e al —

Objectives

- * To discuss the distinctions between validation testing
Software testing and defect testing

* To describe the principles of system and component
testing

* To describe strategies for generating system test cases

» To understand the essential characteristics of tool
used for test automation

Topics covered The testing process
© System testing * Component testing
» Component testing e Testing of individual program components;

e Usually the responsibility of the component developer (except
sometimes for critical systems);

¢ Test automation e Tests are derived from the developer’s experience.
© System testing

e Testing of groups of components integrated to create a system or
sub-system;

© Test case design

» The responsibility of an independent testing team;
« Tests are based on a system specification.

Testing phases Defect testing

* The goal of defect testing is to discover defects in

programs
A successful defect test is a test which causes a
Cot";ft?:;“t = fz::ﬁ_‘m program to behave in an anomalous way
8 ¢ Tests show the presence not the absence of defects
Software developer Independent testing team * It concerns with rooting out all kinds of undesiderable

system behaviour, such as system crasches, unwanted
interactions with other systems, incorrect
computations and data corruptions.

Testing process goals

e Validation testing

¢ To demonstrate to the developer and the system customer that the
software meets its requirements;

¢ A successful test shows that the system operates as intended.
o Defect testing
« To discover faults or defects in the software where its behaviour is
incorrect or not in conformance with its specification;
* Asuccessful test is a test that makes the system perform incorrectly
and so exposes a defect in the system.

The software testing process

Test Test
cases. data

Test Test
results reports

Design test Prepare test Run program Compare results
cases data with test data to test cases

Testing policies

¢ Only exhaustive testing can show a program is free from
defects. However, exhaustive testing is impossible,
o Testing policies define the approach to be used in selecting
system tests:
 All functions accessed through menus should be tested;
» Combinations of functions accessed through the same menu should
be tested;
¢ Where user input is required, all functions must be tested with
correct and incorrect input.

System testing

* Involves integrating components to create a system or
sub-system.
° May involve testing an increment to be delivered to the
customer.
* Two phases:
e Integration testing - the test team have access to the

system source code. The system is tested as components
are integrated.

e Release testing - the test team test the complete system
to be delivered as a black-box.

Integration testing

¢ Involves building a system from its components and
testing it for problems that arise from component
interactions.

* Top-down integration

* Develop the skeleton of the system and populate it with
components.

* Bottom-up integration
¢ Integrate infrastructure components then add
functional components.

* To simplify error localisation, systems should be
incrementally integrated.

Incremental integration testing

EEEEO

Test sequence 1 Test sequence 2 Test sequence 3

Testing approaches

® Architectural validation

* Top-down integration testing is better at discovering errors in the
system architecture.

© System demonstration

« Top-down integration testing allows a limited demonstration at an
early stage in the development.

¢ Test implementation
¢ Often easier with bottom-up integration testing.
e Test observation

¢ Problems with both approaches. Extra code may be required to
observe tests.

Release testing

© The process of testing a release of a system that will be
distributed to customers.
© Primary goal is to increase the supplier’s confidence
that the system meets its requirements.
© Release testing is usually black-box or functional
testing
¢ Based on the system specification only;

e Testers do not have knowledge of the system
implementation.

Black-box testing

Inputs causing
anomalous
Input test data behaviour

Outputs which reveal
the presence of
Output test results 0O defects

Testing scenario

A student in Scotland is studying American History and has been asked to write a
paper on ‘Frontier mentality in the American West from 1840 to 1880°. To do this,
she needs to find sources from a range of libraries. She logs on to the LIBSYS system
and uses the search facility to discover if she can access original documents from
that time. She discovers sources in various US university libraries and downloads
copies of some of these. However, for one document, she needs to have
confirmation from her university that she is a genuine student and that use is for
non-commercial purposes. The student then uses the facility in LIBSYS that can
request such permission and registers her request. If granted, the document will be
downloaded to the registered library’s server and printed for her. She receives a
message from LIBSYS telling her that she will receive an e-mail message when the
printed document is available for collection.

Testing guidelines

* Testing guidelines are hints for the testing team to
help them choose tests that will reveal defects in the
system

¢ Choose inputs that force the system to generate all error
messages;

¢ Design inputs that cause buffers to overflow;

» Repeat the same input or input series several times;

e Force invalid outputs to be generated;

¢ Force computation results to be too large or too small.

System tests

1. Test the login mechanism using correct and incorrect logins to check
that valid users are accepted and invalid users are rejected.

2. Test the search facility using different queries against known sources to
check that the search mechanism is actually finding documents.

3. Test the system presentation facility to check that information about
documents is displayed properly.

4. Test the mechanism to request permission for downloading.

5. Test the e-mail response indicating that the downloaded document is
available.

P

System tests

For each tests you should design a set of tests that include valid
and invalid input and that generate valid and invalid output.

Scenario-based testing: the most likely scenarios are tested first
and unusual or exceptional scenario are tested later.

P

Use cases

» Use cases (and the associated scenarios) can be a basis
for deriving the tests for a system. They help identify
operations to be tested and help design the required
test cases.

* From an associated sequence diagram, the inputs and
outputs to be created for the tests can be identified.

e Use cases and sequences can be used for both release
and integration testing

PSS

Collect weather data sequence chart

l:CummsContrullerl I:Weatherstatiunl [WeatherData]

request (report)

acknowledge ()
report :

summarise ()

send (report)
Szl ||
reply (report)

acknowledge ()

PR

Stress testing

¢ Exercises the system beyond its maximum design load.
Stressing the system often causes defects to
come to light.

© Stressing the system test failure behaviour. Systems should
not fail catastrophically. Stress testing checks for
unacceptable loss of service or data.

o Stress testing is particularly relevant to distributed systems

that can exhibit severe degradation as a network becomes
overloaded.

P

Performance testing

* Part of release testing may involve testing the
emergent properties of a system, such as performance
and reliability.

* Performance tests usually involve planning a series of
tests where the load is steadily increased until the
system performance becomes unacceptable.

PN

Component testing

* Component or unit testing is the process of testing
individual components in isolation.

e It is a defect testing process.

* Components may be:
¢ Individual functions or methods within an object;
¢ Object classes with several attributes and methods;

» Composite components with defined interfaces used to
access their functionality.

s ol — g

Object class testing

* Complete test coverage of a class involves
¢ Testing all operations associated with an object;
o Setting and interrogating all object attributes;
 Exercising the object in all possible states.
* Inheritance makes it more difficult to design object
class tests as the information to be tested is not
localised.

P

Weather station testing

* Need to define test cases for reportWeather, calibrate,
test, startup and shutdown.

* Using a state model, identify sequences of state
transitions to be tested and the event sequences to

cause these transitions

Weather station object interface

WeatherStation

identifier

reportWeather ()
calibrate (instruments)
test ()

startup (instruments)
shutdown (instruments)

P

Weather station state diagram

Calibrating

calibration OK

Operation calibrate)

Testing

startup ()

Waiting

Shutdown

test complete.

transmission done

shutdown

Transmitting

dock collection
done reportWeather ()
weather summary
complete

Collecting : :

For example:
Waiting -> Calibrating -> Testing -> Transmitting -> Waiting

Interface testing

© Objectives are to detect faults due to interface errors or
invalid assumptions about interfaces.

e Particularly important for object-oriented
development as objects are defined by their interfaces.

Interface testing

Test
cases

OO O OO
A s |
Lc]

Interface types

© Parameter interfaces
e Data passed from one procedure to another.
© Shared memory interfaces
 Block of memory is shared between procedures or functions.
 Procedural interfaces
* Sub-system encapsulates a set of procedures to be called by other
sub-systems.
° Message passing interfaces
¢ Sub-systems request services from other sub-system.s

Interface errors

* Interface misuse
¢ A calling component calls another component and makes an error
in its use of its interface e.g. parameters in the wrong order.
¢ Interface misunderstanding

¢ A calling component embeds assumptions about the behaviour of
the called component which are incorrect. (binary search on an
unordered array)
¢ Timing errors
* The called and the calling component operate at different speeds
and out-of-date information is accessed. (producer is late and the
consumer reads an old data)

Interface testing guidelines

© Design tests so that parameters to a called procedure are at
the extreme ends of their ranges.

o Always test pointer parameters with null pointers.

* Design tests which cause the component to fail.

© Use stress testing in message passing systems.

¢ In shared memory systems, vary the order in which
components are activated.

Test case design

* Involves designing the test cases (inputs and outputs)
used to test the system.
* The goal of test case design is to create a set of tests
that are effective in validation and defect testing.
* Design approaches:
¢ Requirements-based testing;
e Partition testing;
e Structural testing.

Requirements based testing

* A general principle of requirements engineering is that
requirements should be testable.

* Requirements-based testing is a validation testing
technique where you consider each requirement and
derive a set of tests for that requirement.

LIBSYS requirements

The user shall be able to search either all of the initial set
of databases or select a subset from it.

The system shall provide appropriate viewers for the user
to read documents in the document store.

Every order shall be allocated a unique identifier
(ORDER_ID) that the user shall be able to copy to the
account’s permanent storage area.

LIBSYS tests for the first requirement

e Initiate user search for searches for items that
are known to be present and known not to be
present, where the set of databases includes 1
database.

* Initiate user searches for items that are
known to be present and known not to be
present, where the set of databases includes 2
databases

e Initiate user searches for items that are
known to be present and known not to be
present where the set of databases includes
more than 2 databases.

e Select one database from the set of databases
and initiate user searches for items that are
known to be present and known not to be
present.

e Select more than one database from the set of
databases and initiate searches for items that
are known to be present and known not to be
present.

Partition testing

* Input data and output results often fall into different
classes where all members of a class are related.

* Each of these classes is an equivalence partition or
domain where the program behaves in an equivalent
way for each class member.

e Test cases should be chosen from each partition.

* This testing technique can be used for both system
and component testing

Equivalence partitioning

Invalid inputs Valid inputs

Outputs

Equivalence partitions

A program specification states that the program accepts 4 to 8 inputs that are
five-digit integers greater than 10,000

I

l Less than 4 ‘ Between 4 an 8 ‘ More thar 8 I

Number of input values

9999 100000
lmooo 50000 99999l

Less than 10000 ‘ Between 10000 and 99999 ‘ More than 99999 I

Input values

Test case selection

* Test cases on the boundaries of the partitions (atypical
values)

* Test cases to the mid-point of the partition (typical
values)

* Program failures often occur when processing these
atypical values

e The partition can be identified from program specification
or user documentation, and your experience

Search routine specification

procedure Search (Key : ELEM ; T: SEQ of ELEM;
Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- the sequence has at least one element
T'FIRST <= T'LAST
Post-condition
-- the element is found and is referenced by L
(Found and T (L) = Key)
or
-- the element is not in the array
(not Found and
not (exists i, TFIRST >= i <= T'LAST, T (i) = Key))

P

Search routine - input partitions

e Inputs which conform to the pre-conditions.

¢ Inputs where a pre-condition does not hold.

* Inputs where the key element is a member of
the array.

* Inputs where the key element is not a member of the
array.

PN

Testing guidelines (sequences)

* Test software with sequences which have only a single
value.

 Use sequences of different sizes in different tests.

¢ Derive tests so that the first, middle and last elements
of the sequence are accessed.

* Test with sequences of zero length.

Search routine - input partitions
Sequence Element
Single value In sequence
Single value Not in sequence
More than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequence
More than 1 value Not in sequence
Input sequence (T) Key (Key) Output (Found, L)
17 17 true, 1
17; 0 false, ??
17,29,21,23 147, true, 1
41, 18,9, 31, 30, 16, 45 45 true, 7
17,18, 21, 23, 29, 41, 38 23 true, 4
21,23, 29, 33,38 25 false, ??

Structural testing

* Sometime called white-box testing.

* Derivation of test cases according to program
structure. Knowledge of the program is used to
identify additional test cases.

* Objective is to exercise all program statements (not all
path combinations).

Structural testing

Test data

f

Tests Derives

Component
code

Test
outputs

Search routine specification

procedure Search (Key : ELEM ; T: SEQ of ELEM;
Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- the sequence has at least one element
T'FIRST <= T'LAST
Post-condition
-- the element is found and is referenced by L
(Found and T (L) = Key)
or
-- the element is not in the array
(not Found and
not (exists i, TFIRST >= i <= T'LAST, T (i) = Key))

Using binary search...how the pre-condition changes?

inary search - equiv. partitions

¢ Pre-conditions satisfied, key element in array.
 Pre-conditions satisfied, key element not in
array.
* Pre-conditions unsatisfied, key element in array.
¢ Pre-conditions unsatisfied, key element not in array.
¢ Input array has a single value.
e Input array has an even number of values.
e Input array has an odd number of values.

s

Binary search - test cases

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1

17 0 false, 7?

17, 21, 23, 29 17 true, 1

9,16, 18, 30, 31, 41, 45 45 true, 7

17,18, 21, 23, 29, 38, 41 23 true, 4

17, 18, 21, 23, 29, 33, 38 21 true, 3

12, 18,21, 23,32 23 true, 4

21,23, 29, 33,38 25 false, ??

PSS

Binary search equiv. partitions

Equivalence class boundaries

|i b

Elements < Mid ‘ ‘

T

Mid-point

Elements > Mid

Path testing

* The objective of path testing is to ensure that the set of
test cases is such that each path through the program
is executed at least once.

© The starting point for path testing is a program flow
graph that shows nodes representing program
decisions and arcs representing the flow of control.

* Statements with conditions are therefore nodes in the
flow graph.

 The test cases must tests all the conditional statements
for both true and false cases.

PSS

Binary search flow graph

i< key

Independent paths

©1,23,4,56,7,8,9,10,14

°L2,3,4,5 14

®1,2,3,4,5,6,7,11,12,5, ...

°1,2,3,4,6,7,2,1,13,5, ...

e Test cases should be derived so that all of these paths
are executed

* A dynamic program analyser may be used to check
that paths have been executed

Cyclomatic complexity

e It is used to determine the number of independent
paths in a program
* How we calculate the cyclomatic complexity?

Test automation

o Testing is an expensive process phase. Testing workbenches
provide a range of tools to reduce the time required and
total testing costs.

e Systems such as Junit support the automatic execution of
tests.

¢ Most testing workbenches are open systems because
testing needs are organisation-specific.

¢ They are sometimes difficult to integrate with closed
design and analysis workbenches.

A testing workbench

Dynamic Program
analyser

Test
being tested
report

Test results

predictions.

File
comparator
Report Test results
generator report

Key points

* Testing can show the presence of faults in a system; it
cannot prove there are no remaining faults.

* Component developers are responsible for component
testing; system testing is the responsibility of a separate
team.

* Integration testing is testing increments of the system;
release testing involves testing a system to be released to a
customer.

 Use experience and guidelines to design test cases in defect
testing.

Testing workbench adaptation

e Scripts may be developed for user interface simulators
and patterns for test data generators.

* Test outputs may have to be prepared manually for
comparison.
e Special-purpose file comparators may be developed.

Key points

* Interface testing is designed to discover defects in the
interfaces of composite components.

 Equivalence partitioning is a way of discovering test
cases - all cases in a partition should behave in the same
way.

e Structural analysis relies on analysing a program and
deriving tests from this analysis.

¢ Test automation reduces testing costs by supporting the
test process with a range of software tools.

