we scale either the kernel
of the memory, and the (linear) elastic response of the material at initial
time. Here we recall that the case of a fixed response of the material, which
corresponds to a hyperbolic scaling of the relaxation approximation, has been
studied in [Tza99], where the convergence toward the 2×2 hyperbolic system
of elasticity has been proved.

The results collected in Chapter 3 are the subject of the author’s paper
(joint with Lattanzio) [DFL].

1.5 The Hamer model for radiating gases

A quite general model for compressible gas dynamics where heat radiative
transfer phenomena are taken into account is given by the hyperbolic elliptic
coupled model

ρt + div(ρu) = 0

(ρu)t + div(ρu⊗ u+ pI) = 0{
ρ
(
e+ |u|2

2

)}
t
+ div

{
ρu
(
e+ |u|2

2

)
+ pu+ q

}
= 0

−∇ div q + aq + b∇T 4 = 0.

(1.1)

As usual, in (1.1), ρ, u, p, e and T are respectively the mass density, velocity,
pressure, internal energy and absolute temperature of the gas, while q is
the radiative heat flux and a and b are given positive constants depending
on the gas itself. We give here a sketch of the physical motivation of the
fourth equation in (1.1) (see the books by Vincenti and Kruger [VK65] and
by Zel’dovich and Raizer [ZR66] for a detailed explanation), the first three
equations being motivated as for the usual Euler system (see [CF48]).

We start from the physical observation that high temperature gases emit
energy in the form of electromagnetic radiation. This is due both to transi-
tions from upper to lower energy levels of the atoms or molecules of the gas
and from transitions that involve free electrons. We consider radiation fields
as composed by photons, each one of them has energy and moves with light
speed c. The spectral radiation intensity, then, can be expressed as

Iν(r,Ω, t)dνdΩ = hνcf(ν, r,Ω, t)dνdΩ,
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where f(ν, r,Ω, t) is the number of photons in the frequency interval [ν, ν +
dν], in the unit volume dr, within the solid angle dΩ, at time t, and h is the
Planck constant. The spectral energy flux reads

qν(r, t) =

∫
IνΩdΩ.

Hence, by writing down the kinetic equation for Iν one recovers the following
radiative heat transfer equation

1

c

[
∂Iν
∂t

+ cΩ · ∇Iν
]

= jν

(
1 +

c2

2hν3
Iν

)
− kνIν , (1.2)

where the gradient is taken with respect to r and where the right hand side
is the difference between the emitted radiation and the absorbed radiation.
Since the photons obey to Bose–Einstein statistics at the equilibrium, the
stationary distributions in the equation (1.2) are represented by

I∗ν =
2hν3

c2

(
1

ehν/kT − 1

)
,

where k is the Boltzmann constant and T the temperature. Under the as-
sumption of quasi equilibrium approximation, equation (1.2) reads

div (ΩIν) = αν [I∗ν − Iν ] ,

with α = ρkν
(
1− e−hν/kT

)
. After integration with respect to Ω ∈ S2 and

with respect to ν ∈ [0,+∞) we obtain

div q = −α
(
I − 4σT 2

)
,

where we have set

I =

∫ ∫
Iν(Ω)dνdΩ, q =

∫ ∫
ΩIν(Ω)dνdΩ,

for suitable constants α and σ. Under another extra assumption on the
model, namely the so called Milne–Eddington approximation∫ ∫

ΩiΩjIν(Ω)dνdΩ =
1

3
δij

∫ ∫
IνdΩ

(see [VK65, ZR66]), we finally obtain

−∇ div q + 3α2q + 4σα∇T 4 = 0, (1.3)
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which is exactly the fourth equation in the system (1.1).
The model (1.1) has a simplified version, namely{

ut + a · ∇u2 = − div q

−∇ div q + q = −∇u
(1.4)

where u = u(x, t) ∈ R, q = q(x, t) ∈ R3 x ∈ R3, t ≥ 0 and a is a constant vec-
tor. The simplified model (1.4) was first recovered by Hamer (see [Ham71]).
The most convenient approach to such system is to solve the elliptic equa-
tion satisfied by the term div q in terms of u and substitute it into the first
equation in order to get the scalar balance law

ut + a · ∇u2 = −u+K ∗ u, (1.5)

where the kernel K is given by the Bessel potential

K(x) =
1

(4π)d/2

∫ +∞

0

e−s−
|x|2
4s

sd/2
ds

In one space dimension, equation (1.5) was first studied in [ST92], where the
authors referred to it as the Rosenau–Chapman–Enskog equation, and succes-
sively in [LM03]. In particular, it has been proven that this equation induces
a contraction semigroup in Lp, p ∈ [1,∞] for all positive times, and it has a
critical threshold (in terms of Sobolev norms) below which it preserves the
regularity of the initial datum. This is essentially proven by taking advantage
of the dissipative nature of the inhomogeneous term −u +K ∗ u. Concern-
ing the general model (1.1) and its simplified version (1.4), the study of the
existence of smooth solutions, together with the existence and stability of
shock profiles in one space dimension has been perfomed by Kawashima and
various collaborators in the general context of quasi linear hyperbolic elliptic
coupled systems (see [KN98, KN99a, KN99b, KNN99, KN02, KNN03]), and
by Serre (see [Ser, Ser03]). In Chapter 4 we extend the global well–posedness
of the model to the case of several space variables, and we provide an abstract
proof of the global existence in L1 ∩ L∞ by means of the Crandall–Liggett
theory of nonlinear semigroups (see [CL71, Cra72, Daf00]).

As already pointed out in the first section, this model represents a good
example of diffusive behavior both in a relaxation sense and in a pure time–
asymptotic framework. Concerning the long time asymptotic diffusive be-
havior (in one space dimension), this feature has been one of the subjects
of the research by Kawashima and collaborators (see [KNN99, KN02]). The
main tool used to analyze this kind of models in those papers are the classi-
cal energy estimates. Hence, under suitable stability conditions, it is proved

12



global existence in Hs for solutions to those systems with initial data that
are small perturbation od constant states, and the convergence of such solu-
tions towards the superposition of diffusion waves of the reduced parabolic
limit system. This theory has been significatively improved in [IK02], by
considering the pointwise estimates for the Green function of the linearized
system together with the classical energy estimates. This technique yields
Lp convergence results for p ∈ [1,+∞], for initial data in Hs ∩L1 but with a
smaller regularity than in the papers quoted before. In the particular case of
our scalar model (1.5) in one space dimension, the results in [IK02] provide
the convergence for large times towards self similar solutions to the viscous
Burgers’ equation

ut + uux = uxx,

with a non optimal rate. More recently, the relaxation limit of the rescaled
solutions of (1.5) in one space dimension towards the solutions of the viscous
Burgers’ equation has been improved in [Lau] to include also sequences of
initial data approaching to Dirac masses. This allows to interpret the relax-
ation limit as an asymptotic convergence toward the diffusion wave of the
viscous Burgers’ equation, thanks to a rescaling method and thanks to the
self–similarity of the limit. The proof is performed for large initial data in
L∞ ∩ L1 and it doesn’t give rate of convergence in L1. In Chapter 8 we fill
the gap in the optimality of the rate by means of relative entropy methods,
under regularity assumption (namely, small data in Sobolev norms) required
to employ the decay properties results in [IK02].

Concerning the aspect of relaxation limits, the scalar equation (1.5) can
be rescaled in two different ways, in order to get as a formal limit an invis-
cid and a viscous conservation law respectively (hyperbolic–hyperbolic and
hyperbolic–parabolic relaxation respectively). More precisely, let us consider
again our model with a general flux f(u), namely

ut + div f(u) = − div q

−∇ div q + q = −∇u
u(·, 0) = u0,

(1.6)

After the hyperbolic scaling (x, t) →
(
x
ε
, t
ε

)
of the independent variables, we

get formally in the limit as ε→ 0 the inviscid scalar conservation law

ut + div f(u) = 0,

13



while, under the scaling

uε(x, t) =
1

ε
u

(
x

ε
,
t

ε2

)
qε(x, t) =

1

ε2
q

(
x

ε
,
t

ε2

)
,

the sequence uε converges to the solution of the viscous equation

ut +
1

2
f ′′(0) · ∇u2 = ∆u.

Both these relaxation limits are analyzed and rigorously justified in Chapter
4 by means of standard compactness tools, in a similar fashion to [LM03].

The content of Chapter 4 is the subject of the paper [DF], while the
asymptotic stability result of diffusive waves contained in Chapter 8 is part
of a work in preparation by the author in collaboration with Lattanzio.

1.6 Nonlinear diffusion phenomena. The po-

rous medium equation.

In this section we change our point of view and we start treating the asymp-
totic behavior as t→∞ of solutions to some nonlinear parabolic equations.
Our point of departure is the famous Porous medium equation (PME in
short)

ut = ∆um, (1.1)

where u ≥ 0 is a scalar function of x ∈ Rd and t ≥ 0, and m is a constant
larger than 1. By rewriting the PME in the divergence form

ut = div(mum−1∇u),

one realizes that it is a parabolic equation only in the region where u > 0.
In this sense, the PME is said to be a degenerate parabolic equation.

There exist a variety of physical situation which may be described prop-
erly by the PME. They are described very carefully in the survey paper by
Vazquez [Váz90]. Here we put in evidence two of them. The first one is (as
suggested by the name of the equation) the flow of a polytropic gas through
a porous medium, for which we refer to [Mus37]. The variables describing
this phenomenon are the density of the gas u, its pressure v and its velocity
V . They are related by the mass balance

ρut +∇ · (uV ) = 0,
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the Darcy’s law
µV = −k∇v,

and the equation of state
v = v0u

γ.

The constants ρ, µ, k and v0 are supposed to be positive, while the adiabatic
exponent γ is larger than one. Easy calculations then yield

ut = c∆um

with m = 1 + γ, and c a suitable positive constant. We observe that in the
above application the exponent m is larger than 2.

The second physical application of the PME occurs in the theory of
heat propagation. The general equation for this phenomenon, in absence
of sources, is

cρ
∂T

∂t
= div (k∇T ) ,

where T is the absolute temperature, c the specific heat at constant temper-
ature, ρ the density of the medium (solid, fluid or plasma) and k the thermal
conductivity. In case where the variation of c, ρ and k are small, one obtains
the linear heat equation. However, in case of large perturbations of the tem-
perature, this model is not any longer reasonable. In the simplest cases, the
conductivity k becomes a function of the temperature

k = φ(T ).

Thus, we obtain the equation

Tt = ∆Φ(T ), (1.2)

where

Φ(T ) =
1

cρ

∫ T

0

φ(s)ds.

Equation (1.2) is often referred to as the Nonlinear filtration equation. In
case φ(T ) is a power law, we obtain again the PME.

The mathematical theory of the PME started around the fifties, when
Zel’do– vich and Kompaneets [ZK66] and Barenblatt [Bar52] found the spe-
cial source type solutions (successively called Barenblatt solutions)

U(x, t) = t−λ
[
C − k

|x|2

t2µ

] 1
m−1

+

,
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where

λ =
d

d(m− 1) + 2
µ =

λ

d
k =

λ(m− 1)

2md

and C > 0 is an arbitrary constant. These solutions approach a Dirac delta
in the sense of distributions as t→ 0.

It is immediately seen that the Barenblatt solutions are compactly sup-
ported for all times. This fact, together with more properties of the PME
such as local comparison and maximum principle, leads to detect a basic gen-
eral property for this equation, i.e. the finite speed of propagation, which is
in contrast with the typical infinite speed of propagation property of the heat
equation. This phenomenon gives raise to the appearance of a free boundary,
which is the d− 1 surface where the solution attains the value zero. At the
free boundary the solution ceases to be smooth.

The systematic theory of existence of weak solutions for the PME was
begun by Oleinik and her collaborators around 1958, and continued by Sabin-
ina and Kamin (see [Kam76, Kam76]) who studied the asymptotic behavior.
Starting from 1970, PME has inspired the interest of many mathematicians.
We mention among the others Kalashnikov, Friedman, Aronson, Peletier,
Benilan, Crandall, Caffarelli, Vazquez, Kenig. There exist nowadays a quite
complete theory about the existence and regularity theory of the solutions,
together with a large variety of results on the regularity and the asymp-
totic behavior of the free boundary (see [Bén76, AB79, Vér, Váz83, Váz84b,
Váz84a, BV87, CVW87, LV03] the surveys by Kalashnikov [Kal87], Aronson
[Aro86] and Vazquez [Váz90]).

1.7 The entropy dissipation method

One of the classical problems related with the PME is the L1 convergence
of integrable solutions for large times towards the Barenblatt profiles. The
problem of determining the optimal rate of convergence for general L1 data
has found only recently a natural solution via the so called entropy dissipation
method. This result is due to Carrillo and Toscani [CT00], Felix Otto [Ott01]
and Del Pino and Dolbeault [DPD02a] at the same time. Here we explain this
procedure in a simpler case, that is the linear heat equation, where of course
the Barenblatt profiles are replaced by Gaussian kernels and the solution can
be explicitly represented via convolution. Hence, let us consider the Cauchy
problem for the heat equation on Rd{

ut = ∆u

u(x, 0) = u0(x) ≥ 0.
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The heat equation has the fundamental self similar solutions

G(x, t) =
M

(4πt)d/2
e−

|x|2
4t .

We perform the time dependent scaling
u(x, t) = (2t+ 1)−d/2v(y, s)

y = x√
2t+1

s = 1
2
log(2t+ 1).

(1.1)

Then, a straightforward computation shows that the new variable v(y, s)
satisfies the linear Fokker–Planck equation

vs = div (yv +∇v) .

One of the motivations for the above change of variable is that, in the new
variables, the fundamental solutions G(x, t) have turned into the stationary
solutions of the Fokker–Planck equation

G(y) = Me−
|y|2
2 .

One then analyzes the problem of the asymptotic stability in L1 of the sta-
tionary solutions to the Fokker–Planck equation and finally converts the re-
sult in terms of the original variables. The expression for the time dependent
scaling (1.1) shows that exponential decay w.r.t. the new time variable s is
converted into a polynomial decay w.r.t. t. The entropy dissipation approach
consists in the following. We rewrite the Fokker–Planck equation as follows

vs = div

(
v∇
(
|y|2

2
+ log v

))
. (1.2)

We now multiply equation (1.2) by
(
|y|2
2

+ log v
)

and we obtain (by conser-

vation of the mass) the following identity

d

ds

∫
v(y, s)

(
log v(y, s) +

|y|2

2

)
dy

= −
∫
v(y, s)

∣∣∣∣∇( |y|22
+ log v(y, s)

)∣∣∣∣2 dy. (1.3)

The logarithmic functional

H(v(s)) =

∫
v

(
log v +

|y|2

2

)
17



is called relative entropy (because of its evident relation with the classical
kinetic entropy functional). The Dirichlet type integral on the right hand
side of (1.3) is called Fisher information or entropy production. It is related
to the relative entropy via the celebrated logarithmic Sobolev inequality (see
[Gro75, AMTU01])∫

v(y, s)

(
log v(y, s) +

|y|2

2

)
dy

≤ 1

2

∫
v(y, s)

∣∣∣∣∇( |y|22
+ log v(y, s)

)∣∣∣∣2 dy. (1.4)

Hence, (1.4) and (1.3) yield the exponential decay for the relative entropy

d

ds

∫
v(y, s)

(
log v(y, s) +

|y|2

2

)
dy

≤ e−2s

∫
v(y, 0)

(
log v(y, 0) +

|y|2

2

)
dy. (1.5)

The following Csiszár–Kullback inequality

‖v(s)−G‖2
L1 ≤ H(v(s))

provides then the exponential decay of the L1 difference between the solution
v and the gaussian equilibriumG with rate e−s, which in terms of the old vari-
ables u(x, t) turns into an L1 polynomial decay towards the fundamental solu-
tions with the optimal rate of t−1/2 (the optimality is immediately checked by
testing the relative entropy functional with shifted Gaussian kernels). This is
done by reasonable extra assumptions on the initial datum, namely L1 logL1

and finite second moment. The standard references for the above procedure,
together with its generalizations to variable coefficient cases and the use of
alternative entropy functionals, are [AMTU00, AMTU01, MV00]. One im-
portant remark is that, under few extra technical assumptions, the validity
of a logarithmic Sobolev type inequality and the exponential decay in rela-
tive entropy are equivalent. Hence, the use of different entropy functionals
yields to the proof of a huge variety of generalized Sobolev inequalities (this
equivalence is known as the Bakry–Emery point of view).

The above idea has been successfully generalized to nonlinear diffusion
equations. In particular, the already mentioned results by Carrillo and
Toscani [CT00], Felix Otto [Ott01] and Del Pino and Dolbeault [DPD02a],
allowed to obtain optimal rates of convergence in L1 for solutions to the PME
towards Barenblatt profiles. These results hold also in cases of d−2

d
< m < 1,
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for which the nonlinear diffusion equation (1.1) is called fast diffusion equa-
tion. After those results, a lot of generalization have been carried out for gen-
eral parabolic equations and systems (see [CJM+01a]), p–laplacian equation
(see [DPD02b]), convection–diffusion equations (see [CF03]), fourth–order
equations (see [CCT]).

The present thesis contains two contribution to this theory. The first one
concerns with nonlinear diffusion equations of the form

ut = ∆φ(u),

where the function φ behaves like a power at the origin. In this case a
result was already present in the literature (namely [BDE02]). In Chapter
5 we used an alternative entropy method in order to relax the hypothesis
on the nonlinearity present in [BDE02] in order to obtain the optimal rate
of convergence towards Barenblatt profiles. The content of Chapter 5 is the
subject of a work in preparation of the author in collaboration with J. A.
Carrillo and G. Toscani. In the next section we describe the second result in
this context, concerning with the one–dimensional viscous Burgers’ equation.

Finally, we remark that the entropy dissipation approach has been re-
cently used outside of the context of diffusion equations. The first result
for scalar conservation laws is due to Dolbeault and Escobedo in [DE]. Our
result in Chapter 8 for the radiating gas model represents a new step in this
direction.

1.8 The viscous Burgers’ equation

The simplest model describing both nonlinear convection and diffusive be-
havior is the viscous Burgers’ equation

ut + uux = µuxx.

The study of this equation (introducted by Burgers in 1940), has been the key
point for the development of the theory of shock waves and diffusion waves
for viscous and non–viscous systems of conservation laws. A first detailed
analysis of this phenomena was performed by Hopf ([Hop50]) and succes-
sively by Whitam ([Whi74]), who both constructed the typical intermediate
asymptotic states for this equation (with summable initial data), namely, the
diffusive N-waves and the nonnegative diffusive waves, and studied the trend
towards these profiles for solutions having initial datum in L1.

The study of the viscous Burgers’ equation is naturally related to that of
the inviscid Burgers’ equation

ut + uux = 0. (1.1)
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Indeed, it is well known that one of the most intuitive criterion for the se-
lection of the unique entropy solution of the Cauchy problem for the inviscid
case is the µ→ 0 limit of the solutions of the viscous case.

At the stage of time–asymptotics, it is also well–known that the diffusion
waves of the viscous system are replaced by the N–waves (which are the
pointwise limit of a diffusion wave as the viscosity tends to zero, in case of
positive data) in the inviscid case (see the important paper by Tai Ping Liu
[Liu85] and the paper by Liu and Pierre [LP84]). We refer to the introduction
to [Liu85] for a clear explanation of the asymptotic stability of nonlinear
waves for viscous conservation laws.

This study is also related to the asymptotic self similar behavior for a
general convection–diffusion equation. There are many important results on
this subject, see [EZ91, DZ92, Zua93, Zua94, EVZ93, EZ97, EZ99].

In Chapter 7, the long time asymptotics for the viscous Burgers’ equation
is studied with the help of the entropy dissipation techniques described in the
previous section. In particular, the optimal rate of convergence in L1 towards
diffusive waves is obtained. This was already known for this simple example
(the solution is obtained via the Hopf Cole formula which turns the viscous
Burgers’ equation into the linear heat equation). However, this is the first
case where entropy dissipation has been employed to obtain optimal rates
of convergence to self–similarity for convection–diffusion equations (almost
at the same time of [CF03] for the diffusion dominant cases). Moreover, it
must be remarked that the description of the evolution of such systems via
the entropy functionals is more significant from a thermodynamical point of
view than the classical Lp estimates. The results in Chapter 7 are contained
into the author’s paper [DFM] (joint work with Markowich).

1.9 The Wasserstein distance

The entropy dissipation machinery developed in the above mentioned papers
is closely related to the so–called Wasserstein distance. This distance is de-
fined on the space of probability measures with finite second moment and
comes as the minimal quadratic cost in the variational Monge–Kantorovich
problem of optimal mass tranportation (see [Vil03]). Its relation with the
above mentioned entropy functionals has been recently clarified by Felix Otto
([Ott01]) in the context of gradient flows. More precisely, the porous medium
equation (and the linear heat equation as a special case) can be viewed as
the gradient flow of an entropy–type functional with respect to a Dirichlet
integral type metric defined on the space of probability measures, which is
endowed with a Riemannian structure. The Wasserstein metric comes as
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the minimal distance induced by this metric on the infinite–dimension Rie-
mannian manifold of probability densities. As already pointed out before,
this approach has the advantage of providing optimal rates of convergence in
relative entropy towards stationary solutions for Fokker–Planck type equa-
tions via the generalized logarithmic Sobolev inequalities. In this gradient
flow context, this feature is equivalent to the convexity of the entropy func-
tional along the geodesics induced by the Wasserstein distance. This concept,
known as displacement convexity, has been first introduced by McCann in
[McC97] (see also the book of Villani [Vil03]).

The analysis of the time–decay for the Wasserstein metric in one space
dimension is simplified by the representation of the optimal map (in the
variational problem mentioned above) involving the distribution functions
of the solutions. More precisely, one can estimate the Wasserstein distance
by computing directly the equation for the pseudo–inverse of the distribu-
tion function. This technique has been recently applied to general diffusion
equations (see the review paper [CT03]). In Chapter 5, this optimal trans-
portation tool has been used to provide an optimal estimate for the speed of
propagation of the support (in case of slow diffusion) for the already men-
tioned general nonlinear diffusion equation. This technique appears to be
very natural, and permits to prove results of this type in a much simpler way
than in previous papers in the literature for the porous medium case (see
[Váz03]). We didn’t find an optimal result concerning the cases we threat in
our paper (namely, nonlinearity behaving like a power at the origin).
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Part I

Relaxation limits
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Chapter 2

The compressible Euler
equations with damping

In this chapter we will concern with a class of smooth solutions to the one-
dimensional isentropic compressible Euler equations through porous media
introduced in section 1.3. As already pointed out in the introduction, af-
ter a parabolic scaling we analyze the singular convergence towards caloric
solutions to the porous medium equation. The machinery developed here
holds far from vacuum, and it could be easily generalized to limiting profiles
satisfying suitable decay estimates. In section 2.1 we describe the problem
in details and we collect the main results in theorems 2.1.1 and 2.1.4. The
result in 2.1.4 is closely related to the asymptotic stability result in chapter
6. Section 2.2 is devoted to the proof of the main theorem 2.1.1.

2.1 Statement of the problem and results

Let us consider the one-dimensional, isentropic, compressible Euler equa-
tions through a porous medium in eulerian coordinates. In case of smooth
solutions, with ρ > 0, the system may be written as∂τρ+ u∂xρ+ ρ∂xu = 0

∂τu+ u∂xu+
p′(ρ)

ρ
∂xρ = −u

ε
.

(2.1.1)

Here, ρ > 0 is the density, u is the velocity, x ∈ R, τ > 0, p : R → R+ is a
smooth function such that p′ > 0, and ε > 0 is a small parameter. After the
time scaling τ = t

ε
, ρε(x, t) = ρ(x, t

ε
), uε(x, t) = 1

ε
u(x, t

ε
), the system (2.1.1)
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becomes ∂tρ
ε + uε∂xρ

ε + ρε∂xu
ε = 0

∂tu
ε + uε∂xu

ε +
p′(ρε)

ε2ρε
∂xρ

ε = −u
ε

ε2
.

(2.1.2)

Thus, as ε goes to 0, we expect the solutions to (2.1.2) to be described by
the solutions to the following system{

∂tρ̃+ ∂x(ρ̃ũ) = 0

∂xp(ρ̃) = −ρ̃ũ,
(2.1.3)

which is equivalent to the Porous Medium equation

ρ̃t = p(ρ̃)xx, (2.1.4)

where the relation between the pressure p and the velocity ũ is given by the
well known Darcy’s law

ũ = −p(ρ̃)x
ρ̃

. (2.1.5)

For the system (2.1.2), we prescribe the following limiting conditions at in-
finity

ρε(±∞, t) = ρ± for any t ≥ 0

uε(±∞, 0) = u±,

with ρ+, ρ− > 0. Since we expect the inertial terms of the second equation in
(2.1.2) to decay faster than the others, in addition we require

uε(±∞, t) = e−t/ε
2

u± for any t ≥ 0.

Therefore, we assume the following behaviour at x → ±∞ for the system
(2.1.3)

ρ̃(±∞, t) = ρ±

ũ(±∞, t) = 0,

for any t ≥ 0. The initial datum on the density of the hyperbolic problem
(2.1.2) is assumed to be the same of (2.1.4), namely

ρε(x, 0) = ρ̃(x, 0) = ρ̃0(x),

where ρ̃0 is a bounded smooth function (e.g. ρ̃0 ∈ H3(R)) such that

0 < µ0 ≤ ρ̃0(x) ≤ µ1.
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Moreover, we require the initial datum on the velocity uε to be given by the
initial value of ũ in the system (2.1.3) (which is determined by the Darcy’s
law) plus a small corrector, needed to match the limiting conditions, namely

uε0(x) = −p
′(ρ̃0(x))

ρ̃0(x)
ρ̃′0(x) + wε(x, 0). (2.1.6)

The expression for the corrector wε is

wε(x, t) = e−t/ε
2

[u− + (u+ − u−)ψ(x)] , (2.1.7)

where

ψ(x) =

∫ x

−∞
φ(y)dy∫ +∞

−∞
φ(y)dy

,

for some φ ∈ C∞
c (R), φ ≥ 0. We observe that wε satisfies the equation

∂tw
ε = − 1

ε2
wε.

This corrector doesn’t affect the asymptotic analysis since it decays expo-
nentially fast. The well-prepared initial data condition (2.1.6) is prescribed
in order to avoid the problem of the initial layer.

As a consequence of the boundedness of ρ̃0 and of the comparison principle
for the parabolic equation (2.1.4), we have

µ0 ≤ ρ̃(x, t) ≤ µ1. (2.1.8)

We will consider solutions (ρ̃, ũ) to (2.1.4) satisfying the time-asymptotic
estimates ∣∣∣∣∂α+β ρ̃(t)

∂xα∂tβ

∣∣∣∣
∞

=O(δ)
1

(t+ 1)
α
2
+β

α, β > 0∫ +∞

−∞

∣∣∣∣∂α+β ρ̃(x, t)

∂xα∂tβ

∣∣∣∣2dx =O(δ2)
1

(t+ 1)α+2β− 1
2

α, β > 0 (2.1.9)∣∣∣∣∂α+βũ(t)

∂xα∂tβ

∣∣∣∣
∞

=O(δ)
1

(t+ 1)
α
2
+β+ 1

2

α, β ≥ 0∫ +∞

−∞

∣∣∣∣∂α+βũ(x, t)

∂xα∂tβ

∣∣∣∣2dx =O(δ2)
1

(t+ 1)α+2β+ 1
2

, α, β ≥ 0

where
δ = |ρ+ − ρ−|+ |u+ − u−|. (2.1.10)
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In particular, these estimates are satisfied both by the caloric self-similar
solutions of (2.1.4) described in [HL92][Nis96] and by a small perturbation
of these solutions w.r.t. initial datum (as we will show in the Theorem 6.1.1
of Chapter 6).

Our first risult concerns the asymptotic behaviour as ε↘ 0 of the scaled
hyperbolic system (2.1.2) with Sobolev norms. The time interval where the
asymptotic analysis is valid, is given by the condition εTα � 1, for some
constant α > 0, which allows, for small ε, to include the solutions at large
time.

Theorem 2.1.1 Let 0 < ν < 1/2 be arbitrary. Suppose εT
1+ν
2 � 1, ε � 1

and δ � 1; then, there exists a fixed constant ∆ > 0 such that

sup
0≤t≤T

{
1

(t+ 1)ν

[
1

ε2
‖ρε(t)− ρ̃(t)‖2

H3θ + ‖uε(t)− ũ(t)− wε(t)‖2
H3θ+

1

ε2

∫ t

0

‖uε(s)− ũ(s)− wε(s)‖2
H3θds

]}
≤ ∆, (2.1.11)

for any θ ∈ (0, 1).

Corollary 2.1.2 Let t > 0 be arbitrary. Let β > 0 be arbitrarily small.
Then, for small values of δ, we have

‖ρε(t)− ρ̃(t)‖2
L∞ + ‖ρεx(t)− ρ̃x(t)‖2

L∞ ≤ O(ε2−β). (2.1.12)

Remark 2.1.3 Another simple consequence of Theorem 2.1.1 is the global–
in–time existence of smooth solution for system (2.1.2) with fixed ε > 0 when
the initial data are chosen to be small perturbations of the initial datum of
the caloric profile ρ̃. This comes from Theorem 6.1.1 in Chapter 6 and from
the continuation principle for quasi linear hyperbolic systems (see [Maj84]).

The proof of the Theorem (2.1.1) will be given in the Section 2.2. As a
consequence of the stability result in chapter 6, the result in Theorem 2.1.1 is
also true when the initial datum for ρ̃ is replaced by a small perturbation of
the initial datum of a caloric self similar profile. Moreover, as a consequence
of both Theorem 2.1.1 and Theorem 6.1.1 in chapter 6, we have the following
asymptotic result.

Theorem 2.1.4 Let ρ̃(x, t) be the caloric self-similar solution to
ρ̃t = p(ρ̃)xx

ρ̃(x, 0) = ρ̃0(x)

ρ̃(±∞, t) = ρ±.
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Let (ρε(x, t), uε(x, t)) be the solution to

ρεt + (ρεuε)x = 0

uεt + uεuεx +
p(ρε)x
ε2ρε

= −u
ε

ε2

ρε(x, 0) = ρ0(x) = ρ̃(x+ x0) + r0(x)

uε(x, 0) = −p(ρ0(x))x
ρ0(x)

+ wε(x, 0)

ρε(±∞, t) = ρ±

uε(±∞, t) = e−t/ε
2

u±,

with wε(x, t) given by (2.1.7), x0 given by (6.1.3). Suppose that ‖R(0)‖2
5, δ

and ε are sufficiently small (R(0) defined by (6.1.4)). Then, there exists a
fixed Γ > 0 such that

sup
γT (ε)≤t≤ΓT (ε)

‖ρε(t)− ρ̃(t)‖L∞(R) ≤ O(ε
1

1+ν ), (2.1.13)

where
T (ε) = ε−

2
1+ν ,

ν > 0 is arbitrary small and γ is an arbitrary constant such that 0 < γ < Γ.

The proof of the theorem (2.1.4) is straightforward.

2.2 The Proof of the main Theorem

We prove Theorem 2.1.1 by means of an iteration scheme. Let us define an
approximating sequence (ρε(n), u

ε
(n)) by setting,

ρε0 = ρ̃ , uε0 = ũ+ wε,

and let, for any n > 1, (ρε(n), u
ε
(n)) be the solution to the system

∂tρ
ε
(n) + ρε(n−1)∂xu

ε
(n) + uε(n−1)∂xρ

ε
(n) = 0

∂tu
ε
(n) + uε(n−1)∂xu

ε
(n) +

p′(ρε(n−1))

ε2ρε(n−1)

∂xρ
ε
(n) = −

uε(n)

ε2

ρε(n)(x, 0) = ρ̃0(x)

uε(n)(x, 0) = −p
′(ρ̃0(x))

ρ̃0(x)
ρ̃′0(x) + wε(x, 0)

ρε(n)(±∞, t) = ρ±

uε(n)(±∞, t) = e−t/ε
2

u±.

(2.2.1)
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We will prove the convergence of the approximating sequence (ρε(n), u
ε
(n)) to

the solution of the system (2.1.2) via the uniform boundedness of this se-
quence in some weighted high Sobolev norm (namely H3(R)) and the con-
traction in some weighted L2-norm. Thus, we obtain the desired estimate
via interpolation. This strategy is used in [KM81][KM82][Maj84].

Denote, for any T > 0,

Enε (T ) = sup
0≤t≤T

{
1

(t+ 1)ν

[
1

ε2
‖(ρε(n) − ρ̃)(t)‖2

H3+

+‖(uε(n) − ũ− wε)(t)‖2
H3 +

1

ε2

∫ t

0

‖(uε(n) − ũ− wε)(s)‖2
H3ds

]}
. (2.2.2)

Hence, we have the following result

Proposition 2.2.1 Let us suppose that δ + ε + εT
1+ν
2 ≤ λ, where λ � 1.

Then, there exists a positive constant ∆ > 0 such that, for any n ∈ N,

Enε (T ) ≤ ∆. (2.2.3)

Proof. From now on, we denote

ρ = ρε(n) u = uε(n) ρ̂ = ρε(n−1) û = uε(n−1)

ρ̄ = ρ− ρ̃ ū = u− wε − ũ ̂̂ρ = ρε(n−2)
̂̂u = uε(n−2)

¯̄ρ = ρ̂− ρ̃ ¯̄u = û− wε − ũ ¯̄̄u = ̂̂u− ũ− w π(z) = p′(z)
z
, for anyz ∈ R+.

The system (2.2.1) becomes

ρ̄t + ûρ̄x + ρ̂ūx =− (¯̄u+ w)ρ̃x − ¯̄ρũx − ρ̂wx (2.2.4)

ūt + ûūx +
1

ε2
π(ρ̂)ρ̄x =−ũt−û(ũx+wx)−

1

ε2
(π(ρ̂)−π(ρ̃))ρ̃x−

ū

ε2
. (2.2.5)

We now assume that the estimate (2.2.3) holds for (ρ̂, û) and show that it is
true for (ρ, u). In particular, we assume

sup
0≤t≤T

{
1

(t+1)ν

[
1

ε2
‖ ¯̄ρ(t)‖2

H3+‖¯̄u(t)‖2
H3+

1

ε2

∫ t

0

‖¯̄u(s)‖2
H3ds ≤ ∆

]}
, (2.2.6)

for any T > 0, ε > 0 and δ > 0 (δ defined by (2.1.10)) such that

δ + ε+ εT
1+ν
2 ≤ λ , λ� 1. (2.2.7)

As usual in this framework, we determine the conditions on the constant
∆ in the estimate at the n−th step. As we will see, this constant depends
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only on the constant λ in (2.2.7). Let us multiply (2.2.4) by (1/ε2)π(ρ̂)ρ̄
and (2.2.5) by ρ̂ū. Then, via standard energy identity (as a consequence of
symmetrization), we get

d

dt

∫ +∞

−∞

[
1

ε2
π(ρ̂)

ρ̄2

2
+ ρ̂

ū2

2

]
dx =

=

∫ +∞

−∞
(π′(ρ̂)(ρ̂t + ρ̂xû)+π(ρ̂)ûx)

ρ̄2

2ε2
dx+

∫ +∞

−∞
(ρ̂t + ρ̂xû+ ρ̂ûx)

ū2

2
dx+

+

∫ +∞

−∞

1

ε2
p′′(ρ̂)ρ̂xρ̄ūdx−

∫ +∞

−∞

1

ε2
π(ρ̂)ρ̄(¯̄u+w)ρ̃xdx−

∫ +∞

−∞

1

ε2
π(ρ̂)ρ̄ ¯̄ρũxdx+

−
∫ +∞

−∞

1

ε2
π(ρ̂)ρ̄ρ̂wxdx−

∫ +∞

−∞
ρ̂ũtūdx−

∫ +∞

−∞
ρ̂ūû(ũx + wx)dx+

−
∫ +∞

−∞

1

ε2
ρ̂ū(π(ρ̂)− π(ρ̃))ρ̃xdx−

∫ +∞

−∞
ρ̂
ū2

ε2
dx =

=:
3∑

k=1

J̃k(t) +
6∑

k=1

Ik(t)−
∫ +∞

−∞
ρ̂
ū2

ε2
dx. (2.2.8)

Remark 2.2.2 We remark that the function π(z) satisfies

0 < c0 ≤ π(z) ≤ c1, as z ∈ (c2, c3),

for some positive constants c0, c1, c2, c3. Now, from the assumption (2.2.6)
and from (2.1.8), it follows that ρ̂ satisfies

0 <
µ0

2
≤ ρ̂(x, t) ≤ µ1 +

µ0

2
, for any x ∈ R, 0 ≤ t ≤ T. (2.2.9)

(where µ0, µ1 are defined in (2.1.8)) provided that

ε(T + 1)ν/2 ≤ ∆−1/2µ0

2
,

(with ∆ as in (2.2.6)). Thus, from the condition (2.2.7) and by requiring

∆ < 1 and λ
ν

1+ν ε
1

1+ν < µ0

2
(i.e. ε + λ � 1), there exist C1, C2 fixed positive

constants such that
C1 ≤ π(ρ̂) ≤ C2. (2.2.10)

Moreover, from (2.2.9) it follows that

π′(ρ̂) + p′′(ρ̂) ≤ C3, (2.2.11)

for some positive fixed C3.

29



Now, from (2.2.9), (2.2.10), (2.2.11), and after time integration of (2.2.8) in
[0, t], for 0 < t ≤ T , T satisfying (2.2.7), it follows that

1

ε2
‖ρ̄(t)‖2 + ‖ū(t)‖2 +

1

ε2

∫ t

0

‖ū(s)‖2ds ≤

≤O(1)

∫ t

0

[|ρ̂t|∞ + |ρ̂xû|∞ + |ûx|∞]

[
‖ρ̄(s)‖2

ε2
+ ‖ū(s)‖2

]
ds+

+
O(1)

ε2

∫ t

0

|ρ̂x|∞‖ρ̄(s)‖‖ū(s)‖ds+

∫ t

0

6∑
k=1

Ik(s)ds =

=:
2∑

h=1

Jh(t) +
6∑

k=1

∫ t

0

Ik(s)ds. (2.2.12)

We devote ourselves to the estimate of the terms
∫ t

0
Ik(t)ds, k = 1, . . . 6.

In what follows, we exploit (2.2.6), (2.2.7), the time asymptotic estimates
(2.1.9) and the estimates (2.1.8), (2.2.10), (2.2.11).∫ t

0

I1ds ≤
O(δ)

ε2

∫ t

0

‖¯̄u(s)‖‖ρ̄(s)‖ 1

(s+ 1)1/2
ds+

+
O(1)

ε2

∫ t

0

e−
s

ε2 ‖ρ̄(s)‖‖ρ̃x(s)‖ds ≤

≤O(δ)

ε2

∫ t

0

‖¯̄u‖2ds+
O(δ)

ε2

∫ t

0

‖ρ̄(s)‖2

s+ 1
ds+

+
O(1)

ε2

∫ t

0

e−
s

ε2
[
‖ρ̄(s)‖2 + ‖ρ̃x(s)‖2

]
ds ≤

≤O(δ)

(
∆(t+ 1)ν +

∫ t

0

En(s)
(s+ 1)1−ν ds+ 1

)
+ En(t)(t+ 1)νε2 ≤

≤O(δ) (∆(t+ 1)ν + 1) + En(t)(t+ 1)ν(O(δ) +O(ε2)). (2.2.13)

∫ t

0

I2ds ≤
O(δ)

ε2

∫ t

0

‖ρ̄(s)‖‖ ¯̄ρ(s)‖ 1

s+ 1
ds ≤

≤O(δ)

ε2

∫ t

0

[
‖ρ̄(s)‖2 + ‖ ¯̄ρ(s)‖2

] 1

s+ 1
ds ≤

≤O(δ)

∫ t

0

En(s)
(s+ 1)1−ν ds+O(δ)

∫ t

0

∆
1

(s+ 1)1−ν ds ≤

≤O(δ)En(t)(t+ 1)ν +O(δ)∆(t+ 1)ν . (2.2.14)
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∫ t

0

I3ds =

∫ t

0

∫ +∞

−∞

π(ρ̂)

ε2
ρ̄ ¯̄ρwxdxds+

∫ t

0

∫ +∞

−∞

π(ρ̂)

ε2
ρ̃ρ̄wxdxds ≤

≤O(δ)

ε2

∫ t

0

‖ρ̄(s)‖‖ ¯̄ρ(s)‖e−
s

ε2 ds+
O(δ)

ε2

∫ t

0

∫
supp(φ)

ρ̄e−
s

ε2 dxds ≤

≤O(δ)En(t)(t+ 1)ν +O(δ)∆(t+ 1)ν +
O(δ)

ε2

∫ t

0

|ρ̄|∞e−
s

ε2 ds ≤

≤O(δ) + En(t)O(δ)(1 + (t+ 1)ν) +O(δ)∆(t+ 1)ν ,

where in the second inequality we have used the estimate for
∫ t

0
I2.∫ t

0

I4ds ≤ O(1)

∫ t

0

[
‖ũt(s)‖2 + ‖ū(s)‖2

]
ds ≤

≤O(δ2)

∫ t

0

1

(s+ 1)5/2
ds+O(ε2)En(t)(t+ 1)ν ≤

≤O(δ2) +O(ε2)En(t)(t+ 1)ν .

∫ t

0

I5ds ≤
∫ t

0

∫ +∞

−∞
¯̄uρ̂ū(ũx+wx)dxds+

∫ t

0

∫ +∞

−∞
(ũ+ w)(ũx+ wx)ρ̂ūdxds≤

≤O(1)

∫ t

0

[
‖¯̄u(s)‖2 + ‖ū(s)‖2

]
ds+O(1)

∫ t

0

[
‖ũx(s)‖2 + ‖ū(s)‖2

]
ds+

+O(1)

∫ t

0

[
‖wx(s)‖2 + ‖ū(s)‖2

]
ds ≤

≤O(ε2)
(
∆(t+1)ν+En(t)(t+1)ν+O(δ2)

)
+O(δ2)

∫ t

0

1

(s+ 1)3/2
ds≤

≤O(δ2) +O(ε2)
(
∆(t+ 1)ν + En(t)(t+ 1)ν +O(δ2)

)
.

∫ t

0

I6ds ≤
O(δ)

ε2

∫ t

0

‖ ¯̄ρ(s)‖‖ū(s)‖ 1

(s+ 1)1/2
ds ≤

≤O(δ)

ε2

∫ t

0

‖ ¯̄ρ(s)‖2 1

s+ 1
ds+

O(δ)

ε2

∫ t

0

‖ū(s)‖2ds ≤

≤O(δ)(t+ 1)ν (∆ + En(t)) .

Thus, by requiring ∆ < 1 and λ� 1, the estimates of these terms yields

6∑
k=1

∫ t

0

Ik(t) ≤ O(λ) (∆ + En(t)) (t+ 1)ν +O(λ)(t+ 1)ν .
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Hence, we compute the integrals denoted by Jh, h = 1, 2.

J1(t) ≤ O(1)

∫ t

0

[
|̂̂ρ(s)|∞|ûx(s)|∞ + |̂̂u(s)|∞|ρ̂x(s)|∞+

+ |ρ̂x(s)|∞|û(s)|∞ + |ûx(s)|∞
] [‖ρ̄(s)‖2

ε2
+ ‖ū(s)‖2

]
ds ≤

≤O(1)

∫ t

0

[
|ûx(s)|∞+|ρ̂x(s)|∞

(
|û(s)|∞+ |̂̂u(s)|∞)][‖ρ̄(s)‖2

ε2
+‖ū(s)‖2

]
ds ≤

≤O(1)En(t)
∫ t

0

[
|ûx(s)|∞+|ρ̂x(s)|∞

(
|û(s)|∞+ |̂̂u(s)|∞)] (s+ 1)νds ≤

≤O(1)En(t)
∫ t

0

[|¯̄ux(s)|∞+|ũx(s)|∞+|wx(s)|∞+ (| ¯̄ρx(s)|∞+|ρ̃x(s)|∞) ·

·
(
|¯̄u(s)|∞ + | ¯̄̄u(s)|∞ + |ũ(s)|∞ + |w(s)|∞

)]
(s+ 1)νds. (2.2.15)

We now estimate separately the following terms.∫ t

0

|¯̄ux(s)|∞(s+ 1)νds ≤
∫ t

0

(
λ
|¯̄ux(s)|2∞

ε2
+

1

λ
ε2(s+ 1)2ν

)
ds ≤

≤λ∆(t+ 1)ν+
1

λ
ε2(t+ 1)1+2ν ≤ O(λ)(t+ 1)ν (2.2.16)

where λ is the fixed constant in (2.2.7).∫ t

0

(| ¯̄ρx(s)|∞+|ρ̃x(s)|∞)
(
|¯̄u(s)|∞ + | ¯̄̄u(s)|∞

)
(s+ 1)νds ≤

≤
∫ t

0

(
ε∆1/2(s+ 1)

3ν
2 +O(δ)(s+ 1)−1/2+ν

) (
|¯̄u(s)|∞ + | ¯̄̄u(s)|∞

)
≤

≤(O(λ)+O(δ))

∫ t

0

(
|¯̄u(s)|∞ + | ¯̄̄u(s)|∞

)
≤ (O(λ) +O(δ))(t+ 1)ν (2.2.17)

where the last inequality is justified by the preceding estimate (2.2.16), and
where we used ν < 1/2 and ∆ < 1.∫ t

0

(| ¯̄ρx(s)|∞+|ρ̃x(s)|∞) (|ũ(s)|∞ + |w(s)|∞) (s+ 1)νds ≤

≤
∫ t

0

(
ε∆1/2(s+ 1)

3ν
2 +O(δ)(s+ 1)−1/2+ν

)
O(δ)(s+ 1)−1/2ds+

+O(ε)∆1/2(t+ 1)ν/2 +O(δ)O(ε2) ≤ (O(λ) +O(δ))(t+ 1)ν . (2.2.18)
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Now we can complete the estimate of the integral J1 in (2.2.15), and obtain

J1(t) ≤
(
O(δ) +O(λ) +O(ε2)

)
(t+ 1)νEn(t).

Let us estimate J2(t);

J2(t) ≤ O(1)

∫ t

0

[| ¯̄ρx(s)|∞ + |ρ̃x(s)|∞]
1

ε2
‖ρ̄(s)‖‖ū(s)‖ds ≤

≤O(1)

∫ t

0

[
ε∆1/2(s+ 1)ν/2 +O(δ)(s+ 1)−1/2

] 1

ε2
‖ρ̄(s)‖‖ū(s)‖ds ≤

≤O(1)ε∆1/2

∫ t

0

[
‖ρ̄(s)‖2

λε
(s+ 1)ν + λ

‖ū(s)‖2

ε3

]
ds+

+O(δ)

∫ t

0

‖ρ̄(s)‖2

ε2
(s+ 1)−1ds+O(δ)

∫ t

0

‖ū(s)‖2

ε2
ds ≤

≤O(1)
ε2

λ
(t+ 1)1+2νEn(t) + (O(λ) +O(δ)) En(t)(t+ 1)ν . (2.2.19)

By combining all these estimates, dividing both sides of (2.2.12) by (t+ 1)ν ,
taking the sup0≤t≤T and by suitably choosing ∆ and λ such that

0 < ∆ < 1, ∆ > C̃λ,

for a fixed constant C̃, we obtain the following

Lemma 2.2.3 Suppose δ+ε+εT
1+ν
2 ≤ λ� 1. Then, there exists a positive

fixed constant ∆ such that

sup
0≤t≤T

{
1

(1 + t)ν

[
1

ε2
‖ρ̄(t)‖2 + ‖ū(t)‖2 +

1

ε2

∫ t

0

‖ū(s)‖2ds

]}
≤ ∆

4
, (2.2.20)

In a similar fashion, we can derive L2 estimates for the derivatives of ρ̄
and ū. By differentiatiting (2.2.4)-(2.2.5) w.r.t. x, we obtain

ρ̄xt + ûρ̄xx + ρ̂ūxx =−ûxρ̄x−ρ̂xūx−(¯̄ux+wx)ρ̃x−(¯̄u+w)ρ̃xx+

− ¯̄ρxũx − ¯̄ρũxx − ρ̂xwx − ρ̂wxx, (2.2.21)

ūxt + ûūxx +
1

ε2
π(ρ̂)ρ̄xx =− ûxūx−

1

ε2
π′(ρ̂)ρ̂xρ̄x − ũxt − ûx(ũx+wx)+

− û(ũxx + wxx)−
1

ε2
(π(ρ̂)− π(ρ̃)) ρ̃xx+

− 1

ε2
(π′(ρ̂)ρ̂x − π′(ρ̃)ρ̃x) ρ̃x −

1

ε2
ūx. (2.2.22)
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It is clear that the system (2.2.21)-(2.2.22) has the same stucture as system
(2.2.4)-(2.2.5). Thus, by multiplying the first equation by 1

ε2
π(ρ̂)ρ̄x and the

second equation by ρ̂ūx, we obtain an energy identity similar to (2.2.8). Then,
by integrating w.r.t. time, and from the same considerations as those in the
remark 2.2.2, we obtain

1

ε2
‖ρ̄x(t)‖2 + ‖ūx(t)‖2 +

1

ε2

∫ t

0

‖ūx(s)‖2ds ≤

≤O(1)

∫ t

0

[|ρ̂t|∞ + |ρ̂xû|∞ + |ûx|∞]

[
‖ρ̄x(s)‖2

ε2
+ ‖ūx(s)‖2

]
ds+

+
O(1)

ε2

∫ t

0

|ρ̂x|∞‖ρ̄x(s)‖‖ūx(s)‖ds+

∫ t

0

G(s)ds+

∫ t

0

F (s)ds,

where we denoted all the integrals involving ρ̃, ũ and w by
∫ t

0
F (s)ds, and

where∫ t

0

G(s)ds =
O(1)

ε2

∫ t

0

∫ +∞

−∞
ûxρ̄

2
xdxds+

O(1)

ε2

∫ t

0

∫ +∞

−∞
ρ̂xūxρ̄xdxds+

+O(1)

∫ t

0

∫ +∞

−∞
ûxū

2
xdxds. (2.2.23)

The terms (2.2.23) are to be treated as the terms
∑2

h=1 Jh of the previous

lemma. The integrals denoted by
∫ t

0
F (s)ds are made up by bilinear terms (in

the variables marked by and ), where the terms estimated in L∞ depends
only on the corrector w and on the derivatives of asymptotic profile ρ̃, as in
the estimates of the integrals

∫ t
0
Ik(s) of the previous lemma (we also have a

faster decay for these terms, which involve second order derivatives). Hence,
we easily obtain the following

Lemma 2.2.4 Suppose δ+ε+εT
1+ν
2 ≤ λ� 1. Then, there exists a positive

fixed constant ∆ such that

sup
0≤t≤T

{
1

(1 + t)ν

[
1

ε2
‖ρ̄x(t)‖2 + ‖ūx(t)‖2

+
1

ε2

∫ t

0

‖ūx(s)‖2ds

]}
≤ ∆

4
, (2.2.24)

Remark 2.2.5 To complete the proof of the theorem 2.1.1, we differentiate
w.r.t. x in order to get estimates for second and third derivatives of (ρ̄, ū).
The analogous of terms (2.2.23) behave the same as above (there is always a
coefficient with order of derivation less then or equal to 2, to be estimated in
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L∞(R)). Since these computations are very similar to those concerning the
preceding L2 estimates, we skip the details about them. Hence, the proof of
the proposition is complete. �

We now prove the contraction of the sequence (ρε(n), u
ε
(n)) in the following

Proposition 2.2.6 Let us denote, for any ε > 0, n ∈ N, 0 < ν < 1/2,

Fn
ε (T )= sup

0≤t≤T

{
1

(t+1)ν

[
1

ε2
‖ρε(n)(t)−ρε(n−1)(t)‖2

L2
+‖uε(n)(t)−uε(n−1)(t)‖2

L2
+

+
1

ε2

∫ t

0

‖uε(n)(s)− uε(n−1)(s)‖2
L2
ds

]}
.

Then, under the condition δ + ε + εT
1+ν
2 ≤ λ, for λ � 1, there exists a

positive constant µ < 1 such that

Fn
ε (T ) ≤ µFn−1

ε (T ). (2.2.25)

Proof. We denote

ρε(n−2) = ̂̂ρ ρε(n−1) = ρ̂ ρε(n) = ρ

uε(n−2) = ̂̂u uε(n−1) = û uε(n) = u

ρ̄ = ρ− ρ̂ ¯̄ρ = ρ̂− ̂̂ρ ū = u− û ¯̄u = û− ̂̂u.
With this notation, we can write system (2.2.1) asρ̄t + ρ̂ūx + ûρ̄x = − ¯̄ρûx − ¯̄uρ̂x

ūt + ûūx +
1

ε2
π(ρ̂)ρ̄x = −¯̄uûx −

(
1

ε2
π(ρ̂)− 1

ε2
π(̂̂ρ)) ρ̂x − ū

ε2
.

(2.2.26)

As in the preceding proposition, we symmetrize the system (2.2.26) by[
1
ε2
π(ρ̂) 0

0 ρ̂

]
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and obtain the standard enegy identity

d

dt

∫ +∞

−∞

[
p′(ρ̂)

ε2ρ̂

ρ̄2

2
+ ρ̂

ū2

2

]
dx =

=

∫ +∞

−∞

[
(π′(ρ̂)(ρ̂t + ρ̂xû) + π(ρ̂)ûx)

ρ̄2

2ε2

]
dx+

+

∫ +∞

−∞

[
(ρ̂t + ρ̂xû+ ρ̂ûx)

ū2

2
+

1

ε2
p′′(ρ̂)ρ̂xρ̄ū

]
dx+

−
∫ +∞

−∞
π(ρ̂)ρ̄¯̄uρ̂xdx−

∫ +∞

−∞
π(ρ̂)ρ̄ ¯̄ρûxdx+

−
∫ +∞

−∞
ρ̂ū¯̄uûxdx−

∫ +∞

−∞
ρ̂ū(π(ρ̂)− π(̂̂ρ))ρ̂xdx− ∫ +∞

−∞
ρ̂
ū2

ε
dx. (2.2.27)

As a consequence of the proposition (2.2.1), after some considerations about
the symmetrizing coefficients (same as those in the remark 2.2.2), we obtain
the same estimates as (2.2.9), (2.2.10), (2.2.11), under the condition (2.2.7).
After time integration in the interval [0, t] for 0 < t < T , we obtain

1

ε2
‖ρ̄(t)‖2 + ‖ū(t)‖2 +

1

ε2

∫ t

0

‖ū(s)‖2ds ≤

≤O(1)

∫ t

0

[|ρ̂t|∞ + |ρ̂xû|∞ + |ûx|∞]

[
‖ρ̄(s)‖2

ε2
+ ‖ū(s)‖2

]
ds+

+
O(1)

ε2

∫ t

0

|ρ̂x|∞‖ρ̄(s)‖‖ū(s)‖ds+
O(1)

ε2

∫ t

0

∫ +∞

−∞
ρ̄ ¯̄ρûxdxds+

+
O(1)

ε2

∫ t

0

∫ +∞

−∞
ρ̄¯̄uρ̂x +O(1)

∫ t

0

∫ +∞

−∞
¯̄uûxūdxds+

O(1)

ε2

∫ t

0

∫ +∞

−∞
¯̄ρūρ̂xdxds =

=
6∑

k=1

Lk(t).

We now consider each term separately, using the result of the proposition
(2.2.1).

L1(t) ≤O(1)Fn(t)

∫ t

0

[
|ρ̂x(s)|∞

(
|̂̂u(s)|∞+|û(s)|∞

)
+|ûx(s)|∞

]
(s+ 1)νds≤

≤O(1)Fn(t)

∫ t

0

[
|(û− ũ− w)x(s)|∞+|ũx(s)|∞+|wx(s)|∞+

+
(
|(ρ̂− ρ̃)x(s)|∞+|ρ̃x(s)|∞

)(
|(û− ũ− w)(s)|∞+

+ |(̂̂u− ũ− w)(s)|∞ + |ũ(s)|∞ + |w(s)|∞
)]

(s+ 1)νds.
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We estimate this term as in (2.2.16), (2.2.17), (2.2.18) of the proposition
(2.2.1) and obtain

L1(t) ≤
(
O(δ) +O(λ) +O(ε2)

)
(t+ 1)νFn(t).

Then, in a similar fashion, we estimate the term L2(t) as in (2.2.19). Let us
compute the remaining terms;

L3(t) ≤
O(1)

ε2

∫ t

0

|ûx(s)|∞‖ρ̄(s)‖‖ ¯̄ρ(s)‖ds ≤

≤O(1)

ε2

∫ t

0

[
‖ρ̄(s)‖2

(s+ 1)ν
+
‖ ¯̄ρ(s)‖2

(s+ 1)ν

]
|ûx(s)|∞(s+ 1)νds ≤

≤O(1)
[
Fn(t)+Fn−1(t)

] ∫ t

0

[
λ|(û− ũ− w)x|2∞

ε2
+
ε2(s+1)2ν

λ
+

+O(δ)(s+1)ν−1

]
ds≤ [O(λ) +O(δ)] (t+ 1)ν

(
Fn(t) + Fn−1(t)

)
,

where we have used the condition (2.2.7).

L4(t) ≤
O(1)

ε2

∫ t

0

|ρ̂x(s)|∞‖ρ̄(s)‖‖¯̄u(s)‖ds ≤

≤O(1)

∫ t

0

[
λ‖¯̄u(s)‖2

ε2
+
|ρ̂x(s)|2∞‖ρ̄(s)‖2

λε2(s+ 1)ν
(s+ 1)ν

]
ds ≤

≤O(λ)Fn−1(t)(t+ 1)ν+O(1)
1

λ
Fn(t)

∫ t

0

[
|(ρ̂− ρ̃)x(s)|2∞(s+ 1)ν+

+ O(δ)(s+ 1)ν−1
]
ds ≤

≤ [O(λ) +O(δ)] (t+ 1)ν
(
Fn(t) + Fn−1(t)

)
.

The integrals L5(t) and L6(t) can be treated as above. Thus, by suitably
choosing δ and λ small, the proof is complete. �

We finally arrive to the convergence of the approximating sequence. Let
ν, ε and T be fixed in the usual way. Since (ρnε , u

n
ε ) is a Cauchy sequence in

the norm expressed by Fn, by interpolation we have

sup
0≤t≤T

{
1

(t+ 1)ν

[
1

ε2
‖(ρε(n) − ρε(m))(t)‖2

H3θ + ‖(uε(n) − uε(m))(t)‖2
H3θ+

+
1

ε2

∫ t

0

‖(uε(n) − uε(m))(t)‖2
H3θds

]}
→ 0 as n,m→∞. (2.2.28)
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for any θ ∈ (0, 1). Thus, the approximating sequence (ρnε , u
n
ε ) converges in

the norm expressed by (2.2.28) to (ρ∗, u∗). By choosing θ ∈ (0, 1) big enough,
we obtain

(ρnε , u
n
ε ) → (ρ∗, u∗) in L∞([0, T ];H2(R)). (2.2.29)

Hence, we can identify the limit as the solution (ρε, uε) to the system (2.1.2)
and carry out the limit as n→∞ in the estimate (2.2.3), with H3θ in place
of H3, and the proof of the theorem (2.1.1) is complete.
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Chapter 3

A one dimensional model for
viscoelasticity

The present chapter is devoted to the study of the diffusive relaxation model
for viscoelasticity described in section 1.4. The next section 3.1 contains the
first rigorous justification of the relaxation scheme in theorem 3.1.1, which is
proved via standard symmetrization and compactness arguments. In section
3.2 we provide a rate of convergence in L2 norm. Finally, in section 3.3 we
prove a result concerning travelling waves for the model considered.

3.1 Global existence and singular convergen-

ce of H1 solutions

In this section we study the global existence of H1 solutions and the relax-
ation limit for the nonhomogeneous strictly hyperbolic system

ut − vx = 0

vt − zx = 0

ε2zt − µvx = −z + σ(u),

(3.1.1)

where (x, t) ∈ R×R+ are the independent variables, u, v and z take values in
R, µ is a positive constant, ε > 0 is the relaxation parameter and σ : R → R
is a smooth function. We rewrite the semilinear system (3.1.1) as follows

Wt +AεWx = Qε(W ), (3.1.2)

where

W =

uv
z

 Aε(W ) =

0 −1 0
0 0 −1
0 − µ

ε2
0

 Qε(W ) =
1

ε2

 0
0

−z + σ(u)

 .

39



We recall that, for system (3.1.2) with fixed ε and µ, a local existence re-
sult holds. More precisely, if the initial datum (u(·, 0), v(·, 0), z(·, 0)) be-
longs in L∞(R), then there exists a positive time T such that the solution
(u(t), v(t), z(t)) exists in L∞(R) for t ∈ [0, T ]. Since the matrix Aε is con-
stant, the solution to (3.1.1) is global in time once the following estimate is
verified

lim
t↑T ∗

[
‖u(·, t)‖L∞(R) + ‖v(·, t)‖L∞(R) + ‖z(·, t)‖L∞(R)

]
< +∞, (3.1.3)

where [0, T ∗] is the maximal time interval of existence of the solution. The
estimate (3.1.3) and the global existence of solutions to (3.1.1) for ε > 0 fixed
are well known, provided that the following globally Lipschitz condition on
the function σ holds

sup
u∈R

|σ′(u)| < +∞. (3.1.4)

However, we shall obtain this a priori L∞ bound, which guarantees the global
existence of solutions, as a consequence of the following theorem, which ac-
tually provides a stronger estimate, namely an estimate for the H1–norm
of the solutions, with initial datum (u(·, 0), v(·, 0), z(·, 0)) ∈ H1(R), uniform
with respect to the parameter ε.

Theorem 3.1.1 Let (u, v, z)(·, t) be the solution to the system (3.1.1) with
initial data (u, v, z)(·, 0) ∈ H1(R). Suppose that the function σ satisfies con-
dition (3.1.4). Then, the following inequality holds for any t > 0

ε2‖z(t)‖2
H1(R) + ‖u(t)‖2

H1(R) + ‖v(t)‖2
H1(R) +

∫ t

0

‖z(s)‖2
H1(R)ds

≤
[
ε2‖z(0)‖2

H1(R) + ‖u(0)‖2
H1(R) + ‖v(0)‖2

H1(R)

]
eCt, (3.1.5)

where C is a positive constant depending only on sup
u∈R

|σ′(u)|.

Proof. We prove estimate (3.1.5) by means of energy estimates. To this
aim, we employ that system (3.1.1) admits a symmetrizer, which is positive
definite for small values of ε, namely

Bε =

 µ
ε2

0 −1
0 µ

ε2
− 1 0

−1 0 1

 .

Hence, we define the energy

Eε (W ) = (BεW,W )L2(R) =

∫ +∞

−∞

[ µ
ε2
u2 − 2uz +

( µ
ε2
− 1
)
v2 + z2

]
dx
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and we observe that, for ε2 ≤ µ
3
,

Eε (W ) ≥ 1

2

∫ +∞

−∞

[ µ
ε2
u2 +

µ

ε2
v2 + z2

]
dx. (3.1.6)

Thus, (3.1.2) and integration by parts yields

d

dt
Eε (W (t)) = −2

∫ +∞

−∞
BεAεWxWdx+ 2

∫ +∞

−∞
BεQε (W )Wdx

= 2

∫ +∞

−∞
BεQε (W )Wdx.

After integration over the time interval [0, t], we get

Eε (W (t))− Eε (W (0)) = 2

∫ t

0

∫ +∞

−∞
BεQε (W (s))W (s)dxds =: I (W ) .

(3.1.7)
We now estimate the term I (W ) in (3.1.7) as follows

I (W ) =
2

ε2

∫ t

0

∫ +∞

−∞

[
zu− uσ(u)− z2 + zσ(u)

]
dxds

≤ − 1

ε2

∫ t

0

‖z(s)‖2
L2(R)ds+

3

ε2

∫ t

0

[
‖u(s)‖2

L2(R)

+

∫ +∞

−∞
|σ(u(x, s))|2dx

]
ds

≤ − 1

ε2

∫ t

0

‖z(s)‖2
L2(R)ds+

3

ε2

(
1 + sup

u
|σ′(u)|2

)∫ t

0

‖u(s)‖2
L2(R)ds,

if we assume, without loss of generality, σ(0) = 0. Thus, combining (3.1.7)
and (3.1.6) one has

ε2‖z(t)‖2
L2(R) + ‖u(t)‖2

L2(R) + ‖v(t)‖2
L2(R) +

∫ t

0

‖z(s)‖2
L2(R)ds

≤ C1

(
ε2‖z(0)‖2

L2(R) + ‖u(0)‖2
L2(R) + ‖v(0)‖2

L2(R)

)
+ C2

∫ t

0

‖u(s)‖2
L2(R)ds,

(3.1.8)

where C1 and C2 are fixed positive constant with C2 depending on σ′. We now
perform a similar estimate for the spatial derivative Wx. By differentiating
(3.1.2) with respect to x, we get

Wxt +AεWxx = Qε(W )x,
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Thus, proceeding as before, we get

Eε (Wx(t))− Eε (Wx(0)) = 2

∫ t

0

∫ +∞

−∞
BεQε (W (s))xWx(s)dxds =: J (Wx) .

(3.1.9)
We estimate the integral term J (Wx) as follows

J (Wx) =
2

ε2

∫ t

0

∫ +∞

−∞
BεQε (W )xWxdxds

=
2

ε2

∫ t

0

∫ +∞

−∞

[
−z2

x − σ′(u)u2
x + (σ′(u) + 1)uxzx

]
dxds

≤ − 1

2ε2

∫ t

0

‖zx(s)‖2
L2(R)ds+ C3

∫ t

0

‖ux(s)‖2
L2(R)ds, (3.1.10)

with C3 depending only on σ′, as in the previous estimate. From (3.1.6),
(3.1.9) and (3.1.10), we get

ε2‖zx(t)‖2
L2(R) + ‖ux(t)‖2

L2(R) + ‖vx(t)‖2
L2(R) +

∫ t

0

‖zx(s)‖2
L2(R)ds

≤ C4

(
ε2‖zx(0)‖2

L2(R) + ‖ux(0)‖2
L2(R) + ‖vx(0)‖2

L2(R)

)
+ C5

∫ t

0

‖ux(s)‖2
L2(R)ds, (3.1.11)

with C4 and C5 positive constants, C5 depending on σ′. Thus, from (3.1.8),
(3.1.11) and from the Gronwall Lemma, we recover the estimate (3.1.5) and
the proof is complete. �

The following estimates for the time derivatives of u, v and z are an
immediate consequence of (3.1.5)

‖ut(t)‖2
L2(R) +

∫ t

0

‖vt(s)‖2
L2(R)ds ≤ KeCt, (3.1.12)∫ t

0

‖εzt(s)‖2
L2(R)ds ≤ KeCt,

with K positive constant depending on the initial datum. In particular,
(3.1.5) and (3.1.12) imply that the solution (u, v, z) verifies u ∈ H1([0, T ]×R),
v ∈ H1([0, T ] × R) and εz ∈ H1([0, T ] × R). Hence, as a first consequence
of the above estimates, we have obtained the well known relation (3.1.3),
and thus the global existence of solutions to (3.1.1) in L∞, for ε > 0 fixed.
Moreover, since our estimates are uniform in ε, we can prove a first result of
convergence for our semilinear relaxation approximation.
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Corollary 3.1.2 Let (uε, vε, zε)(·, t) be the solution to the system (3.1.1)
with initial data (u, v, z)(·, 0) ∈ H1(R). Suppose that the function σ satisfies
condition (3.1.4). Then,

uε → u, strongly in Lploc([0, T ]× R), 2 ≤ p < +∞,

vε → v, strongly in Lploc([0, T ]× R), 2 ≤ p < +∞,

and (u, v) is the solution of{
ut − vx = 0

vt − σ(u)x = µvxx

with (u0, v0) as initial condition.

Proof. Since estimates (3.1.5) and (3.1.12) are uniform in ε, the family of
solutions {uε, vε, zε}ε>0 to system (3.1.1) satisfies the following properties,
for any T > 0,

{uε} uniformly bounded in H1([0, T ]× R), (3.1.13)

{vε} uniformly bounded in H1([0, T ]× R), (3.1.14)

{zε} uniformly bounded in L2([0, T ];H1(R)). (3.1.15)

Hence, from (3.1.13) and (3.1.14) we deduce that the sequence {uε} and {vε}
is compact in Lploc([0, T ] × R) for any 2 ≤ p < +∞. Therefore, as ε ↓ 0, we
obtain, passing if necessary to subsequences,

uε → u, vε → v, strongly in Lploc([0, T ]× R), 2 ≤ p < +∞.

Finally, by taking advantage of (3.1.15), we pass in the limit as ε ↓ 0 into
system (3.1.1) with initial datum (u0, v0, z0) ∈ H1(R), and we recover that
the limit functions u and v satisfy

ut − vx = 0

vt − σ(u)x = µvxx

u(·, 0) = u0

v(·, 0) = v0

(3.1.16)

in distributional sense.
Now, for any T > 0, the initial value problem (3.1.16) admits a unique

solution (u, v) ∈ L∞([0, T ], H1(R)) (see Appendix A). Therefore, all the
sequence {(uε, vε)} converges to (u, v) strongly in Lploc, for any 2 ≤ p < +∞
and the proof is complete. �
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3.2 Rate of convergence in L2 norm

In the previous section we proved the strong convergence of H1 solutions
of the semilinear relaxation approximation (3.1.1) toward the solutions of
the limit (3.1.16) via compactness arguments. Here, we shall prove such
convergence by showing directly the L2 norm of the difference between the
approximating and the limit solutions tends to zero as ε ↓ 0, with a poly-
nomial rate of convergence w.r.t. ε. To this aim, let {(uε, vε)}ε>0 be any
solution of 

uεt − vεx = 0

vεt − zεx = 0

ε2zεt − µvεx = −zε + σ(uε),

(3.2.1)

and (u, v) be the solution of the hyperbolic–parabolic system (3.1.16) with
initial data in H2(R). We assume the initial data for the hyperbolic system
(3.2.1) to be “well–prepared” in the following sense: we require (uε, vε, zε) |t=0

to converge in L2 to (u, v, z) |t=0 , where z is determined by the relation

z = σ(u) + µvx. (3.2.2)

Let us first denote, for fixed ε > 0,

u = uε − u, v = vε − v, z = zε − z,

where z is given by (3.2.2). The vector (u, v, z) satisfies the system of equa-
tions 

ut − vx = 0

vt − zx = 0

zt − µ
ε2
vx = −zt − 1

ε2

[
z − (σ(u+ u)− σ(u))

]
.

(3.2.3)

Again, we use the vectorial notation

W =

uv
z

 Aε(W ) =

0 −1 0
0 0 −1
0 − µ

ε2
0



Pε(W,u, z) =
1

ε2

 0
0

−zt − 1
ε2

[
z − (σ(u+ u)− σ(u))

]
 .

Hence, system (3.2.3) becomes

W t −AεW x = Pε(W,u, z). (3.2.4)

We state the convergence result in following theorem.
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Theorem 3.2.1 Let (u, v) be the solution of the parabolic system (3.1.16)
with initial data u0, v0 ∈ H2(R). For fixed ε > 0, let (uε, vε, zε) be any
solution of the hyperbolic system (3.2.1) with initial data (uε0, v

ε
0, z

ε
0) satisfying

the condition

‖uε0 − u0‖L2(R) + ‖vε0 − v0‖L2(R) + ε‖zε0 − z0‖L2(R) ≤ ω(ε), as ε→ 0, (3.2.5)

for some continuous function ω such that ω(0) = 0, with z0 given by

z0 = σ(u0)− µv0,x.

Moreover, let the function σ satisfies condition (3.1.4). Then, for any fixed
t > 0, the following estimate holds

ε2‖zε(t)− z(t)‖2
L2(R) + ‖uε(t)− u(t)‖2

L2(R) + ‖vε(t)− v(t)‖2
L2(R)

+

∫ t

0

‖zε(s)− z(s)‖2
L2(R)ds ≤ CeCσt

(
ω(ε)2 + ε4C0

)
, (3.2.6)

for some positive constants C, C0, Cσ, with C0 depending on (u0, v0) and on
t, and Cσ depending on σ.

Proof. We prove (3.2.6) by means of the same energy method as in the
proof of Theorem 3.1.1. We employ once again the symmetrizer

Bε =

 µ
ε2

0 −1
0 µ

ε2
− 1 0

−1 0 1

 .

We apply Bε to system (3.2.3). Therefore, we end up with the same energy
of the previous section

Eε
(
W
)

=
(
BεW,W

)
L2(R)

.

We have, as in the proof of Theorem 3.1.1, for small ε,

Eε
(
W
)
≥ 1

2

∫ +∞

−∞

[ µ
ε2
u2 +

µ

ε2
v2 + z2

]
dx. (3.2.7)

Then, integration by parts yields

d

dt
Eε
(
W (t)

)
= 2

∫ +∞

−∞
BεPε

(
W (t)

)
W (t)dx.
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After integration over the time interval [0, t], we get

Eε
(
W (t)

)
− Eε

(
W (0)

)
= 2

∫ t

0

∫ +∞

−∞
BεPε

(
W (s)

)
W (s)dxds =: H

(
W
)
.

(3.2.8)
We estimate the integral term H

(
W
)

as follows

H
(
W
)

= 2

∫ t

0

∫ +∞

−∞
ztudxds− 2

∫ t

0

∫ +∞

−∞
ztzdxds+

∫ t

0

∫ +∞

−∞
z udxds

− 2

ε2

∫ t

0

∫ +∞

−∞
z2dxds− 2

ε2

∫ t

0

∫ +∞

−∞
[σ(u+ u)− σ(u)]u dxds

+
2

ε2

∫ t

0

∫ +∞

−∞
[σ(u+ u)− σ(u)] zdxds

≤ ε2

∫ t

0

∫ +∞

−∞
z2
t dxds+

1

ε2

∫ t

0

∫ +∞

−∞
u2dxds+ 4ε2

∫ t

0

∫ +∞

−∞
z2
t dxds

+
1

4ε2

∫ t

0

∫ +∞

−∞
z2dxds+

1

ε2

∫ t

0

∫ +∞

−∞
u2dxds+

1

4ε2

∫ t

0

∫ +∞

−∞
z2dxds

− 2

ε2

∫ t

0

∫ +∞

−∞
z2dxds+

2 sup |σ′|
ε2

∫ t

0

∫ +∞

−∞
u2dxds

+
1

4ε2

∫ t

0

∫ +∞

−∞
z2dxds+

4 sup |σ′|
ε2

∫ t

0

∫ +∞

−∞
u2dxds.

Hence, since sup |σ′| <∞ and in view of (3.2.7), we obtain

ε2‖z(t)‖2
L2(R) + ‖u(t)‖2

L2(R) + ‖v(t)‖2
L2(R) +

∫ t

0

‖z(s)‖2
L2(R)ds

≤ C

[
ε2‖z(0)‖2

L2(R) + ‖u(0)‖2
L2(R) + ‖v(0)‖2

L2(R)

+Cσ

∫ t

0

‖u(s)‖2
L2(R)ds+ ε4

∫ t

0

‖zt(s)‖2
L2(R)ds

]
,

for fixed constants C, Cσ > 0 with Cσ depending on σ′. Therefore, Gronwall
inequality implies

ε2‖z(t)‖2
L2(R) + ‖u(t)‖2

L2(R) + ‖v(t)‖2
L2(R) +

∫ t

0

‖z(s)‖2
L2(R)ds

≤ C

[
ε2‖z(0)‖2

L2(R) + ‖u(0)‖2
L2(R) + ‖v(0)‖2

L2(R) + ε4

∫ t

0

‖zt(s)‖2
L2(R)ds

]
eCσt.

We then employ the estimate for the term zt in Appendix A and thus the
proof is complete. �
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3.3 Travelling waves

In the previous sections we studied the convergence as ε ↓ 0 in Lp norms of
solutions to the hyperbolic system

ut − vx = 0

vt − zx = 0

ε2zt − µvx = −z + σ(u).

(3.3.1)

In this section we analyze the behavior as ε ↓ 0 of travelling–wave–type
solutions to the same model and we obtain a pointwise convergence of such
solutions. To this aim, we restrict ourselves to the case σ′ > 0, that is when
the system {

ut − vx = 0

vt − σ(u)x = 0
(3.3.2)

is strictly hyperbolic, but we do not require the function σ to satisfy the
globally Lipschitz condition (3.1.4).

Let us consider the viscous profiles

(U(ξ), V (ξ)) , ξ = x− st

for the model {
ut − vx = 0

vt − σ(u)x = µvxx,
(3.3.3)

with given condition at ±∞. These limiting conditions and the speed s of our
profile are chosen in agreement with the Rankine–Hugoniot conditions and
the Lax conditions of the system (3.3.2). Then, we show that these solutions
are limits, as ε ↓ 0, of travelling–wave–type solutions to (3.3.1) with the same
limiting conditions. More precisely, we consider solutions to (3.3.3) of the
form

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = x− st, s ∈ R,

with limiting conditions

U(±∞) = u±, V (±∞) = v±. (3.3.4)

Thus, U and V satisfy the following second–order system of ordinary differ-
ential equations {

−sU ′ − V ′ = 0

−sV ′ − σ′(U)U ′ = µV ′′.
(3.3.5)
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Let us now establish the conditions at infinity. The Rankine–Hugoniot con-
ditions for the discontinuity ((u−, v−) ,(u+, v+) ,s) of system (3.3.2) are given
by

s(u+ − u−) = v− − v+

s(v+ − v+) = σ(u−)− σ(u+). (3.3.6)

The Lax conditions for the 1–shock for the same system are given by

−
√
σ′(u+) < s < −

√
σ′(u−). (3.3.7)

Thus, if the function σ is convex on the range of the profile of the variable
u, then we must require u− < u+ to get the existence of the corresponding
admissible shock profile. Conversely, if σ is concave, then u− > u+. Similarly,
in the case of a 2–shock, Lax conditions read√

σ′(u+) < s <
√
σ′(u−) (3.3.8)

and we have u− > u+ whenever σ is convex, u− < u+ whenever σ is concave.
We observe that in the cases of physical interest, the function σ may change
its convexity. A typical example is given by the function u + αu3. In this
case, for positive (negative, respectively) values of u− and u+, we must choose
u− < u+ (u− > u+, respectively) in case of 1–shock, u− > u+ (u− < u+,
respectively) in case of 2–shock. In order to treat the general case, one has
to consider the Oleinik chord condition, besides the Lax conditions quoted
above. For the sake of clearness, we treat the case of convex σ with u− < u+

(1–shock), but the remaining cases can be handled similarly. Thus, (3.3.7)
implies in particular s < 0, which combined with (3.3.6) gives v− < v+.
The existence of profiles U and V satisfying (3.3.5), with infinity data (3.3.4)
obeying the conditions established above, is equivalent to the global existence
of solutions to the ordinary differential equation

V ′ = −sV + c2 − σ

(
1

s
(c1 − V )

)
, (3.3.9)

with the profile of the variable u given by

U =
1

s
(c1 − V ),

where we have set

c1 = su+ + v+ = su− + v−

c2 = sv+ + σ(u+) = sv− + σ(u−). (3.3.10)
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Thus, the global existence of profiles U and V is a consequence of the strict
monotonicity of V , which comes directly from the Rankine–Hugoniot condi-
tions (3.3.6) and the Lax conditions (3.3.7) (see, for instance, [Ser99]). In
particular, both functions U and V are strictly increasing. Moreover, due to
the monotonicity of the profiles, the following estimates hold(

u+ − U(ξ)
)
≤
(
u+ − U(0)

)
e−Cξ for ξ > 0(

U(ξ)− u−
)
≤
(
U(0)− u−

)
eCξ for ξ < 0,

where C is a strictly positive constant depending only on u−, u+, U(0), µ, s,
for ε� 1. The above estimate implies also∫ 0

−∞

[
U(ξ)− u−

]
dξ +

∫ +∞

0

[
u+ − U(ξ)

]
dξ < +∞.

Similar estimates hold for the variable V as well. The profile (U, V ) is not
unique, since if (U, V )(ξ) is a solution to (3.3.4)–(3.3.5), so is (U, V )(ξ + k)
for any constant k ∈ R. We will prove that any of these solutions is the limit,
as the relaxation parameter vanishes, of a family of travelling wave profiles
which solve (3.3.1).

Let us then consider travelling wave type solutions to the hyperbolic
system (3.3.1) where ε > 0 is fixed, namely

uε(x, t) = U ε(x− st), vε(x, t) = V ε(x− st), zε(x, t) = Zε(x− st), s ∈ R.

Hence, the profiles of U ε, V ε and Zε satisfy the following system
−s(U ε)′ − (V ε)′ = 0

−s(V ε)′ − (Zε)′ = 0

−s(Zε)′ − µ
ε2

(V ε)′ = − 1
ε2

(Zε − σ(U ε)) .

(3.3.11)

The limiting conditions are given by

U ε(±∞) = u±, V ε(±∞) = v±, Zε(±∞) = σ(u±). (3.3.12)

As in the parabolic case, we require the end states (u±, v±) and the velocity
of propagation s of the profile (U ε, V ε, Zε) satisfies the Rankine–Hugoniot
conditions (3.3.6) and the Lax condition for the 1–shock (3.3.7). The global
well posedness of system (3.3.11) with limiting conditions (3.3.12) is equiv-
alent to the global existence of solutions to the single first order differential
equation (

µ− ε2s2
)
(Zε)′ = −s (Zε − σ (U ε)) , (3.3.13)
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where U ε and V ε are given by

U ε = u− +
1

s2

(
Zε − σ

(
u−
))

V ε = v− − 1

s

(
Zε − σ

(
u−
))
.

Again, the Rankine–Hugoniot conditions (3.3.6) and the Lax condition (3.3.7),
for ε � 1, imply that Zε is strictly increasing. This yields to the global ex-
istence of the profile Zε we are looking for. As in the parabolic case, if
(U ε, V ε, Zε) (ξ) is a solution to (3.3.11), so is (U ε, V ε, Zε) (ξ + k), for any
constant k. Again, the monotonicity of the solutions also provide the esti-
mates (

u+ − U ε(ξ)
)
≤
(
u+ − U ε(0)

)
e−Cξ for ξ > 0(

U ε(ξ)− u−
)
≤
(
U ε(0)− u−

)
eCξ for ξ < 0,

together with the integral estimate∫ 0

−∞

[
U ε(ξ)− u−

]
dξ +

∫ +∞

0

[
u+ − U ε(ξ)

]
dξ < +∞. (3.3.14)

We refer to [YZ97] for a more general result of existence of relaxation profiles
for a hyperbolic system of conservation laws.

Our next purpose is to investigate the behavior of the profiles U ε and V ε

as ε ↓ 0. Our result is contained in the following theorem, which concerns
the pointwise convergence of the profiles U ε, V ε as ε ↓ 0.

Theorem 3.3.1 Let ε > 0. Let (U, V ) (ξ) be a solution to (3.3.5) with the
limiting conditions (3.3.4). Let (U ε, V ε, Zε) (ξ) be the unique solution to
(3.3.11) with limiting conditions (3.3.12) and such that

U ε(0) = U(0) (3.3.15)

for any ε > 0. Then, as ε ↓ 0,

U ε(ξ) −→ U(ξ) (3.3.16)

V ε(ξ) −→ V (ξ), (3.3.17)

uniformly on compact intervals.

Proof. Since (3.3.17) is a straightforward consequence of (3.3.16) and of
the relation

U ε − U = −1

s
(V ε − V ) ,
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it suffices to prove (3.3.16). Writing (3.3.13) in terms of U ε gives

(U ε)′ =
1

s(µ− ε2s2)

[
s2
(
u+ − U ε

)
−
(
σ
(
u+
)
− σ (U ε)

)]
. (3.3.18)

The equation for the viscous profile U is given by

U ′ =
1

sµ

[
s2
(
u+ − U

)
−
(
σ
(
u+
)
− σ (U)

)]
. (3.3.19)

We now integrate both (3.3.18) and (3.3.19) in the interval (0, ξ), for ξ > 0.
Then, by employing the condition (3.3.15), we obtain the following integral
equation for the difference U ε − U

U ε(ξ)− U(ξ) =

[
1

s(µ− ε2s2)
− 1

sµ

] ∫ ξ

0

[
s2
(
u+ − U ε(η)

)
−
(
σ(u+)− σ (U ε(η))

)]
dη +

1

sµ

∫ ξ

0

[
s2 (U ε(η)− U(η))

− (σ (U ε(η))− σ (U(η)))] dη =: I1 + I2.

Now, since the quantity [
1

sµ
− 1

s(µ− ε2s2)

]
is an O (ε2), from the continuity of σ′ and from the estimate

u− < U ε(ξ) < u+,

we obtain

|I1| ≤ O
(
ε2
) ∫ +∞

0

(
u+ − U ε(η)

)
dη.

Thus, from the integral estimate (3.3.14) we get I1 = O (ε2). Similarly, we
obtain

|I2| ≤ O(1)

∫ ξ

0

|U ε(η)− U(η)| dη.

Hence, we apply Gronwall Lemma to obtain the pointwise estimate

|U ε(ξ)− U(ξ)| ≤ C1ε
2eC2ξ,

where C1 is a positive constant depending on the limiting conditions, on
the values of U ε and U at ξ = 0 and on the function σ. By means of the
relations (3.3.10) we can write the equations (3.3.18) and (3.3.19) in terms
of u−. Hence, by integrating on (ξ, 0) for ξ < 0 and by performing the same
calculations of the previous case, we obtain a similar estimate for negative ξ
and the proof is complete. �
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Remark 3.3.2 The condition

U ε(0) = U(0), (3.3.20)

is to be interpreted as follows. As it is known, in the case of hyperbolic–
hyperbolic relaxation (namely in case of ε2µ instead of µ in the third equation
of system (3.3.1)), the relaxation profiles are of the form

U ε(x− st) = Ũ

(
x− st

ε2

)
, (3.3.21)

where Ũ solves the same system with ε = 1. Hence, the mass condition∫ 0

−∞

[
U ε(ξ + k)− u−

]
dξ +

∫ +∞

0

[
u+ − U ε(ξ + k)

]
dξ = 0,

which select a unique profile among those admissible (here U is the shock
profile of the problem with ε = 0), is automatically satisfied for any ε > 0,

once we require the same condition to be satisfied by Ũ instead of U ε. In
the present case we cannot express the travelling wave profiles in the form
(3.3.21) for a fixed Ũ . Hence, we must require (3.3.20) for any ε > 0.
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Chapter 4

The Hamer model for radiating
gases

This chapter describes the well–posedness theory and the relaxation limits
for the radiating gas model presented in the section 1.5 of the introduction.
In the following section we describe the global existence theory in L1 ∩ L∞.
We also provide an alternative way of determining the well–posedness via
the theory of nonlinear semigroups in the subsection 4.1.1. In section 4.2 we
analyze both the hyperbolic to hyperbolic and the hyperbolic to parabolic
relaxations for this model.

4.1 Global existence of solutions

In this section, we study the existence and uniqueness of weak, entropy so-
lutions to the Cauchy problem for the hyperbolic-elliptic coupled system{

ut + div f(u) = − div q

−∇ div q + q = −∇u
(4.1.1)

where (x, t) ∈ Rd×R+ are the independent variables, u and q are dependent
variables with values in R and Rd respectively and f is a smooth mapping
from R into Rd, which we assume, without loss of generality, to satisfy f(0) =
f ′(0) = 0. We first suppose that the initial datum to the variable u is given
by a function u0 in the space L∞(Rd)∩L1(Rd). The case of L∞ data will be
covered later on. We start by rewriting the system (4.1.1) as a scalar balance
law of the form

ut + div f(u) = −u+K ∗ u, (4.1.2)
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where the kernel K is given by the Bessel potential

K(x) =
1

(4π)d/2

∫ +∞

0

e−s−
|x|2
4s

sd/2
ds.

As it is well-known, a bounded measurable function u is a weak solution to
(4.1.2) if it verifies the equation in distributional sense and the test functions
are smooth functions with compact support, intersecting the line {t = 0}. A
weak solution is said to be entropic if, in addition, it verifies the inequality∫ T

0

∫
Rd

[η(u)ψt + q(u) · ∇ψ]dxdt+

∫
Rd

η(u0(x))ψ(x, 0)dx

≥
∫ T

0

∫
Rd

η′(u)[u−K ∗ u]ψdxdt, (4.1.3)

for any convex entropy η with flux q : R → Rd given by

qα(u) =

∫ u

f ′α(s)η
′(s)ds (4.1.4)

and for any nonnegative Lipschitz continuous test function ψ on Rd × [0, T ]
with compact support, intersecting the line {t = 0}.

In order to show the existence of weak entropy solutions to the equation
(4.1.2) with initial datum u0 ∈ L∞(Rd) ∩ L1(Rd), we apply the method of
vanishing viscosity, namely, we study the behavior of the solutions to the
parabolic approximation

ut + div f(u) = −u+K ∗ u+ µ∆u (4.1.5)

as µ ↓ 0. We state the following theorem of local existence and uniqueness
of solutions to the equation (4.1.5) with initial datum in L1(Rd) ∩ L∞(Rd).
The proof of this theorem is contained in the Appendix B.

Theorem 4.1.1 Let the parameter µ > 0 be fixed. Let u0 ∈ L∞(Rd) ∩
L1(Rd). Then, there exist a positive time T0 > 0 (depending on µ, u0 and f)
such that the equation (4.1.5) has an unique solution u ∈ C([0, T0];L

1(Rd)∩
L∞(Rd)) with u0 as initial datum. Moreover, the spatial derivatives of any
order of u are also in L∞(Rd) ∩ L1(Rd).

We start the analysis of the limit as µ ↓ 0 by proving the following
theorem.
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Theorem 4.1.2 Let u and ū be solutions to (4.1.5) with initial data u0,
ū0 ∈ L1(Rd) ∩ L∞(Rd). Then, for any t > 0,∫

Rd

(u(x, t)− ū(x, t))+dx ≤
∫

Rd

(u0(x)− ū0(x))
+dx; (4.1.6)

‖u(·, t)− ū(·, t)‖L1(Rd) ≤ ‖u0(·)− ū0(·)‖L1(Rd). (4.1.7)

Moreover, if u0(x) ≤ ū0(x) a.e. on Rd, then u(x, t) ≤ ū(x, t) a.e. on Rd ×
[0, T ]. In addition, the range of both u and ū is contained in [−a, a], where

a = max{‖u0‖L∞(Rd), ‖ū0‖L∞(Rd)}.

Proof. Let 0 < T < T0, where T0 is the time of existence of the solution
given by the Theorem 4.1.1. We prove the relation (4.1.6) for any t ∈ [0, T ].
For ε > 0, we define

ηε(ξ) =


0 if −∞ < ξ ≤ 0
ξ2

4ε
if 0 < ξ ≤ 2ε

ξ − ε if 2ε < ξ < +∞.

We multiply the equation for (u− ū) by η′ε(u− ū) and obtain

ηε(u− ū)t + div[η′ε(u− ū)(f(u)− f(ū))]− η′′ε (u− ū)(f(u)− f(ū)) · ∇(u− ū)

= µ∆ηε(u− ū)− µη′′ε (u− ū) |∇(u− ū)|2 − η′ε(u− ū)[u− ū−K ∗ (u− ū)].
(4.1.8)

Integrating (4.1.8) in x and t, and since η′′ε > 0, we have the following in-
equality∫

Rd

ηε(u(x, t)− ū(x, t))dx ≤
∫

Rd

ηε(u0(x)− ū0(x))dx

+

∫ t

0

∫
Rd

η′′ε (u− ū)(f(u)− f(ū)) · ∇(u− ū)dxds

−
∫ t

0

∫
Rd

η′ε[u− ū−K ∗ (u− ū)]dxds. (4.1.9)

Now, as ε ↓ 0, we have, pointwise,

ηε(u(x, t)− ū(x, t)) → (u(x, t)− ū(x, t))+

η′ε(u(x, t)− ū(x, t)) → sgn(u(x, t)− ū(x, t))+

η′′ε (u(x, t)− ū(x, t))(f(u)− f(ū)) → 0.
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Now, since f is a smooth mapping (in particular, f is Lipschitz continuous),
the quantity

η′′ε (u(x, t)− ū(x, t))|f(u)− f(ū)|
is bounded uniformly in ε. Therefore, letting ε ↓ 0 in (4.1.9), we obtain∫

Rd

(u− ū)+dx ≤
∫

Rd

(u0 − ū0)
+dx

−
∫ t

0

∫
Rd

[(u− ū)+ − sgn(u− ū)+K ∗ (u− ū)]dxds. (4.1.10)

We now estimate the convolution term in the above relation as follows∫ t

0

∫
Rd

sgn(u− ū)+K ∗ (u− ū)dxdτ

=

∫ t

0

∫
Rd

sgn(u− ū)+

∫
Rd

K(x− y)(u− ū)(y, τ)dydxdτ

≤
∫ t

0

∫
Rd

∫
Rd

K(x− y)(u− ū)+(y, τ)dydxdτ

=

∫ t

0

∫
Rd

(u− ū)+(y, s)dydτ,

where we have used the property of the convolution kernel∫
Rd

K(z)dz = 1.

Thus, the integral inequality (4.1.10) reduces to∫
Rd

(u− ū)+dx ≤
∫

Rd

(u0 − ū0)
+dx

which is exactly (4.1.6). Interchanging the roles of u and ū we derive a similar
inequality which added to (4.1.6) yields (4.1.7). The monotonicity property
stated in the theorem is again a consequence of (4.1.6). To prove the last
assertion of the theorem, namely the bound of the solutions in L∞(Rd), we
perform an uniform control of the Lp norms of the solutions. For ε > 0, let
θε(ξ) be a convex regularization of the function |ξ|p, 1 < p <∞. We multiply
the equation (4.1.5) by θ′ε(u) to obtain

θε(u)t + div (F (u)) = −θ′ε(u) (u−K ∗ u) + µ∆ (θε(u))− µθ′′ε (u) |∇u|
2 ,

where

Fj(ξ) =

∫ ξ

θ′ε(s)f
′
j(s)ds,

56



for j = 1, ..., d. Integrating in x and t and letting ε ↓ 0 we obtain∫
Rd

|u|pdx ≤
∫

Rd

|u0|pdx

−
∫ t

0

∫
Rd

p|u|pdxds+

∫ t

0

∫
Rd

p|u|p−1|K ∗ u|dxds. (4.1.11)

We estimate the convolution integral as follows∫
Rd

|u|p−1|K ∗ u|dx ≤ ‖u‖p−1
Lp ‖K ∗ u‖Lp ≤ ‖u‖p−1

Lp ‖u‖Lp‖K‖L1 = ‖u‖pLp ,

where again we used the identity
∫

Rd K(x)dx = 1. Hence, (4.1.11) becomes

‖u‖Lp ≤ ‖u0‖Lp ≤ ‖u0‖
p−1

p

L∞ ‖u0‖
1
p

L1 .

Thus we estimate the L∞ norm of u as follows

‖u‖L∞ ≤ lim sup
p→+∞

‖u‖Lp ≤ lim
p→+∞

‖u0‖
p−1

p

L∞ ‖u0‖
1
p

L1 = ‖u0‖L∞

and the last assertion of the theorem follows. Finally, both this last L∞

estimate and the L1 estimate coming from (4.1.7) imply in particular that
the local-in-time solution provided by the Theorem 4.1.1 is indeed global and
all the estimate we have proved are satisfied for any t > 0. �

In the following lemma we provide the estimate (uniformly with respect
to µ) of the L1-modulus of continuity of the solution uµ to (4.1.5) with
u0 ∈ L∞(Rd) ∩ L1(Rd).

Lemma 4.1.3 Let uµ be the solution to (4.1.5) with u0 ∈ L1(Rd) ∩ L∞(Rd)
as initial datum. In particular∫

Rd

|u0(x+ h)− u0(x)|dx ≤ ω(|h|), for any h ∈ Rd, (4.1.12)

for some nondecreasing function ω on [0,+∞) with ω(r) ↓ 0 as r ↓ 0. Then
there exists a constant C, depending on ‖u0‖L∞(Rd) and on the mapping f
such that, for any t > 0,∫

Rd

|uµ(x+ h, t)− uµ(x, t)|dx ≤ ω(|h|), for any h ∈ Rd (4.1.13)

and∫
Rd

|uµ(x, t+k)−uµ(x, t)|dx ≤ C(k+k
2
3 +µk

1
3 )‖u0‖L1(Rd)+4ω(k

1
3 ), (4.1.14)

for any k > 0.
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Proof. Fix t > 0. Applying (4.1.7) with ū(x, t) = u(x + h, t), we obtain
(4.1.13).

Now, let k > 0 be fixed and let φ be a smooth, bounded function on
Rd. Then, multiplying the equation (4.1.5) by φ and integrating by parts the
resulting equation on the domain Rd × (t, t+ k), we get∫

Rd

φ(x)[u(x, t+ k)− u(x)]dx

=

∫ t+k

t

∫
Rd

[∇φ(x) · f(u(x, τ)) + µ∆φ(x)u(x, τ)

+ φ(x)(−u(x, τ) + (K ∗ u)(x, τ))]dxdτ. (4.1.15)

We now set φ to be a suitable regularization of the function sgn[u(x, t +
k)−u(x, t)], in order to get the desired estimate (4.1.14). More precisely, we
choose

φ(x) =

∫
Rd

k−
d
3

d∏
j=1

ρ

(
xj − ξj

k
1
3

)
sgn(u(ξ, t+ k)− u(ξ, t))dξ,

where ρ is a smooth, nonnegative function on R with support contained in
[−1, 1] and total mass one. Since |φ| ≤ 1, |∇φ| ≤ c1k

− 1
3 and |∆φ| ≤ c2k

− 2
3 ,

from (4.1.15) we obtain∫
Rd

φ(x)(u(x, t+ k)− u(x, t))dx ≤ C(k + k
2
3 + µk

1
3 )‖u0‖L1(Rd), (4.1.16)

where the constant C depends on ‖u0‖L∞ and on the Lipschitz constant of
the mapping f . Then, we observe that

|u(x, t+ k)− u(x, t)| − φ(x)(u(x, t+ k)− u(x, t))

=

∫
Rd

k−
d
3

d∏
j=1

ρ

(
xj − ξj

k
1
3

)
[|u(x, t+ k)− u(x, t)|

− (u(x, t+ k)− u(x, t)) sgn(u(ξ, t+ k)− u(ξ, t))]dξ

≤ 2

∫
Rd

k−
d
3

d∏
j=1

ρ

(
xj − ξj

k
1
3

)
|u(x, t+ k)− u(x, t)− (u(ξ, t+ k)− u(ξ, t))|dξ.

Therefore, after integration on Rd and from (4.1.13), we obtain the inequality∫
Rd

[|u(x, t+ k)− u(x, t)| − φ(x)(u(x, t+ k)− u(x, t)] dx ≤ 4ω(k
1
3 )
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which, combined with (4.1.16), implies (4.1.14). �

By virtue of Lemma 4.1.3, the family {uµ} is compact in L1
loc(Rd×[0,∞)),

and then, passing if necessary to a subsequence, it converges strongly (and
boundedly almost everywhere in Rd× [0,∞), from Theorem 4.1.2) to a func-
tion u ∈ L1(Rd × [0, T ]) ∩ L∞(Rd × [0, T ]). Moreover, due to the strong
convergence of the sequence and due to its boundedness in L∞, it is easy to
verify that the limit function u is an entropy solution to (4.1.2) with u0 as
initial datum. Hence, the following theorem holds.

Theorem 4.1.4 Let uµ be the solution to (4.1.5) with u0 ∈ L1(Rd)∩L∞(Rd)
as initial datum. Then, as µ ↓ 0 (passing if necessary to a subsequence), for
any T > 0,

uµ −→ u, strongly in Lploc(R
d × [0, T ]), p < +∞,

and u ∈ L1(Rd × [0, T ]) ∩ L∞(Rd × [0, T ]) is an entropy solution to (4.1.2)
with u0 as initial datum.

We now pass to the study of the uniqueness of the weak, entropy solutions
to (4.1.2) with initial datum u0 ∈ L1(Rd)∩L∞(Rd). As in the homogeneous
case (see [Kru70], [Daf00]), we have the following theorem.

Theorem 4.1.5 Let u, ū ∈ L∞([0, T ];L1(Rd) ∩ L∞(Rd)) be weak entropy
solutions to (4.1.2) with initial data u0, ū0 ∈ L1(Rd) ∩ L∞(Rd). Then, for
any t ∈ [0, T ],∫

Rd

(u(x, t)− ū(x, t))+dx ≤
∫

Rd

(u0(x)− ū0(x))
+dx; (4.1.17)

‖u(·, t)− ū(·, t)‖L1(Rd) ≤ ‖u0(·)− ū0(·)‖L1(Rd). (4.1.18)

Moreover, if u0(x) ≤ ū0(x) a.e. on Rd, then u(x, t) ≤ ū(x, t) a.e. on Rd ×
[0, T ]. In addition, the essential range of both u and ū is contained in [−a, a],
where

a = max{‖u0‖L∞(Rd), ‖ū0‖L∞(Rd)}.

Proof. We proceed by using the following relation, as in the homogeneous
case, ∫ T

0

∫
Rd

[ψt(u− ū)+ + sgn(u− ū)+∇ψ · (f(u)− f(ū))]dxdt

+

∫
Rd

ψ(x, 0)(u0 − ū0)
+dx

≥
∫ T

0

∫
Rd

ψ[(u− ū)+ − sgn(u− ū)+K ∗ (u− ū)]dxdt, (4.1.19)
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for any nonnegative Lipschitz continuous test function ψ on Rd× [0, T ] with
compact support, intersecting the line {t = 0}. The inequality (4.1.19) is
obtained by considering the entropy (u(x, t)−ū(y, s))+ either in the (x, t) and
in the (y, s) variables, and by choosing a suitable test function, converging
to δ functions centered at {y = x} and at {t = s} (see [Kru70] and [Daf00]).
Now, we employ (4.1.19) as follows. Let R > 0, t ∈ [0, T ) and ε > 0 be fixed,
and let us write (4.1.19) with the test function given by ψ(x, τ) = χ(x, τ)θ(τ),
where

χ(x, τ) =


1 if 0 ≤ τ < T, 0 ≤ |x| < R + s(t− τ)
1
ε
[R + s(t− τ)− |x|] + 1 if 0 ≤ τ < T,

R + s(t− τ) ≤ |x| < R + s(t− τ) + ε

0 if 0 ≤ τ < T, |x| ≥ R + s(t− τ) + ε,

θ(τ) =


1 if 0 ≤ τ < t
1
ε
(t− τ) + 1 if t ≤ τ < t+ ε,

0 if t+ ε ≤ τ < T,

and

s = max

{
|f(u)− f(ū)|
|u− ū|

}
, (4.1.20)

for u and ū in the range of solutions. Computing explicitly the derivatives
of ψ (see [Daf00]), we get

1

ε

∫ t+ε

t

∫
|x|<R+s(t−τ)

(u− ū)+dxdτ ≤
∫
|x|<R+st

(u0 − ū0)
+dx

−1

ε

∫ T

0

∫
R+s(t−τ)≤|x|<R+s(t−τ)+ε

[
s(u− ū)++ sgn(u− ū)+ x

|x|
· (f(u)−f(ū))

]
dxdτ

−
∫ T

0

∫
Rd

χ(x, τ)θ(τ)[(u− ū)+ − sgn(u− ū)+K ∗ (u− ū)]dxdτ +O(ε)

≤
∫
|x|<R+st

(u0 − ū0)
+dx− I(u− ū) +O(ε). (4.1.21)

The last inequality is due to the special choice of the constant s, which implies[
s(u− ū)+ +

x

|x|
· (f(u)− f(ū)) sgn(u− ū)+

]
> 0.

Moreover, we denoted the contribution due to the source term by I(u − ū).
The special form of the function ψ yields to

I(u− ū) =

∫ t

0

∫
|x|<R+s(t−τ)

[(u− ū)+ − sgn(u− ū)+K ∗ (u− ū)]dxdτ +O(ε).
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Hence, letting ε ↓ 0, we have∫
|x|<R

(u− ū)+dx ≤
∫
|x|<R+st

(u0 − ū0)
+dx−

∫ t

0

∫
|x|<R+s(t−τ)

(u− ū)+dxdτ

+

∫ t

0

∫
|x|<R+s(t−τ)

sgn(u− ū)+K ∗ (u− ū)]dxdτ. (4.1.22)

From the above inequality, with R→∞, we obtain∫
Rd

(u− ū)+dx ≤
∫

Rd

(u0 − ū0)
+dx−

∫ t

0

∫
Rd

(u− ū)+dxdτ

+

∫ t

0

∫
Rd

sgn(u− ū)+K ∗ (u− ū)]dxdτ. (4.1.23)

We estimate the convolution term as follows∫ t

0

∫
Rd

sgn(u− ū)+K ∗ (u− ū)]dxdτ

=

∫ t

0

∫
Rd

sgn(u− ū)+

∫
Rd

K(x− y)(u− ū)(y, τ)dydxdτ

≤
∫ t

0

∫
Rd

∫
Rd

K(x− y)(u− ū)+(y, τ)dydxdτ

=

∫ t

0

∫
Rd

(u− ū)+(y, τ)dydτ.

Hence, (4.1.17) is proved. As usual, interchanging the roles of u and ū we
obtain the L1-contraction property (4.1.18), while the monotonicity property
stated in the theorem is again a direct consequence of (4.1.17). Now, as in
the case of the viscous approximation, we perform the L∞ estimate by means
of a uniform bound for the Lp norms. As in the Theorem 4.1.2, we obtain∫

Rd

|u|pdx ≤
∫

Rd

|u0|pdx−
∫ t

0

∫
Rd

p|u|pdxds+

∫ t

0

∫
Rd

p|u|p−1|K ∗ u|dxds,

which yields to the desired L∞ estimate, and the proof is complete. �

As a consequence of the last theorem, we have the following

Corollary 4.1.6 There exists at most one entropy solution of (4.1.2), be-
longing in the space L∞([0, T ];L1(Rd) ∩ L∞(Rd)), having initial datum in
L1(Rd) ∩ L∞(Rd).
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Remark 4.1.7 As a consequence of the uniqueness result we have estab-
lished, we can conclude that any weak, entropy solution to (4.1.2) belonging
in the space L∞([0, T ];L1(Rd) ∩ L∞(Rd)) verifies the estimate∫

Rd

|u(x, t+ k)− u(x, t)|dx ≤ C(k + k
2
3 )‖u0‖L1(Rd) + 4ω(k

1
3 )

(where ω represents the L1–modulus of continuity of the initial datum),
which can be easily obtained by sending µ → 0 in (4.1.14). Thus, u ∈
C([0, T ];L1(Rd)) for any T > 0.

4.1.1 Well–posedness via nonlinear semigroups

In view of the previous results, the solutions to (4.1.2) may be viewed as the
trajectories of a contraction semigroup {S(t), t > 0} defined on the space
L∞(Rd) ∩ L1(Rd) endowed with the L1–norm. Our next aim is to show that
the existence and uniqueness of weak, entropy solutions to the balance law
(4.1.2), together with its contraction properties, can be obtained through the
theory of nonlinear contraction semigroups in Banach spaces ([Cra72, CL71]).

To construct the semigroup, we should realize (4.1.2) as an abstract dif-
ferential equation

du

dt
+ A(u) 3 0, (4.1.24)

for a suitably defined transformation A, with domain D(A) and range R(A)
both contained in L1(Rd). This operator may, in general, be multivalued,
even though, for u smooth one should expect A(u) = div f(u) + u −K ∗ u.
However, while performing the extension of A to those function that are
not smooth, we must consider the admissibility condition encoded in the
relation (4.1.3). This leads us to the following abstract definition of the

transformation A. We first define the simpler extension Â.

Definition 4.1.8 The (possibly multivalued) transformation (Â,D(Â)), with

domain D(Â) contained in L1(Rd), is determined by u ∈ D(Â) and w ∈ R(Â)
if u, w and f(u) are all in L1(Rd) and if the inequality∫

Rd

{∇ψ(x) · q(u(x)) + η′(u(x)) [−u(x) + (K ∗ u)(x)]ψ(x)

+ ψ(x)η′(u(x))w(x)} dx ≥ 0, (4.1.25)

holds for any convex entropy function η, such that η′ is bounded on R, with
associated entropy flux q : R → Rd determined as in (4.1.4) and for all non-
negative Lipschitz continuous test functions ψ on Rd with compact support.
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Applying (4.1.25) for the pairs (±u,±f(u)), we recover that

Â(u) = div f(u) + u−K ∗ u

in the sense of distributions for any u ∈ D(Â). In particular, A is a single–
valued transformation. Moreover, the relation (4.1.4) implies, for any u ∈
C1

0(Rd) and for any nonnegative test function ψ,∫
Rd

{∇ψ · q(u) + ψη′(u) div f(u)} dx = 0,

which yields∫
Rd

{
∇ψ · q(u) + ψη′(u)[Â(u)− u+K ∗ u]

}
dx = 0.

Hence, C1
0(Rd) ∈ D(Â) and, in particular, D(Â) is dense in L1(Rd). Thus,

we finally define the transformation A as follows

Definition 4.1.9 The (possibly multivalued) transformation (A,D(A)), with

domain D(A) contained in L1(Rd), is the graph closure of Â, i.e., u ∈ D(A)
and w ∈ A(u) iff (u,w) is the limit in L1(Rd) × L1(Rd) of a sequence

{(uk, wk)} such that uk ∈ D(Â) and wk ∈ Â(uk).

We now establish the properties of A which guarantee that it is the gen-
erator of a contraction semigroup.

Theorem 4.1.10 The transformation A is accretive, that is, if u and ū are
in D(A), then, for any λ > 0, w ∈ A(u), w̄ ∈ A(ū), the following inequality
holds

‖(u+ λw)− (ū+ λw̄)‖L1(Rd) ≥ ‖u− ū‖L1(Rd). (4.1.26)

Proof. It is sufficient to prove (4.1.26) for u, ū ∈ D(Â). Thus, let w = A(u),
w̄ = A(w̄). We proceed by considering the following relation, as in the
homogeneous case (see [Daf00]),∫

Rd

∫
Rd

sgn(u(x)− ū(x̄)) {(∇x +∇x̄)φ(x, x̄) · (f(u(x))− f(ū(x̄)))

−2 [u(x)− ū(x̄)− (K ∗ u)(x) + (K ∗ ū)(x̄)]φ(x, x̄)

+φ(x, x̄)[w(x)− w̄(x̄)]} dxdx̄ ≥ 0, (4.1.27)
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which holds for any test function φ ≥ 0 on Rd ×Rd. The inequality (4.1.27)
is obtained by writing the relation (4.1.25) for the entropy–entropy flux pairs

η(u; ū(x̄)) = |u− ū(x̄)|,
q(u; ū(x̄)) = sgn(u− ū(x̄))(f(u)− f(ū(x̄)))

and by interchanging the roles of u and ū. We now choose the test function
φ as follows, for fixed ε > 0,

φ(x, x̄) = ε−dψ

(
x+ x̄

2

) d∏
α=1

ρ

(
xα − x̄α

2ε

)
,

where ρ is a standard mollifier as in the proof of Lemma 4.1.3 and ψ is a
smooth function on Rd such that ψ(x) = 1 for |x| < R, and ψ(x) = 0 for
|x| > R + 1. Since∫

Rd

∫
Rd

[u(x)− ū(x̄)− (K ∗ u)(x) + (K ∗ ū)(x̄)] dxdx̄ ≥ 0,

by explicitly computing the derivatives of φ, by letting ε ↓ 0 and then by
sending R→∞, we obtain∫

Rd

sgn(u(x)− ū(x))[w(x)− w̄(x)]dx ≥ 0.

Now, let λ > 0. From the last inequality we recover

‖(u+ λw)− (ū+ λw̄)‖L1(Rd)

≥
∫

Rd

sgn(u(x)− ū(x)){u(x)− ū(x) + λ[w(x)− w̄(x)]}dx

≥
∫
Rd

sgn(u(x)− ū(x))[u(x)− ū(x)]dx = ‖u− ū‖L1(Rd).

The proof is complete. �

Theorem 4.1.11 The transformation A is maximal, that is

R(I + λA) = L1(Rd), for any λ > 0.

Proof. It will suffice to show that R(I + λA) is dense in L1(Rd); indeed, we
will prove L1(Rd) ∩ L∞(Rd) ⊂ R(I + λA). Let g ∈ L1(Rd) ∩ L∞(Rd). We

seek solutions u ∈ D(Â) of the equation

u+ λÂ(u) = g (4.1.28)
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We construct solutions to this equation as the µ ↓ 0 limit of the elliptic
equations

u(x) + λ {div f(u(x)) + u(x)− (K ∗ u)(x)} − µ∆u(x) = g(x), x ∈ Rd.
(4.1.29)

From the standard theory of elliptic equations, (4.1.29) admits a solution in
H2(Rd). The convergence of uµ to some function u which is the solution to
(4.1.28) comes from the following two lemmas.

Lemma 4.1.12 Let u, ū be solutions to (4.1.29) with respective source terms
g and ḡ that are in L1(Rd) with range contained in the interval [a, b]. Then∫

Rd

[u(x)− ū(x)]+dx ≤
∫

Rd

[g(x)− ḡ(x)]+dx,

‖u− ū‖L1(Rd) ≤ ‖g − ḡ‖L1(Rd). (4.1.30)

Moreover, if
g(x) ≤ ḡ(x), on Rd

then
u(x) ≤ ū(x), on Rd.

Moreover, the range of both u and ū is contained in [a, b].

We skip the detail of the proof of this lemma, which are very similar to
those in the proof of Theorem 4.1.2. Once again, the contraction properties
of the source term −u+K ∗u are employed. Hence, in a similar way as in the
case of the vanishing viscosity approximation, we obtain the compactness of
the sequence {uµ} needed to pass the limit as µ ↓ 0 in the equation (4.1.29).

Lemma 4.1.13 Let uµ denote the solution of (4.1.29), with source term
given by g ∈ L∞(Rd) ∩ L1(Rd). Then, as µ ↓ 0, {uµ} converges boundedly
a.e. to the solution u of (4.1.28).

Proof. By applying (4.1.30) with ḡ(x) = g(x+ y), we obtain∫
Rd

|uµ(x+ y)− uµ(x)|dx ≤
∫

Rd

|g(x+ y)− g(x)|dx.

Thus the family {uµ} is compact in L1
loc. Hence, passing if necessary to

subsequences, uµ → u boundedly a.e. on Rd. To complete the proof, we
have to show that u is the unique solution to (4.1.28). Consider any smooth
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convex entropy η(u) with associated entropy flux q determined by (4.1.4).
Then uµ satisfies the identity

η′(uµ)uµ + λ div q(uµ) + λη′(uµ)(u− (K ∗ u))− µ∆η(uµ)

+ µη′′(uµ) |∇uµ|2 = η′(uµ)g.

Hence, multiplying the last identity by any nonnegative smooth test function
ψ on Rd, with compact support, and integrating over Rd yields∫

Rd

{λ∇ψ · q(uµ) + ψη′(uµ)(g − uµ − λ(uµ − (K ∗ uµ)))} dx

≥ −µ
∫

Rd

∆ψηdx.

Finally, by sending µ ↓ 0 we get∫
Rd

{
∇ψ · q(u) + ψη′(u)

[
1

λ
(g − u)− (u− (K ∗ u))

]}
≥ 0,

which means that u is a solution to (4.1.28). Now, as a consequence of the
previous theorem, the solution u to (4.1.28) is unique. Therefore, the entire
sequence uµ converges to u as µ ↓ 0. This completes the proof of the lemma
and the proof of Theorem 4.1.11. �

Finally, once we have established accretiveness and maximality for the
transformation A, we can employ the Crandall–Liggett theory of semigroups
in nonreflexive Banach spaces to obtain that A generates a contraction semi-
group S(·) on D(A) = L1(Rd). We summarize the properties of the S(·) in
the following theorem, whose proof can be found in [Cra72, CL71].

Theorem 4.1.14 The transformation A generates a contraction semigroup

S(·) : L1(Rd) → L1(Rd), t ∈ [0,+∞)

which is continuous with respect to t. Moreover, for any u0, ū0 ∈ L1(Rd) such
that

u0 ≤ ū0 a.e. on Rd,

we have
S(t)u0 ≤ S(t)ū0, a.e. on Rd.

Moreover, for 1 ≤ p ≤ ∞, the sets Lp(Rd) ∩ L1(Rd) are positively invariant
under S(t) and, for any t ≥ 0,

‖S(t)u0‖Lp(Rd) ≤ ‖u0‖Lp(Rd), for all u0 ∈ Lp(Rd) ∩ L1(Rd).

If u0 ∈ L∞(Rd)∩L1(Rd), then S(·)u0 is the admissible weak, entropy solution
of (4.1.2) with initial datum u0.
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4.1.2 Extension to L∞

We now conclude this section by discussing the general case of initial data in
L∞(Rd). More precisely, we extend the semigroup S(t) to the space L∞(Rd)
endowed with the following norm

‖|u‖| =
∫

Rd

φ(x)|u(x)|dx, (4.1.31)

where φ is a positive, smooth function on Rd satisfying

φ(x) = e−|x| for any |x| ≥ 2,

φ(x) = 1 for any |x| ≤ 1.

We remark that the uniqueness of solutions with initial data in L∞ has been
proved only in the one–dimensional case (see [Ser03]). This problem is still
open in the multi–dimensional case. The extension of the semigroup to L∞

leaves entirely open the question of uniqueness in L∞. We show the continuity
of the semigroup St on the space (L∞ ∩ L1, ‖| · ‖|), which is a dense subspace
of
(
L∞(Rd), ‖| · ‖|

)
. We also observe that the following procedure extends

the semigroup St to the Banach space L1(Rd, φdx) which is the closure of our
space

(
L∞(Rd), ‖| · ‖|

)
with respect to the norm ‖| · ‖|.

Theorem 4.1.15 Let u, ū ∈ L∞([0, T ];L1(Rd) ∩ L∞(Rd)) be weak entropy
solutions of (4.1.2) with initial data u0, ū0 ∈ L1(Rd) ∩ L∞(Rd). Then, for
any t ∈ [0, T ],

‖|u(·, t)− ū(·, t)‖| ≤ eCt‖|u0 − ū0‖|, (4.1.32)

where the constant C depends on φ, on the mapping f and on ‖u0‖L∞,
‖ū0‖L∞.

Proof. Due to the uniqueness result, we can view the solutions u, ū as the
limit of their viscous approximations uµ, ūµ respectively. We then multiply
the equation for uµ − ūµ by the weight function φ to obtain

[φ(uµ − ūµ)]t + div [φ(f(uµ)− f(ūµ))]

= −φ [uµ − ūµ −K ∗ (uµ − ūµ)]

+∇φ · (f(uµ)− f(ūµ))+µφ∆(uµ − ūµ). (4.1.33)

Let ηε(ξ) be a convex regularization of the function |ξ| (in the spirit of the
function used in the proof of Theorem 4.1.2. Multiplying (4.1.33) by η′ε(u

µ−
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ūµ) we obtain

φηε,t + div [φη′ε(f(uµ)− f(ūµ))]

= −φη′ε [uµ − ūµ −K ∗ (uµ − ūµ)]

+ φη′′ε (f(uµ)− f(ūµ)) · ∇(uµ − ūµ)

+ η′ε∇φ · (f(uµ)− f(ūµ))

+ µ div [φη′ε∇(uµ − ūµ)]−µη′ε∇φ · ∇(uµ − ūµ)

− µη′′εφ |∇(uµ − ūµ)|2 . (4.1.34)

Thus, proceeding as in the proof of Theorem 4.1.2 we integrate (4.1.34) in
dx and dt and we let ε ↓ 0 to obtain (after integration by parts)∫

Rd

φ(x)|uµ − ūµ|dx ≤
∫

Rd

φ(x)|u0 − ū0|dx

+ C

∫ t

0

∫
Rd

(|∇φ|+ |∆φ|) |uµ − ūµ|dsdx, (4.1.35)

where the constant C depends on ‖u‖∞, ‖u0‖∞ and on the mapping f , for
µ < 1. Since (|∇φ| + |∆φ|) ≤ C1φ, from (4.1.35) and from the Gronwall
lemma, we obtain (4.1.32) as µ ↓ 0. �

4.2 Relaxation Limits

In this section we analyze the convergence of the relaxation limits for our
model {

Us + div f(U) = − divQ

−∇ divQ+Q = −∇U,
(4.2.1)

where (y, s) ∈ Rd × R+ are the independent variables.

4.2.1 Hyperbolic-hyperbolic relaxation limit

We start the analysis with the hyperbolic-hyperbolic relaxation. Therefore,
in order to obtain an hyperbolic-type limit, we perform the following scaling

uε(x, t) = U

(
x

ε
,
t

ε

)
qε(x, t) = Q

(
x

ε
,
t

ε

)
.
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Thus, the system (4.2.1) becomes{
uεt + div f(uε) = − div qε

−ε2∇ div qε + qε = −ε∇uε.
(4.2.2)

We give an initial datum u0(x) ∈ L1(Rd) ∩ L∞(Rd). We postpone the dis-
cussion of L∞ initial data at the end of the subsection.

Remark 4.2.1 In the construction of the Cauchy problem for (4.2.2), we
scale only the terms for t > 0, without scaling the initial datum, which is
given a posteriori as a fixed function in L1(Rd)∩L∞(Rd). Indeed, the scaled
initial datum is given by the sequence uε0(x) = U0

(
x
ε

)
, which converges to zero

strongly in L1(Rd) because U0 ∈ L1(Rd). Thus, in this way we can recover
at the limit only the null solution. In other words, we do not investigate the
relaxation limit of the scaled solution, but we use the scaling only to detect
the terms which are physically negligible in the equations and we study the
singular limit of the new Cauchy problem, with fixed datum.

Letting ε ↓ 0 in the system (4.2.2), we see that formally we obtain q = 0 and
the limit equation is given by

ut + div f(u) = 0. (4.2.3)

To justify rigorously this limit, it is convenient once again to write the system
(4.2.2) as the balance law

uεt + div f(uε) = −1

ε
(uε −Kε ∗ uε) , (4.2.4)

where the convolution kernel is given by

Kε(x) =
1

εd
K
(x
ε

)
,

and K is again

K(x) =
1

(4π)d/2

∫ +∞

0

e−s−
|x|2
4s

sd/2
ds.

We observe that the new convolution kernel Kε is scaled such that ‖Kε‖L1 =
‖K‖L1 = 1. Thus, the contraction properties of the source term we employed
in the previous section are still valid. Therefore, the same properties estab-
lished in the Theorem 4.1.2 for the viscous approximation are satisfied by
the family {uε}, as we state in the following result. We skip the details of
the proof, which follows the same ideas of Theorem 4.1.2.
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Theorem 4.2.2 Let ε > 0. Let uε, ūε ∈ L∞([0, T ];L1(Rd) ∩ L∞(Rd)) be
weak entropy solutions of (4.2.4) with initial data u0, ū0 ∈ L1(Rd)∩L∞(Rd).
Then, for any t ∈ [0, T ],∫

Rd

(uε(x, t)− ūε(x, t))+dx ≤
∫

Rd

(u0(x)− ū0(x))
+dx;

‖uε(·, t)− ūε(·, t)‖L1(Rd) ≤ ‖u0(·)− ū0(·)‖L1(Rd).

Moreover, if u0(x) ≤ ū0(x) a.e. on Rd, then uε(x, t) ≤ ūε(x, t) a.e. on Rd ×
[0, T ]. In addition, the essential range of both uε and ūε is contained in
[−a, a], where

a = max{‖u0‖L∞(Rd), ‖ū0‖L∞(Rd)}.

Again, as in the study of the vanishing viscosity approximation, we carry out
the following estimates for the L1– modulus of continuity of the solutions.

Lemma 4.2.3 Let uε ∈ L∞([0, T ];L1(Rd) ∩ L∞(Rd)) be the weak, entropy
solution to (4.2.4) with u0 ∈ L1(Rd)∩L∞(Rd) as initial datum. In particular∫

Rd

|u0(x+ h)− u0(x)|dx ≤ ω(|h|), for any h ∈ Rd,

for some nondecreasing function ω on [0,+∞) with ω(r) ↓ 0 as r ↓ 0. Then
there exists a constant C, depending only on ‖u0‖L∞(Rd) and on the mapping
f such that, for any t > 0,∫

Rd

|uε(x+ h, t)− uε(x, t)|dx ≤ ω(|h|), for any h ∈ Rd (4.2.5)

and ∫
Rd

|uε(x, t+ k)− uε(x, t)|dx ≤ Ck
2
3‖u0‖L1(Rd) + 4ω(k

1
3 ), (4.2.6)

for any k > 0.

Proof. As in the proof of Lemma 4.1.3, the results of Theorem 4.2.2 implies
(4.2.5). Now, due to the time regularity of the weak, entropy solution uε (see
the Remark 4.1.7), we have∫

Rd

φ(x)[uε(x, t+ k)− uε(x)]dx =

∫ t+k

t

∫
Rd

[
∇φ(x) · f(uε(x, τ))

+
φ(x)

ε
(−uε(x, τ) + (Kε ∗ uε)(x, τ))

]
dxdτ, (4.2.7)
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where φ is the same regularization of the sign function considered in the proof
of Lemma 4.1.3. The only difference with the case of the vanishing viscosity
approximation stands in the source terms, which, however, can be controlled
in a similar way, due to its good contraction properties. Indeed, we have

− 1

ε

∫ t+k

t

∫
Rd

φ(x) (uε −Kε ∗ uε) dxdτ

= −1

ε

∫ t+k

t

∫
Rd

φ(x)

∫
Rd

K(ξ) (uε(x, τ)− uε(x− εξ, τ)) dξdxdτ

= −1

ε

∫ t+k

t

∫
Rd

∫
Rd

(φ(x+ εξ)− φ(x))K(ξ)uε(x, τ)dxdτdξ

= ε
1

ε

∫ t+k

t

∫
Rd

∫
Rd

K(ξ)uε(x, τ)∇φ(ζ) · ξdxdtdξ

≤ Ck
2
3‖u0‖L1(Rd),

where the constant C is independent from ε. Finally, the relation (4.2.6) can
be proved as before starting from (4.2.7) and the proof is complete. �

Now we can prove our first relaxation result.

Theorem 4.2.4 Let uε ∈ L∞([0, T ];L1(Rd) ∩ L∞(Rd)) be the weak, entropy
solution of (4.2.4) with initial datum u0 ∈ L1(Rd)∩L∞(Rd). Then, as ε ↓ 0,

uε −→ u, strongly in Lploc(R
d × [0, T ]), p < +∞.

Moreover, u ∈ L∞([0, T ];L1(Rd)∩L∞(Rd)) is the unique entropy solution to
(4.2.3) with u0 as initial datum.

Proof. Applying the results of Lemma 4.2.3 and of the Theorem 4.2.2, we
obtain the compactness of the sequence uε in L1

loc and its boundedness in
L∞. Thus, passing to subsequence, we have

uε −→ u, strongly in Lploc(R
d × [0, T ]), p < +∞,

and boundedly almost everywhere on Rd × [0,∞). Now, as usual in this
framework, this conditions guarantee that the first-order terms in the weak,
entropy formulation of (4.2.4) converge, as ε ↓ 0, to the distribution ut +
div f(u). Hence, we can conclude that the limit function u is the unique
entropy solution of (4.2.3) if, as ε ↓ 0,

−1

ε
(uε −Kε ∗ uε) −→ 0 (4.2.8)
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in the sense of distributions. We remark that once we prove that u is the
unique entropy solution to (4.2.3), the whole sequence uε will converge to
u. To analyze the convergence of the source term, let ψ(x, t) be a smooth,
compactly supported test function. Then, we have

− 1

ε

∫ T

0

∫
Rd

ψ(x, t) (uε −Kε ∗ uε) dxdτ

= −1

ε

∫ T

0

∫
Rd

ψ(x, t)

∫
Rd

K(ξ) (uε(x, τ)− uε(x− εξ, τ)) dξdxdτ

= −1

ε

∫ T

0

∫
Rd

∫
Rd

(ψ(x+ εξ)− ψ(x, t))K(ξ)uε(x, τ)dxdτdξ.

Now, we observe that

|ψ(x+ εξ, t)− ψ(x, t)− ε∇ψ(x, t) · ξ| ≤ 1

2
ε2 |ξ|2 ‖ψ‖C2

0

and hence we have∣∣∣∣1ε
∫ T

0

∫
Rd

ψ(x, t) (uε −Kε ∗ uε) dxdτ
∣∣∣∣

≤
∣∣∣∣ε1ε

∫ T

0

∫
Rd

∫
Rd

K(ξ)uε(x, t)ξ · ∇ψ(x, t)dxdψdt

∣∣∣∣
+
ε

2
‖ψ‖C2

∫ T

0

∫
Rd

|uε(x, t)|dxdt
∫

Rd

|ξ|2K(ξ)dξ := I1 + I2.

Now, since ∫
Rd

K(ξ)ξjdξ = 0, j = 1, ..., d,

then, I1 = 0. Moreover, since the function K(ξ)|ξ|2 has finite mass, the term
I2 is bounded by O(ε)T‖ψ‖C2‖u0‖L1(Rd). This proves (4.2.8). �

Remark 4.2.5 In the proof of the hyperbolic–hyperbolic relaxation limit,
we take advantage of the L1 contraction of the source of (4.2.4), which are
due solely to the property of the convolution kernel Kε, namely

• Kε(x) = Kε(|x|);

• Kε ≥ 0;

• ‖Kε‖L1 = 1.
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Moreover, the above conditions imply also that the first momenta of Kε are
zero and this feature allows to control the singular limit of the source in the
sense of distribution (see the last line in the proof of Theorem 4.2.4). Thus,
the results we obtained are still valid for any equation of the form (4.2.4),
with a convolution kernel satisfying the above conditions.

We conclude this subsection with the case of L∞ initial data. Although
we cannot state a relaxation result for any solution in L∞ (because of the
lack in the well–posedness in the multi–dimensional case), we can restrict
ourselves to the case of L∞ solutions defined via the extended semigroup
determined by the result in Theorem 4.1.15. In other words, given u0 ∈ L∞,
we consider the L∞ solution with initial datum u0 defined via the density
argument performed at the end of the previous section. As we pointed out
before, the only difference with the non-scaled equation lies in the source
term, due to the singular coefficient 1

ε
and the scaled kernel Kε. However,

these changements do not affect the monotonicity properties of the source
term and therefore we can repeat the argument of the previous section to
prove the following theorem.

Theorem 4.2.6 Let uε, ūε ∈ L∞([0, T ] × Rd) be weak entropy solutions of
(4.2.4) with initial data u0, ū0 ∈ L∞(Rd), uε, ūε determined by the extended
semigroup defined by Theorem 4.1.15. Then, for any t ∈ [0, T ],

‖|uε(·, t)− ūε(·, t)‖| ≤ eCt‖|u0 − ū0‖|, (4.2.9)

where the constant C depends only on φ and on ‖u0‖L∞, ‖ū0‖L∞ and ‖| · ‖|
is the norm defined (4.1.31).

Finally, once we have the property (4.2.9), we can easily obtain the results of
Lemma 4.2.3 even for the norm (4.1.31) and therefore we get the convergence
of the relaxation limit for the L∞ solutions of (4.2.4) determined by the
extended semigroup defined above.

Remark 4.2.7 As we pointed out in Remark 4.2.1, we consider only re-
laxation limits with fixed initial data, without scaling the function at t = 0.
However, if we choose the initial data U0 of (4.2.1) only in L∞(Rd), then we
can consider the genuine relaxation limit of the corresponding weak solution,
by scaling also the initial datum uε0(x) = U0

(
x
ε

)
. Indeed, this time the se-

quence uε0 is only bounded in L∞ and therefore the solutions uε of (4.2.2) will
converge to the solution of its formal limit (4.2.3) with the weak-* limit in
L∞ of uε0 as initial condition, provided u0 is also in BV(Rd). Indeed, in this
case, the estimate (4.2.9) gives the necessary uniform control of the modulus
of continuity of the sequence uε in the L1–weighted norm even for the scaled
initial data uε0(x) = U0

(
x
ε

)
.

73



4.2.2 Hyperbolic-parabolic relaxation limit

In this section we analyze the hyperbolic-parabolic relaxation limit for the
system (4.2.1). We perform the transformation

uε(x, t) =
1

ε
U

(
x

ε
,
t

ε2

)
qε(x, t) =

1

ε2
Q

(
x

ε
,
t

ε2

)
.

Hence, the system (4.2.1) becomes{
uεt + 1

ε2
div f(εuε) = − div qε

−ε2∇ div qε + qε = −∇uε.
(4.2.10)

As in the previous case, we start by taking initial datum u0 ∈ L1(Rd) ∩
L∞(Rd) and postpone the L∞ case to the end of this subsection.

Remark 4.2.8 As we pointed out in Remark 4.2.1, we perform the above
scaling only to show which terms are negligible in the equations and we
do not consider also the scaled initial datum. With this scaling, namely,
in the parabolic regime, it turns out that the negligible term is ∇ div q, as
proposed in [KNN99] in the one dimensional case. Once again, we do not
scale the initial datum, because, in this way, the sequence we end up is given
by 1

ε
U0

(
x
ε

)
, which is uniformly bounded in L1(Rd), but not in L∞(Rd), if

U0 ∈ L1(Rd) ∩ L∞(Rd), without further restrictions.

Letting ε ↓ 0, we recover that the formal limit of the second equation in
(4.2.10) is given by q = −∇u. Moreover, since we supposed the mapping f
to be smooth and such that f(0) = f ′(0) = 0, we obtain, at a formal level,
the following limit equation

ut +
1

2
f ′′(0) · ∇(u2) = ∆u. (4.2.11)

Once again, we rewrite the scaled system (4.2.10) as a nonhomogeneous con-
servation law, namely

uεt +
1

ε2
div f(εuε) = − 1

ε2
(uε −Kε ∗ uε) , (4.2.12)

with the same convolution kernel of the previous case. To simplify the aspect
of equation (4.2.12) for small ε, we set

f(εuε) = ε2f
′′(0)

2
(uε)2 + ε3g(uε),
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where g is a smooth function such that g(0) = g′(0) = g′′(0) = 0. Hence,
(4.2.12) becomes

uεt +
f ′′(0)

2
· ∇(uε)2 + ε div g(uε) = − 1

ε2
(uε −Kε ∗ uε) , (4.2.13)

Hence, with the exception of the extra term ε div g(uε), which doesn’t affect
the asymptotic analysis, we recover the same structure as in the hyperbolic-
hyperbolic relaxation limit. Thus, the following theorem holds.

Theorem 4.2.9 Let uε, ūε ∈ L∞([0, T ];L1(Rd) ∩ L∞(Rd)) be weak entropy
solutions of (4.2.13) with initial data u0, ū0 ∈ L1(Rd) ∩ L∞(Rd). Then, for
any t ∈ [0, T ],∫

Rd

(uε(x, t)− ūε(x, t))+dx ≤
∫

Rd

(u0(x)− ū0(x))
+dx;

‖uε(·, t)− ūε(·, t)‖L1(Rd) ≤ ‖u0(·)− ū0(·)‖L1(Rd).

Moreover, if u0(x) ≤ ū0(x) a.e. on Rd, then uε(x, t) ≤ ūε(x, t) a.e. on Rd ×
[0, T ]. In addition, the essential range of both uε and ūε is contained in
[−a, a], where

a = max{‖u0‖L∞(Rd), ‖ū0‖L∞(Rd)}.

Once again, the above results yield the compactness of the relaxation ap-
proximations.

Lemma 4.2.10 Let uε ∈ L∞([0, T ];L1(Rd) ∩ L∞(Rd)) be the weak, entropy
solution to (4.2.13) with u0 ∈ L1(Rd)∩L∞(Rd) as initial datum. In particular∫

Rd

|u0(x+ h)− u0(x)|dx ≤ ω(|h|), for any h ∈ Rd,

for some nondecreasing function ω on [0,+∞) with ω(r) ↓ 0 as r ↓ 0. Then
there exists a constant C, depending on ‖u0‖L∞(Rd) and on the mapping f
such that, for any t > 0,∫

Rd

|uε(x+ h, t)− uε(x, t)|dx ≤ ω(|h|), for any h ∈ Rd (4.2.14)

and∫
Rd

|uε(x, t+ k)− uε(x, t)|dx ≤ C(k
2
3 + k

1
3 )‖u0‖L1(Rd) + 4ω(k

1
3 ), (4.2.15)

for any k > 0.
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Proof. As in the proof of Lemma 4.2.3, (4.2.14) follows from Theorem 4.2.9.
Moreover, our weak, entropy solution verifies∫

Rd

φ(x)[uε(x, t+ k)− uε(x)]dx =

∫ t+k

t

∫
Rd

[
∇φ(x) ·

(
f ′′(0)

2
(uε)2 + εg(uε)

)
+
φ(x)

ε2
(−uε(x, τ) + (Kε ∗ uε)(x, τ))

]
dxdτ, (4.2.16)

where φ(x) stands for the smooth function considered in the proofs of Lemma
4.1.3 and Lemma 4.2.3. Once again, we must control the singularity of the
source term. This can be done using the second derivatives of the smooth
function φ. Indeed,

− 1

ε2

∫ t+k

t

∫
Rd

φ(x) (uε −Kε ∗ uε) dxdτ

= − 1

ε2

∫ t+k

t

∫
Rd

φ(x)

∫
Rd

K(ξ) (uε(x, τ)− uε(x− εξ, τ)) dξdxdτ

= − 1

ε2

∫ t+k

t

∫
Rd

∫
Rd

(φ(x+ εξ)− φ(x))K(ξ)uε(x, τ)dxdτdξ

= −ε1
ε

∫ t+k

t

∫
Rd

∫
Rd

K(ξ)uε(x, τ)∇φ(ζ) · ξdxdτdξ

− ε2

2ε2

∫ t+k

t

∫
Rd

∫
Rd

K(ξ)uε(x, τ)
(
D2φ(ζ)ξ

)
· ξdxdξdτ

≤ Ck
1
3‖u0‖L1(Rd),

since, as we pointed out before,∫
Rd

K(ξ)ξjdξ = 0, j = 1, ..., d,

and the function K(ξ)|ξ|2 has finite mass. As before, the constant C is
independent from ε and therefore the relation (4.2.15) is an easy consequence
of (4.2.16). The proof is complete. �

Finally, the convergence result is contained in the next theorem.

Theorem 4.2.11 Let uε ∈ L∞([0, T ];L1(Rd)∩L∞(Rd)) be the weak, entropy
solution of (4.2.13) with initial datum u0 ∈ L1(Rd)∩L∞(Rd). Then, as ε ↓ 0,

uε −→ u, strongly in Lploc(R
d × [0, T ]), p < +∞,

and u is the unique solution to (4.2.11) with u0 as initial datum.
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Proof. As for the proof of Theorem 4.2.4, we obtain, up to subsequences,

uε −→ u, strongly in Lploc(R
d × [0, T ]), p < +∞,

and boundedly almost everywhere in Rd × [0,+∞), where u ∈ L1(Rd ×
[0, T ])∩L∞(Rd× [0, T ]), thanks to the compactness coming from the results
of Lemma 4.2.10. Once again, these conditions allow us to pass to the limit
into the weak, entropy formulation of (4.2.13) as ε ↓ 0, as in the previous case.
In particular, the additional term ε div g(uε) tends to zero in distributional
sense. Hence, to conclude that u is the unique solution to (4.2.11) with u0

as initial datum, we need to prove

− 1

ε2
(uε −Kε ∗ uε) −→ ∆u (4.2.17)

in the sense of distributions, as ε ↓ 0. We proceed as in the proof oh Lemma
4.2.10. Also in this case, the uniqueness of solutions to this Cauchy problem
implies that the whole sequence uε will converge. Let ψ(x, t) be a smooth,
compactly supported test function. Since

ψ(x+ εξ, t)− ψ(x, t)

= ε∇ψ(x, t) · ξ +
1

2
ε2
(
D2ψ(x, t)ξ

)
· ξ +

1

6
ε3ξ ·

(
(D3ψ(ζε, t)ξ) · ξ

)
we have

− 1

ε2

∫ T

0

∫
Rd

ψ(x, τ) (uε −Kε ∗ uε) dxdτ

= − 1

ε2

∫ T

0

∫
Rd

ψ(x, τ)

∫
Rd

K(ξ) (uε(x, τ)− uε(x− εξ, τ)) dξdxdτ

= − 1

ε2

∫ T

0

∫
Rd

∫
Rd

(ψ(x+ εξ, τ)− ψ(x, τ))K(ξ)uε(x, τ)dxdτdξ

= −ε1
ε

∫ T

0

∫
Rd

∫
Rd

K(ξ)uε(x, τ)∇ψ(x, τ) · ξdxdτdξ

− ε2

2ε2

∫ T

0

∫
Rd

∫
Rd

K(ξ)uε(x, τ)
(
D2ψ(x, τ)ξ

)
· ξdxdξdτ

− ε3

6ε2

∫ T

0

∫
Rd

∫
Rd

K(ξ)uε(x, τ) ξ ·
(
(D3ψ(ζε, τ)ξ) · ξ

)
dξdxdτ := J1 + J2 + J3.

Once again, since ∫
Rd

K(ξ)ξjdξ = 0, j = 1, ..., d,
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we have J1 = 0. Moreover, since the function K(ξ)|ξ|3 has finite mass, the
integral J3 is controlled by εCT‖ψ‖C2‖u0‖L1 . We write the term J2 as follows

1

2

∫ T

0

∫
Rd

∫
Rd

K(ξ)uε(x, τ) T ξD2ψ(x, t)ξdxdξdτ

=
1

2

d∑
i,j=1

∫ T

0

∫
Rd

∫
Rd

uε(x, τ)ξiξjK(ξ)
∂2ψ

∂xi∂xj
(x, τ)dξdxdτ

=

∫ T

0

∫
Rd

∫
Rd

uε(x, τ)∆ψ(x, τ)dξdxdτ,

because of the properties of the kernel K

1

2

∫
Rd

ξ2
iK(ξ)dξ = 1 i = 1, ..., d∫

Rd

ξiξjK(ξ)dξ = 0 for i, j = 1, ..., d, i 6= j.

Hence, passing into the limit in the above relation, we recover (4.2.17) and
the proof is complete. �

Remark 4.2.12 As we pointed out in Remark 4.2.5, the results established
above are valid for any nonnegative convolution kernel K such that K(x) =

K̂(|x|) and such that ‖Kε‖L1(Rd) = 1. In this case, the fact that the first mo-
menta of Kε are zero guarantees the control of the L1 modulus of continuity
in the t variable (see the proof of Lemma 4.2.10). The matrix of the second
momenta of Kε, necessarily diagonal and positive, gives the double of the
viscosity tensor in the limit equation (see the relations above).

We treat now the case of L∞ initial data. The same remarks given at
the and of the previous subsection about the well–posedness in L∞ are valid
here. Once again, our parabolic scaling introduces a singular coefficient in
front of the source term, namely 1

ε2
, and it scales the kernel K, but, as in the

previous case, it preserves the monotonicity of the source itself. Therefore,
repeating step by step the procedure in the proof of the Theorem 4.1.15,
we can prove Lipschitz continuity in the weighted norm considered in the
previous section. Hence, we have the following theorem.

Theorem 4.2.13 Let uε, ūε ∈ L∞([0, T ]×Rd) be weak entropy solutions of
(4.2.13) with initial data u0, ū0 ∈ L∞(Rd), uε, ūε determined by the extended
semigroup defined by Theorem 4.1.15. Then, for any t ∈ [0, T ],

‖|uε(·, t)− ūε(·, t)‖| ≤ eCt‖|u0 − ū0‖|, (4.2.18)
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where ‖| · ‖| is the norm defined (4.1.31) and the constant C depends only on
the weight φ and on ‖u0‖L∞, ‖ū0‖L∞.

Once we have proved (4.2.18), we can recover the result of Lemma 4.2.10
in terms of the norm (4.1.31) and hence we obtain the convergence of the
relaxation limit even in the case of the L∞ solutions of (4.2.4) determined by
the extended semigroup defined in the previous section.
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Part II

Long time asymptotics
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Chapter 5

Nonlinear diffusion equations

In this chapter we use the entropy dissipation method described in section
1.7 of the introduction in order to detect asymptotic self similar profiles as
the typical intermediate asymptotic states for a class of general nonlinear
diffusion equations. In section 5.1 we recall some preliminary results and
perform the basic time dependent scaling which allows to view intermediate
asymptotic profile as stationary states. In section 5.2 we prove the result
concerning convergence in relative entropy. In the last section we use the
p–Wasserstein distances in order to find an optimal estimate for the speed of
propagation of the support of the solutions.

5.1 Preliminaries

We consider the Cauchy problem for a general nonlinear diffusion equation,
namely 

∂u

∂t
= ∆φ(u)

u(·, 0) = u0.
(5.1.1)

Here, (x, t) ∈ RN ×R+, while the initial datum u0 is taken to be nonnegative
and belonging in L1(RN). We shall assume throughout this chapter that the
nonlinearity function φ satisfies the following assumptions

(NL1) φ′(u) > 0 for all u > 0

(NL2) φ(u) = umψ(u) for some m > N−2
N

, where the ‘perturbation’ func-
tion ψ satisfies the following properties

(P1) ∃ limu→0+ ψ(u) = l ∈ (0,+∞) (for simplicity we assume l = 1)
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(P2) ψ ∈ C[0,+∞) ∩ C1(0,+∞)

(P3) ψ′(u) = O(uk) as u→ 0+, for some k > −1.

Under the above assumptions, it is well–known that the Cauchy problem
(5.1.1) is well–posed for any initial datum in L1

+(RN). Moreover, the following
conservation law holds ∫

RN

u(x, t)dx =

∫
RN

u0(x)dx.

The unique solution to (5.1.1) may not be classical in general. This fact
leads to a definition of generalized solution (see, for instance [Váz90] and
the references therein, for the porous medium case φ(u) = um). We refer
to [Bén76, Vér] for the existence and regularity theory for equation (5.1.1)
with initial data in L1, obtained by means of the Crandall–Ligget formula
for nonlinear semigroups. In case of slow diffusion, i.e. in case φ′(0) = 0,
the support of the solution travels with finite speed. This is due to the
degeneracy of the parabolic operator as u approaches zero (see [Kal87, Kne77]
and the references therein for the general diffusion equation 5.1.1; see also
the extremely complete survey paper by Vazquez [Váz03] and the references
therein for the porous medium equation). Concerning the evolution of the
integral norms, the equation (5.1.1) induces a contraction with respect to all
the Lp norms. More precisely, if u0 ∈ Lp(RN), so is the solution u(·, t) at any
time t > 0, and we have

‖u(·, t)‖Lp(RN ) ≤ ‖u0‖Lp(RN ). (5.1.2)

Moreover, under an extra assumption on the nonlinearity φ, namely

(NL3) ∃C > 0 such that φ′(u) ≥ Cum−1 for all u > 0,

the equation (5.1.1) enjoys an L1–L∞ regularizing property. Indeed, it
was proved that the solution to (5.1.1) with intial datum in L1 satisfies the
following temporal decay estimate (see [AB79, Váz90] for the power law case,
[Vér] for the general nonlinear case).

Theorem 5.1.1 (L1–L∞ regularizing effect) Let u(x, t) be the solution
to the Ca– uchy problem (5.1.1), with u0 ∈ L1

+(RN). Let the nonlinearity φ
satisfy the assumption (NL3) above. Then, at any t > 0, u(x, t) ∈ L∞(RN)
and the following estimate hold

‖u(·, t)‖L∞(RN ) ≤ Ct−
N

N(m−1)+2‖u0‖L1(RN ). (5.1.3)
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We are interested in the study of the time–asymptotic behaviour of the
solution to (5.1.1). It is already known that such behaviour is well described
by the Barenblatt–Prattle self–similar solutions to the porous medium equa-
tion ut = ∆um (where m is the same exponent as in condition (NL2) above,
see [Kam76, BDE02]). We now perform the following time–dependent scal-
ing, in order to put in evidence the role of the term um in the nonlinearity
function φ.

u(x, t) = R(t)−Nλv(y, s) y = xR(t)−λ s = λ logR(t)

R(t) =

(
1 +

t

λ

)
λ =

1

N(m− 1) + 2
(5.1.4)

As usual in this framework, equation (5.1.1) turns into the following non
linear (time–dependent) Fokker–Planck type equation

∂v

∂s
= ∇ · (yv) + eNms∆φ(e−Nsv), (5.1.5)

with initial datum v(y, 0) = u0(y). In the sequel it will be useful to write
equation (5.1.5) as follows

∂v

∂s
= ∇ ·

[
v∇
(
|y|2

2
+ eN(m−1)sh(e−Nsv)

)]
, (5.1.6)

where h(u) is the generalized enthalpy

h(u) =

∫ u

1

φ′(η)

η
dη. (5.1.7)

The function h is well defined on (0,+∞), and it may eventually have a
singularity at u = 0 (e.g. in case of fast diffusion, that is φ′(0) > 0). In
order to define a generalized entropy functional we will need afterwards, we
require the natural condition

(NL4) h(·) ∈ L1
loc([0,+∞)).

We close this section by re–stating the contraction property (5.1.2) and
temporal decay estimate (5.1.3) in terms of the new unknown function v
and the new independent variables (y, s). The estimate for the Lp–norm, for
p ∈ [1,+∞), follows by interpolation.
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Proposition 5.1.2

(a) Let v(y, s) be the solution to (5.1.5) with initial datum u0 ∈ L1
+(RN).

Then, for all p ∈ [1,+∞) the following estimate holds for some fixed
constant C > 0

‖v(·, s)‖Lp(RN ) ≤ CeN(1− 1
p)s
[
k
(
e

s
k − 1

)]−kN(1− 1
p) ‖u0‖L1(RN ), (5.1.8)

while, for p = +∞ we have

‖v(·, s)‖L∞(RN ) ≤ CeNs
[
k
(
e

s
k − 1

)]−kN ‖u0‖L1(RN ). (5.1.9)

Hence, for any fixed s0 > 0 and for all p ∈ [0,+∞], we have

sup
s≥s0

‖v(·, s)‖Lp(RN ) ≤ C(s0)‖u0‖L1(RN ), (5.1.10)

where C(s0) doesn’t depend on p.

(b) Let v(y, s) be the solution to (5.1.5) with initial datum u0 ∈ Lp(RN).
Then, the following local stability property holds at any s ≥ 0

‖v(·, s)‖Lp(RN ) ≤ eN(1− 1
p)s‖u0‖Lp(RN ). (5.1.11)

A note about the notation. In the sequel we denote by C a generic positive
constant. Sometimes we shall indicate its dependence on some parameters
by means of the expressions C(. . .) or C....

5.2 The relative entropy method

5.2.1 Statement of the problem and result

Let v be the solution to the Cauchy problem
∂v

∂s
= ∇ · (yv) + eNms∆φ(e−Nsv)

v(y, 0) = u0(y).
(5.2.1)

Due to the conservation of the mass, we can set∫
RN

u0(y)dy =

∫
RN

u(y, s)dy = M.
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We expect the solution v(y, s) to behave like the rescaled Barenblatt similar-
ity function

v∞(y) =


(
CM − λ

|y|2

2

) 1
m−1

+

if m 6= 1

CMe
− |y|2

2 if m = 1,

(5.2.2)

as s→ +∞, where the constant CM is chosen in such a way that∫
RN

v∞(y)dy = M,

and λ depends only on m and on the space dimension N . We emphasize
that v∞ is not a solution to equation (5.2.1). Let us then define our entropy
functional

H(v) =


1

m− 1

∫
RN

v(y)mdy +
1

2

∫
RN

|y|2v(y)dy if m 6= 1∫
RN

v(y) log v(y)dy +
1

2

∫
RN

|y|2v(y)dy if m = 1.
(5.2.3)

Here m is the exponent describing the behaviour of the nonlinearity in zero,
given by condition (NL2). We recall that the convex functional H(v) attains
its minimum over L1

+(RN), under the constraint
∫

RN v = constant, at the
state v∞ with mass M (see [CT00]). The relative entropy is defined, as usual,
by

H (v|v∞) = H(v)−H(v∞).

The above functional H (v|v∞) is related to a Dirichlet–type integral, the
so–called entropy production or generalized Fisher information, by means of
the following Sobolev–type inequality (see [CT00, AMTU00, Gro75]).

Theorem 5.2.1 Let v ∈ L1
+(RN) such that

∫
RN v(y)dy = M , let v∞ be the

ground state defined in (5.2.2) with mass M . Then, the following inequality
holds,

H(v)−H(v∞) ≤ 1

2
I(v|v∞), (5.2.4)

where

I(v|v∞) =

∫
RN

v

∣∣∣∣∇( m

m− 1
vm−1 +

|y|2

2

)∣∣∣∣2 dy,
where m is the same exponent as in the definition (5.2.3) of the entropy
functional .
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We also recall the generalized Csiszár–Kullback inequality, which provides
an upper bound of the L1 norm of the difference between any positive density
v and the ground state v∞ having the same mass as v, in terms of their relative
entropy. More precisely, we have

Theorem 5.2.2 Let v ∈ L1
+(RN), with

∫
RN v(y)dy =

∫
RN v

∞(y)dy. Then,
the following holds

‖v − v∞‖αL1(RN ) ≤ C[H(v)−H(v∞)], (5.2.5)

where

α =

{
2 if m ≤ 2

m if m ≥ 2,
(5.2.6)

where m is again the exponent in the definition (5.2.3) of the entropy func-
tional.

In the sequel we shall also need the modified entropy functional (see
[BDE02])

E(v, s) = emNs
∫

RN

F (e−Nsv)dy +
1

2

∫
RN

|y|2vdy, (5.2.7)

where

F (u) =

∫ u

0

h(θ)dθ, (5.2.8)

and h is the enthalpy defined in (5.1.7). The function F is well–defined
thanks to condition (NL4) in the previous section; moreover, F is everywhere
nonnegative. We observe that the following identity holds

F (u) = uh(u)− φ(u).

In what follows, we shall assume the solution to enjoy enough regularity
in order to be treated as a classical solution; this can be justified, for instance,
by supposing that the initial datum u0 is strictly positive. In that case, the
solution u(y, s) is C∞ at any s > 0. The rigorous justification of our result
for general data then follows by a standard density argument (see [Váz90]).
Let us then state the main result of this section.

Theorem 5.2.3 Let v(y, s) be the solution to the Cauchy problem (5.2.1).
Let the initial datum v0 ∈ L1

+(RN) be such that∫
RN

F (v0(y))dy +
1

2

∫
RN

|y|2v0(y)dy +

∫
RN

v0(y)
mdy < +∞, (5.2.9)
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where F is defined in (5.2.8). Then, the entropy functional H(v(s)|v∞) sat-
isfies

H(v(s)|v∞) ≤ Ce−δs, for all s ≥ 0, (5.2.10)

where δ = min{2, N(k + 1)}, k is the exponent in the structural condition
(NL2), and C > 0 is a constant depending on the mass of v0 and on the
bounded quantity in (5.2.9).

The Csiszár Kullback inequality (5.2.5) above and the time dependent
scaling (5.1.4), then, provides the rate of convergence in L1 for the solution
to the original problem (5.1.1) towards the Barenblatt self–similar functions

u∞(x, t) =

(
C − λ

|x|2

t
2

N(m−1)+2

) 1
m−1

+

. (5.2.11)

Corollary 5.2.4 Let u(x, t) be the solution to the Cauchy problem (5.1.1),
with initial datum u0 ≥ 0 such that∫

RN

[
um0 (x) + |x|2u0(x) + F (u0(x))

]
dx < +∞.

Let u∞(x, t) be the Barenblatt self–similar function given by (5.2.11) with the
constant C such that

∫
u∞ =

∫
u0. Then, the following estimate holds for all

t ≥ 0
‖u(t)− u∞(t)‖L1(RN ) ≤ C(t+ 1)−

λδ
α , (5.2.12)

where λ is defined in (5.1.4) and α is defined by (5.2.6).

Remark 5.2.5 The hypotesis on the initial data 5.2.9 can be relaxed in case
a further assumption on the nonlinearity φ holds, namely φ′(u) ≤ C̃um−1 for

some C̃ > 0. This comes by direct computation of the evolution of the second
moment.

Remark 5.2.6 The rate of convergence in (5.2.12) has been already ob-
tained in [BDE02]. However, our result includes more general nonlinearity
functions. In particular, we don’t need to require the technical condition
(m − 1)uh(u) − mf(u) ≤ 0. Moreover, our approach seems to be much
simpler than that in [BDE02], since we make use the usual nonlinear ver-
sion of the Log–Sobolev inequality, and we use directly the Csiszar–Kullback
inequality (5.2.5) in order to get a rate of convergence in L1.
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5.2.2 Proof of Theorem 5.2.3

In order to prove theorem 5.2.3, we first perform an estimate for large times
s, which is obtained basically by means of the regularizing effect (5.1.9) and
of the Sobolev–type inequality (5.2.4). Then we use the modified entropy
functional E defined above in (5.2.7) in order to control the evolution of the
entropy in a finite time interval.

Proposition 5.2.7 Under the assumptions (N1)–(N2)–(N3) on the non-
linearity φ, there exist an s0 > 0 and a positive constant C(s0) depending on
s0 such that, if H(v(s0)) < +∞, then we have

H(v(s)|v∞) ≤ C(s0)e
−min{2,N(k+1)}s. (5.2.13)

Proof. We recall that the equation (5.2.1) can be written in the alternative
way (5.1.6). Then, integration by parts yields

d

ds
H(v(s)) =

∫
RN

[
m

m− 1
vm−1 +

|y|2

2

]
∇·
[
v∇
(
|y|2

2
+ eN(m−1)sh(e−Nsv)

)]
dy

=−
∫

RN

v∇
(

m

m− 1
vm−1 +

|y|2

2

)
·∇
(
|y|2

2
+ eN(m−1)sh(e−Nsv)

)
dy.

Hence, we employ the structural condition (NL2) to obtain

d

ds
H(v(s)) =−

∫
RN

ψ(e−Nsv)

∣∣∣∣∇( m

m− 1
vm−1 − |y|2

2

)∣∣∣∣2 dy+
−me−Ns

∫
RN

v2m−2ψ′(e−Nsv) |∇v|2 dy+

− e−Ns
∫

RN

vmψ′(e−Nsv)y · ∇
(

m

m− 1
vm−1

)
dy

=−
∫

RN

v

(
ψ(e−Nsv)+

1

m
ψ′(e−Nsv)e−Nsv

)∣∣∣∣∇( m

m− 1
vm−1−|y|

2

2

)∣∣∣∣2dy+
+ eNms

∫
RN

(
e−Nsv

)m
ψ′(e−Nsv)y · ∇(e−Nsv)dy+

+
1

m
e−Ns

∫
RN

v2ψ′(e−Nsv)|y|2dy =
3∑
j=1

Ij. (5.2.14)

We first compute the term I2. We observe that, from the hypothesis (P3)
on the nonlinearity, the function g(u) = umψ′(u) is is summable over any
interval [0, L), L > 0. Hence, the primitive

G(u) =

∫ u

0

θmψ′(θ)dθ
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is well defined on [0,+∞). As a consequence of that, and after integration
by parts, I2 may be written as follows

I2 = −NeNms
∫

RN

G(e−Nsv)dy.

Again from the structural hypothesis (P3), it follows easily that G(u) is a
(m+k+1)–Hölder function on a neighborhood of u = 0. This fact, together
with estimate (5.1.9), yields

I2 ≤ C(M, s0)e
−N(k+1)s

∫
RN

vm+k+1dy

≤ C(M, s0)‖v‖k+1
L∞(RN )

e−N(k+1)s

∫
RN

vmdy

≤ C(M, s0)e
−N(k+1)sH(v(s)),

for some s0 > 0 (chosen in order to have e−Nsv small) and for any s ≥ s0. In
a very similar way, we estimate I3

I3 ≤ C(M, s0)e
−N(k+1)

∫
RN

v2+k|y|2 ≤ C(M, s0)e
−N(k+1)H(v(s)),

for s0 large and s ≥ s0.
The integral term I1 may be written as follows.

I1 = −
∫

RN

α(s)v

∣∣∣∣∇( m

m− 1
vm−1 +

|y|2

2

)∣∣∣∣2 dy,
where α(s) = ψ(e−Nsv) + 1

m
ψ′(e−Nsv)e−Nsv. By means of the structural

condition (NL2) and the first order Taylor expansion, we have

α(s) = 1 + e−Nsvψ′(e−Nsη) +
1

m
e−Nsvψ′(e−Nsv), η ∈ [0, v(s)].

We employ once again the regularizing effect (5.1.9) to get

α(s) ≥ 1− C(M, s0)e
−N(k+1)s, s ≥ s0,

and we can choose s0 large enough in order to have α(s) ≥ 0 for any s ≥ s0.
Hence, we put the above estimates into (5.2.14) and we use the Sobolev–type
inequality (5.2.4) to recover

d

ds
H(v(s)|v∞) ≤ −2

(
1− C(M, s0)e

−N(k+1)
)
H(v(s)|v∞)+

+ C(M, s0)e
−N(k+1)sH(v(s))

≤ −2
(
1− C(M, s0)e

−N(k+1)
)
H(v(s)|v∞)+

+ C(M, s0)e
−N(k+1)sH(v∞).
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Finally, we use the variation of constants formula and obtain the desired
estimate (5.2.13). �

We now perform a local–in–time estimate of the entropy, in order to
control the constant C(s0) in the inequality (5.2.13).

Lemma 5.2.8 Suppose that the initial datum u0 satisfies (5.2.9). Then, the
following inequality holds at any s ≥ 0,

E(v(s)) ≤ e(m−1)sE(v0), (5.2.15)

where E(u) is defined in (5.2.7). In particular, the entropy H(v(s)) is uni-
formly bounded on any finite time interval [0, s0].

Proof. We calculate the evolution in time of the functional E(v(s), s)
defined in (5.2.7) (see [BDE02]). After integration by parts, we get

d

ds
E(v(s)) = −

∫
RN

v
∣∣y + e(m−1)Ns∇h(e−Nsv)

∣∣2 dy+
+ emNs

∫
RN

[
(m− 1)ve−Nsh(e−Nsv)−mφ(e−Nsv)

]
dy

≤ emNs(m− 1)

∫
F (e−Nsv)dy ≤ (m− 1)E(v(s)),

which proves (5.2.15). The last assertion comes directly from (5.1.11). �

Remark 5.2.9 The entropy dissipation method has been successfully used
in [CF03] in order to prove convergence towards Barenblatt solutions for
diffusion dominated convection–diffusion equations. By means of the same
approach in the present chapter, one can generalized the results in [CF03] to
a generalized convection–diffusion model where the power law in the diffusion
term is replaced by a more general φ satisfying the hypothesis above.

5.3 Evolution of the 1-d Wasserstein distances

5.3.1 Preliminaries and results

In this section we analyze the Cauchy problem (5.1.1) in one space dimension,
i.e. {

ut = φ(u)xx

u(x, 0) = u0(x),
(5.3.1)

where the initial datum u0 is taken in L1
+(R).
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We require the nonlinearity function φ to satisfy the conditions (NL1)
and (NL2) stated at the beginning of section 5.1. To simplify the calculations
below, we can express condition (NL2) in the following alternative way

(NL2) φ(u) = um+ψ(u), where ψ(u) = O(un) as u→ 0, for some n > m,
ψ ∈ C1((0,+∞)).

Moreover, we restrict ourselves to the slow diffusion cases by requiring

(SD) φ′(0) = 0 iff m > 1.

As in the previous section, we perform the time dependent scaling (5.1.4),
which turns equation (5.3.1) into{

vs = (yv + emsφ(e−sv)y)y
v(y, 0) = u0(y).

(5.3.2)

In the sequel we shall assume for simplicity that
∫ +∞
−∞ u0(x)dx = 1. Our

aim is to study, for any p ∈ [1,+∞], the dynamic induced by the above
equation (5.3.2) on the metric space

M2p = {U(·) ∈ L1
+(R),

∫ +∞

−∞
|x|2pu(x)dx <∞}

endowed with the p–Wasserstein distance

W2p(U, V ) = inf

[∫ +∞

−∞
|x− Tx|2pU(x)dx

] 1
2p

, (5.3.3)

where the infimum is taken over the admissible maps T : R → R such that∫ +∞

−∞
ψ(x)V (x)dx =

∫ +∞

−∞
ψ(Tx)U(x)dx, for all ψ ∈ C0(R). (5.3.4)

The condition (5.3.4) is often referred as T being a push–forward of the
measure Udx onto the measure V dx (notation: V = T]U).

The precise definition of the Wasserstein distances comes from a relaxed
variational problem, the so–called Monge–Kantorowich mass transportation
problem. More precisely, the set of admissible maps defined in (5.3.4) is
embedded into the set of all probability measures π on R2 with marginals
given by Udx and V dx. The cost defined in the definition (5.3.3) is then
converted into [∫ ∫

R2

(x− y)2pµ(dx, dy)

] 1
2p

.
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It has been proved (in a much more general context! See [Vil03] and the
references therein), that the optimal measure π∗, which minimizes the relaxed
variational problem, is supported on the graph of a map T ∗ : R → R. Hence,
the infimum in (5.3.3) is actually a minimum. We refer to [Vil03] for a
detailed explanation of these topics. For further reference, we only recall the
property

p ≤ q ⇒ W2p(U, V ) ≤ W2q(U, V ). (5.3.5)

In one space dimension, the optimal mat T ∗ can be expressed in a very simple
way (see also [CT03, CGT03]). Given two probability measures Udx, V dx ∈
M2p, we define the distribution functions

F (x) =

∫ x

−∞
U(y)dy G(x) =

∫ x

−∞
V (y)dy,

and their pseudo–inverses F−1, G−1 : [0, 1] → R

F−1(ρ) = inf{ω : F (ω) > ρ} G−1(ρ) = inf{ω : G(ω) > ρ}

(eventually F−1 and G−1 may attain the values ±∞ at ρ = 0 or at ρ = 1).
Then, it can be easily proved that the optimal map T ∗ between Udx and
V dx is

T ∗ = G−1 ◦ F.

Hence, by writing down the definition (5.3.3) of Wasserstein distance in terms
of the optimal T ∗, and after a change of variable, we get

W2p(U, V ) =

[∫ 1

0

∣∣F−1(ρ)−G−1(ρ)
∣∣2p dρ] 1

2p

. (5.3.6)

Thanks to the monotonicity property (5.3.5), one can eventually send p→∞
to obtain

W∞(U, V ) = sup
ρ∈(0,1)

∣∣F−1(ρ)−G−1(ρ)
∣∣

One can easily see that, whenever U and V have compact support, the above
quantity W∞(U, V ) controls the ‘distance’ between the supports of U and V
respectively. More precisely, we have (see [CT03])

|inf{supp U} − inf{supp V }| ≤W∞(U, V )

|sup{supp U} − sup{supp V }| ≤W∞(U, V ) (5.3.7)

Let us now turn back to the rescaled equation (5.3.2). From the results in
the previous section, we already know (in some sense), that the evolution of
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the solution v for large s is dominated by the power nonlinearity um. Thus,
we also expect that the Wasserstein distance between the solution v(·, s) of
equation (5.3.2) and the corresponding Barenblatt profile v∞ with mass 1
(defined in (5.2.11)) tends to zero as s goes to +∞. In order to study the
evolution of such a quantity, because of all the above observations about the
one–dimensional case, we set

F (y, s) =

∫ y

−∞
v(z, s)dz

G(y, s) =

∫ y

−∞
v∞(z)dz.

Let F−1, G−1 : (0, 1) → R be the pseudo–inverses of F and G respectively.
Then, F−1 satisfies the following equation (similar computations can be found
in [CT03, CGT03]),

∂F−1

∂s
= −F−1 − ∂

∂ρ

{[
∂F−1

∂ρ

]−m
+ emsψ

(
e−s
(
∂F−1

∂ρ

)−1
)}

, (5.3.8)

while G−1 satisfies

G−1 +
∂

∂ρ

[(
∂G−1

∂ρ

)−m]
= 0. (5.3.9)

We next state our result concerning Wasserstein distances.

Theorem 5.3.1 Let φ(u) satisfy conditions (NL1), (NL2), and (SD)
above.

(a) Let v(y, s) be the solution to (5.3.2) with u0 ∈ L1
+(R) having mass 1

and finite second moment. Let v∞ be the rescaled Barenblatt profile
with mass 1 defined by (5.2.2). Then, for any p ≥ 1, the following
holds

W2p(v(s), v
∞) =

[∫ 1

0

∣∣F−1(ρ)−G−1(ρ)
∣∣2p dρ] 1

2p

≤ Ce−s, (5.3.10)

where C = C0 +W2p(u0, v
∞) and C0 depends only on φ.

(b) Let v(y, s) be the solution to (5.3.2) with u0 ∈ L1
+(R) having mass 1

and compact support. Let v∞ be the rescaled Barenblatt profile with
mass 1 defined by (5.2.2). Then

W∞(v(s), v∞) ≤ Ce−s, (5.3.11)

where C = C0 +W∞(u0, v
∞) and C0 depends only on φ.
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In the original variables (5.3.1), the part (b) of the previous theorem
provides our result concerning with the speed of propagation of the support
of any solution u(x, t) having compactly supported initial datum u0. Indeed,

since the support of the Barenblatt profile is a ball of radius C(t+ 1)
1

m+1 for
some fixed constant C > 0, we easily obtain the following result.

Corollary 5.3.2 Let u(x, t) be the solution to (5.3.1) with u0 ∈ L1
+(R) hav-

ing compact support. Then, there exist two positive constants C1 < C2 such
that

|inf{supp u(t)} − inf{supp u∞(t)}| ≤ C1

|sup{supp u(t)} − sup{supp u∞(t)}| ≤ C2 (5.3.12)

Remark 5.3.3 We found a lot of references in the literature concerning the
finite speed of propagation property in slow diffusion equations (see [Kne77,
Kal87] for the general nonlinear case). Most of them are based on heavy
analytic tools. Our result is more complete in general nonlinear case, and
covers a wide class of nonlinearities. Moreover, our technique seems to be
applied to this problem in a very natural way.

5.3.2 Proof of Theorem 5.3.1

To perform the proof of theorem 5.3.1, we compute the evolution of the
Wasserstein distance W2p(v(s), v

∞) by means of the one–dimensional repre-
sentation formula (5.3.6). The calculations below are formal, in the sense
that we should need the pseudo–inverse function F−1 to be smooth enough.
We observe that this occurs when the initial datum u0 is supported on a
interval. We could make this argument rigorous by means of standard ap-
proximation tools (see [CGT03]). We skip these details and suppose that
F−1 is smooth. Moreover, we need to know a priori that the speed of propa-
gation of the support of the solution is finite. This property, which actually
characterizes slow diffusion equations, was proved by Kalashnikov, Oleinik
and Yiu–Lin (see [Kal87] and the references therein). Using the notations of
the previous subsection, thanks to (5.3.9) and after integration by parts, we
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have

d

ds

∫ 1

0

[
F−1 −G−1

]2p
dρ = 2p

∫ 1

0

[
F−1 −G−1

]2p−1 ∂

∂s
F−1(ρ, s)dρ

= 2p

∫ 1

0

[
F−1 −G−1

]2p−1

[
−F−1− ∂

∂ρ

((
∂F−1

∂ρ

)−m
+ emsψ

(
e−s
(
∂F−1

∂ρ

)−1
))

+

+G−1 +
∂

∂ρ

((
∂G−1

∂ρ

)−m)]

= −2p

∫ 1

0

[
F−1 −G−1

]2p
dρ− 2p(2p− 1)

∫ 1

0

[
F−1 −G−1

]2p−2
(
∂F−1

∂ρ
−∂G

−1

∂ρ

)
×

× ems

[
φ

(
e−s
(
∂F−1

∂ρ

)−1
)
− φ

(
e−s
(
∂G−1

∂ρ

)−1
)]

dρ

− 2p

∫ 1

0

[
F−1 −G−1

]2p−1 ∂

∂ρ

(
emsψ

(
e−s
(
∂G−1

∂ρ
, s

)−1
))

. (5.3.13)

We observe that, due to the compact support of the solutions, the boundary
term coming from integration by parts disappears (see [CT03, CGT03]). In
fact, this boundary term is given by

∑
i=0,1

(−1)i2p
[
F−1(i, s)−G−1(i)

]2p−1

[(
∂F−1

∂ρ

)−m
(i, s)+

emsψ

(
e−s
(
∂F−1

∂ρ

)−1
)

(i, s)−
(
∂G−1

∂ρ

)−m
(i, s)

]
.

The first bracket is bounded at any s because of the finite speed of prop-
agation property of the solutions. The second bracket is a sum of positive
powers of the solution v and of the Barenblatt function v∞ evaluated at the
boundary of their support respectively. Hence, this second bracket equals
zero.

Now, since the function φ is increasing, the second integral at the end of
(5.3.13) is nonnegative. This observation is the key point in this computation
(see again [CGT03]). In fact, thanks to this we can get rid of the nonlinearity
term, and we have only to estimate the term depending on the Barenblatt
profile, which is known. Indeed, after some calculations in the very last term
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of (5.3.13), due to (5.3.9), we obtain the following inequality

d

ds

∫ 1

0

[
F−1 −G−1

]2p
dρ ≤ −2p

∫ 1

0

[
F−1 −G−1

]2p
dρ

− 2p

m
e(m−1)s

∫ 1

0

[
F−1 −G−1

]2p−1
G−1ψ′

(
e−s
(
∂G−1

∂ρ

)−1
)(

∂G−1

∂ρ

)m−1

dρ.

Because of the condition (NL2) on ψ, we can assume that ψ(u) = ung(u),
with g′(u) = O(uk), k > −1, as u → 0. Then, it follows that ψ′(u) =
O(un−1), as u → 0. Hence, thanks to Hölder inequality, the last integral
above can be estimated from above by the term

C(v∞)pe−(n−m)s

(∫ 1

0

∣∣F−1 −G−1
∣∣2p−1

dρ

) 2p−1
2p

,

where the constants C(v∞) is given by

C(v∞) = ‖v∞‖L∞(R) max{| inf{supp v∞}|, | sup{supp v∞}|}

(this quantity depends only on the mass and on the exponent m). We now
apply the variation of constants formula in order to get the rate of conver-
gence to zero of Wp(v(s), v

∞). In order to perform this task, we set for
simplicity

Xp(s) =

∫ 1

0

[
F−1(ρ, s)−G−1(ρ)

]2p
dρ.

Hereafter, C denotes a fixed positive constant independent on p and s. So
far we have proved that

d

ds
Xp(s) ≤ −2p Xp(s) + 2p Ce−(n−m)sXp(s)

2p−1
2p . (5.3.14)

By Young inequality we get

d

ds
Xp(s) ≤ −2p

(
1− Ce−(n−m)s

)
Xp(s) + Ce−(n−m)s.

In a similar fashion to the computation of the entropy in the previous section,
by means of the variation of constants formula we easily obtain

Xp(s) ≤ (Xp(0) + C) e−min{2p,(n−m)}s. (5.3.15)

In case that n − m < 2p, the exponential rate of convergence in (5.3.15)
can be improved iteratively by substituting the above inequality in the last
addend of (5.3.14), until it reaches the value e−2ps. Obviously, the number of
steps depends on p. We have thus proved (5.3.10). The inequality (5.3.11),
then, easily follows by sending p→∞.
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Remark 5.3.4 It is worth to remark that in the above computation we
don’t need the hypothesis (NL3) on the nonlinearity, since we don’t need
the apriori estimates (5.1.8)–(5.1.9) on the solution v (which are consequences
of the L1–L∞ regularizing effect), which was one the tools in the proof of the
entropy dissipation result in the previous section.

97



Chapter 6

A small perturbation result for
nonlinear diffusion far from
vacuum

This chapter contains a stability under small perturbation result for the
porous medium equation far from vacuum.

6.1 Statement of the problem and result

In this chapter we prove the asymptotic stability of certain caloric self–similar
solutions to the generalized porous medium equation

ρt = p(ρ)xx, (6.1.1)

where the pressure p is smooth and strictly increasing. By caloric self–similar
solutions we mean a class of similarity solutions of the form

ρ̃(x, t) = f

(
x2

t+ 1

)
satisfying the limiting conditions

ρ̃(±∞, t) = ρ±,

for strictly positive ρ+, ρ−. For the existence of such solutions we refer to
[AP71, AP74, vDP77, vDP77]. We recall here that for the caloric profile ρ̃
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the following estimates hold∣∣∣∣∂α+β ρ̃(t)

∂xα∂tβ

∣∣∣∣
∞

=O(δ)
1

(t+ 1)
α
2
+β

α, β > 0∫ +∞

−∞

∣∣∣∣∂α+β ρ̃(x, t)

∂xα∂tβ

∣∣∣∣2dx =O(δ2)
1

(t+ 1)α+2β− 1
2

α, β > 0, (6.1.2)

where δ = |ρ+ − ρ−|. Let us denote by ρ̌ the solution to the same equation
(6.1.1) with the same limiting conditions at infinity and with the initial datum
given by a small perturbation of ρ̃(x, 0). Let us denote

r(x, t) = ρ̌(x, t)− ρ̃(x+ x0, t),

where x0 will be determined later on. By integrating w.r.t. x the equation
satisfied by r, we get

d

dt

∫ +∞

−∞
r(x, t)dx =

[
p(ρ̌(x, t))− p(ρ̃(x+ x0, t))

]
x

∣∣∣∣+∞
−∞

= 0 ,

Thus, if one has ∫ +∞

−∞

[
ρ̌0(x)− ρ̃0(x+ x0)

]
dx = 0 ,

it follows both

x0 =
1

ρ+ − ρ−

∫ +∞

−∞
[ρ̌0(x)− ρ̃0(x)] dx (6.1.3)

and ∫ +∞

−∞
r(x, t)dx = 0.

Let us define the primitive variable

R(x, t) =

∫ x

−∞
r(ξ, t)dξ , (6.1.4)

which satisfies the following problem
Rt = p(ρ̃+Rx)x − p(ρ̃)x

R(x, 0) =

∫ x

−∞
[ρ̌0(ξ)− ρ̃0(ξ + x0)]dξ

R(±∞, t) = 0.

(6.1.5)

Then, the small perturbation analysis with respect to the caloric self-similar
solution is given by the following result.
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Theorem 6.1.1 Let us suppose that ‖R(0)‖2
5 is sufficiently small. Then, for

any t ≥ 0, we have

5∑
k=0

(t+ 1)k‖R(k)(t)‖2 +

∫ t

0

(τ + 1)k‖R(k+1)(τ)‖2dτ ≤ C‖R(0)‖2
5. (6.1.6)

The proof of the Theorem (6.1.1) will be given in the next section.

6.2 The Proof of the Theorem 6.1.1

In this section we proof the asymptotic stability result (6.1.6) by means of a
continuation principle. We start with the a priori condition

sup
0≤t≤T

5∑
k=0

(1 + t)k‖R(k)(t)‖2 ≤ σ. (6.2.1)

Lemma 6.2.1 Suppose σ � 1. Then

‖R(t)‖2 +

∫ t

0

‖Rx(s)‖2ds ≤ O(1)‖R0‖2. (6.2.2)

Proof. By multiplying the first equation in (6.1.5) by R and after integra-
tion over R, we get

d

dt

1

2
‖R(t)‖2 =

∫ +∞

−∞
[p(ρ̃+Rx)x − p(ρ̃)x]Rdx =

=−
∫ +∞

−∞
[p(ρ̃+Rx)− p(ρ̃)]Rxdx =

=−
∫ +∞

−∞

[
p′(ρ̃)R2

x +R1(p, ρ̃, Rx)Rx

]
dx ≤

≤−O(1)‖Rx(t)‖2 +O(σ)‖Rx(t)‖2.

We denoted by R1(p, ρ̃, Rx) the remainder in the first order Taylor expansion
of p′ around ρ̃. The last inequality is due to the uniform boundedness of the
coefficient p′′(ζ) when ζ ∈ (ρ̃, ρ̃ + Rx) (as a consequence of the maximum
principle). Then, we integrate over [0, t] and get the desired estimate (6.2.2).
�

Lemma 6.2.2 Suppose σ � 1. Then we have

(1 + t)‖r(t)‖2 +

∫ t

0

(1 + s)‖rx(s)‖2ds ≤ O(1)‖R0‖2
1. (6.2.3)

100



Proof. By differentiating the equation (6.1.5) w.r.t. x, we get

rt =p(ρ̌)xx − p(ρ̃)xx = (p′(ρ̌)ρ̌x − p′(ρ̃)ρ̃x)x =

= [p′(ρ̌)rx + (p′(ρ̌)− p′(ρ̃)) ρ̃x]x . (6.2.4)

We multiply (6.2.4) by (1 + t)r and integrate over R to obtain

d

dt

[
(1 + t)

‖r(t)‖2

2

]
− ‖r(t)‖2 =

=(1 + t)

∫ +∞

−∞
(p′(ρ̌)rx)x rdx+ (1 + t)

∫ +∞

−∞
((p′(ρ̌)− p′(ρ̃)) ρ̃x)x rdx

=− (1 + t)

∫ +∞

−∞
p′(ρ̃)r2

xdx− (1 + t)

∫ +∞

−∞
(p′(ρ̌)− p′(ρ̃)) ρ̃xrxdx.

Finally, by integrating w.r.t. to time, we get

(1 + t)
1

2
‖r(t)‖2 +

∫ t

0

(1 + s)‖rx(s)‖2ds ≤ O(1)‖r(0)‖2+

+O(1)

∫ t

0

‖r(s)‖2ds+O(δ)

∫ t

0

(1 + s)1/2‖r(s)‖‖rx(s)‖ds ≤

≤O(1)‖R(0)‖2
1 +O(1)

∫ t

0

[
‖r(s)‖2 +O(δ)(1 + s)‖rx(s)‖2

]
ds ≤

≤O(1)‖R(0)‖2
1 +O(δ)

∫ t

0

(1 + s)‖rx(s)‖2ds,

where we have used (6.1.2) and Lemma 6.2.1. Thus, for δ � 1, we have the
desired estimate (6.2.3).�

Let us write the equation satisfied by rx:

rxt = (p′(ρ̌)ρ̌x − p′(ρ̃)ρ̃x)xx . (6.2.5)

Hence, we obtain the following Lemma.

Lemma 6.2.3 Let σ � 1. Then

(1 + t)2‖rx(t)‖2 +

∫ t

0

(1 + s)2‖rxx(s)‖2ds ≤ O(1)‖R(0)‖2
2. (6.2.6)

Proof. From (6.2.5) we have

rxt − (p′(ρ̌)rx)xx = [(p′(ρ̌)− p′(ρ̃)) ρ̃x]xx .
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We multiply by (1 + t)2rx and integrate over R to get

d

dt

[
(1 + t)2 1

2
‖rx(t)‖2

]
− (1 + t)‖rx(t)‖2

+(1 + t)2

∫ +∞

−∞
p′(ρ̌)r2

xxdx = −(1 + t)2

∫ +∞

−∞
[p′′(ρ̌)ρ̌xrxrxx

+ (p′(ρ̌)− p′(ρ̃)) ρ̃xxrxx + (p′(ρ̌)− p′(ρ̃))x ρ̃xrxx] dx.

Then, by integrating w.r.t. time, we obtain

(1 + t)2‖rx(t)‖2 +

∫ t

0

(1 + s)2‖rxx(s)‖2ds ≤

≤O(1)‖rx(0)‖2 +O(1)

∫ t

0

(1 + s)‖rx(s)‖2ds

+O(1)

∫ t

0

(1 + s)2

∫ +∞

−∞

[
r2
xrxx + ρ̃xrxrxx + rrxxρ̃xx

+ rxρ̃xrxx + rρ̃2
xrxx

]
dxds ≤ O(1)‖R(0)‖2

2

+O(1)

∫ t

0

(1 + s)1/2|rx(s)|∞
[
(1 + s)‖rx(s)‖2 + (1 + s)2‖rxx(s)‖2

]
ds

+O(δ)

∫ t

0

[
(1 + s)‖rx(s)‖2 + (1 + s)2‖rxx(s)‖2

+ ‖r(s)‖2 + (1 + s)2‖rxx(s)‖2 +O(δ)(1 + s)‖rxx(s)‖2
]
ds,

where we have used Young inequality. Thus, using (6.2.1), (6.2.2) and (6.2.3),
together with δ � 1, we get

(1 + t)2‖rx(t)‖2 +

∫ t

0

(1 + s)2‖rxx(s)‖2ds ≤ O(1)‖R(0)‖2
2+

+O(σ)

∫ t

0

[
(1 + s)2‖rxx(s)‖2 + (1 + s)‖rx(s)‖2

]
ds.

Finally, by means of (6.2.3) and since σ � 1, we get the desired result
(6.2.6).�

In order to complete the energy estimate (6.1.6) we have to carry out the
time dacay estimates for the higher order derivatives rxx, rxxx, rxxxx, , which
can be done by following the same technique as above. We omit the details
about this calculations.
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Chapter 7

The viscous Burgers Equation

This chapter has to do with the classical viscous Burgers’ equation described
in section 1.8 of the introduction. We use the entropy dissipation approach
to recover optimal rates of convergence towards diffusive waves. In the next
section 7.1 we show how this equation inherits the gradient flow structure
of the heat equation (cfr. section 1.7) by means of the famous Hopf–Cole
transformation. Section 7.2 is devoted to the statement and the proof of the
results concerning with the relative entropy approach. In the last section we
prove a simple stability result for the 2–Wasserstein distance.

7.1 The Hopf–Cole Transformation

The time–asymptotic analysis for the viscous Burgers’ equation

ut + uux = uxx, (7.1.1)

is based on the classical Hopf–Cole transformation, which reduces (7.1.1) to
the linear heat equation. In this section, we first explain the classical process
used to obtain the typical intermediate–asymptotic states for this equation
(see [Hop50]). Afterwards, we set up a different framework of notations, in
order to convert (7.1.1) into the linear Fokker–Planck equation.

7.1.1 The classical setting

We consider the initial value problem{
ut +

(
u2

2

)
x

= uxx

u(x, 0) = u0(x)
(7.1.2)

103



where x ∈ R, t > 0, u ∈ R and u0 is a given function in L1(R). It is well
known (see [Hop50]) that, if u(·, t) is the solution of (7.1.2) at a positive time
t, then the following conservation property holds∫ +∞

−∞
u(x, t)dx =

∫ +∞

−∞
u0(x)dx.

We denote in the following ∫ +∞

−∞
u0(x)dx = M. (7.1.3)

The unique solution of (7.1.2) can found explicitely by means of the Hopf–
Cole tranformation

φ(x, t) = exp

(
−1

2

∫ x

−∞
u(y, t)dy

)
u(x, t) = −2

φx(x, t)

φ(x, t)
, (7.1.4)

which reduces (7.1.2) to the linear heat equation φt = φxx. Indeed, via the
convolution formula for the heat equation, one obtains

u(x, t) =

∫ +∞
−∞

x−y
t
e−

|x−y|2
2t

−
∫ y
−∞ u0(z)dxdy∫ +∞

−∞ e−
|x−y|2

2t
−

∫ y
−∞ u0(z)dxdy

. (7.1.5)

Moreover, one can construct a diffusion wave type solution UM for (7.1.2)
with mass M , corresponding to the solution

ΦM(x, t) = 1− CM

∫ x(2t+1)−1/2

−∞
e−

ζ2

2 dζ (7.1.6)

of the heat equation. The costant CM in the above formula is determined in
order to match condition (7.1.3).

To construct ΦM , we observe that the spatial derivative z(x, t) = −φx(x, t)
(φ given by (7.1.4)) satisfies again the heat equation zt = zxx and it has an
initial datum z0 ∈ L1(R). Hence, one can consider the gaussian solution of
the heat equation with the same mass as z0, namely

ZM(x, t) = CM(2t+ 1)−1/2e−
x2

2(2t+1) , (7.1.7)

and write the corresponding ΦM by taking the spatial primitive of ZM (the
limiting conditions for Φ are determined by the conservation of mass). Fi-
nally, by replacing φ with ΦM into (7.1.4), one obtains the diffusion wave

UM(x, t) = 2CM(2t+ 1)−
1
2

exp
(
− x2

2(2t+1)

)
1− CM

∫ x(2t+1)−1/2

−∞ e−
ζ2

2 dζ
. (7.1.8)
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7.1.2 Intermediate asymptotics and zero–viscosity
regime

Let us consider equation (7.1.1) with a small viscosity parameter µ > 0, i. e.{
ut +

(
u2

2

)
x

= µuxx

u(x, 0) = u0(x),
(7.1.9)

with initial datum u0 ∈ L1(R) eventually sign–changing. In the limit as
µ → 0, one recovers the unique entropy solution of the Cauchy problem for
the inviscid Burgers’ equation{

ut +
(
u2

2

)
x

= 0

u(x, 0) = u0(x).
(7.1.10)

It is well–known that the quantities

p = − inf
x∈R

∫ x

−∞
u0(y)dy q = sup

x∈R

∫ +∞

x

u0(y)dy

are invariant for equation (7.1.10). Hence one can construct the N–wave
type solution

Np,q(x, t) =

{
x
t

if −
√

2pt ≤ x ≤
√

2qt

0 otherwise,
(7.1.11)

which turns out to be the an attractor in the L1 norm for any solution
of (7.1.10) with initial datum having compact support and negative and
positive masses given by p and q respectively (see [Lax57, DP75]). In case of
nonnegative data with mass M , (7.1.11) becomes

NM(x, t) =

{
x
t

if 0 ≤ x ≤
√

2Mt

0 otherwise.
(7.1.12)

As we pointed out before, in the case of a nonnegative initial datum u0 for the
viscous Burgers’ equation (7.1.2), the mass M =

∫
u0 is the only information

needed to construct the asymptotic diffusive wave UM given in (7.1.8). With
the small viscosity parameter µ as in (7.1.9), this solution becomes

UM,µ(x, t) = 2µCM,µ(2t+ 1)−
1
2

exp
(
− x2

2µ(2t+1)

)
1− CM,µ

∫ x(2t+1)−1/2

−∞ e−
ζ2

2µdζ
, (7.1.13)
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with CM,µ = 1 − e−
1
2µ . It can be easily checked that, for any fixed (x, t) ∈

R× R+,
UM,µ(x, t) −→ NM(x, t+ 1/2) as µ→ 0,

where NM is given by (7.1.12), that is, the diffusive wave UM,µ approximates
a positive N–wave in the zero–viscosity limit. As pointed out by T.P. Liu in
his introduction to [Liu85], this situation is an example of how the behavior
of a nonlinear conservation law, at the level of diffusion waves, changes con-
siderably with the presence of the viscosity (even when this is small). In the
case the of Burgers’ equation, an intermediate state for the viscous case (for
general possibly sign-changing initial data) is provided by

Ũ(x, t) = −2µ
φ̃(x, t)

1−
∫ x
−∞ φ̃(y, t)dy

, (7.1.14)

where

φ̃(x, t) =
a√

2πµt
e−

x2

2µt − b√
2πµt

e−
x2

2µt

and

a =
1

2µ

∫ +∞

−∞
u−0 (y)e−

1
2µ

∫ y
−∞u0(z)dzdy b =

1

2µ

∫ +∞

−∞
u+

0 (y)e−
1
2µ

∫ y
−∞u0(z)dzdy.

For fixed (x, t), the function Ũ tends to the N–wave defined in (7.1.11) as
µ tends to zero. The very interesting paper by Kim and Tzavaras ([KT01])
provides a quantitative understanding of the long–time–small–viscosity in-
terplay for the Burgers’ equation. It turns out that that, when the viscosity
is fixed small, at a first asymptotic stage the solution tends to take the shape
of an approximate N–wave of the type (7.1.14) (thus, its behavior is mainly
governed by convection). Then, at a very long time stage, the diffusion pro-
duces an interaction between the positive and the negative masses, and the
smallest between them is consumed, while the profile of the solution tends
to that of the diffusive wave UM defined in (7.1.13).

In the present chapter we do not deal with the zero viscosity limit, even
though an interesting problem could be the understanding of the limiting
behavior of the estimates carried out in our work as µ approaches to zero.

We also mention that the entropy approach for the inviscid Burgers’ equa-
tion has been recently used by Dolbeault and Escobedo in [DE], where the au-
thors use a time–dependent scaling in order to view the N–wave type solution
as a stationary state. The convergence towards equilibrium is then proven
by means of an entropy functional which provides a decay in a weighted
L1–norm.
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7.1.3 The time–dependent scaling

We are now interested in the study of the asymptotic convergence of the
solution u of (7.1.2) towards UM given by (7.1.8) as t→∞. To perform this
task, we consider a time-dependent scaling which transforms this problem
of the study of the asymptotic stability of a stationary state. This idea has
been frequently employed in the study of the time–asymptotics for nonlinear
diffusion equations (see, for instance, the pioneering paper by Barenblatt
[Bar52]). More precisely, we set

y = y(x, t) = xR(t)−1

s = s(t) = logR(t) (7.1.15)

u(x, t) = R(t)−1ρ(y(x, t), s(t)),

where
R(t) = (2t+ 1)1/2.

With this notation, (7.1.2) turns into the following Cauchy problem for the
Burgers–Fokker–Plank equation

∂ρ

∂s
=

∂

∂y

(
∂ρ

∂y
+ yρ− ρ2

2

)
ρ(y, 0) = ρ0(y) = u0(y).

(7.1.16)

The equation (7.1.16) is often referred to as the viscous Burgers’ equation in
similarity variables. Obviously, we have again the conservation of the mass∫ +∞

−∞
ρ(y, s)dy =

∫ +∞

−∞
ρ0(y)dy = M.

To recover the suitable stationary solution with mass M of (7.1.16), we em-
ploy once again the Hopf–Cole transformation

τ(y, s) = exp

(
−1

2

∫ y

−∞
ρ(ζ, s)dζ

)
, (7.1.17)

which converts (7.1.16) into

∂τ

∂s
=
∂2τ

∂y2
+ y

∂τ

∂y
.

Hence, the spatial derivative

ψ(y, s) = −∂τ
∂y

(y, s) =
1

2
ρ(y, s) exp

(
−1

2

∫ y

−∞
ρ(ζ, s)dζ

)
(7.1.18)
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satisfies the Cauchy problem for the linear Fokker–Planck equation
∂ψ

∂s
=

∂

∂y

(
∂ψ

∂y
+ yψ

)
ψ(y, 0) = ψ0(y) = 1

2
ρ0(y) exp

(
−1

2

∫ y
−∞ ρ0(ζ)dζ

)
.

(7.1.19)

The inverse transformation of (7.1.18) is given by

ρ(y, s) = −2
ψ(y, s)

1−
∫ y
−∞ ψ(ζ, s)dζ

. (7.1.20)

An easy computation gives∫ +∞

−∞
ψ0(y)dy = −

∫ +∞

−∞

∂

∂y

(
exp

(
−1

2

∫ y

−∞
ρ0(ζ)dζ

))
dy = 1− e−

M
2 =: m.

Hence, conservation of the total mass for the Fokker–Planck equation (7.1.19),
implies ∫ +∞

−∞
ψ(y, s)dy = m

for any s > 0. It is well known that (7.1.19) has the unique Gaussian
equilibrium Ψm with mass m, namely

Ψm(y) =
m√
2π
e−

y2

2 . (7.1.21)

By putting Ψm into (7.1.20), we recover our steady state for the Burgers–
Fokker–Planck equation (7.1.16)

ρ∞M(y) =

2m√
2π
e−

y2

2

1− 2m√
2π

∫ y
−∞ e−

ζ2

2 dζ
. (7.1.22)

By returning back to the original variables x, t, u, it turns out that the sta-
tionary state ρ∞M corresponds precisely to the diffusion wave UM defined in
(7.1.8).

We close this section by recalling an easy estimate for the function τ(y, t),
defined by the Hopf–Cole transformation (7.1.17), which will be useful in the
sequel. Since the initial datum for the original Burgers’ equation u0 belongs
in L1(R), the quantities

p = − inf
x∈R

∫ x

−∞
u0(y)dy (7.1.23)

q = sup
x∈R

∫ +∞

x

u0(y)dy = M + p
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are then finite. In terms of τ , relations (7.1.23) provide the following property
for τ(·, 0)

e−
(M+p)

2 ≤ τ(y, 0) ≤ e
p
2 ,

for any y ∈ R. Hence, by simple maximum principle, we obtain the estimate

e−
(M+p)

2 ≤ τ(y, t) ≤ e
p
2 , (7.1.24)

for all (y, t) ∈ R× R+.
As it was first proved by Hopf ([Hop50]), the large time behavior of so-

lutions of the original problem (7.1.2) is described by the diffusion wave UM
defined by (7.1.8). Our purpose here is to investigate the large time behavior
of u(x, t) in terms of solutions of equation (7.1.16). Hence, hereafter we shall
discuss the asymptotic stability of the stationary solution ρ∞M of equation
(7.1.16).

7.2 Trend to equilibrium in relative entropy

In this section we analyze the convergence towards the stationary profile ρ∞M
defined by (7.1.22) for the solution ρ of equation (7.1.16) with initial datum
ρ0 ∈ L1(R). We start by treating the case of non–negative initial data u0.
The general case will be covered later on. Our choice of the functionals used
to control the distance between u and ũ are the relative entropy functionals

He(ρ(s)|ρ∞M) =

∫ +∞

−∞
e

(
ρ(y, s)

ρ∞M(y)

)
ρ∞M(y)dy, (7.2.1)

where e : R+ → R+ is a smooth function satisfying the following conditions

e(1) = 0

e′′(h) ≥ 0 for any h ∈ R+, e′′ not identically 0

(e′′′)2 ≤ 1

2
e′′e(IV ). (7.2.2)

Such functions are called entropy generating functions, and the corresponding
functionals He are called admissible relative entropies (see [AMTU01]). In
particular, one can prove that functions e satisfying the above conditions
are strictly convex. Moreover, since ρ and ρ∞m have the same mass, we can
obtain the same functional He by “normalizing” the generating function e in
such a way that e′(1) = 0. As a consequence of the above conditions, each
generating function satisfies (see [AMTU01], Lemma 2.6)

χ(h) ≤ e(h) ≤ ϕ(h), (7.2.3)
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where we have denoted

χ(h) = α(h+ β) log
h+ β

1 + β
− α(h− 1), ϕ(h) = µ2(h− 1)2,

with µ2, α, β nonnegative constants depending on e′′(1) and e′′′(1), namely

µ2 = e′′(1), α = −e
′′(1)2

e′′′(1)
, β = −e

′′(1) + e′′′(1)

e′′′(1)
. (7.2.4)

The constants (7.2.4) are well defined if e′′′(1) 6= 0. In the case e′′′(1) = 0, one
has to set χ(h) = µ2

2
(h−1)2. Hence, the admissible relative entropy approach

allows us to cover a large range of functionals, including the physical relative
entropy

∫
ρ log ρ

ρ∞m
dx. We refer to [AMTU01] for a detailed explanation of

the mathematical properties of the relative entropies and their generating
functions.

By means of so–called Csiszár–Kullback inequalities, one can control the
L1 norm of the difference ρ− ρ∞M in terms of the relative entropy functionals
defined in (7.2.1).

Theorem 7.2.1 (Csiszár–Kullback) There exists a positive constant C
such that, for all functions ρ1, ρ2 ∈ L1

+(R), with∫
R
ρ1(x)dx =

∫
R
ρ2(x)dx (7.2.5)

and for all admissible generating functions e, we have

‖ρ1 − ρ2‖2
L1(R) ≤ CHe(ρ1|ρ2). (7.2.6)

Moreover, in case of the quadratic generating function

e(h) = ϕ(h) = (h− 1)2,

the relation (7.2.6) holds for all ρ1 ∈ L1(R) (eventually sign–changing and
without requiring the integral condition (7.2.5)) and ρ2 ∈ L1

+(R).

We refer to [AMTU00] for a detailed analysis of Csiszár–Kullback type in-
equalities.

Let us state our first result of convergence in relative entropy. In what
follows we denote the primitives

F (y, s) :=

∫ y

−∞
ρ(ζ, s)dζ, F∞(y, s) :=

∫ s

−∞
ρ∞M(ζ, s)dζ. (7.2.7)
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Theorem 7.2.2 Let ρ be the solution of (7.1.16) with ρ0 ∈ L1
+(R). Let ρ∞M

be given by (7.1.22). Let He be the admissible relative entropy functional gen-
erated by the function e. Then, there exists a positive constant C depending
on the mass M such that the following estimate holds:

He(ρ(s)|ρ∞M) ≤ Ce−2s
[
He(ρ0|ρ∞M) + ‖F (·, 0)− F∞(·, 0)‖2

L∞(R)

+‖F (·, 0)− F∞(·, 0)‖2
L1(R)

]
. (7.2.8)

Remark 7.2.3 An easy computation shows that the condition

F (·, 0)− F∞(·, 0) ∈ L1(R),

needed to control the bracket in the r.h.s. of (7.2.8), is equivalent to the
conditions ∫ 0

−∞

∫ x

−∞
ρ0(y)dydx < +∞ (7.2.9)

and ∫ +∞

0

∫ +∞

x

ρ0(y)dydx < +∞. (7.2.10)

The conditions (7.2.9)–(7.2.10) are satisfied, for instance, in the case of initial
data with finite second moment, i. e.∫ +∞

−∞
|y|2ρ0(y)dy < +∞. (7.2.11)

Now, it turns out that whenever ρ0 has finite relative logarithmic entropy,
then (7.2.11) holds (see [ABM96]). Hence, for all generating functions e we
have

He (ρ0|ρ∞M) < +∞ ⇒
∫ +∞

−∞
|y|2ρ0(y)dy < +∞.

Therefore, the decay rate statement of Theorem 7.2.2 is valid for initial data
in L1

+(R) with finite relative entropy, without further assumptions.

To prove theorem 7.2.2, we recall more concepts concerning relative en-
tropies. Let ρ, γ ∈ L1

+(R) such that
∫ +∞
−∞ ρ(x)dx =

∫ +∞
−∞ γ(x)dx and let us

denote h(x) = ρ(x)/γ(x). The entropy dissipation generated by e is defined
as

Ie(ρ|γ) =

∫ +∞

−∞
e′′(h(y, s))(hy(y, s))

2ρ∞M(y)dy.

Then, we recall the following generalized logarithmic Sobolev inequality (see
[AMTU01, MV00]).
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Theorem 7.2.4 Let He be an admissible relative entropy with generating
function e. Let ρ, γ ∈ L1

+(Rd) be such that∫
ρ(x)dx =

∫
γ(x)ds = M.

Then, the following inequality holds

He(ρ|γ) ≤
1

2
Ie(ρ|γ). (7.2.12)

In the quadratic case, inequality (7.2.12) becomes a generalized Poincaré–
type inequality. More precisely, if we set h = ρ/γ, we obtain∫ +∞

−∞
(h− 1)2γdx ≤ C

∫ +∞

−∞
|hx|2γdx. (7.2.13)

We remark that positivity of ρ is not needed for (7.2.13), i.e. it holds for
h = ρ/γ with ρ ∈ L1(R), γ ∈ L1

+(R) and
∫
ρdx =

∫
γdx. Inequalities (7.2.12)

and (7.2.13) are crucial in the proof of the following theorem, which is the
main ingredient for our results. Again, we refer to [AMTU01] for the proof.

Theorem 7.2.5 Let ψ be the solution to the Cauchy problem for the Fokker
Planck equation (7.1.19) with ψ0 ∈ L1

+(R). Let Ψm be the stationary solution
given in (7.1.21). Then, for any generating function e, the corresponding
relative entropy functional He(ψ(s)|Ψm) satisfies the following estimate

He(ψ(s)|Ψm) ≤ He(ψ0|Ψm)e−2s. (7.2.14)

Moreover, in the quadratic case ψ(h) = (h− 1)2, (7.2.14) is also valid for an
eventually sign–changing initial datum v0 ∈ L1(R).

The following lemma is also proved in [AMTU01] (Lemma 2.9) and will be
used in the sequel.

Lemma 7.2.6 The generator e of any relative entropy functional He satisfies

a) e(σ) ≤ e(σ0)

(
σ

σ0

)2

+ µ

(
σ

σ0

− 1

)
(σ − 1), σ ≥ σ0 > 0

b) e(σ) ≤ e(σ0)

(
σ

σ0

)
+ µ

(
σ

σ0

− 1

)
(σ − 1), σ0 ≥ σ > 0,

where µ = e′′(1).
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Now we can provide the proof of Theorem 7.2.2.

Proof of theorem 7.2.2. We write inequality (7.2.14) in terms of ρ and
ρ∞M by means of identity (7.1.18). We observe that

ρ(y, s) =
2ψ(y, s)

τ(y, s)

ρ∞M(y) =
2Ψm(y)

τm(y)
,

where τ is given by (7.1.17) and τm(y) = 1−
∫ y
−∞ Ψm(ζ)dζ. Thus, we have∫ +∞

−∞
e

(
ρ(y, s)τ(y, s)

ρ∞M(y)τm(y)

)
ρ∞M(y)τm(y)dy

≤ e−2s

∫ +∞

−∞
e

(
ρ0(y)τ(y, 0)

ρ∞M(y)τm(y)

)
ρ∞M(y)τm(y)dy. (7.2.15)

We employ lemma 7.2.6 with

σ(y, s) =
ρ(y, s)

ρ∞M(y)
, σ0(y, s) =

ρ(y, s)τ(y, s)

ρ∞M(y)τm(y)
.

We observe that estimate (7.1.24) (p = 0 in case of positive solutions) implies

sup
y,s

max

{(
σ(x, t)

σ0(x, t)

)
,

(
σ(x, t)

σ0(x, t)

)2
}
≤ eM .

Hence, we have

He(ρ(s)|ρ∞M(s)) =

∫ +∞

−∞
e

(
ρ(y, s)

ρ∞M(y)

)
ρ∞M(y)dy

≤ e
3M
2

∫ +∞

−∞
ψ

(
ρ(y, s)τ(y, s)

ρ∞M(y)τm(y)

)
ρ∞M(y)τm(y)dy

+ µ

∫ +∞

−∞
(τm(y)− τ(y, s)) (ρ(y, s)− ρ∞M(y)) τ(y, s)−1dy := I1 + I2.

We estimate the term I1 by means of (7.2.15),

I1 ≤ e
3M
2 e−2s

∫ +∞

−∞
e

(
ρ0(y)τ(y, 0)

ρ∞M(y)τm(y)

)
ρ∞M(y)τm(y)dy.
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By using again Lemma 7.2.6 with σ(y) =
ρ0(y)τ(y, 0)

ρ∞M(y)τm(y)
, σ0(y) =

ρ0(y)

ρ∞M(y)
, we

obtain

I1 ≤ e2Me−2s

[∫ +∞

−∞
e

(
ρ0(y)

ρ∞M(y)

)
ρ∞M(y)dy

+µ

∫ +∞

−∞

τ(y, 0)

τm(y)
(τ(y, 0)− τm(y)) (ρ0(y)− ρ∞M(y)) dy

+µ

∫ +∞

−∞

ρ∞M(y)

τm(y)
(τ(y, 0)− τm(y))2 dy

]
≤ e−2sC(M,µ)

[
He(ρ0|ρ∞M)

+‖ρ0 − ρ∞M‖L1‖τ(·, 0)− τm‖L∞(R) + ‖τ(·, 0)− τm‖2
L∞(R)

]
≤ C(M,µ)e−2s

[
He(ρ0|ρ∞M) + ‖τ(·, 0)− τm‖2

L∞(R)

]
, (7.2.16)

where we have used the estimate (7.1.24) and the inequality (7.2.6). The
constant C(M,µ) depends on M and µ. Let us estimate the integral term I2
as follows,

I2 ≤ µeM
∫ +∞

−∞
|τm(y)− τ(y, s)| |ρ(y, s)− ρ∞M(y)| dx

≤ µeM

2

[
1

ε
‖τm − τ(s)‖2

L∞(R) + ε‖ρ(s)− ρ∞M‖2
L1(R)

]
≤ µeM

2

[
1

ε
‖τm − τ(s)‖2

L∞(R) + CεHψ(ρ(s)|ρ∞M)

]
, (7.2.17)

where we have used once again inequality (7.2.6) and ε > 0 shall be fixed
later on. The first term in the bracket of (7.2.17) is to be treated as follows.
Using the notation in (7.1.15), we observe that

τ(y, s) = e−
1
2

∫ y
−∞ ρ(ζ,s)dζ = e−R(t(s)) 1

2

∫ y
−∞ u(R(t(s))ζ,t(s))dζ

= e−
1
2

∫ yR(t)
−∞ u(ζ,t(s))dζ =: φ(x(y, s), t(s)).

As we have seen in the previous section, the function φ(x, t) above satisfies
the heat equation φt = φxx. We denote

φ̃(x, t) = e−
1
2

∫ x
−∞ UM (ζ,t)dζ = τm(y(x, t), s(t)),

φ = φ− φ̃.
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Hence, φ satisfies φt = φxx with initial datum φ0(x) = τ(x, 0)− τm(x). The
representation formula for the solution of the one–dimensional heat equation
yields ∣∣φ(x, t)

∣∣ =
C√
t

∣∣∣∣∫ +∞

−∞
φ0(y)e

− (x−y)2

4t dy

∣∣∣∣ ≤ C√
t
‖φ0‖L1(R). (7.2.18)

Now, by (7.1.4) and since 0 ≤
∫ x
−∞ u0(y)dy ≤M , there exists a constant KM

depending only on M such that

|φ0(x)| ≤ KM |F (x, 0)− F∞(x, 0)|, (7.2.19)

where F and F∞ are defined by (7.2.7). Hence, there exists a fixed constant
K ′
M such that

‖φ(t)− φ̃(t)‖2
L∞(R) ≤

K ′
M

t
‖F (·, 0)− F∞(·, 0)‖2

L1(R).

Moreover, since
‖φ(t)− φ̃(t)‖2

L∞(R) ≤ ‖φ0‖2
L∞(R),

we have, from (7.2.19),

‖φ(t)− φ̃(t)‖2
L∞(R) ≤

C̃M
2t+ 1

[
‖F (·, 0)− F∞(·, 0)‖2

L1(R) + ‖φ0‖2
L∞(R)

]
≤ K̃M

2t+ 1

[
‖F (·, 0)− F∞(·, 0)‖2

L1(R) + ‖F (·, 0)− F∞(·, 0)‖2
L∞(R)

]
, (7.2.20)

for constants C̃M , K̃M depending on M . In terms of the rescaled time s,
(7.2.20) reads

‖τm − τ(s)‖2
L∞(R) ≤ e−2sK̃M

[
‖F (·, 0)− F∞(·, 0)‖2

L1(R)

+‖F (·, 0)− F∞(·, 0)‖2
L∞(R)

]
. (7.2.21)

Hence, by choosing a sufficiently small ε = ε(µ,M) > 0 in (7.2.17) and in
view of (7.2.16), we obtain

He(ρ(s)|ρ∞M) ≤ Ce−2s
[
He(ρ0|ρ∞M) + ‖F (·, 0)− F∞(·, 0)‖2

L∞(R)

+‖F (·, 0)− F∞(·, 0)‖2
L1(R)

]
and the proof is complete. �

The result in Theorem 7.2.2 is restricted to the case of positive initial
data ρ0 because the relative entropy functionals He(ρ|ρ∞M) are not defined for
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negative values of ρ, except for the one generated by the quadratic function
ϕ(h) = (h − 1)2. It is possible to obtain a similar result for general sign–
changing solutions and for the only case of quadratic entropy Hϕ(ρ|ρ∞M) =∫ +∞
−∞ ρ∞M

(
ρ
ρ∞M
− 1
)2

dx. We observe that we cannot employ lemma 7.2.6 in

the quadratic case, since it is valid only for positive values of ρ.

Theorem 7.2.7 Let ρ(y, s) be the solution of the IVP (7.1.16) with∫
ρ2

0(y)e
y2

2 dy <∞, (7.2.22)

(ρ0 eventually sign–changing). Let ρ∞M be given by (7.1.22). Then, the fol-
lowing estimate holds∫ +∞

−∞
(ρ(y, s)− ρ∞M(y))2 e

y2

2 dy

≤ Ce−2s
[
‖F (·, 0)− F∞(·, 0)‖2

L1(R) + ‖F (·, 0)− F∞(·, 0)‖2
L∞(R)

+

∫ +∞

−∞
|ρ0(y)− ρ∞M(y)|2 e

y2

2 dy

]
, (7.2.23)

with a constant C depending on the initial datum.

Proof.
From the estimate (7.1.24) (we recall that τ is expressed by (7.1.17)), we

obtain ∫ +∞

−∞
(ρ(y, s)− ρ∞M(y))2 e

y2

2 dy

≤ eM+p

∫ +∞

−∞
(ρ(y, s)τm(y)− ρ∞M(y)τm(y))2 e

y2

2 dy

≤ eM+p

∫ +∞

−∞
ρ(y, s)2(τ(y, s)− τm(y))2e

y2

2 dy

+ eM+p

∫ +∞

−∞
(ρ(y, s)τ(y, s)− ρ∞M(y)τm(y))2 e

y2

2 dy

:= J1 + J2. (7.2.24)

We now employ the same argument as in the proof of the previous theorem
to recover estimate (7.2.21). Hence, we estimate the term J1 as follows

J1 ≤ C0e
−2s
[
‖F (·, 0)− F∞(·, 0)‖2

L1(R)

+‖F (·, 0)− F∞(·, 0)‖2
L∞(R)

] ∫ +∞

−∞
ρ(y, s)2e

y2

2 dy.
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Then, inequality (7.2.14) in the case of quadratic entropy gives

J1 ≤ C1e
−2s
[
‖F (·, 0)− F∞(·, 0)‖2

L1(R) + ‖F (·, 0)− F∞(·, 0)‖2
L∞(R)

]
,

where C1 depends on the initial datum. By writing again inequality (7.2.14)
in terms of ρ, ρ∞M in the case of quadratic entropy, we obtain the estimate for
the term J2,

J2 ≤ CHϕ (ψ(s)|Ψm) ≤ Ce−2sHϕ (ψ0|Ψm) ,

for a constant C depending on the mass M . Now, we have

Hϕ (ψ0|Ψm) =

∫ +∞

−∞
(ψ0(y)−Ψm(y))2Ψm(y)−1dy

≤ 1

4

∫ +∞

−∞
|ρ0(y)τ(y, 0)− ρ∞M(y)τm(y)|2CMe

y2

2 dy

≤ C1
M

∫ +∞

−∞
|ρ0(y)− ρ∞M(y)|2 e

y2

2 dy

+ C2
M

∫ +∞

−∞
|τ(y, 0)− τm(y)|2 ρ∞M(y)2e

y2

2 dy

≤ C0
M

[∫ +∞

−∞
|ρ0(y)− ρ∞M(y)|2 e

y2

2 dy + ‖τ(·, 0)− τm(·, 0)‖2
L∞(R)

]
,

where all the constants above depend on the mass M . Hence, because of
(7.2.19), we have

J2 ≤ Ce−2s

[∫ +∞

−∞
|ρ0(y)− ρ∞M(y)|2 e

y2

2 dy + ‖F (·, 0)− F∞(·, 0)‖2
L∞(R)

]
.

Thus, by substituting the estimates for the terms J1 and J2 into (7.2.24), we
obtain (7.2.23). �

We remark that in the previous theorem condition (7.2.22) is sufficient to
control the terms involving the primitive F in (7.2.23). This assertion follows
from the observations in remark 7.2.3 and from the obvious inequality∫ +∞

−∞
ρ0(y)y

2dy ≤ C

(∫ +∞

−∞
ρ2

0(y)e
y2

2 dy

) 1
2

.

The results in Theorems 7.2.2 and 7.2.7 can be easily converted in terms
of L1 decay for the solution ρ to equation (7.1.16) towards the stationary
solution ρ∞M , by means of the Csiszár–Kullback inequality. Moreover, as
usual in this framework, by returning to the original variable u one gets
a polynomial rate of convergence towards diffusion waves for the viscous
Burgers’ equation. We collect all these results in the following two corollaries.
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Corollary 7.2.8 Let ρ(y, s) be the solution to the Cauchy problem (7.1.16)
with ρ0 ∈ L1(R). Let ρ∞M be given by (7.1.22). Suppose that one of the
following two conditions is satisfied:

i) ρ0 ≥ 0,

∫
R
y2ρ0(y)dy < +∞, and

∫
R
ρ0(y) log ρ0(y)dy < +∞

ii)

∫
R
ρ0(y)

2e
y2

2 dy < +∞.

Then, the following estimate holds

‖ρ(s)− ρ∞M‖L1(R) ≤ CMe
−s,

where CM depends on the mass M of the initial datum.

Corollary 7.2.9 Let u be the solution to (7.1.2) with initial datum u0 ∈
L1(R). Let UM given by (7.1.8). Suppose that one of the following two
conditions is satisfied

i) u0 ≥ 0,

∫
R
x2u0(x)dx < +∞, and

∫
R
u0(x) log u0(x)dx < +∞

ii)

∫
R
u0(x)

2e
x2

2 dx < +∞

Then, for all t ≥ 0, the following inequality holds

‖u(t)− UM(t)‖L1(R) ≤ C(t+ 1)−
1
2 ,

where C depends on the initial datum.

Remark 7.2.10 We mention here an alternative entropy dissipation ap-
proach to the Burgers’–Fokker–Planck equation (see [Cav00])

∂ρ

∂s
=

∂

∂y

(
∂ρ

∂y
+ yρ− ρ2

2

)
.

We denote

ρ(y, s) = ρ̃(y, s)e−
y2

2

ρ∞M(y) = ρ̃∞M(y)e−
y2

2 ,

where ρ∞M is given in (7.1.22), as usual. Hence, the above equation becomes

e−
y2

2 ρ̃s =

(
e−

y2

2 ρ̃y −
1

2
e−y

2

ρ̃2

)
y

.
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Since

−e
− y2

2

2
=

(
1

ρ∞M

)
y

,

we have

e−
y2

2 ρ̃s =

(
e−

y2

2 ρ̃2

(
1

ρ̃∞M
− 1

ρ̃

)
y

)
y

and finally we can rewrite the Burgers–Fokker–Planck equation in the fol-
lowing way

ρs =

(
e

y2

2 ρ2

(
e−

y2

2

(
1

ρ∞M
− 1

ρ

))
y

)
y

.

This suggests the use of an alternative entropy, namely

H(ρ|ρ∞M) =

∫ +∞

−∞
e−

y2

2

[
ρ(y)

ρ∞M(y)
− 1− log

ρ(y)

ρ∞M(y)

]
dy.

Indeed, the entropy production I = − d
ds
H is given by

I(ρ|ρ∞M) =

∫ +∞

−∞
ρ(y)2e

y2

2

[(
e−

y2

2

(
1

ρ∞M(y)
− 1

ρ(y)

))
y

]2

dy > 0.

The use of the above entropy allows us to require less restrictive conditions
on the initial data in order to obtain convergence to equilibrium. However,
in this case no exponential decay is proven, and both functional H(ρ) and
I(ρ) blow up if evaluated at a density ρ(y) with a much ‘faster’ behavior
than ρ∞M at |y| → ∞. Nevertheless, this approach can be generalized to
convection diffusion equations with general nonlinear convection, since it
does not require the use of the Hopf–Cole transformation.

7.3 Evolution of the Wasserstein metric

This section is devoted to the study of the Wasserstein metric of solutions of
the Burgers–Fokker–Planck equation

∂ρ

∂s
=

∂

∂y

(
∂ρ

∂y
+ yρ− ρ2

2

)
ρ(y, 0) = ρ0(y) = u0(y),

(7.3.1)

119



with initial datum ρ0 ∈ L1
+(R) with finite second moment. Let us recall

briefly some concepts concerning the Wasserstein metric. We denote by M2

the space of all probability densities on R with finite second moment, i. e.

M2 =

{
ρ ∈ L1

+(R),

∫ +∞

−∞
ρ(y)dy = 1,

∫ +∞

−∞
y2ρ(y)dy <∞

}
.

The Wasserstein metric d2(·, ·) on the space M2 is defined as follows,

d2
2(ρ1, ρ2) = inf

ρ2=T]ρ1

{∫ +∞

−∞
(y − T (y))2 ρ1(y)dy

}
, (7.3.2)

where the notation ρ2 = T]ρ1 means that the admissible maps T are the
push–forwards between the two densities ρ1 and ρ2, i. e. the T ’s satisfy∫ +∞

−∞
ϕ(y)ρ2(y)dy =

∫ +∞

−∞
ϕ(T (y))ρ1(y)dy,

for any ϕ ∈ C0
c (R). The precise definition of the Wasserstein metric comes

from a relaxed variational problem. More precisely, the set of admissible
maps is embedded into the set of all probability measures µ on R2 with
marginals given by ρ1 and ρ2. The quadratic cost defined above is converted
into ∫ ∫

R2

(y0 − y1)
2µ(dy0, dy1).

It turns out that the optimal measure µ∗, which minimizes the relaxed vari-
ational problem, is supported on the graph of a map T ∗ : R → R, which
is exactly the optimal map of the original variational problem (7.3.2). The
relaxed problem above is a version of the Monge–Kantorovich mass transfer
problem.

In the one dimensional case, the optimal map T ∗ can be expressed in the
following simple way. Let us define the distribution functions

Fi(y) =

∫ y

−∞
ρi(y)dy i = 1, 2

and their pseudo–inverses F−1
i : (0, 1) → R

F−1
i (η) = inf{ω : Fi(ω) > η}.

Then, it can be easily proven that the optimal map T ∗ between ρ1 and ρ2 is

T = F−1
2 ◦ F1.
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Hence, by definition of Wasserstein metric, we have

d2
2(ρ1, ρ2) =

∫ +∞

−∞

(
y −

(
F−1

2 ◦ F1

)
(y)
)2
ρ1(y)dy =

∫ 1

0

(
F−1

1 (η)− F−1
2 (η)

)2
dη.

(7.3.3)
Let us now discuss the asymptotic behavior of the Wasserstein metric d2

between a solution ρ(y, s) of equation (7.3.1) with initial datum ρ0 ∈ M2

and the stationary solution ρ∞1 defined in (7.1.22). To simplify the notation,
we denote by ρ∞ the stationary state with unit mass. We observe that
all the computations below can be generalized to the case of

∫
ρ0 = M

for any positive M . As in the previous section, we employ the Hopf–Cole
transformation

ψ(y, s) =
1

2
ρ(y, s) exp

(
−1

2

∫ y

−∞
ρ(ζ, s)dζ

)
, (7.3.4)

which reduces (7.3.1) to the linear Fokker–Planck equation
∂ψ

∂s
=

∂

∂y

(
∂ψ

∂y
+ yψ

)
ψ(y, 0) = ψ0(y) = 1

2
ρ0(y) exp

(
−1

2

∫ y
−∞ ρ0(ζ)dζ

)
.

(7.3.5)

We recall that the initial datum ψ0 has total mass equal to m = 1 − e−
1
2 .

Also, we recall the following theorem by Otto (see [Ott01]), giving a result
of exponential decay of the Wasserstein metric for the linear Fokker–Planck
equation. This result is a special case of a more general one for nonlinear
diffusion equations contained in [Ott01].

Theorem 7.3.1 Let ψ(y, s) be the solution to (7.3.5) with initial datum ψ0 ∈
L1

+(R),
∫
ψ0(y)dy = m, m = 1−e−1/2. Let Ψm be the corresponding gaussian

state defined in (7.1.21). Then the Wasserstein distance d2(ψ,Ψm) satisfies

d2
2(ψ(s),Ψm) ≤ e−2sd2

2(ψ0,Ψm). (7.3.6)

We now state our result for equation (7.3.1).

Theorem 7.3.2 Let ρ(y, s) be the solution to (7.3.1), with initial datum
ρ0 ∈ L1

+(R),
∫
ρ0(y)dy = 1. Let ρ∞ be the stationary solution

ρ∞(y) =

2m√
2π
e−

y2

2

1− 2m√
2π

∫ y
−∞ e−

ζ2

2 dζ
, (7.3.7)
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with m = 1− e−1/2. Then the Wasserstein distance d2(ρ(s), ρ
∞) satisfies the

exponential decay estimate

d2
2(ρ(s), ρ

∞) ≤ Ce−2sd2
2(ρ0, ρ

∞), (7.3.8)

where C is a fixed constant.

Proof.
Let ρ be the solution to (7.3.1), we define the corresponding ψ by means

of the transformation (7.3.4), i.e.

ψ(y, s) =
1

2
ρ(y, s) exp

(
−1

2

∫ y

−∞
ρ(ζ, s)dζ

)
. (7.3.9)

We also recall that

Ψm(y) =
1

2
ρ∞(y) exp

(
−1

2

∫ y

−∞
ρ∞(ζ)dζ

)
.

Let us now define the distribution functions

F (y, s) =

∫ y

−∞
ρ(ζ, s)dζ

F∞(y) =

∫ y

−∞
ρ∞(ζ)dζ

G(y, s) =

∫ y

−∞
ψ(ζ, s)dζ

G∞(y) =

∫ y

−∞
Ψm(ζ)dζ.

Hence, since ψ and Ψm satisfy the Fokker–Planck equation, Theorem 7.3.1
and the representation (7.3.3) of the Wasserstein metric in one space dimen-
sion imply∫ m

0

(
G−1(η, s)−G−1

∞ (η)
)2
dη ≤ e−2s

∫ m

0

(
G−1(η, 0)−G−1

∞ (η)
)2
dη,

(7.3.10)
where the symbol −1 stands for pseudo–inversion. Now, because of (7.3.9), it
is possible to write F in terms of G (and similarly F∞ in terms of G∞). We
have

G(η, s) =

∫ y

−∞
ψ(ζ, s)dζ =

∫ y

−∞

1

2
ρ(ζ, s) exp

(
−1

2

∫ ζ

−∞
ρ(ξ, s)dξ

)
dζ

= −
∫ y

−∞

∂

∂y

(
exp

(
−1

2

∫ ζ

−∞
ρ(ξ, s)dξ

))
dζ

= 1− exp

(
−1

2

∫ y

−∞
ρ(ζ, s)dζ

)
= 1− exp

(
−1

2
F (y, s)

)
.
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We denote by α : (0, 1) → (0,m) the bijective function

α(t) = 1− e−t/2,

which has inverse α−1(τ) = −2 log(1− τ). Hence, we can write

G = α ◦ F G−1 ◦ α = F−1.

Therefore, by simple change of variable, we obtain∫ 1

0

(
F−1(η, s)− F−1

∞ (η)
)2
dη =

∫ 1

0

(
G−1(α(η), s)−G−1

∞ (α(η))
)2
dη

=

∫ m

0

(
G−1(ξ, s)−G−1

∞ (ξ)
)2 2

1− ξ
dξ

≤ 2
√
e

∫ m

0

(
G−1(ξ, s)−G−1

∞ (ξ)
)2
dξ

≤ 2
√
e e−2s

∫ m

0

(
G−1(ξ, 0)−G−1

∞ (ξ)
)2
dξ

= 2
√
e e−2s

∫ m

0

(
F−1(α−1(ξ), 0)− F−1

∞ (α−1(ξ))
)2
dξ

=
√
e e−2s

∫ 1

0

(
F−1(η, 0)− F−1

∞ (η)
)2
e−

η
2 dη

≤
√
e e−2s

∫ 1

0

(
F−1(η, 0)− F−1

∞ (η)
)2
dη,

which concludes the proof. �

In the original variables (7.1.2), the above theorem is converted into a
stability result for the Wasserstein metric, as stated in the following corollary.

Corollary 7.3.3 Let u be the solution of (7.1.2) with nonnegative initial
datum u0 ∈ L1(R) with finite second moment. Let UM given by (7.1.8).
Hence, there exists a fixed positive constant C (depending on the mass) such
that

d2(u(t), UM) ≤ Cd2(u0, UM). (7.3.11)

We remark that such a result cannot be improved in order to obtain
a decay at the level of the original variables, because of the translation–
invariance and the representation (7.3.3) of the Wasserstein metric.
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Chapter 8

A stability result for radiating
gases

This last chapter deals with the asymptotic stability of diffusive waves for
the Hamer model for radiating gases widely discussed in chapter 4. We
use here the relative entropy method described in section 1.7 and developed
in chapters 5 and 7, in order to detect the optimal rate of convergence in
L1 norm. The importance of such result lays on the fact that it is one of
the first results involving entropy methods applied outside of the context of
diffusion equations (see also [DE]). The next section is devoted to the precise
statement of the problem and of the main result in theorem 8.1.4. In section
8.2 we prove such theorem.

8.1 Statement of the problem and result

In this section we analyze the time–asymptotic behaviour of the solutions to
the Cauchy problem {

ut +
1
2
(u2)x = −u+K ∗ u

u(x, 0) = u0(x),
(8.1.1)

with u0 ∈ L1(R) and the convolution kernel K is given by K(x) =
1

2
e−|x|.

We recall that the kernel K satisfies

(i)

∫ +∞

−∞
K(x)dx = 1

(ii) K(−x) = K(x).
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It can be easily checked that, if u(·, t) is the solution to (8.1.1) at a positive
time t, then the following mass conservation property holds∫ +∞

−∞
u(x, t)dx =

∫ +∞

−∞
u0(x)dx.

As pointed out in the introduction, it is well know that the behavior of
the solutions to (8.1.1) for large times is described by the viscous Burgers’
equation

ut +
1

2
(u2)x = uxx. (8.1.2)

The typical asymptotic states for (8.1.2) are given by the self–similar waves

UM(x, t) = 2(1− e−M/2)(2t+ 1)−
1
2

exp
(
− x2

2(2t+1)

)
1− CM

∫ x(2t+1)−1/2

−∞ e−
ζ2

2 dζ
, (8.1.3)

where the parameter M is the integral of UM(·, t) over R for all t > 0. The
expression above for the unique self–similar wave with mass M is obtained
via the Hopf–Cole transformation

φ(x, t) =
1

2
u(x, t) exp

(
−1

2

∫ x

−∞
u(z, t)dz

)
, (8.1.4)

which reduces (8.1.2) to the linear heat equation. Indeed, this transforma-
tion provides an explicit formula for the solution to (8.1.2). The diffusive
wave (8.1.3) corresponds (in (8.1.4)) to a gaussian solution to the linear heat
equation.

In order to view the asymptotic self–similar profile (8.1.3) as a stationary
profile (in a similar fashion to many papers about self–similar asymptotics,
see [Bar52, CT00, Ott01] e.g.), we consider the time–dependent scaling

y = y(x, t) = xR(t)−1/2

s = s(t) =
1

2
logR(t) (8.1.5)

u(x, t) = R(t)−1/2ρ(y(x, t), s(t)),

where
R(t) = (2t+ 1).

Then, equation (8.1.1) turns into

ρs +

(
ρ2

2
− yρ

)
y

= −e2s (ρ−Ks ∗ ρ) , (8.1.6)
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where the rescaled convolution kernel Ks is given by Ks(ξ) = esK(esξ). Now,
it is known that the nonhomogeneous term −e2s (ρ−Ks ∗ ρ) in (8.1.6) be-
haves like ρyy as s → ∞ for sufficiently smooth solutions ρ (see [LM03]).
Hence, one can expect the solution to (8.1.6) to be described asymptotically
by the Burgers’–Fokker–Planck equation

ρs =

(
ρy + yρ− ρ2

2

)
y

, (8.1.7)

also called Burgers’ equation in similarity variables. The solutions to (8.1.7)
converge as s → ∞ (e.g. in L1) to the unique stationary profile ρ∞M (with
the same mass as the initial datum) satisfying the relation

ρy + yρ− ρ2

2
= 0, (8.1.8)

i.e.

ρ∞M(y) =

2m√
2π
e−

y2

2

1− 2m√
2π

∫ y
−∞ e−

ζ2

2 dζ
, (8.1.9)

where m = 1 − e−M/2 and M =
∫ +∞
−∞ u0(x)dx (We recall that the time–

dependent scaling (8.1.5) is mass preserving). Such profile is again obtained
via the Hopf–Cole transformation

ψ(y, s) =
1

2
ρ(y, s) exp

(
−1

2

∫ y

−∞
ρ(ζ, s)dζ

)
, (8.1.10)

which turns (8.1.7) into the Fokker–Planck equation

ψs = (ψy + yψ)y (8.1.11)

and the stationary profile satisfying (8.1.8) corresponds to a gaussian equi-
librium of equation (8.1.11) via the relation (8.1.10).

Let us now return back to the equation (8.1.1) in the original variables.
Our asymptotic analysis will include only solutions to that equations which
are obtained as small perturbation in Sobolev norm of the zero state. How-
ever, the motivation of this restriction will come from the need of providing
an a priori estimate of some error terms we will encounter in the computa-
tions. Therefore, our result can be extended to all those solution satisfying
these a priori estimates, which are true in particular in a small perturba-
tion setting (see [IK02]). For the sake of completeness we recall here the
existence and regularity properties for the class of solutions we will consider.
The proof of the following theorem can be found in the paper by Schochet
and Tadmor [ST92], where equation (8.1.1) is referred to as the Rosenau–
Chapman–Enskog equation.
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Theorem 8.1.1 (Existence and regularity) The unique entropy solution
to the equation (8.1.1) remains as smooth as the initial datum u(x, 0) = u0(x)
(in Hs sense) provided the initial datum u0 is sufficiently small so that

2‖u0‖1/2
L∞ + ‖u′0‖L∞ < 1. (8.1.12)

We then state the following theorem by Iguchi and Kawashima [IK02],
which holds in the more general framework of elliptic–hyperbolic coupled
systems, as pointed out in the introduction.

Theorem 8.1.2 (Solutions with small initial datum) Let s ≥ 3 be an
integer, β ≥ 0. There exists a positive constant C1 = C1(s, β) such that, if
‖u0‖H3 + ‖u0‖L1 ≤ C1, then for all 0 ≤ l ≤ s − 2 the solution u to (8.1.1)
satisfies the following pointwise estimates∣∣∂lxu(x, t)∣∣ ≤ Cl,s(1 + t)−(1/2)(l+1)φβ(x, t), (8.1.13)

where

φβ(x, t) =

(
1 +

x2

1 + t

)−β/2
(8.1.14)

and

Cl,s = C (1 + ‖u0‖Hs + ‖u0‖L1)
l∑

k=1

∥∥(1 + |x|)β|∂kxu0(x)
∥∥
L∞x

. (8.1.15)

Next, we reformulate the above results in terms of the new variables ρ, y
and s.

Corollary 8.1.3 The solution ρ(y, s) to equation (8.1.6) with initial datum
ρ0 remains as smooth as ρ0 in Hs norm provided rho0 satisfies

2‖ρ0‖1/2
L∞ + ‖ρ′0‖L∞ < 1. (8.1.16)

Moreover, given t ≥ 3 integer, β ≥ 0, there exists a positive constant C1 =
C1(t, β) such that, if

‖ρ0‖H3 + ‖ρ0‖L1 ≤ C1, (8.1.17)

then for all 0 ≤ l ≤ t − 2 the solution ρ to (8.1.6) satisfies the following
pointwise estimates ∣∣∂lyρ(y, s)∣∣ ≤ Cl,tψβ(y, s), (8.1.18)

where
ψβ(y, s) =

(
1 + y2

)−β/2
(8.1.19)

and

Cl,t = C (1 + ‖ρ0‖Ht + ‖ρ0‖L1)
l∑

k=1

∥∥(1 + |y|)β|∂kyρ0(y)
∥∥
L∞y

. (8.1.20)
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We shall prove that the solution to the rescaled equation (8.1.6) with
initial datum ρ0 in L1

+(R) with mass M satisfying the hypothesis (8.1.16)
and (8.1.17) of corollary 8.1.3 and such that the constant C4,6 in the above
(8.1.20) is finite, converge exponentially fast to the profile ρ∞M . To perform
this task, we employ the entropy dissipation method developed in some of
the previous chapters (see [CT00, Ott01, DFM]) in order to obtain the sharp
rate of convergence in L1 norm via Csiszár–Kullback inequality. This will
improve the rate of convergence towards diffusive wave proven in [IK02] in
our simpler scalar model.

We collect the above statements in the following

Theorem 8.1.4 Let ρ(y, s) be the solution to the equation (8.1.6) with initial
datum ρ0 ∈ L1

+(R) ∩H6(R) having mass M . Let us suppose that ρ0 satisfies
(8.1.16) and (8.1.17) of corollary 8.1.3 and such that the constant C4,6 in
(8.1.20) is finite. Then, there exists a positive fixed constant C such that the
inequality

‖ρ(·, s)− ρ∞M(·)‖L1(R) ≤ Ce−s (8.1.21)

is satisfied for any s ≥ 0. As a consequence of (8.1.21), the solution u to the
original problem (8.1.1) with u0 = ρ0 satisfies the inequality

‖u(·, t)− UM(·)‖L1(R) ≤ C(t+ 1)−
1
2 (8.1.22)

for all times t ≥ 0.

8.2 Proof of the main theorem

We prove Theorem 8.1.4 via the entropy dissipation method already devel-
oped above. We recall the admissible relative entropy functionals of chapter
7, namely

He(ρ(s)|ρ∞M) =

∫ +∞

−∞
e

(
ρ(y, s)

ρ∞M(y)

)
ρ∞M(y)dy, (8.2.1)

where e : R+ → R+ is a smooth function satisfying the following conditions

e(1) = 0

e′′(h) ≥ 0 for any h ∈ R+, e′′ not identically 0

(e′′′)2 ≤ 1

2
e′′e(IV ). (8.2.2)

We perform here a special choice of the generating function e, this choice
being justified by technical reasons. We set

e(h) = (h+ 1) log
h+ 1

2
− (h− 1).
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As a simple consequence of Lemma 7.2.6 in the previous chapter, we state
the following lemma, the proof of which employs the uniform bound for u for
bounded data.

Lemma 8.2.1 Let ψ and ρ as in (8.1.10). Then we have

He(ρ) ≤ C1He(ψ) ≤ C2He(ρ), (8.2.3)

where the constants C1 and C2 depend on the masses M and m defined above.

Hereafter, we will work with the functional He(ψ(s)) where ψ(s) is related
to the solution ρ(s) of equation (8.1.6) via (8.1.10). We recall that the
functional He(ψ) above attains its minimum at the gaussian state

ψ∞m (y) =
m√
2π
e−

y2

2 ,

with m = 1 − e−M/2 (see [AMTU01]). To simplify the notation, we will
denote in the following

Σ(y, s) =

∫ y

−∞
ρ(ξ, s)dξ.

The evolution of Σ and ψ are governed by the relations

Σs +
1

2
(Σy)

2 − yΣy = −e2s (Σ−Ks ∗ Σ) (8.2.4)

ψs − (yψ)y = e−
1
2
Σ

[
−ρρy −

1

4
ρ3 − e2s (ρ−Ks ∗ ρ) + e2s

ρ

2
(Σ−Ks ∗ Σ)

]
(8.2.5)

Since we are dealing with nonnegative initial data, both ρ and ψ remain
nonnegative by comparison principle (see Chapter 4). Hence, the functional

He(ψ(s)) is well defined. Moreover, the term e−
1
2
Σ(y,s), which will appear

very frequently in the calculations below, satisfies the estimate

0 < c ≤ e−
1
2
Σ(y,s) ≤ C

uniformly w.r.t. s. We then compute the evolution of He(ψ(s)). We have

d

ds
He(ψ(s)) =

∫ +∞

−∞
e′
(
ψ(y, s)

ψ∞m (y)

)
ψsdy =

∫ +∞

−∞
e′
(
ψ(y, s)

ψ∞m (y)

){
(yψ)y

+e−
1
2
Σ

[
−ρρy −

1

4
ρ3 − e2s (ρ−Ks ∗ ρ) + e2s

ρ

2
(Σ−Ks ∗ Σ)

]}
dy (8.2.6)

We then employ the following general relation (see Chapter 4 for the
proof),
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Lemma 8.2.2 For any smooth function f(y), the following expansion for-
mula holds

− f(y) +Ks ∗ f(y) =

∫ +∞

−∞
K(ξ)

[
−e−sξfy(y) +

e−2s

2
ξ2fyy(y)

−e
−3s

6
ξ3fyyy(y) +

1

24

∫ ξe−s

0

θ4fyyyy(y − ξe−s − θ)dθ

]
dξ. (8.2.7)

We then observe that the term e′ in (8.2.6) can be estimated as follows.∣∣∣∣e′(ψ(y, s)

ψ∞m (y)

)∣∣∣∣ ≤ 1 +

∣∣∣∣∣log

( ψ(y,s)
ψ∞m (y)

+ 1

2

)∣∣∣∣∣ ≤ C(1 + |y|2), (8.2.8)

where we have used the nonnegativity and uniform bound from above for ψ
and the explicit expression for ψ∞m (y). The above constant C is independent
on y and depends on the initial datum. We then apply (8.2.7) both to ρ and
to Σ into (8.2.6) to obtain

d

ds
He(ψ(s)) =

∫ +∞

−∞

∫ +∞

−∞
K(ξ)e′

(
ψ(y, s)

ψ∞m (y)

){
(yψ)y + e−

1
2
Σ

[
−ρρy −

1

4
ρ3+(

−esξρy(y) +
1

2
ξ2ρyy(y)−

e−s

6
ξ3ρyyy(y) +

e2s

24

∫ ξe−s

0

θ4ρyyyy(y − ξe−s + θ)dθ

)

−e2sρ
2

(
−e−sξρ(y) +

e−2s

2
ξ2ρy(y)−

e−3s

6
ξ3ρyy(y)+

1

24

∫ ξe−s

0

θ4ρyyy(y − ξe−s + θ)dθ

)]}
dξdy = −

∫ +∞

−∞
e′′
(
ψ(y, s)

ψ∞m (y)

)(
ψ(y, s)

ψ∞m (y)

)2

ψ∞m (y)dy

+O(1)e−2s

∫ +∞

−∞

∫ +∞

−∞
K(ξ)(1 + |y|2)ξ4×

× sup
θ∈[0,ξe−s]

[∣∣ρyyyy(y − ξe−s + θ)
∣∣+ ∣∣ρyyy(y − ξe−s + θ)

∣∣] dξdy
where we have used integration by parts, the estimate (8.2.8), the properties

K(−ξ) = K(ξ),

∫
K(ξ)dξ = 1

and the relation

ψyy =
1

2
e−

1
2
Σ

(
−3

2
ρρy +

ρ3

4
+ ρyy

)
.
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We then use estimate (8.1.18) to control the terms ρyyy and ρyyyy above.
After simple calculations, by means of the properties of K, one can prove
that the last integral above is finite and it can be controlled uniformly w.r.t.
to s. We then obtain

d

ds
He(ψ(s)) ≤ −

∫ +∞

−∞
e′′
(
ψ(y, s)

ψ∞m (y)

)(
ψ(y, s)

ψ∞m (y)

)2

ψ∞m (y)dy +O(1)e−2s.

Hence, we apply the generalized Sobolev inequality

He(ψ(s)) ≤ 1

2
Ie(ψ(s)),

where

Ie(ψ(s)) =

∫ +∞

−∞
e′′
(
ψ(y, s)

ψ∞m (y)

)(
ψ(y, s)

ψ∞m (y)

)2

ψ∞m (y)dy

is called generalized Fisher information or generalized entropy production.
The– refore, we get

d

ds
He(ψ(s)) ≤ −2He(ψ(s)) +O(1)e−2s,

and, by variation of constants formula, the exponential decay

He(ψ(s)) ≤ O(1)e−2s.

By (8.2.3) we then recover

He(ρ(s)) ≤ O(1)e−2s.

Finally, we employ the following generalized Csiszár–Kullback inequality (see
e.g. [AMTU00])

‖ρ(s)− ρ∞M‖2
L1 ≤ CHe(ρ(s))

and return back to the original variables u, x, t. Hence, the proof of the
theorem is complete.
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Appendix A

Uniqueness and regularity of
Hs solutions for a
hyperbolic–parabolic system

In this section we prove some results concerning uniqueness and regularity
of solutions in Sobolev spaces to the hyperbolic–parabolic system

ut − vx = 0

vt − σ(u)x = µvxx

u(x, 0) = u0(x)

v(x, 0) = v0(x),

(A.0.1)

under the assumption
sup
u∈R

|σ′(u)| < +∞. (A.0.2)

Theorem A.0.3 Let (u1, v1), (u2, v2) be two solutions to the Cauchy problem
(A.0.1) belonging in the space L∞ ([0, T ], H1(R)), with u0, v0 ∈ H1(R) and
let the function σ satisfies condition (A.0.2). Then, u1 = u2, v1 = v2 almost
everywhere on [0, T ]× R.

Proof. Let u = u1 − u2, v = v1 − v2. Then, u and v satisfy{
ut − vx = 0

vt − [σ(u1)− σ(u2)]x = µvxx.
(A.0.3)
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Multiplying the first equation in (A.0.3) by u and the second one by v and
integrating in dx, after integration by parts, we get the energy identity

d

dt

1

2

[
‖u(t)‖2

L2(R) + ‖v(t)‖2
L2(R)

]
=

∫ +∞

−∞
vxudx

−
∫ +∞

−∞

[
σ(u1)− σ(u2)

]
vx − µ‖vx(t)‖2

L2(R).

Hence, after time integration, from conditions (A.0.2) and from weighted
Holder inequality, we obtain

‖u(t)‖2
L2(R) + ‖v(t)‖2

L2(R) ≤ C

∫ T

0

‖u(s)‖2
L2(R)ds,

where the constant C depends on σ′. Finally, by applying Gronwall Lemma,
we recover

‖u(t)‖2
L2(R) + ‖v(t)‖2

L2(R) = 0,

which proves the theorem. �

We now perform an estimate in Sobolev norm for the hyperbolic–parabolic
system (A.0.1), again under the assumption (A.0.2). Moreover, we require,
without loss of generality, σ(0) = 0.

Theorem A.0.4 Let (u, v) be the solution to the hyperbolic–parabolic sys-
tem (A.0.1) with initial data u0, v0 belonging in the space H2(R) and let the
function σ satisfies condition (A.0.2). Then, for any 0 < t < T with T > 0
fixed, we have

‖u(t)‖2
H2(R) + ‖v(t)‖2

H2(R) +

∫ t

0

‖vx(s)‖2
H2(R)ds ≤ C0, (A.0.4)

for a constant C0 depending on T , sup |σ′| and on the initial data.

Proof. Hereafter we denote by C a general positive constant depending
on σ, T and on the H2–norm of the initial data u0, v0. We compute, for
0 < t < T ,

1

2

d

dt

[
‖u(t)‖2

L2(R) + ‖v(t)‖2
L2(R)

]
=

∫ +∞

−∞
utudx+

∫ +∞

−∞
vtvdx

=

∫ +∞

−∞
vxudx+

∫ +∞

−∞
σ(u)xvdx+ µ

∫ +∞

−∞
vxxvdx

=

∫ +∞

−∞
vxudx−

∫ +∞

−∞
vxσ(u)− µ

∫ +∞

−∞
v2
xdx

≤ −c
∫ +∞

−∞
v2
xdx+ C

∫ +∞

−∞
u2dx, (A.0.5)
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where c > 0 and we have used σ(0) = 0 and the condition (A.0.2). Hence,
integration over the time interval [0, t] and Gronwall inequality yields

‖u(t)‖2
L2(R) + ‖v(t)‖2

L2(R) +

∫ t

0

‖vx(s)‖2
L2(R)ds

≤ C
[
‖u(0)‖2

L2(R) + ‖v(0)‖2
L2(R)

]
eCt. (A.0.6)

We now write the system for the first spatial derivatives (ux, vx){
uxt − vxx = 0

vxt − σ(u)xx = µvxxx.
(A.0.7)

As above, we compute

1

2

d

dt

[
‖ux(t)‖2

L2(R) + ‖vx(t)‖2
L2(R)

]
=

∫ +∞

−∞
uxtuxdx+

∫ +∞

−∞
vxtvxdx

=

∫ +∞

−∞
vxxuxdx+

∫ +∞

−∞
σ(u)xxvxdx+ µ

∫ +∞

−∞
vxxxvxdx

=

∫ +∞

−∞
vxxuxdx−

∫ +∞

−∞
vxxσ

′(u)ux − µ

∫ +∞

−∞
v2
xxdx

≤ −c
∫ +∞

−∞
v2
xxdx+ C

∫ +∞

−∞
u2
xdx, (A.0.8)

where, as before, c > 0 and thanks to the condition (A.0.2). Hence, Gronwall
inequality gives

‖ux(t)‖2
L2(R) + ‖vx(t)‖2

L2(R) +

∫ t

0

‖vxx(s)‖2
L2(R)ds

≤ C
[
‖ux(0)‖2

L2(R) + ‖vx(0)‖2
L2(R)

]
eCt. (A.0.9)

As final step, we consider the system for the second spatial derivatives{
uxxt − vxxx = 0

vxxt − σ(u)xxx = µvxxxx.
(A.0.10)
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Then we have, as above

1

2

d

dt

[
‖uxx(t)‖2

L2(R) + ‖vxx(t)‖2
L2(R)

]
=

∫ +∞

−∞
uxxtuxxdx+

∫ +∞

−∞
vxxtvxxdx

=

∫ +∞

−∞
vxxxuxxdx+

∫ +∞

−∞
σ(u)xxxvxxdx+ µ

∫ +∞

−∞
vxxxxvxxdx

=

∫ +∞

−∞
vxxxuxxdx−

∫ +∞

−∞
vxxxσ

′′(u)u2
xdx

−
∫ +∞

−∞
vxxxσ

′(u)uxxdx− µ

∫ +∞

−∞
v2
xxxdx.

We now employ estimates (A.0.6), (A.0.9), the smoothness of function σ and
the Sobolev inequality

‖f‖L∞(R) ≤ ‖f‖H1(R) (A.0.11)

to obtain

1

2

d

dt

[
‖uxx(t)‖2

L2(R) + ‖vxx(t)‖2
L2(R)

]
≤ −µ

2

∫ +∞

−∞
v2
xxxdx+ C

∫ +∞

−∞
uxxvxxxdx+ C

∫ +∞

−∞
u4
xdx

≤ −c
∫ +∞

−∞
v2
xxxdx+ C

∫ +∞

−∞

[
u2
xx + u2

x

]
dx, (A.0.12)

with c > 0. Hence, by taking the sum of estimates (A.0.5), (A.0.8) and
(A.0.12) and by Gronwall inequality, we obtain

‖u(t)‖2
H2(R) + ‖v(t)‖2

H2(R) +

∫ t

0

‖vx(s)‖2
H2(R)ds

≤ C
[
‖u(0)‖2

H2(R) + ‖v(0)‖2
H2(R)

]
eCt (A.0.13)

and the proof is complete. �

As a straightforward consequence of the previous theorem, we have the
following

Corollary A.0.5 Let z = σ(u) + µvx, where (u, v) is the solution of the
system (A.0.1) with initial data u0, v0 ∈ H2(R) and let the function σ satisfies
condition (A.0.2). Then, for any T > 0, the function zt(·, ·) belongs in
the space L2 ([0, T ]× R). More precisely, there exists a constant C0 > 0,
depending on T and on the initial data u0 and v0, such that∫ t

0

∫ +∞

−∞
zt(x, s)

2dxds ≤ C0. (A.0.14)
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Proof. We have

zt = µvxt + σ′(u)ut = σ′(u)vx + µσ(u)xx + µ2vxxx

= σ′(u)vx + µσ′′(u)u2
x + µσ′(u)uxx + µ2vxxx.

Hence, the assertion follows from the previous theorem and from the Sobolev
inequality (A.0.11). �
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Appendix B

Local existence for the
vanishing viscosity
approximation of the Hamer
model for radiating gases

We prove here the local-in-time existence of solutions to the equation

ut + div f(u) = −u+K ∗ u+ µ∆u (B.0.1)

when the initial data u0 is chosen in L1(Rd)∩L∞(Rd). We show in particular
that the time of existence depends on the L1 and L∞ norms of the initial data,
on the Lipschitz norm (Sup norm plus Lipschitz seminorm) of the mapping f
over the range of the solution and on the constant µ. As usual in this kind of
problems (see, for instance, [Smo94]), we shall use a fixed point argument to
prove the existence of such solutions. Therefore, let us consider the Banach
space {

C([0, T0];L
1(Rd) ∩ L∞(Rd))

}
with the norm

‖|u‖| = sup
0≤t≤T0

max {‖u(·, t)‖L1 , ‖u(·, t)‖L∞}

and let us consider its closed subset

B =
{
u ∈ C([0, T0];L

1(Rd) ∩ L∞(Rd)) such that ‖|u−Gµ ∗ u0‖| ≤ ‖|u0‖|
}
,

where

Gµ =
1

(4πµt)
d
2

e−
|x|2
4µt
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and hence Gµ ∗ u0 is the solution of the linear heat equation ut = µ∆u with
u0 as initial datum. We will obtain the solution of (B.0.1) as fixed point of
the following operator, defined on B

T u =

∫
Rd

Gµ(x− y, t)u0(y)dy +

∫ t

0

∫
Rd

Gµ(x− y, t− s) div f(u(y, s))dyds

−
∫ t

0

∫
Rd

Gµ(x− y, t− s) [u(y, s)− (K ∗ u)(y, s)] dyds

= I1 + I2(u) + I3(u). (B.0.2)

Remark B.0.6 Since ‖|Gµ ∗ u0‖| ≤ ‖|u0‖|, 0 ∈ B and ‖|u‖| ≤ 2‖|u0‖| for
any u ∈ B.

The local existence for the solutions to (B.0.1) comes from the next theorem.

Theorem B.0.7 There exists a positive time T0 > 0 such that the operator
T : B → B is a contraction. In particular, there exists an unique solution
u ∈ C([0, T0];L

1(Rd) ∩ L∞(Rd) to (B.0.1) with u0 ∈ L1(Rd) ∩ L∞(Rd) as
initial datum.

Proof. In order to prove the theorem, we must find constants T0 > 0 and
c0 < 1 such that

(i) T u ∈ B for any u ∈ B;

(ii) ‖|T u− T v‖| ≤ c0‖|u− v‖| for any u, v ∈ B.

Let us consider u ∈ B. In order to control ‖|T u − Gµ ∗ u0‖|, we have to
estimate the L1 and the L∞ norms of I2 and I3 in the definition of T . We
have

‖I2(u)‖L∞ ≤ ‖f(u)‖L∞
C
√
µ

√
t ≤ Cµ

√
t‖f ′‖L∞(I)‖u‖L∞ ,

where we denoted I = [−‖u‖L∞ , ‖u‖L∞ ]. Moreover

‖I2(u)‖L1 ≤ ‖f(u)‖L1

C
√
µ

√
t ≤ Cµ

√
t‖f ′‖L∞(I)‖u‖L1 ,

where Cµ depends only on µ and the L1 norms of K(x) and K(x)x. Therefore

‖|I2(u)‖| ≤ Cµ
√
T0‖f ′‖L∞(I)‖|u‖| ≤ 2Cµ

√
T0‖f ′‖L∞(J)‖|u0‖|.

where J = [−2‖|u0‖|, 2‖|u0‖|]. Moreover,

‖I3(u)‖L∞ ≤ 2t‖u‖L∞
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and
‖I3(u)‖L1 ≤ 2t‖u‖L1 ,

that is
‖|I3(u)‖| ≤ 2T0‖|u‖| ≤ 4T0‖|u0‖|.

Thus, if
2Cµ

√
T0‖f ′‖L∞(J)‖|u0‖|+ T04‖|u0‖| ≤ ||u0‖|, (B.0.3)

(i) is satisfied. In order to fulfill (B.0.3), it is sufficient to choose

T0 = min

{
1

8
,

1

16C2
µ

1

‖f ′‖2
L∞(J)

}
.

To show (ii), we have to estimate

‖|T u− T v‖| ≤ ‖|I2(u)− I2(v)‖|+ ‖|I3(u)− I3(v)‖|,

for any u, v ∈ B. Since I3(u) is linear in u, we have

‖|I3(u)− I3(v)‖| = ‖|I3(u− v)‖| ≤ 2T0‖|u− v‖|.

Moreover,

‖I2(u)− I2(v)‖L∞ ≤ ‖f(u)− f(v)‖L∞
C
√
µ

√
t ≤ Cµ

√
t‖u− v‖L∞‖f ′‖L∞(J),

where again J = [−2‖|u0‖|, 2‖|u0‖|]. Moreover

‖I2(u)− I2(v)‖L1 ≤ ‖f(u)− f(v)‖L1

C
√
µ

√
t ≤ Cµ

√
t‖u− v‖L1‖f ′‖L∞(J),

with Cµ as before. Hence,

‖|I2(u)− I2(v)‖| ≤ Cµ
√
T0‖f ′‖L∞(J)‖|u− v‖|.

Therefore,

‖|T u− T v‖| ≤
(
Cµ
√
T0‖f ′‖L∞(J) + 2T0

)
‖|u− v‖| ≤ 1

2
‖|u− v‖|,

provided

T0 = min

{
1

8
,

1

16C2
µ

1

‖f ′‖2
L∞(J)

}
.

Finally, the theorem is proved with the choice

T0 = min

{
1

8
,

1

16C2
µ

1

‖f ′‖2
L∞(J)

}
.

�
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Remark B.0.8 The smoothness of the solution u provided by the previous
theorem comes easily from the integral representation of the equation given
by (B.0.2) with T u replaced by u, thanks to the smoothing properties of the
kernel Gµ.
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l’équation des milieux poreux dans RN , C. R. Acad. Sci. Paris
Sér. A-B 288 (1979), no. 2, A103–A105.

[ABM96] A. Arnold, L.L. Bonilla, and P.A. Markowich, Lyapunov func-
tionals and large time asymptotics of mean–field nonlinear
fokker–planck equation, Transport Theory and Stat. Phisycs 25
(1996), no. 7, 733–752.

[Ali93] S. Alinhac, Temps de vie des solutions régulières des équations
d’Euler compressibles axisymétriques en dimension deux, Invent.
Math. 111 (1993), no. 3, 627–670.

[Ali95] , Blowup for nonlinear hyperbolic equations, Progress
in Nonlinear Differential Equations and their Applications, 17,
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décomposition de fonctions, C. R. Acad. Sci. Paris Sér. I Math.
315 (1992), no. 6, 693–698.

[Eva98] L. C. Evans, Partial differential equations, Graduate Studies in
Mathematics, vol. 19, American Mathematical Society, Provi-
dence, RI, 1998.

[EVZ93] M. Escobedo, J. L. Vázquez, and E. Zuazua, Asymptotic be-
haviour and source-type solutions for a diffusion-convection
equation, Arch. Rational Mech. Anal. 124 (1993), no. 1, 43–65.

[EZ91] M. Escobedo and E. Zuazua, Large time behavior for convection-
diffusion equations in RN , J. Funct. Anal. 100 (1991), no. 1,
119–161.

[EZ97] , Long-time behavior for a convection-diffusion equation
in higher dimensions, SIAM J. Math. Anal. 28 (1997), no. 3,
570–594.

[EZ99] , Long-time behaviour of diffusion waves for a viscous
system of conservation laws in RN , Asymptot. Anal. 20 (1999),
no. 2, 133–173.

144



[Fri54] K. O. Friedrichs, Symmetric hyperbolic linear differential equa-
tions, Comm. Pure Appl. Math. 7 (1954), 345–392.

[Gro75] L. Gross, Logarithmic sobolev inequalities, Amer. J. of Math. 97
(1975), 1061–1083.

[Ham71] K. Hamer, Nonlinear effects on the propagation of sound waves
in a radiating gas, Quart. J. Mech. Appl. Math. 24 (1971), 155–
168.

[HL92] L. Hsiao and T. P. Liu, Convergence to nonlinear diffusion waves
for solutions of a system of hyperbolic conservation laws with
damping, Comm. Math. Phys. 143 (1992), no. 3, 599–605.

[HL93] , Nonlinear diffusive phenomena of nonlinear hyperbolic
systems., Chin. Ann. Math. Ser. B 14 (1993), 465–480.

[HMP] F. Huang, P. Marcati, and R. Pan, Convergence to barenblatt
solution for the compressible euler equations with damping and
vacuum, preprint.

[Hop50] E. Hopf, The partial differential equation ut + uux = µuxx,
Comm. Pure Appl. Math. 3 (1950), 201–230.

[Hsi97] L. Hsiao, Quasilinear hyperbolic systems and dissipative mech-
anisms, World Scientific Publishing Co. Inc., River Edge, NJ,
1997.

[IK02] T. Iguchi and S. Kawashima, On space-time decay properties of
solutions to hyperbolic-elliptic coupled systems, Hiroshima Math.
J. 32 (2002), no. 2, 229–308.

[Kal87] A. S. Kalashnikov, Some problems of the qualitative theory of
second-order nonlinear degenerate parabolic equations, Russian
Math. Surveys 42 (1987), no. 2(254), 169–222.

[Kam76] S. Kamin, Some estimates for solution of the Cauchy problem for
equations of a nonstationary filtration, J. Differential Equations
20 (1976), no. 2, 321–335.

[Kam76] , Similar solutions and the asymptotics of filtration equa-
tions, Arch. Rational Mech. Anal. 60 (1975/76), no. 2, 171–183.

145



[Kat75] T. Kato, The Cauchy problem for quasi-linear symmetric hy-
perbolic systems, Arch. Rational Mech. Anal. 58 (1975), no. 3,
181–205.

[KL89] H. O. Kreiss and J. Lorenz, Initial-boundary value problems and
the Navier-Stokes equations, Pure and Applied Mathematics,
vol. 136, Academic Press Inc., Boston, MA, 1989.

[KM81] S. Klainerman and A. Majda, Singular limits of quasilinear hy-
perbolic systems with large parameters and the incompressible
limit of compressible fluids, Comm. Pure Appl. Math. 34 (1981),
no. 4, 481–524.

[KM82] , Compressible and incompressible fluids, Comm. Pure
Appl. Math. 35 (1982), no. 5, 629–651.

[KN98] S. Kawashima and S. Nishibata, Weak solutions with a shock to a
model system of the radiating gas, Proceedings of the Symposium
on Applied Mathematics (Sakado, 1997), no. Special issue 5,
1998, pp. 119–130.

[KN99a] , Cauchy problem for a model system of the radiating gas:
weak solutions with a jump and classical solutions, Math. Models
Methods Appl. Sci. 9 (1999), no. 1, 69–91.

[KN99b] , Shock waves for a model system of a radiating gas, SIAM
J. Math. Anal. 30 (1999), 95–117.

[KN02] Y. J. Kim and W. M. Ni, On the rate of convergence and asymp-
totic profile of solutions to the viscous Burgers equation, Indiana
Univ. Math. J. 51 (2002), no. 3, 727–752.

[Kne77] Barry F. Knerr, The porous medium equation in one dimension,
Trans. Amer. Math. Soc. 234 (1977), no. 2, 381–415.

[KNN99] S. Kawashima, Y. Nikkuni, and S. Nishibata, The initial value
problem for hyperbolic-elliptic coupled systems and applications
to radiation hydrodynamics, Analysis of systems of conservation
laws (Aachen, 1997), Chapman & Hall/CRC Monogr. Surv. Pure
Appl. Math., vol. 99, Chapman & Hall/CRC, Boca Raton, FL,
1999, pp. 87–127.

[KNN03] , Large-time behavior of solutions to hyperbolic-elliptic
coupled systems, Arch. Ration. Mech. Anal. 170 (2003), no. 4,
297–329.

146



[Kru70] S. N. Kružkov, First order quasilinear equations with several in-
dependent variables., Mat. Sb. (N.S.) 81 (123) (1970), 228–255.

[KT01] Y. J. Kim and A. E. Tzavaras, Diffusive N-waves and metasta-
bility in the Burgers equation, SIAM J. Math. Anal. 33 (2001),
no. 3, 607–633 (electronic).

[Kur73] T. G. Kurtz, Convergence of sequences of semigroups of nonlin-
ear operators with an application to gas kinetics, Trans. Amer.
Math. Soc. 186 (1973), 259–272 (1974).

[Lau] P. Laurencot, Asymptotic self–similarity for a simplified model
for radiating gases, Preprint.

[Lax57] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm.
Pure Appl. Math. 10 (1957), 537–566.

[Liu85] T. P. Liu, Nonlinear stability of shock waves for viscous conser-
vation laws, Mem. Amer. Math. Soc. 56 (1985), no. 328, v+108.

[Liu87] , Hyperbolic conservation laws with relaxation, Comm.
Math. Phys. 108 (1987), no. 1, 153–175.

[LM99] C. Lattanzio and P. Marcati, Asymptotic stability of plane diffu-
sion waves for the 2-D quasilinear wave equation, Nonlinear par-
tial differential equations (Evanston, IL, 1998), Contemp. Math.,
vol. 238, Amer. Math. Soc., Providence, RI, 1999, pp. 163–182.

[LM03] , Global well-posedness and relaxation limits of a model
for radiating gas, J. Differential Equations 190 (2003), no. 2,
439–465.

[LN02] C. Lattanzio and R. Natalini, Convergence of diffusive BGK ap-
proximations for nonlinear strongly parabolic systems, Proc. Roy.
Soc. Edinburgh Sect. A 132 (2002), no. 2, 341–358.

[LP84] T. P. Liu and M. Pierre, Source-solutions and asymptotic be-
havior in conservation laws, J. Differential Equations 51 (1984),
no. 3, 419–441.
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