Dipartimento di Informatica
Universita di L'Aquila
Via Vetoio, 1-67100 L'Aquila, Italy

http://www.di.univag.it

PH.D. THESIS INCOMPUTER SCIENCE
XIX

SPECIFICATION OFMODEL TRANSFORMATION AND
WEAVING IN MODEL DRIVEN ENGINEERING

Ph.D. Thesis of:
Davide Di Ruscio

Advisor:
Prof. Alfonso Pierantonio

Supervisor of the Ph.D. Program:
Prof. Michele Flammini

CicLo XIX

(© Davide Di Ruscio, 2007. All rights reserved

ABSTRACT

Last years witnessed an increasing intricacy of both seéwgstems and technologies. A hum-
ber of platforms (e.g. CORBA, J2EE, .NET) have been intreduwhich often came in bundle
with their own programming language (e.g. C++, Java, C#)s s made the software develop-
ment process a difficult and expensive task. Model driverinemging (MDE) aims at preserving
the investments in building complex software systems agaiaonstantly changing technology
solutions, by advocating the raising of the abstractiorll@v system specification and increas-
ing automation in system development. The concept of modetid engineering emerged as a
generalization of Model Driven Architecture (MDA) propasky the Object Management Group
(OMG) in 2001 [95]. The MDA based software development stast building a Platform In-
dependent Model (PIM) of that system which is refined andsfiamed to one or more Plat-
form Specific Models (PSMs). Then, the PSMs are transforraembde. In this scenario, model
transformation plays a central role. Many languages ant$ toave been proposed to specify
and execute transformation programs. In 2002 the Objectlfement Group (OMG) issued the
Query/View/Transformation (QVT) request for propogall[8Bdefine a standard transformation
language, whereas in the meanwhile, a number of model tnanafion approaches have been
proposed both from academia and industry. However, sincé& Mpproaches rely on complex
model transformations, the problem of specifying them irrecise way has to be sufficiently
achieved since the automation introduced by transformsitgives place to additional require-
ments on assuring the quality of mappings; correct cone¢plesigns may implant bugs into the
applications if the automated transformations are erremn¢®22]. Another central operation in
MDE is model weaving intended as the operation for setting-fjrained relationships between
models or metamodels and executing operations on them lbaste semantics of the weaving
associations specifically defined for the considered agiptic domain[[1P].

This work proposes A4MT (ASMs for Model Transformation Sifieation) an approach based on
Abstract State Machines (ASM$)122] to support the formalcsiication and execution of model
transformation and weaving. The choice of ASMs is motivéitethe extensive use of this formal-
ism in the specification and analysis of many software andvhare systems[1]. The formalism
has a simple syntax that permits to write specifications ¢hatbe seen as “pseudocode over ab-
stract data” and makes possible formal and executablefgaicins of model transformations
enabling theidesignandvalidation AAMT aims at formally specifying the behaviour of transfor
mations in order to produce a formal and implementationpedeent reference for what can and
what can not happen during their execution. In this way, tnesformation designers have the pos-
sibility to check their basic design decisions against alueate and executable high-level model
of the transformation itself. A4MT has been validated irfatiént applicative domains. Con-
cerning the specification of model transformations, it hasrbused mainly to support the model
driven development of Web applications and the compositigarification of middleware-based
systems. With respect to model weaving, A4MT has been ustminmally specify the semantics
of weaving operators and the approach has been validatedoitkind of applications: decou-
pling of concerns in model driven development of Web apfilices and for software architecture
modeling.

ACKNOWLEDGMENTS

This work is the synthesis of support and encouragementrgpfrom different sources in various
ways. First of all, | would like to thank Prof. Alfonso Pietanio, without his support this thesis
would not have been possible. Moreover, the friendly angbstijye atmosphere inherent to the
whole Computer Science Department of the University of liflg contributed essentially to the
final outcome of this work.

| would like to thank the people from the ATLAS group of the énsité de Nantes, since this
PhD project profited a lot from our interesting discussiond the many new impulses | received
from them. | also thank Prof. Jean Bézivin and Prof. Antovidiecillo for carefully reading the
preliminary version of this thesis and offering valuablereotions and suggestions.

Apart from my colleagues, | would like to thank Marianna, rayiily and friends who have never
lost faith in this long-term project. Their support and patie were fundamental in concluding
this project.

This work received financial support from the TecnoMarchees.l. (Parco Scientifico e Tecno-
logico delle Marche - Italy).

"...Rien ne se perd, rien ne se&r
tout se transforme..”

Antoine-Laurent de Lavoisier

TABLE OF CONTENTS

ibstrach i
Acknowtedgments ii
dabte-of-Contents vii
tistofFigtres ix

I ST P TP A AD A
LVICINAC L L L CAL LT LT LICAUICN T W DL T CALIUL L VALV)

4.4 A4AMT in the context of MOF 2.0 QVT RFP

4.5 Comparin

viii TABLE OF CONTENTS

[5.2 A4MT for Middleware Based System Developrhent 62
I5.2.1 Compositional Verification of Middleware-based SA 63
522 ProxyGeneratibn 56

5.2.3 Property Preserving Transformations 72
|5,3 giming Dynamic Semantics to DSLs throu Ms............... 1712
I5.3.1 Domain-Specific L an dels 173

I5.3.2 DSI Dynamic Semantics Specification with ASMs 75

i icatibns e 83
ing with Web Application Conceyns 84

6.1.2 Concern Specificatidns o 87

LIST OF FIGURES

5.7 _a) ATM application; b properthy 64
5.8 Component Behavior Descriptibns 64
.9 Architectural Refinemdnt, 65
B0 Detailing SK 66

513 TM State Machine modBIS o v v o, 68
.14 Source Metamodlel 69
B.15 TargetMetamodel 70
[5.16 PresentState of AMMA o 76

LIST OF FIGURES

6.1 A fragment of the OO-H Conference Review System Spefiifita. 85
i ifim 86
6.3 OverallApproadh 87
.4 _DataMetamodel. 88
6.5 Sample DataMoadel 88
6.6 Navigation Metamadel 89
6.7 _Sample Navigation Modlel 89
6.8 Composition Metamodel 90
6.0 Sample Composition Mo#lel 90

el ... 91
[6.11 Sample Data-Composition Weaving_M_bdeI R < §
[6.12 Sample Composition-Navigation Weaving Mbdel 92

[6.13 Sample Webile Specification 93
614 CoreWehileProfile 94
[6.15 Sample WebML Specificatlon 97
l6.16 Core WebMI Metamodel 98
6.17 TheDUAL LY Drofild o 102
i IS 103
[6.19 The ldeal Component UML profile 105

16.20 The mining controlsystem BA L. 106
I6.21_Air Extractor Control component with fault-tolerarioformation 107

LIST OF TABLES

4.1 Support of the QVT requirements by AAMT v u. ..

4.2 Transformation Approach Comparison

CHAPTER1

INTRODUCTION

Last years witnessed an increasing intricacy of both soéwsgstems and technologies. A num-
ber of platforms (e.g. CORBA, J2EE, .NET) have been intreduahich often came in bundle
with their own programming language (e.g. C++, Java, C#)ortier to cope with these prob-
lems, model driven engineering (MDE) has been proposedhgimt preserving the investments
in building complex software systems against rapidly cli@mpgechnology solutions. The main
difficulties with current modelling languages, including/U, is that they are usually not used to
provide in an integrated manner the specifications for arnaragn a provably correct collection
of documents. In this respect, MDE proposes to extend thedbuse of modelling languages in
several interesting ways by leveraging the “everythingnisaalel” [12] principle. In particular, it
prescribes how the design should be implemented by decmufiie system functionalities from
the platform specific decisions upon which the implemeoitais developed. Beyond using this
information for code-generation, sites can employ it fointenance, as well as for evolutionary
considerations such as porting to new platforms. In sunumaMDE covers the full lifecycle of
the application.

The concept of model driven engineering emerged as a gaatiah of Model Driven Architec-
ture (MDA) proposed by the Object Management Group (OMGi@12[95]. MDA is about using
modeling languages as programming languages rather thahyms design languages. The MDA
based development of a software system starts by buildatdoiin Independent Models (PIM) of
that system which are refined and transformed into one or Rlatéorm Specific Models (PSMs).
Then, the PSMs are transformed to code. In this way, MDA altovpreserve the investments
in business logic since PIMs describe the system funciiesmlithout caring about any specific
technology and developers can focus only on the design,usiedss logic, and the overarching
architecture of the system being developed.

In this scenario, model transformation plays a key role @tengh it presents intrinsic difficul-
ties. In fact, it requiresspecialized support in several aspects in order to reattzfull potential,

for both the end-user and transformation developfI9]. Many languages and tools have been
proposed to specify and execute transformation program002 OMG issued the Query/View/-
Transformation Request For Propo$all [93] to define a stdrtdansformation language. Although
a final specification has been adopted at the end of 2005, ¢#laeccdrmodel transformation con-
tinues to be a subject of intense research. At the same timemaer of model transformation
approaches have been proposed both from academia andryndiibe paradigms, constructs,
modeling approaches, tool support distinguish the prdpassch of them with a certain suitabil-
ity for a specific set of problems.

MDE approaches rely on complex model transformations aagthbblem of specifying them in

1

2 Chapter 1. Introduction

a precise way has to be sufficiently achieved since the adiomiatroduced by transformations

gives place to additional requirements on assuring thatgudImapping; correct conceptual de-

signs may implant bugs into the applications if the autoch&t@nsformations are erroneolis [122].
For these reasons model transformations should be prgeisélformally specified enabling some
form of reasoning, proof of properties and verification cittcorrectness with respect to some
criteria [T20]. Moreover, one of the goals of applying fotechniques in model transformation

is to achieve the “correct-by-construction” propeftyl[fiprder to conceive that if the construc-

tions steps are formally specified, then the correctnessdafsagn can be verified based on the
correctness of the steps.

Another central operation in MDE isodel weaving In particular, the separation of concerns
in software system modeling demands to avoid the constngf large and monolithic models
which are difficult to handle, maintain and reuse. At the sadime, having different models
(each one describing a certain concern or domain) requies integration into a final model
representing the entire domain[10Model weavingan be used for this purpose. Although there
is no accepted definition of model weaving,l[12] defines ib@saperation for setting fine-grained
relationships between models or metamodels, whose atseigecution semantics is specifically
given for the considered application domain.

This work proposes A4AMT_(8Ms for Model Transformation Specification), an approach based
on Abstract State Machines (ASM$) [22] to support the fordedign and validation of model
transformation and weaving. In this respect, the desigrsistnof an implementation indepen-
dent definition which directly reflects the intuitions andside decisions underlying the given
model transformation and which supports the programmetierstanding of the transformation
programs being specified itself. AAMT aims at formally spgng the transformations in order to
produce a formal reference to convey the design decisiammsded by the designer to the trans-
formation implementors which have the possibility to chéek outcome against an accurate and
executable high-level model of the transformation itself.

A4MT model transformations start from an algebra encodhey gource models and return an
algebra encoding the target ones. This final representatiotains all the needed information
to translate the final algebra into the corresponding modeis A4MT transformation program
consists of a collection of multiple rules of the form

< Query> = < Transformation>

with Querydeclaratively defined as first—order logic predicates ovatefiuniverses containing
model element representatives, dnednsformationprocedurally expressed as parallel updates of
the encoding algebra. The transformation branch may cofiiaher transformation rules of the
same form. Rules are iteratively fired until they do not caarsefurther update depending whether
their queries have a non empty outcome or not. Thus, the ingtetgorithm is implicitly defined

by the queries which establish also their relative preceeen

The choice of ASMs is motivated by the extensive use of thimédism in the specification and

analysis of many software and hardware systems [1]. Thedlism has a simple syntax that
permits to write specifications that can be seen as “pseuddooeer abstract data”. On one hand
they are mathematically rigorous and represent a formas basnalyze and verify transforma-
tions; on the other hand, they combine declarative and droegéfeatures to harness the intrinsic
complexity of designing transformations. The ASMs havenbligked to a multitude of anal-

ysis methods, in terms of both experimental validation ofled® and mathematical verification

1.1 Outline of the Thesis 3

of their properties. The validation (testing) of ASM modekn be obtained by their simula-
tion, which corresponds naturally to their execution whikbBupported by numerous tools (ASM
Workbench [[26], AsmGofel [106], an Asm2C++ compiler [LOXASM [B], .NET AsmL [48)).
The verification of model properties is possible due to théheraatical character of ASMs. Dif-
ferent techniques can be used, from proof sketches ovatidraal or formalized mathematical
proofs [114] to tool supported proof checking or interagtir automatic theorem proving, e.g. by
model checkerd 125, 52].

A4MT has been validated in different applicative domainen€erning the specification of model
transformations, it has been used to support the modelrddegelopment of Web applications
and the compositional verification of middleware-basedesys (see Chapt&t 5). Moreover, the
approach has been used also for the dynamic semantics saéaifi of DSLs in the AMMA
framework [16]. With respect to model weaving, A4MT has besed to formally specify the
semantics of weaving operators and the approach has beeatedlto support two kind of appli-
cations: decoupling of concerns in model driven develograEWeb applications and for software
architecture modeling (see Chafer 6).

1.1 CQOUTLINE OF THE THESIS

The thesis is structured as follows:

Chapter 2 describes the basic concepts used in this work. It intraglivi@del Driven Engineering
(MDE), Model Driven Architecture (MDA), and gives a defimiti of models and metamodels
according to the literature. Moreover, the concepts of rhvdasformation and model weaving
are discussed in detail since they motivate the approagiopeal in Chapter 4.

Chapter 3 gives an overview of the Abstract State Machines formali&®Ns) and motivates its
adoption as base of the approach proposed in Chapter 4. TisXAnguage is also presented
since all the proof of concepts presented in Chapter 4, 56draye been developed by using this
particular ASMs implementation.

Chapter 4 describes A4MT, the proposed ASMs based approach to sufgporal specification
of model transformations and weaving. The standdML2RDBMStransformation is consid-
ered throughout the chapter in order to describe how theoappris able to deal with complex
model transformation situations. The chapter collocaté®A in the context of MOF 2.0 QVT
RFP [93] and proposes also a comparison (based on the dassiii presented by Czarnecki et
al. in [34]) between AAMT and some of the today’s availabéasformation languages presented
in Chapter 2.

Chapter 5 describes the application of A4MT in different applicatalemains. The chapter dis-
cusses an attempt to support the model driven developmeWebf applications by means of
model transformation formally specified with A4MT. Then tggproach has been used also in the
development of middleware systems highlighting the imgooee of having a formal approach to
specify property preserving transformations. Finallg thapter describes how it is possible to
use A4MT for specifying the dynamic semantics of Domain $pmecanguages in the context of
the AMMA framework. A case study is discussed by formallyafyeng the dynamic semantics
of ATL.

4 Chapter 1. Introduction

Chapter 6 proposes the use of AAMT to define the semantics of weavintptges that are used
to generate target models with respect to given correspamedebetween source ones. A case
study is proposed aiming to decouple the different conciernsodel driven development of Web
applications. The approach has been used also to specifmuodel extensions. In this respect,
a case study is proposed consisting of weaving operatotatkto the extension of a core UML
profile conceived for the specification of software architees.

Chapter 7 gives conclusions by outlining the main contributions a@$ tthesis and some perspec-
tive works.

1.2 LIST OF PUBLICATIONS

During the development of this thesis, the author has puddissarious parts of his work in the
following papers (listed in reverse chronological order):

International Journals

1. D. Di Ruscio, H. Muccini, A. Pierantonid Data Modeling Approach to Web Application
Synthesis International Journal of Web Engineering and Technolegl;, 1, no. 3 (2004)
pp 320-337.

2. L. Balzerani, G. De Angelis, D. Di Ruscio, A. Pieranton®ypporting Web Applications
Development with a Product Line Architectudournal of Web Engineering, vol.5, no.1
(2006) pp 025-042.

International Conferences and Workshops

3. A. Cicchetti, D. Di Ruscio, A. Di Sallesoftware Customization in Model Driven Develop-
ment of Web Applicationgroc. Model Transformation track of the 22th ACM Symposium
on Applied Computing (SAC 2007), to appear.

4. A. Cicchetti, D. Di Ruscio, R. Eramdlowards Propagation of Changes by Model Ap-
proximations International Workshop on Models for Enterprise CommtieDOC 2006
Workshop, Hong Kong, IEEE Computer Society.

5. A. Cicchetti, D. Di Ruscio, A. Pierantoni@;omposition of Model Differencesn A. G.
Kleppe, editor, 1st European W. on Composition of Model $farmations - CMT 2006,
number TR-CTIT-06-34 in CTIT Technical Reports, June 2006.

6. D. Di Ruscio, H. Muccini, P. Pelliccione, A. Pierantonimwards Weaving Software Archi-
tecture ModelsProc. MBD/MOMPES Workhops within the IEEE ECBS 2006, pp.3-10
112, IEEE CS Press.

7. A. Cicchetti, D. Di Ruscio and A. Pierantonidfeaving Concerns in Model Based Devel-
opment of data-intensive Web ApplicatioRsoc. Model Transformation track of the 21th
ACM Symposium on Applied Computing (SAC 2006), pp. 1256-1,28CM Press.Ex-
tended version submitted for journal publication

1.3 Funding Acknowledgements

8. D. Di Ruscio, A. Pierantonidylodel Transformations in the Development of data-intensiv
Web ApplicationsProc. 17th Conference on Advanced Information Systemsngegng
(CAISE’'05), O. Pastor and J. F. e Cunha (Eds.), Springer LREX), 2005, pp. 475-490.

9. L. Balzerani, G. De Angelis, D. Di Ruscio, A. Pierantonf,Product Line Architecture
for Web ApplicationsProc. Web Technologies and Applications Special Trackef20th
ACM Symposium on Applied Computing (SAC 2005), pp. 1689-3,68CM Press.

10. M. Caporuscio, D. Di Ruscio, P. Inverardi, P. Pellicéipand A. Pierantonidzngineering
MDA into Compositional Reasoning for Analyzing Middlewbhesed ApplicationsProc.
2nd European Workshop on Software Architecture (EWSA 20Bonald Morrison and
Flio Oquendo (Eds.), Springer LNCS 3527, 2005, pp. 130-145.

Technical Reports

11. D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, A. Pietanio, Extending AMMA for Sup-
porting Dynamic Semantics Specifications of D3laboratoire d’'Informatique de Nantes-
Atlantique (LINA) Research Report n.06.02.

12. D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, A. Pietanio, A Practical Experiment
to Give Dynamic Semantics to a DSL for Telephony ServiceglBmwent Laboratoire
d’'Informatique de Nantes-Atlantique (LINA) Research Repo06.03.

13. A. Cicchetti, D. Di Ruscio, A. Pierantonidd Domain-Specific Modeling Language for
Model Differences Dipartimento di Informatica, Universita di L'Aquila, TR05/2006,

2006.

1.3 HFUNDING ACKNOWLEDGEMENTS

This research was funded by TecnoMarche S.c.ar.l. (Paieat8ico e Tecnologico delle Marche).
Any opinions, findings, and conclusions or recommendatexpsessed in this material are those
of the author and do not necessarily reflect the views of Tiglemohe S.c.ar.l.

CHAPTER2

BAsic CONCEPTS

This chapter gives an overview of the basic concepts uséilsititesis. It introduces the notions of
Model Driven Engineering (MDE) and Model Driven Architecdt(MDA), the concepts of model,
meta-model, model transformation, and model weaving.

The structure of the chapter is as follows: Secfiod 2.1 dessrthe notions of Model Driven
Engineering and Model Driven Architecture. Sectioll 2.Zdsses definitions of model and the
concept of meta-model. In Sectibn?.3 some of today’s madekformation approaches are de-
scribed taking into account the classification proposed bgrecki et al. in[[34]. Sectidn 2.4
describes the model weaving operation and the factors thi@glish it with the model transfor-
mation one. Sectidn 2.5 concludes the chapter.

2.1 MoODEL DRIVEN ENGINEERING

Model-Driven Engineering (MDE) refers to the systematie v models as first class entities

throughout the software engineering life cycle. Modei«n approaches shift development focus
from third generation programming language codes to maggisessed in proper domain spe-
cific modeling languages. The objective is to increase ity and reduce time to market by

enabling the development of complex systems by means oflsxddéned with concepts that are

much less bound to the underlying implementation technoblogd are much closer to the prob-

lem domain. This makes the models easier to specify, uradetsand maintairi [11.0] helping the

understanding of complex problems and their potentialt&wia through abstractions.

The concept of Model Driven Engineering emerged as a genatiah of the Model Driven Ar-
chitecture (MDA) proposed by OMG in 2001]95]. Keht]73] definMDE on the base of MDA
by adding the notion of software development process ancelimapspace for organizing models.
Favre [46] proposes a vision of MDE where MDA is just one palssinstance of MDE imple-
mented in the set of technologies defined by OMG (MOF [96], U[g8], XMI [94], etc.) which
provided a conceptual framework and a set of standards tegxpnodels, model relationships,
and model-to-model transformations.

Embracing these visions about MDE and the relationship MBI, the rest of the chapter pro-
vides with more details about the basic conceptsofie] meta-modelmodel transformatiomnd
model weavinghat this work is manly focused on.

7

8 Chapter 2. Basic Concepts

2.2 MODELS AND META-MODELS

Even though MDA and MDE rely omodelsthat are considered “first class citizens”, there is no
common agreement about what is a model.[In]109] a model isatkfis “a set of a statements
about a system under study”. Bézivin and Gerbéin [14] @efirmodel as “a simplification of
a system built with an intended goal in mind. The model shdigdhble to answer questions in
place of the actual system”. According to Mellor et ALLI[85hadel “is a coherent set of formal
elements describing something (e.g. a system, bank, plooi&in) built for some purpose that
is amenable to a particular form of analysis” such as comoatioin of ideas between people and
machines, test case generation, transformation into alemgmtation etc. The MDA guidé&[B5]
defines a model of a system as “a description or specificafitimab system and its environment
for some certain purpose. A model is often presented as ainatiun of drawings and text. The
text may be in a modeling language or in a natural language”.

MDA classifies models into three classes: Computation laddpnt Model (CIM), Platform In-
dependent Model (PIM) and Platform Specific Model (PSM). Sehmodels describe the system
being developed at different levels of abstraction. Inipaldr, according to the MDA guide, a
CIM “is a view of a system from the computation independertwioint. A CIM does not show
details of the structure of systems. A CIM is sometimes dadl@lomain model and a vocabulary
that is familiar to the practitioners of the domain in questis used in its specification”. A PIM
“is a view of a system from the platform independent viewpoi PIM exhibits a specified de-
gree of platform independence so as to be suitable for useamiumber of different platforms
of similar type”. Finally a PSM “is a view of a system from thiagform specific viewpoint. A
PSM combines the specifications in the PIM with the detaiéd #pecify how that system uses
a particular type of platform”. The definitions of PIM and PS&ly on the concept of platform
defined in the MDA guide as “a set of subsystems and techreddbat provide a coherent set of
functionality through interfaces and specified usage patevhich any application supported by
that platform can use without concern for the details of hosvftinctionality provided by the plat-
form is implemented”. One of the main motivations of thissslification is to enable enterprises to
preserve investments in business logic by means of a clpara@n of the system functionalities
from the specification of the implementation on a given tetbgy platform.

In MDE models are not considered as merely documentatiorpiadise artifacts that can be

Ta eeeee bedBy

MO | instance |

Tﬁ eeeee bedBy

real
System

Execution
of P

! ! !
conformsTo ! conformsTo ! conformsT ! conformsT
Level [N I) I Y I M\
! ! !
M3 | meta-metamodel | ! | MOF | ! | EBNF | ! | XSD |
! ! !
conformsTo] conformsTo formsTe] formsT onformsT] formsTo formsTo
; el ; ;
M2 Metamodel] UML SPEM cwMm] Pascal Java] XSD xSD
] 1 grammar grammar 1 Schema S1 Schema S2
! !] !]
conformsTo] conformsT] conformsTo] formsTe
! ! !
UML Java
! ! !
M1 | model |] Model] Program P]
| | B |
! ! !
! ! !
! ! !
! ! !
! ! !
! ! !
! ! !

Figure 2.1: The four layer meta-modeling architecture

2.2 Models and Meta-models 9

PIM
Transformed to
1 v v 4
CORBA Java/EJB Other
Model Model | ==eee-- Model
Transformed to | | |
AV AYA
[CORBA | [JawalElB |

Figure 2.2: MDA based development Process

understood by computers and can be automatically mangazllanh this scenarisneta-modeling
play a key role. Itis intended as a common technique for dejitlie abstract syntax of models and
the interrelationships between model elements. Meta-tmudean be seen as the construction of a
collection of “concepts” (things, terms, etc.) within ateém domain. A model is an abstraction of
phenomena in the real world, and a meta-model is yet anobistraztion, highlighting properties
of the model itself. This model is said tmnform toits meta-modelike a program conforms to
the grammar of the programming language in which it is wmiffE?]. In this respect, OMG has
introduced the four-level architecture illustrated in.[gl. At the bottom level, theD layer is the
real system. A model represents this system at IsttelThis model conforms to its meta-model
defined at leveM2 and the meta-model itself conforms to the metametamodevat V3. The
metametamodel conforms to itself. OMG has proposed MOF §6& standard for specifying
meta-models. For example, the UML meta-model is defined rimgeof MOF. A supporting
standard of MOF is XMI[[94], which defines an XML-based exaj@mformat for models on the
MB, M2, or ML layer. This metamodeling architecture is common to othehmrielogical spaces as
discussed by Kurtev et al. iAl[6]. For example, the orgaivmadf programming languages and the
relationships between XML documents and XML schemas follegvsame principles described
above (see Fig.2.1).

In addition to metamodelingnodel transformatiors also a central operation in MDA as depicted
in Fig.[Z2. According to the figure, the development of awafe system starts by building a PIM
of that system. Then the PIM is refined and transformed to omecoe PSMs. Finally, the PSMs
are transformed to code. In this way, MDA allows to preseheitivestments in business logic
since, being a PIM totally unrelated to any specific techggld is possible to map it to different
platforms by means of (semi)automatic transformationsctvican be defined according specific
needs. Achieving this goal would enable analysts to focly @mthe design, the business logic,
and the overarching architecture.

While technologies such as MOE]96] and UML]59] are wellagdished foundations on which to
build PIMs and PSMs, there is as yet no well-establisheddation on which to rely in describing
how we take a PIM and transform it to produce a PSM. In the nestien more insights about
model transformations are given and after a brief discusalwout the general approaches, the
attention focuses on some of the today’s available language

10 Chapter 2. Basic Concepts

MOF

conformsTo conformsTo conformsTo

’Transformation Language‘

conformsTo

from to
\ Transformation Rules ‘

>

‘ Source Metamodel] Target Metamodel

conformsTo exec conformsTo

source target

Source Model 4‘ Transformation Engine| 4" Target Model

Figure 2.3: Basic Concepts of Model Transformation

2.3 MODEL TRANSFORMATIONS

The MDA guide [95] defines a model transformation as “the psscof converting one model to
another model of the same system”. Kleppe et(al. [74] defirnesnaformationas the automatic
generation of a target model from a source model, accordirg ttansformation definition. A
transformation definitions a set of transformation rules that together describe howdel in the
source language can be transformed to a model in the targgidge. Atransformation ruleis

a description of how one or more constructs in the sourceulagg can be transformed to one or
more constructs in the target language.

Rephrasing these definitions by considering Eigl 2.3, a inmdesformation programs take as
input a model conforming to a given source meta-model andymes as output another model
conforming to a target meta-model. The transformation oy composed of a set of rules,
should itself considered as a model. As a consequence d@sedon a corresponding meta-model,
that is an abstract definition of the used transformatioguage.

Many languages and tools have been proposed to specify andtexransformation programs. In
2002 OMG issued the Query/View/Transformation requespfoposal [[98] to define a standard
transformation language. Even though a final specificatemsldeen adopted at the end of 2005,
the area of model transformation continues to be a subjenterise research. Over the last years,
in parallel to the OMG process a number of model transfolwnagipproaches have been proposed
both from academia and industry. The paradigms, constrowigeling approaches, tool support
distinguish the proposals each of them with a certain silittafor a certain set of problems.

In the following, a classification of the today’s model tremmmation approaches is briefly re-
ported, then some of the available model transformatioguages are separately described. The
classification is mainly based updn]34] ahd[117].

2.3.1 (Q.ASSIFICATION

At top level, model transformation approaches can be djgighed betweemodel-to-codeand
model-to-model The distinction is that, while a model-to-model transfatimn creates its target
as a model which conforms to the target meta-model, thettafgemodel-to-text transformation

2.3 Model Transformations 11

is essentially strings. In the following some classificasicof model-to-model transformation
languages discussed [n]34] are described.

Direct manipulation approach. It offers an internal model representation and some APIs to
manipulate it. It is usually implemented as an object ogdritamework, which may also provide
some minimal infrastructure. Users have to implement foangation rules, scheduling, tracing
and other facilities, mostly from the beginning in a prognaimg language.

Operational approach. It is similar to direct manipulation but offers more dedadisupport for

model transformation. A typical solution in this categasyté extend the utilized meta-modeling
formalism with facilities for expressing computations. Axample would be to extend a query
language such as OCL with imperative constructs. Examplegstems in this category are QVT

Operational mapping5197], XMETIR8], MTILTIR3] and Kerm¢&s)].

Relational approach. It groups declarative approaches in which the main coneeptathemat-
ical relations. In general, relational approaches can be as a form of constraint solving. The
basic idea is to specify the relations among source andttakgment type using constraints that
in general are nonexecutable. However, declarative aingtrcan be given executable semantics,
such as in logic programming where predicates can be useestyilde the relations. All of the
relational approaches are side-effect free and, in cdntoathe imperative direct manipulation
approaches, create target elements implicitly. Relatiapproaches can naturally support multi-
directional rules. They sometimes also provide backtragkMost relational approaches require
strict separation between source and target models, thtaeisdo not allow in-place update. Ex-
ample of relational approaches are QVT Relatidns [97] andMABZ]. Moreover, in [5¥] the
application of logic programming has been explored for theppse. Finally, in[[31] we have
investigated the application of the Answer Set Programnffa&fj for specifying relational and
bidirectional transformations.

Hybrid approach. It combines different techniques from the previous catiegotike ATL [70]
that wraps imperative bodies inside declarative statesnent

Graph-transformation based approacheslt draws on the theoretical work on graph tranforma-
tions. Describing a model transformation by graph tramsédion, the source and target models
have to be given as graphs. Performing model transformétjograph transformation means to
take the abstract syntax graph of a model, and to transfoacciirding to certain transformation

rules. The result is the syntax graph of the target model.

Being more precise, graph transformation rules havé.ld8 and anRHSgraph pattern. The
LHSpattern is matched in the model being transformed and reglag theRHSpattern in place.
In particular,LHR represents the pre-condition of the given rule, wiRldSdescribes the post-
conditions.LHRNRHSdefines a part which has to exist to apply the rule, but whidoixhanged.
LHS — LHSN RHSdefines the part which shall be deleted, &tdS— LHSN RHSdefines the
part to be created. The LHS often contains conditions intexfdio the LHS pattern, for example,
negative conditions. Some additional logic is needed topdmtarget attribute values such as
element names. AGG_[1116] and AToM37[36] are systems dirantiylementing the theoretical
approach to attributed graphs and transformations on stagbhg. They have built-in fixpoint
scheduling with non-deterministic rule selection and corent application to all matching loca-
tions, and the rely on implicit scheduling by the user. Tl@s$formation rules are unidirectional
and in-place. Systems such as VIATRAZJIL122] and GR€EAT [4pedtthe basic functionality

12

Chapter 2. Basic Concepts

Relations
o i | RelationsToCore
pera !ona Transformation
Mappings - C
Core

Figure 2.4: QVT Architecture

of AGG and AToM3 by adding explicit scheduling. VIATRA2 useran build state machines to
schedule transformation rules whereas GReAT relies onftitategraph.

2.3.2 LANGUAGES

In this section some of the languages referred above arelaihg described. The purpose of
the description is to provide the reader with the backgrausmelled to understand the comparison
between the approach provided in CHdp. 4 with QVT, AGG, ATR&AT, and VIATRA2.

QVT

In 2002 OMG issued the QVT RFP_]93] describing the requiremen a standard lan-

guage for the specification of model queries, views, andfamations according to the following
definitions:

e A queryis an expression that is evaluated over a model. The resatqefery is one or

more instances of types defined in the source model, or ddfingae query language. For
example, a query over a UML model might beturn all packages that do not contain any
child packages The result would be a collection of instances of BFeckage metaclass.
As it will be explained in the following, the Object ConstrtaLanguage (OCL 2.0)198] is
the query language actually used in QVT;

A view is a model which is completely derived from a base model. Avviannot be
modified separately from the model from which it is derived ahanges to the base model
cause corresponding changes to the view. If changes ardtfgeto the view then they
modify the source model directly. The meta-model of the vigswypically not the same
as the meta-model of the source. A query is a restricted kindew. Finally, views are
generated via transformations;

A transformationgenerates a target model from a source one. If the sourceaagek t
meta-models are identical the transformation is catledogeneoudf they are different the
transformation is calledxogeneousA model transformation may also have several source
models and several target models. A view is a restricted édricansformation in which the
target model cannot be modified independently of the souimgein If a view is editable,
the corresponding transformation must be bidirectionalrarer to reflect the changes back
to the source model.

Over the last three years a number of research groups hanértyebsed in the definition of QVT
whose final specification has been reached at the end of N@re26b5[97]. The abstract syntax
of QVT is defined in terms of MOF 2.0 metamodel. This metamalddines three sublanguages

2.3 Model Transformations 13

for transforming models. OCL 2.0 is used for querying modélseation of views on models is
not addressed in the proposal.

The QVT specification has a hybrid declarative/imperatigture, with the declarative that forms
the framework for the execution semantics of the impergtiaet. The layers of the declarative
part are the following:

¢ A user-friendlyRelationsmetamodel and language which supports complex objectrpatte
matching and object template creation. Traces betweenIreteteents involved in a trans-
formation are created implicitly;

e A Coremetamodel and language defined using minimal extensionM@HAzand OCL. All
trace classes are explicitly defined as MOF models, and inatance creation and deletion
is defined in the same way as the creation and deletion of 4y object.

By referring to [97], a relation is a declarative specifioatiof the relationships between MOF
models. The&Relationdanguage supports complex object pattern matching, anticithpcreates
trace classes and their instances to record what occurratydutransformation execution. Rela-
tions can assert that other relations also hold betweeitpiart model elements matched by their
patterns. FinallyRelationsanguage has a graphical syntax.

Concerning theCore it is a small model/language which only supports patternchiay over

a flat set of variables by evaluating conditions over thos@kikes against a set of models. It
treats all of the model elements of source, target and tramselm symmetrically. It is equally
powerful to theRelationslanguage, and because of its relative simplicity, its sditamcan be
defined more simply, although transformation descriptidescribed using th€ore are therefore
more verbose. In addition, the trace models must be eXpliditfined, and are not deduced from
the transformation description, as is the case Wigfations The core model may be implemented
directly, or simply used as a reference for the semantidRedations which are mapped to the
Core, using the transformation language itself.

To better clarify the conceptual link betwe&elationsand Core languages, an analogy can be
drawn with the Java architecture, where the Core languatijecidava Byte Code and the Core
semantics is like the behavior specification for the JaveusirMachine. The Relations language
plays the role of the Java language, and the standard traretion from Relations to Core is like
the specification of a Java Compiler which produces Byte Code

Sometimes it is difficult to provide a complete declaratighiSon to a given transformation prob-
lem. To address this issue QVT proposes two mechanismstending the declarative languages
RelationsandCore a third language calle@perational Mappinggnd a mechanism for invoking
transformation functionality implemented in an arbitréagguage Black Boy.

TheOperational Mappingsanguage is specified as a standard way of providing imperatiple-
mentations. It provides OCL extensions with side effecas #llow a more procedural style, and a
concrete syntax that looks familiar to imperative prograersn A transformation entirely written
using Operation Mappings is called an “operational tramségion”.

The Black Boxmechanism makes possible to “plug-in” and execute extamaé. This permits
to implement complex algorithms in any programming langyamnd reuse already available li-

© 0N O WN R

NNNNRERERRRR B B B B
WN B O ©O®m~NO®U S ®WNR O

-

14 Chapter 2. Basic Concepts

braries. However, this mechanism allows implementatidrsome parts of a transformation to be
opaque.

ATL ATL (ATLAS Transformation Language) [70] is a hybrid modeatisformation language
containing a mixture of declarative and imperative cortdtrtu The former allows to deal with
simple model transformations, while the imperative paipfién coping with transformation of
higher complexity. ATL transformations are unidirectigr@perating on read-only source models
and producing write-only target models. During the exexutf a transformation source models
may be navigated but changes are not allowed. Target moaefetbe navigated.

Transformation definitions in ATL forrmodules A module contains a mandatomgadersection,
import section, and a number belpersandtransformation rulesHeader section gives the name
of a transformation module and declares the source andt tavggels (linesi-2, Fig.[Z5). The
source and target models are typed by their meta-models. kéhgord cr eat e indicates the
target model, whereas the keywdrdomindicates the source model. In the example of Eig. 2.5
the target model bound to the varial®eT is created from the source model. The source and
target meta-models, to which the source and target modébiwonarePet ri Net andPNML [19]
respectively.

Helpers and transformation rules are the constructs usegeify the transformation function-
ality. Declarative ATL rules are callethatched rules They specify relations betweesource

nodul e Pet ri Net 2PNM;
create OUT : PNML fromIN : Petri Net;

rule Place {
from
e : PetriNet!Place
--(guard)
to
n : PNM.!Pl ace
(
name <- e.nane
id <- e.nane
| ocation <- e.location

IE
name : PNM.! Nane
(

| abel s <- | abe

| abel : PNML! Label
(

)

text <- e.nane

Figure 2.5: Fragment of a declarative ATL transformation

patternsandtarget patterns The name of a rule is given after the keywand e. The source
pattern of a rule (lines- 7, Fig.[ZB) specifies a set eburce typesand an optionafjuard given as

a Boolean expression in OCL. A source pattern is evaluatedst&i of matches in source models.
The target pattern (line®- 22, Fig.[Z5) is composed of a set elementsEach of these elements
(e.g. the one at lines- 14, Fig.[ZB) specifies target typefrom the target meta-model (e.g. the
type Pl ace from the PNML meta-model) and a set bindings A binding refers to a feature of

2.3 Model Transformations 15

the type (i.e. an attribute, a reference or an associatidj @md specifies an expression whose
value is used to initialize the feature. In some cases contpdmsformation algorithms may be
required and it may be difficult to specify them in a declaativay. For this issue ATL provides
two imperative constructscalled rules andaction blocks A called rule is a rule called by other
ones like a procedure. An action block is a sequence of inigeriastructions that can be used in
either matched or called rules. The imperative statemené§ L are the well-known constructs
for specifying control flow such as conditions, loops, assignts, etc.

There is an associated ATL Development Toolkit availablepen source from the GMT Eclipse
Modeling Project[[4R]. A large library of transformatiorssavailable at[10].

GReAT GReAT [4] (Graph Rewriting and Transformation Languagea imeta-model based
graph-transformation language that supports the highl-lgpecification of complex model trans-
formation programs. In this language, one describes thesfttemations as sequenced graph
rewriting rules that operate on the input models and coostam output model. The rules specify
complex rewriting operations in the form of a matching pattend a subgraph to be created as the
result of the application of the rule. The rules (1) alwaysrage in a context that is a specific sub-
graph of the input, and (2) are explicitly sequenced for igfficexecution. The rules are specified
visually using a graphical model builder tool. GReAT can béded into three distinct parts:

e Pattern specification languagé.his language is used to express complex patterns that are
matched to select elements in the current graph. The paiperification language uses a
notion of cardinality on each pattern vertex and each edge.

e Graph transformation languagelt is a rewriting language that uses the pattern language
described above. It treats the source model, destinatiatehamd temporary objects as a
single graph that conforms to a unified meta-model. Eaclepatibject’s type conforms to
this meta-model and only transformations that do not véotae meta-model are allowed.
At the end of the transformation, the temporary objects amnsoved and the two models
conform exactly to their respective meta-models. Guardeadoage the rule applications
can be specified as Boolean C++ expressions.

e Control flow languagelt is a high-level control flow language that can control theleca-
tion of the productions and allow the user to manage the ocaxitplof the transformations.
In particular the language supports a number of featuiig$Sequencingrules can be se-
guenced to fire one after anoth@i) Non-Determinismrules can be specified to be executed
“in parallel”, where the order of firing of the parallel rulesnon deterministic(iii) Hier-
archy, compound rules can contain other compound rules or pvienitiles,(iv) Recursion
a high level rule can call itselfy) Test/Casga conditional branching construct that can be
use to choose between different control flow paths.

AGG AGG is a development environment for attributed graph fansation systems support-

ing an algebraic approach to graph transformation. It aitrepecifying and rapid prototyping

applications with complex, graph structured data[116]. GA&upports typed graph transforma-
tions including type inheritance and multiplicities. It ynhe used (implicitly in “code”) as a

general purpose graph transformation engine in high-18%A applications employing graph

transformation methods.

16 Chapter 2. Basic Concepts

The source, target, and common meta-models are repredentyge graphs. Graphs may ad-
ditionally be attributed using Java code. Model transfdioms are specified by graph rewriting
rules that are applied non-deterministically until nonéh&fm can be applied anymore. If an ex-
plicit application order is required, rules can be groupedrdered layers. AGG features rules
with negative application conditions to specify patteimet {prevent rule executions.

Finally, AGG offers validation support that is consisterdyecking of graphs and graph trans-
formation systems according to graph constraints, cltipe& analysis to find conflicts between
rules (that could lead to a non-deterministic result) anetking of termination criteria for graph

transformation systems. An available tool support pravidéh graphical editors for graphs and
rules and an integrated textual editor for Java expressitareover, visual interpretation and
validation is supported.

VIATRA2 VIATRAZ2[[2Z]is an Eclipse-based general-purpose modeldformation engineer-
ing framework intended to support the entire life-cycle floe specification, design, execution,
validation and maintenance of transformations within aativieen various modelling languages
and domains.

Its rule specification language is a unidirectional trarmsfation language based mainly on graph
transformation techniques that combines the graph tremsfion and Abstract State Machingsl[22]
into a single paradigm. Being more precise, the basic cdnoafefining model transformations
within VIATRAZ2 is the (graph) pattern. A pattern is a colliect of model elements arranged into
a certain structure fulfilling additional constraints (afided by attribute conditions or other pat-
terns). Patterns can be matched on certain model instaao@sipon successful pattern matching,
elementary model manipulation is specified by graph transdtion rules. There is no prede-
fined order of execution of the transformation rules. Graphgformation rules are assembled
into complex model transformations by abstract state nm&chiles, which provide with a set of
commonly used imperative control structures with precsmmantics. This permits to collocate
VIATRA2 as a hybrid language since the transformation rafeguage is declarative but the rules
cannot be executed without an execution strategy specifiad imperative manner.

Important specification features of VIATRAZ2 include redues(graph) patterns, negative patterns
with arbitrary depth of negation, and generic and metasfamations (type parameters, rules
manipulating other rules) for providing reuse of transfations [121].

2.4 MOoODEL WEAVING

The separation of concerns in software system modelingdavitie construction of large and
monolithic models which could be difficult to handle, maintand reuse. At the same time,
having different models (each one describing a certain éncrequires their integration into
a final model representing the entire domain_J1a0dpdel weavingcan be used in this scenario.
Although there is no accepted definition of model weavindLH#j it is considered as the operation
for setting fine-grained relationships between models damedels and executing operations on
them based on the semantics of the weaving associationgisalc defined for the considered
application domain.

The concept of weaving is not new. Typical applications oflelaveaving are database metadata

2.4 Model Weaving 17

con frmsTo

fletametamlode

confrmsTo LT CE

conform=To

Figure 2.6: Weaving Operation

integration and evolution as in[86] which proposes Rondgerzeric metamodel management ap-
proach which uses algebraic operators suddatshandMergeto manage mappings and models.
In [63] a UML extension is introduced to express mappingsveeth models using diagrams, and
illustrates how the extension can be used in metamodelihg. ektension is inspired by mathe-

matical relations and is based upon ideas presentéd in [Bhvpinoposes an approach for defining
transformation relationships between different comptseha language definition rendered as a
metamodel.

The definition of model weaving that will be considered irsthiork is that provided by Didonet
Del Fabro et al. in[81]. They leverage the need of a generictavastablish model element corre-
spondences by proposing a solution aimed at reach a tradetefeen genericity, expressiveness
and efficiency of mappings which are considered models thafiocmn to a weaving meta-model.
The weaving meta-model is not fixed since it might be exteretieans of a proposed composi-
tion operation to reach dedicated weaving meta-models.opkeational context of the proposed
model weaving operation is depicted in Hig2.6. A model vimgwoperation produces a weaving
modelWWMrepresenting the mapping between the metamddefis MMandRi ght MM Like other
models, this should conform to a specific weaving metamadéid The produced weaving model
relates with the involved metamodels and thus will remaikdd to these metamodels in a global
model registry. Weaving operations may be applied to mddstead of metamodels. The result-
ing weaving modef\AMmay be used for many operations (with respect to the sensasftibe used
weaving associations) for example to derive a model tranmsdton.

Adhering to the “everything is a model” principleZ]12], mddeeaving offers a number of ad-
vantages. All the information, relationships and corresfamces between the considered models,
could be described by specialized weaving models avoidirigave large metamodels for captur-
ing all the aspects of a system. Furthermore, metamodelsifug on their own domain can be
individually maintained, and at the same time intercoreg@to a “lattice of metamodels[12].

In other words, each meta-model could represent a domaicifgplanguage dealing with a par-
ticular view of a system, while weaving links permit desgripthe aspects both separately and
in combination. To summarize, the need of model weaving hediifferences with the model
transformation are discussed [in]82] by taking into accahetfollowing issues:

e “arity”: Usually a transformation takes one model as inpotl groduces another model
as output, even if extensions to multiple inputs and outmeay be considered. A model
weaving takes basically two models as input and one weavigtgmodel.

e “automaticity”: A transformation is an automatic operatiwhile a weaving may need the
additional help of heuristics or guidance to assist the tesperform the operation.

18 Chapter 2. Basic Concepts

e “variability”: A transformation conforms to a fixed metanadthe metamodel of the trans-
formation language) while there is no canonical standardvimg metamodel, since for
every different application a new metamodel should be etkat

These issues permit to conclude that transformation andimgeare different problems even
though in particular cases a weaving model may be itseltfeaimed to a transformation model.

More information about model weaving are given in Chapleh@re an approach to specify the
semantics of the links used to specify weaving models argged and validated in two different
applicative domains.

2.5 CONCLUSIONS

In this chapter we introduced the basic concepts of ModelddriEngineering. The notions of
model, meta-model, model transformation, and model wegwiare provided. Moreover, since
model transformation plays a key role in MDE, this operatias described with more details. A
classification (based updn]34]) of today’s approaches amgiiages was reported and the peculiar
characteristics of some of them were given.

The paradigms, constructs, modeling approaches, toobsugistinguish the transformation pro-

posals each of them with a certain suitability for a specifitaf problems. Shifting the focus

on the problem of specifying the behaviour of model transfations in a precise way, we recog-
nize the need of having a high-level specification languaglle to produce precise and formal
transformations enabling formal reasoning on them, prégiroperties, and verification of their

correctness with respect to some criteria. These consiolesagive place to the main motiva-

tions of this work that provides with an approach completeged on Abstract State Machines
(ASMs) for specifying model transformations and weavinbisTapproach is deeply presented in
Chapte®.

CHAPTER3

ABSTRACT STATE MACHINES (ASMS)

In this chapter, we elucidate the ASMs formalism which isdusethis work for specifying and
executing model transformations and weaving. After a lmiefrview, the mathematical definition
of ASMs is reported. This introduction is essentially baspdn [113] and the Ph.D. thesis of
Daniel Varr6 [120]. Then the XASM specification languag@riesented. It is an implementation
of the ASM formalism designed and implemented by Anlauff asnfal development tool for
Montage project[78]. In this work, XASM is used to implemaiithe proof of concepts presented
in the ChapterEl4]5, aldl 6. The XASM description is based {BérE].

3.1 OVERVIEW

The Abstract State Machine (ASM) Project (formerly knowrtlas Evolving Algebras Project)
was started by Yuri Gurevich as an attempt to bridge the gapdss formal models of compu-
tation and practical specification methods. The ASM thesikatany algorithm can be modeled
at its natural abstraction level by an appropriate (sequ@htASM [62]. Based upon this thesis,
members of the ASM community have sought to develop a metbggddased upon mathematics
which would allow algorithms to be modeled naturally, tfead@scribed at their natural abstraction
levels. The result is a simple methodology for describimgpé abstract machines which corre-
spond to algorithms. ASMs have been exploited in a numbeppliGtions covering high-level
design and analysis of real-life programming languagestheid implementations on virtual or
real machines (e.g. Java/JVM, C), of protocols, embeddsisycontrol programs, architectures
(e.g. RISC processors), etc. The ASM methodology is intériddeeach the following desirable
characteristics]1]:

Precision. One uses a specification methodology to describe a systenmebysrof a particular

syntax and associated semantics. If the semantics of tteéfispgon methodology is unclear,

descriptions using the methodology may be no clearer thaotiginal systems being described.
ASMs use classical mathematical structures to descrilbesstha computation;

Faithfulness. Since there is no method in principle to translate from thecoste world into an
abstract specification, one needs to be able to see the pondence between specification and
reality directly, by inspection. ASMs allow for the use o&tterms and concepts of the problem
domain immediately, with a minimum of notational coding;

Understandability. ASM programs use an extremely simple syntax, which can ket asa form
of pseudo-code;

19

20 Chapter 3. Abstract State Machines (ASMs)

Executability. Another way to determine the correctness of a specificatida execute the spec-
ification directly. A specification methodology which is ex¢able allows one to test for errors
in the specification. Additionally, testing can help one @rify the correctness of a system by
experimenting with various safety or liveness propertMsthods such as VDM [68], Z126], or

process algebraS]il1] are not directly executable;

Scalability. It is often useful to be able to describe a system at seveffalelit layers of abstrac-
tion. With multiple layers, one can examine particular feas of a system while easily ignoring
others. Proving properties about systems also can be mai, & the highest abstraction level
is often easily proved correct and each lower abstractieal lseed only be proven correct with
respect to the previous level;

Generality. ASM is useful in a wide variety of domains: sequential, dataland distributed
systems, abstract-time and real-time systems, finite-atad infinite-state domains;

The ASM method has been linked to a multitude of analysis otsthin terms of both experimen-
tal validation of models and mathematical verification aittproperties. The validation (testing)
of ASM models can be obtained by their simulation, which egponds to their execution which
is supported by numerous tools (ASM WorkbenEhl [26], AsmG{t€d], an Asm2C++ com-
piler [104], XASM [g], .NET AsmL [48]). The verification of mael properties is possible due to
the mathematical character of ASMs. As a consequence d@ifféechniques can be used, from
proof sketches over traditional or formalized mathemagicaofs [114] to tool supported proof
checking or interactive or automatic theorem proving (bygmodel checker$ [1256,52]).

For a further non-technical introduction explaining theM\8ethod, surveying its major applica-
tions, and comparing it to other major modelling approacheke literature, the reader can refer
to [22]. In the following the mathematical definition of ASMsprovided.

3.2 MATHEMATICAL DEFINITION OF ASMs

In this section a detailed mathematical definition of theaymand semantics of ASMs is provided.
The summary is essentially based ugon|120] 113].

3.2.1 \OCABULARY AND STATES OFASMS

In an ASM state, data is represented as abstract elements s (also calledniversesone
for each category of data) which are equipped with basicatjpers asfunctions Without loss
of generality we treatelations as boolean valued functions and view domains as charaiteris
functions, defined on the superuniverse which represeatsriion of all domains. Thus the states
of our modelspace are algebraic structures (called singpalgebras).

Definition 1 (Vocabulary). A vocabulary?: is a finite collection of function names. Each function
namef has anarity, a non-negative integer, which is the number of argumemguhction takes.
Function names can bstaticor dynamic Nullary function names are often called constants;
however, this term is misleading as the interpretation afafgic nullary functions can change in

3.2 Mathematical definition of ASMs 21

ASMs so that they correspond to variables of programmingrnEXSM vocabulary is assumed to
contain the static constantsdef true andfalse

For instance, the vocabulady Bool of Boolean algebras contains two constants 0 and 1, una
function name ‘-’, and two binary function names ‘+' and ‘*".

Definition 2 (State) A state2l of the vocabulary is a non-empty seX (thesuperuniversef 2,
denoted a$2l|) together withinterpretationf the function names ai.

e If f is ann-ary function name oE , then its interpretationf* is a function fromX™ into
X;
e If cis a constant of then its interpretation:? is an element oX .

For example, we may define a st&dor the vocabulary: z,,; as follows. The superuniverse of
the statell is the set 0,1. The functions are interpreted as follow, @hemdb are 0 or 1.

0% = 0 (zero)

1% = 1 (one)

—2a = 1-a (logical complement)
a+%b = max(a,b) (logical OR)

ax*b = min(a,b) (logical AND)

Formally, function names are interpreted in states as fintations. However, we may view them
as being partial and define tdemainof ann-ary function namé in 2l to be the set of alh-tuples
(a,...,an) € |A" such thatf* (a1, ..., a,) # undef.

The constantindef represents an undetermined object, the default value dfitheruniverse. It

is also used to model heterogeneous domains. In applisatiba superuniverse of a sta&leis
usually divided into smalleuniverses modeled by their characteristic functions. The universe
represented by is the set of all elementsfor which f(t) # wundef. If a unary functionf
represents a universe, then we simply writ¢¢ f as an abbreviation for the formul&(t) #
undef.

3.2.2 TERMS, VARIABLE ASSIGNMENT AND FORMULAE
Definition 3 (Term). The terms ok are syntactic expressions generated inductively wasvisllo

1. Variablesuvg, v1,vo, ... are terms.
2. Constants of X are terms.

3. If fis ann-ary function name of andt,, ..., t,, are terms, therf (¢, ...,t,) is a term.

22 Chapter 3. Abstract State Machines (ASMs)

Terms are denoted hy s, t; variables are denoted by, y, z. A term which does not contain
variables is callectclosed

For example, the following are terms of the vocabulany,,;: +(vg, v1), +(1, *(v7,0)). They are
usually written asyy + v; and1 + (v7 * 0).

Definition 4 (Variable assignment) Let2(be a state. A variable assignment ris a function
¢ which assigns to each variablg an element(v;) € ||. We write({x — a} for the variable
assignment which coincides withexcept that it assigns the elemento the variablex. So we
have

a, Ifv==x
C(v;), otherwise

cla — atw)) = {

Given a variable assignment, the semantics of a term can fieedeas an interpretation with
respect to a state and a variable assignment in the traditicienotational way.

Definition 5 (Interpretation of terms). Let®2l be a state ok , ¢ be a variable assignment f@t
andt be a term ot . By induction on the length df avalue[|t|]§‘ (the interpretation of ternhin
state(A)) is defined as follows:

1. [|vi|]§‘ := ((v;) (interpretation of variables);

2. Hvi\]? := ((v;) (interpretation of constants);

B ([f(trs oot = FAGNE, -, [I12]17) (interpretation of functions).

Definition 6 (Formulae). LetY be a vocabulary. A formula df is a syntactic expression gener-
ated as follows:

1. If sandt are terms of thens = ¢ is a formula.
If ¢ is a formula, theny is a formula.

If o and+) are formulae, thép A ©), (¢ V) and (¢ — 1) are formulae.

w0 DN

If ¢ is a formula andx a variable, then(Vy) and (3x) are formulae.

A formula where all variable are quantifiedd®sed formula

The logical connectives and quantifiers have the standaeshimg. The expression= ¢ is called
anequation The expressior # t is an abbreviation for the formuta(s = ¢). In order to increase
the legibility of formulae, parentheses are often omittidigwing the traditional left-to-right
priorities). The semantics of a formula is defined in theitiaidal way, i.e., by an interpretation
with respect to the state and a variable assignment. Foenanéeither true or false in a state. The

3.2 Mathematical definition of ASMs 23

truth value of a formula in a state is computed recursivehe ¢lassical truth tables for the logical
connectives and the classical interpretation of quargifiee used. The equality sign is interpreted
as identity.

Definition 7 Let%(be a state ok, ¢ be a formula od> and(be a variable assignment . By
induction on the length af, a truth value[\gp\]? € {true false} (the interpretation of formula
v in stateX) is defined as follows:

. o e
fs= e = {Prue Tl = [l
‘ false, otherwise
true, if [|gl]3 = false
H_'(:D”Ql = ’ P ¢ .
‘ false, otherwise
leAy2 = true, if [|‘P|]§[= true and[|¢|]§‘ = true
7 ¢ o false, otherwise
lo oyt = {true T [pllf = false or [[)]F = true
7 ¢ false, otherwise
true, if [|o[Z = true forall a € ||
3 = ’ C.’L’—»a
e el ' {false, otherwise
(B2 ol = frue, 1f H@H?zw = true for somea € |2|
TEIC T alse, otherwise

We say that a statf is amodelof ¢ if [[cp]]? = true for all variable assignments

3.2.3 TRANSITION RULES, CONSISTENT UPDATES FIRING OF UPDATES

In mathematics, states like Boolean algebras are statiey d not change over time. In computer
science, states are dynamic. They evolve by being updatethdiomputations. Updating abstract
states means to change the interpretation of (some of) thantig functions in the underlying
signature. In case ahonitored functionsthe system cannot change the interpretation (only the
environment). In case aontrolled functionsthe system is allowed to update the interpretation of
the function (and not the environment). The way ASMs updttes is described by transitions
rules of the following form which define the syntax of ASM pragis.

Definition 8 (Transition rules). Let3 be a vocabulary. The (transition) rulgg, S of an ASM
are syntactic expressions generated as follows:

1. Skip Rule:
skip
Meaning: Do nothing.

24 Chapter 3. Abstract State Machines (ASMs)

2. Update Rule:
flt1,nty) =5
Syntactic conditions:

- fis ann-ary, dynamic function name af
- t1,...,t, ands are terms oft

Meaning: In the next state, the value of the functfoat the arguments,, ..., t,, is updated
to s. Itis allowed thatf is a 0-ary function, i.e., a constant. In this case, the updwts the

forme := s.
3. Block Rule:
RS

Meaning: R and S are executed in parallel.

4. Conditional Rule:
if ¢ then RelseS
Meaning: ify is true, then execut®&, otherwise execut§.

5. Let Rule:
letz =tinR

Meaning: Assign the value ofo x and execute?.

6. Forall Rule:
forall = with ¢ doR

Meaning: Executd? in parallel for eachz satisfyingy.

7. Call Rule:

T’(tl, veey tn)
Meaning: Callr with parametersy, ..., ¢,.

Arule definitionfor a rule namer of arity n is an expression
r(z1,...,xn) =R

whereR is a transition rule. In a rule call(¢4, ..., t,) the variablesz; in the bodyR of the rule
definition are replaced by the parametefs

To extend a subuniversé of the superuniverse by the new elements we use the follomotegion:

extendU with z
R
endextend

The meaning of this construct is:

3.2 Mathematical definition of ASMs 25

letx = frew(-..)INR

where f,,c(...) is @ monitored function (possibly with parameters) whictumes a new element
of the superuniverse which does not belong/to

For monitored choice functions, the following notation &ed:

chooser : ¢
R
endchoose

It is an abbreviation for the rule
letz = f,(...)INR

where f, is a monitored function updated by the environment whichrret elements of the uni-
versel satisfying the selection condition.

Definition 9 (ASM) An abstract state machiné consists of a vocabulary;, an initial state2(
for X, a rule definition for each rule name, and a distinguisheda méme of arity zero called the
main rule namef the machine

The semantics of transition rules is given by setsipflates Since due to parallelism (in the
Block and theForall rules), a transition rule may prescribe to update the sametiin at the
same arguments several times, we require such updates easistent. The concept of consistent
update sets is made more precise by the following definitions

Definition 10 (Update) An update for2l is a triple (f, (a1, ...,a,),b), where f is an n-ary
dynamic function name, ang, ...,a, and b are elements ofl. An update sell is a set of
updates.

The meaning of the update is that the interpretation of thetfan f in 2l has to be changed at the
argumentsuy, ..., a,, to the valueb. The pair of the first two components of an update is called a
location An update specifies how the function table of a dynamic fondhas to be updated at
the corresponding location.

In a given state, a transition rule of an ASM produces for aacfable assignment an update set.
Since the rule can contain recursive calls to other rulés pipssible that it has no semantics at all.
The semantics of a transition rule is therefore defined byauks in Tabld=3.Z]13.

Definition 11 (Semantics of transition rules) The semantics of an elementary transitiBrof a
given ASM in a stat@l with respect to a variable assignmepts defined if and only there exists
an update sel that [|R|]§l > U can be derived by the semantic rules of T4hIeB.2.3. In thse ca

[|R[]2 is identified withU.

It can happen also that the update [$eq]§‘ contains several updates for the same function name
/. In this case, the updates have to be consistent, otherwgsexecution stops.

26 Chapter 3. Abstract State Machines (ASMs)

[[skip|]3 > 0

H _ A _ A
M7 =g & (F.a.0)) ifa = [[t]]¢ andb = [lsfl;

(RNZ > U [ISN2 > V
(IRSTE > UuV

(RN v U . A
[lif then R else S| 5 U if [lpll¢ = true
sy » u . o
[Jif ¢ then R else S\]Z’1 > U if [l(pH(- false
[IRI]?JHG > U]
i it a = [l

[let z=t in R[] > U

[|R|]?{xﬂa} > U, foreacha€l

[[forall & with ¢ do R[]Z > U,c; Ua

if I ={ac|q: [|<p|]?{maa} = true}

URINE, ., > U

T T if r(z) = Ris arule definition and = [|¢[]¥
<

Table 3.1: Semantics of transition rules in ASMs

Definition 12 (Consistent update set) An update sel is called consistent, if it satisfies the
following property:

If (f,a,b) € U and(f,a,c) € U, thenb=c

This means that a consistent update set contains for eadtidunand each argument tuple at
most one value. Otherwise, the update set is called incemsis

If an update sell is consistent, it can be fired in a given stéiteesulting in a new stat® in which
the interpretations of dynamic function names are changedrding toUU. The interpretations of
static function names are the same as in the old state. Témpiiatation of monitored functions is
given by the environment and can therefore change in arranpivay.

Definition 13 (Firing of updates). The result of firing a consistent update gétin a state2(
is a new stateB (denoted asB = firey(U)) with the same superuniverse #ssatisfying the
following two conditions for the interpretations of furatinamesf of X:

1. If (f, (al, O an), b) e U, thenf%(al, O an) =b
2. If there is na with (f, (a1, ...,a,),b) € U and f is not a monitored function,

thenf%(ah sey an) = fgl(ala "'7an)

Firing an inconsistent update set is not allowed, jférey(U) is not defined for inconsistent U.

3.3 The XASM Specification Language 27

Since U is consistent, for static and controlled functidresstate is determined in a unique way.
Notice that only those locations can have a new value in Sanéth respect to stat& for which
there is an update ifi.

Definition 14 (Run of an ASM). Let M be an ASM with vocabulary, initial state2(and main
rule namer. Let(be a variable assignment.Ain of M is a finite or infinite sequencB,, B, ...
of states forx such that the following conditions are satisfied:

1. %0:91

2. if [|7’]?" is not defined or inconsistent, th&, is the last state in the sequence

3. OtherwiseB.,, is the result of firingl|r||>" in B,

if we assume that for each rule definitioqx1, ..., z,,) = R of the machine/ the free variables
of R are amongr, ..., T, then a run is independent of the variable assignngent

Finally, for structuring large ASMs the notion stibmachinehas been introduced in“[R1], i.e.
extensive named parameterized ASM rules which include @sorsive ASMs. The notion of
calling submachines mimics the standard imperative cplfirechanism and can be used for a
definition of recursion in terms of sequential (not disttém) ASMs. For a detailed discussion,
the reader can refer to the full paper.

3.3 THE XASM SPECIFICATION LANGUAGE

Since the ASM approach defines a notion of executing spetiifits it provides a perfect basis
for a language, which can be used as a specification langsagelieas a high-level programming
languagel[20].A number of ASM execution environments aelable implementing most of the
ASM constructs as defined in the Lipari-Guidel[61]. In thisrkw&XASM (eXtensible_ASM),
designed and implemented by Anlaliff [8], will be used. Thelaage combines the advantages of
using a formally defined method with the features of a fullleccomponent-based programming
language and its support environment. In addition to thetiexg ASM constructs, a new feature
calledexternal functionss introduced. External functions can be evaluated likenabfunctions,
but as a result, both a value, and an update set are returngtlefmore, while external functions
make the calculation of rule sets, and thus the semanticA&8MNKrules extensible, a second new
construct callecenvironment functiongs provided. They are special dynamic functions whose
initial definition is given as a parameter to an ASM. After aBM terminates, the aggregated
updates of the environment functions are returned as up@aietation of the complete ASM run.
For intuition, environment functions can be consideredyasahic-functions passed to an ASM
as reference parameters, and about external functionsallyldeclared procedures. Having both
concepts we can plug the two mechanisms together by defidgte and value denotation of
an external function by means of an ASM run. Thus the evalnaif such an external function
corresponds to running, or calling another ASM. The envitent functions of the called ASM
are given as functions of the calling ASM. For more detailsudtthese new constructs and their
formalizations, the reader can refer [fal[78].

28 Chapter 3. Abstract State Machines (ASMs)

---* asm step —* call as subasm

Figure 3.1: Subasm Call

XASM programs are structured usimgm..endasmconstructs each containing a list of local
function and universe declarations and a list of ASM rulg@sesenting a certain part of the overall
specification. The general structure ofasmin XASM is as follows:

1 asm A(ar : T, ...,an : Tn) — ao : To

2 <neta information>

3 is

4 <uni verse, function, and subasm decl arati ons>
5 <initialization rul es>

6

7 <asm rul es>

g8 endasm

The meta information part contains information concernting role of theasm as a reusable
component as better explained below. Even though in therik@aide types are not part of the
core ASM language, in XASM types can be supplied to the datitar of a function to detect
static semantics inconsistencies of the formalization.

An asmcan be accessed by other asms in either of the following twswa

— If an asmA usesB as sub-asm, it means tHa{possibly together with arguments, if the arity
of B> 0)is used as a rule in the body Af If this rule fires, the rules of asBfire, which
may result in updating locations of functions declared.ifhe call as subasm is illustrated
in the Fig[311. The subasBand its parent asm step simultaneously. Formally they can
be seen as one single asm;

— AsmA usesB as a function, iBis defined as external function A In this caseB (possibly
together with arguments, if the arity 8f> 0) is used as a term in the body Af The call
as function is illustrated in Fif._3.2. During the run of thmétion asnB, its parentA does
not make any step; frorA’'s point of view, B's run happens in zero time. As depicted in
Fig.[3.2,B behaves like a normal asm, the iterations shown here areddnysthe steps of
theB-asm itself.

In each of the above cases, we dathe parent asm @, if A usesB as sub-asm or as function. In
any case, the asm must be declared in the parent asm. As jiigrbrafta information, an asm can
be marked as a function or as a sub-asm, so that it can onlygdeysother asms in the specified
way. For example, iB andC are asms defined as follows

a b~ W NP

a B~ W NP

o A W NP

© 00 N O g b~ WN PP

P
L o

12
13
14

1
2
3

3.3 The XASM Specification Language 29
. .
A A
\ “\, "
B B B

---* asm step —* call as function

Figure 3.2: Function Call

asmB(x : Int) — Int
used as function

is

endasm

asm C(x : Int)

used as subasm

is

endasm

thenB can only be used as function a@as sub-asm in other asms. This is reflected by corre-
sponding declarations & andC:

asm A

is

subasm C(x : Int)

external function B(x : Int) ! Int
endasm

The sub-asm facilities provided by XASM are useful when thectfication can be split up natu-
rally into several sub-specifications each of which modgdircertain aspect of the overall specifi-
cation like in the following example borrowed froml [8].

asm Robot is
uni ver se ModeVal ue = {standi ng,
subasns Robot _i s_st andi ng,
Robot _i s_novi ng
function node- >ModeVal ue

novi ng}

if nmode = standing then
Robot is standi ng

el seif node = noving then
Robot i s noving

endi f

endasm
Where the asmRobot _i s_st andi ng andRobot _i s_st andi ng are defined as follows:

asm Robot _i s_st andi ng
used as subasm
is

30 Chapter 3. Abstract State Machines (ASMs)

node : = noving
endasm

asm Robot _i s_novi ng
used as subasm
is

node : = standing

endasm

The XASM language has further advanced features which aresed in this thesis and hence
they are not described here. For more information, the rezaderefer to[[878] and to the XASM
project Web page [9] where the XASM compiler is availabledownload.

3.4 CONCLUSIONS

In this chapter we made an overview of the ASM formalism whasgersality has been demon-
strated in [[6R] where Gurevich claims that each algorithm lsa formally captured by an ap-
propriate (sequential) abstract state machine. Consmlehis characteristic with the extensive
tool support for constructing, formally analyzing and slating ASM specifications, it is possible
to advocate the use of ASMs for specifying model transfoilonatand the semantics of specific
weaving operators.

The XASM language was introduced since it will be used in & of the work to implement
all the proof of concepts with respect to the approach pregpas the next chapter. However, any
execution environment could be used alternatively sineatiproach exploits the basic constructs
of ASMs.

CHAPTER4

ASMs FORMODEL TRANSFORMATION SPECIFICATION (A4MT)

Despite the increasing relevance of model transformatiorsoftware development and integra-
tion in Model Driven Engineering (MDE), there is no explicinsensus yet as to which is the best
approach. The paradigms, constructs, modeling approaisupport distinguish the transfor-
mation proposals (some of them briefly described in Chéfjteagh with a certain suitability for
a specific set of problems.

Shifting the focus on the problem of specifying the behavimumodel transformations in a pre-
cise way, we recognize the need of having a high-level spatifin language capable to produce
precise and formal transformations enabling some form wh&b reasoning, proof of properties,
and verification of their correctness with respect to soniter@. The language must also have
an execution framework, which can be used to execute thefigpdions in the language. It is
conceivable that if the constructions steps are formalgcgd, then the correctness of a design
can be verified based on the correctness of the stepk [124]mber of graph transformation ap-
proaches have been proposed to deal with this issue evegithenme pragmatics qualities are not
always achieved[34]. In fact, although graph transfororetiare declarative and seem intuitive,
the usual fixpoint scheduling with concurrent applicatioakes them rather difficult to use due to
the possible lack confluence and termination [34]. Existhepries for detecting such problems
are not general enough to cover the wide range of transf@nsatound in practice. As a result,
tools such as GReAT[4] and VIATRAZTIR?2] provide mechanidorsexplicit scheduling.

In this chapter, AAMT (/AMs forModel Transformation Specification) is proposed to support the
formal specification of model transformations. ASMs haverbased extensively in a number of
applications and capture in a mathematically rigorous firefundamental operational intuitions
of computing. The provided notation has a simple syntax pleamits to write specifications that
can be seen as “pseudocode over abstract data”. On one f@ndréhmathematically rigorous
and represent a formal basis to analyze and verify transftons; on the other hand, they com-
bine declarative and procedural features to harness thasiict complexity of this task. AAMT
aims at formally specifying the behaviour of transformasian order to produce farmal and im-
plementation independent refererfoe what can and what can not happen during their execution.
The transformation developers can check their implemiem&{(written in a specific language like
AGG, ATL, QVT, etc.) against an accurate and executable-fdgél model of the transformation
itself.

The chapter is organized as follows: Jecl] 4.1 gives an ameref the approach which is deeply
described in Se€4.2 and SEC]4.3. A running example isdere in the overall presentation. A
comparison between A4MT and other transformation appesm&hgiven in Se€4.5.

31

32 Chapter 4. ASMs for Model Transformation Specification (AMMT)

Algebra encoding

Metamodel encoding
Sourcs Modet " the Source Model

-~

. ASMs based
o ’§ Transformations

S

v
R o | Gy

Figure 4.1: Model Transformation through AAMT

4.1 OVERVIEW

A4MT is the proposed ASMs-based approach to specify modekformations that has been al-
ready used in a number of applicative domain as describedhap@ib. As depicted in Fig—3.1,
A4MT model transformations start from an algebra encodirgsource model and return an al-
gebra encoding the target one. This final encoding contdlitteeaneeded information to translate
the final algebra into the corresponding model by means oftypprinting operation.

An AAMT transformation program consists of a collection ailtiple rules of the form

< Query> = < Transformation>

with Query declaratively defined as first—order logic predicates ovetefiuniverses containing
model element representatives afrdnsformationprocedurally expressed as parallel updates of
the encoding algebra. The transformation branch may cofuaiher transformation rules of the
same form. Rules are iteratively fired until they do not carsefurther update depending whether
their queries have a non empty outcome or not. Thus, the matelgorithm is implicitly defined

by the queries which establish also their relative preceeen

4.2 MODEL AND METAMODEL ENCODING

The signature of an algebra encoding a model is canonigadlyced by the corresponding meta-
model whose elements define sorts and functions as in thepdsarhFig.[Z2 where a simplified
UML metamodel is depicted. According to this metamodelsgashave name, a set of attributes
and they can be declared as persistent (see the meta atisiBetsistent An attribute has a name,

a type and can be defined as primary (sE&imary). Finally, classes can be related by means of
binary associations and can be hierarchically organized.

This metamodel induces the signatatgon the right-hand side of the figure) composed of sorts
(S) and functions Q P). In particular, for each meta class of the metamodel a spaedent set in

4.3 Model Transformation Rules 33

¥ = (S,0P)

S := {Class, Classifier, Attribute,
Package, PrimitiveDataType,
Association}

Class ifier ——
Primitive Data Type OP T
+hame: String . p .
name : Classifier — String

e name : Attribute — String

Ass ociation name : Package — String

+name:string name : Association — String

source : Association — Class

+target| ; ;
+ saurce a - target : Association — Class

Package | tElems Class +atirs Attribute isPersistent : CIGSS — BOOl
+hame:string * | +isPersistent:Baol * | +name:string isPT’imaT‘y : Attribute — Bool
-isPimary:Boal
+ parent elems : (Package, Class) — Bool

attrs : (Class, Attribute) — Bool
belong : (Class, Attribute) — Bool
type : Attribute — Classifier
parent : Class — Class

Figure 4.2: Algebraic encoding of a sample UML metamodel

S is available. Functions are induced by meta attributesammEtociations, and roles. For example,
the attributenameof Classifierinduces the definition of the functiamme: Classifier— String.

In order to specify thaype of an Attribute the functiontype: Attribute— Classifieris defined
with respect to the roléype of the meta clas€lassifierin the meta association with the meta
classAttribute Multiple meta associations are encoded by means of ratBtioFor example,

a given class can have a number of attributes as stated bylthatirs of the meta association
betweenClassand Attribute meta classes. In this case the relatatirs in O P will be provided
and it will be true if an attribute belongs to a given class, false otherwise.taMesociations
which are compositions induce the definition of the relati@miong For instance, in the case
of the composition betwee@lassandAttribute, the relationbelong: (Class, Attribute)}~ Boolis
defined which igrue for each coupléc,a) such thasttrs(c,a)=true

The approach permits the encoding of specializations im&Emodels by means of sub-sorting.
For instance, the inheritances betwégassand Classifierand betweerPrimitiveDataTypeand
Classifieris encoded by means of the following sub-sorting relatid®iass< Classifier and
PrimitiveDataType< Classifier.

The sets and the functions induced by a metamodel are useshdoding models that conform
to the given metamodel as in FI[g.¥.3 where the encoding ofrpleaUML model is depicted.
In particular, on the lower-side of the figure the sets andftimetions defined in Fig—4l2 are
updated according to the UML model on the upper-side of thedigThe canonical encoding of
metamodels and models can be performed in an automatic wdig@assed in[37].

4.3 MODEL TRANSFORMATION RULES

In this section, in order to better clarify the approach digal in Fig[Z41l and the overall struc-
ture of an AAMT transformation specification, the standdads diagram to relational data base

!Relations are special cases of functions whose value ctmider false

34 Chapter 4. ASMs for Model Transformation Specification (AMMT)

Person Address Data
{isPersistent} address

+addrString +day:Inte
+name:String{isPrimary } +monthlnt
+birthday: Data +yearint

phone

Customer Fhone
{isPersistent }

+oust_idint

+numberint{isPrimary }

Association

source _ @ OS5,

name(c1) = “Person”
target

name(cz) = “Address”

name(cz) = “Data”

name(p1) = “Int”

name(a1) = “name”

name(az2) = “birthday”
Classifier type(az) = c3
name(asz) = “cust_id’
type(as) = p1

PrimitiveDataType

source(assi) = c1
target(assi) = c2

attributes(ci,a1) = true
attributes(ci, az) = true
attributes(ci,a3) = true

Figure 4.3: Algebraic encoding fragment of a Sample UML ntode

(UML2RDBMS case study described ih]18] is specified. The involved mand target meta-
models are depicted in Fig. 4.2 and Higl4.4 respectively.

The main requirements of the transformation are recallg@tiarfollowing even if the reader can
refer to [18] for more details. Classes can be indicated esigpent or non-persistent. A persis-
tent class is mapped to a table and all its attributes or &t8nts to columns in this table. If the
type of an attribute or association is another persisteasisgla foreign key to the corresponding
table is established. In case of class hierarchies, onlyoiimost classes are mapped to tables.
Additional attributes and associations of subclassedtresadditional columns of the top-most
classes. Non-persistent classes are not mapped to talbesvelr, one of the main requirements
of the transformation is to preserve all the informationte# source class diagram. That means
attributes and associations of non-persistent classesthae distributed over those tables stem-
ming from persistent classes which access non-persidesgas. To summarize the requirements
of the UML2RDBMStransformation that will be specified are the following:

4.3 Model Transformation Rules 35

+cols

Table - Colimn
+name:string + pkey | +type:String
+name; String
A M
+ referTo +ools | .
* Hfheys
FKey

Figure 4.4: Sample RDBMS metamodel

1. Persistent classes that are roots of an inheritancertiigrare transformed to tables. In par-
ticular, in inheritance hierarchies, only the top most pamtass should be converted into a
table; the resultant table should however contain the ndezgkimns from all its subclasses.
For example, from the classes in Hig.]4.5, only the tabl®er son and T_Phone will be
generated (see Fig.4.6). Furthermore, the transformebuaéts of the clasSust oner will
be placed in the tabl€é Per son;

2. Each attribute of a primitive type is transformed to a Engplumn. If the attribute is
primary, a primary column in the corresponding table is gateel like the attributesane
andnunber in Fig.[Z3 that give place to the primary keys of the generédbleT_Per son
andT_Phone respectively (see Fi§.4.6);

3. Attributes whose type is a non-persistent class and &$gots that point to such a class
are transformed to a set of columns derived from the clasH.ifEhis is applied recursively
until a set of primitive attributes is obtained. Circulgrin references to classes is not
allowed here. For example, the type of the attribbite t hday of the classPer son will
give place to the columnsi r t hday_day, bi rt hday_nont h andbi rt hday_year in the
tableT_Per son derived from the attributes of the source non-persistextistiat a;

4. Attribute whose type is a persistent class and assoesatimt point to such a class are trans-
formed to a foreign key and a set of columns contained in tegt Khe foreign key refers
to the table derived from the persistent class. The colummgerived from the primary at-
tributes of the persistent class. For instanceatd ess association from theer son class
will induce the generation of the columaddr ess_addr andaddr ess_phone_nunber in
T_Per son. The latter is a foreign key that refersTcPhone;

In the following, these transformation requirements wél formally specified by means of the
A4MT. In order to better clarify the approach, the solutisrpresented in two steps. In the first
one only persistent classes will be taken into account. &dftar, a complete solution will be
discussed by satisfying all the transformation requiresien

In developing model transformations, the designer spscif@v to generate target models from
source ones. The generation is based on relationships éetive involved metamodels and it can
be based on simple correspondences or it could require esnapmputations on the models. In
A4MT a model transformation specification consists of onenore rules having the following
form:

N o g A~ WwN R

AW N PP

=
P o ©®~N o g

-

36 Chapter 4. ASMs for Model Transformation Specification (AMMT)

-~ Query
do forall | N_PATTERN

--Transfornmati on
OUT_PATTERN

enddo

where a query on the source model encoding is performed taaflrtie matches of the input
pattern (N.PATTERN). A pattern is a specification of source type coming from therse meta-
model and it can be decorated with conditions that drive dagching of matches on the source
models. In the proposed approach, a query is expressed hysréfirst-order logic predicates
and for each of the matched pattern, the encoding of thettargdel is modified by changing the
population of universes and the point-wise definitions afctions, as procedurally specified by
the OQUT_PATTERN. This one could embed the specifications of further transédion rules which
will be executed until the query of the outermost one sucee@d no more changes on the algebra
occur.

Taking into account this general form of a transformatiole,ra Class2Tablerule can be given
to specify how the classes in a source UML model have to befwemed to tables in the target
RDBMS model according to thed ML2RDBMStransformation requirements given above. Essen-
tially, each persistent class in the source model inducedla in the target one. The name of
the generated table is the name of the source class prefixedheistring’ T_" . In this case, the

I N.PATTERN consists of a persistent class description that is an elembalonging to the uni-
versed ass on which the function sPer si st ent (induced by the source metamodel}rige.
TheOQUT_PATTERN definition is based on the ASkkt end construct used to specify the extension
of the universes and the update of the functions inducedétatiget metamodel (like for example
the universerabl e and the functiomane).

--Rul e C ass2Tabl e

-- | N_PATTERN
do forall c in Cass : isPersistent(c)
-- OUT_PATTERN
extend Table with t
nane(t):="T_"+nanme(c)
transforned(c): =t
endext end
enddo

During the specification of transformation rules the desigrould have the need to maintain trace-
ability information in order to relate representatives arfjet elements with source one. Specific
functions can be defined for this purpose likeansf or med in the sample rule that for each class
that has been transformed, maintains the reference to thesponding generated table. The use
of “trace link” functions like this is clarified in the folloimg rule which specifies the transforma-
tion of class attributes into table columns. In particullae! N.PATTERN of the Attribute2Column
rule is more intricate of the previous one since it speciftaghates which are of primitive type,
non primary key, and which belong to already transformedsaa. The specification of this pat-
tern exploits the ASMhoose construct used to select the attributes satisfying thepgneaments
and that belong to classes on which the functiermnsf or ned is true (line4). If the choose
succeeds new columns are generated (seesling) and the proper function updates occur. The
generated columns are specified as belonging to the tablespanding to the persistent class
selected through thehoose rule. The relatiortol s induced by the target metamodel is used for

4.3 Model Transformation Rules 37

Person Address Data
fisPersistent} address +addr. String +day:Inte
+name:StringfisPrimary } +month:int
+birthday: Data +yearnt
phone
Customer Phone
+cust_id:Int iisPersistent }
+rnumberInt{isPrimary }

(a) Class Diagram

:Association :Association

name="address" name="phone"

src dest src dest
:Class .Class :Class
name="Person" name="Address" name="Phone"
isPersistent=true isPersistent=false isPersistent="false
A
attrs attrs attrs attrs
A4 v
:Attribute :Attribute :Attribute Attribute

name="birthday" parent name="name" name="addr" name="number"
isPrimary=false isPrimary=true isPrimary=false isPrimary=true

Npe /type
type

:PrimitiveDataType

type
y name="String" A4
:Class :Class :Attribute :PrimitiveDataType
f— > - >
name="Data" name="Customer" attrs name= CESt-'d type name="Integer"
isPersistent=false isPersistent=false isPrimary=false

(b) Class Diargam as Metamodel-Instance

Figure 4.5: Sample Source UML Model

this purpose. In particular, given a taliland a columrc, col(t,c) is true if ¢ is a column of the
tablet (see the model in Fig4.6.b).

1 --Rule Attribute2Col um

2 --1 N_PATTERN

3 do forall a in Attribute

4 choose ¢ in Cass : attrs(c,a) and transforned(c)!=undef and isPrimtiveDataType(type
(a)) and not(isPrimary(a))

5

6 - - OUT_PATTERN

7 extend Columms with col

8 nane(col): =nane(a)

9 type(col): =type(a)

10 col s(transforned(c), col):=true

11 endext end

12

13 endchoose

14 enddo

38 Chapter 4. ASMs for Model Transformation Specification (AMMT)

Person FPhone

+name: String] PE} +number Int{PE }
+hirthiday_day: nt
+hirthday_month: Int
+birthday_yearint
+coust_id:nt

+addre ss_addr5tring: Int
+addre zz_phone_nhumber Pk

(a) Data Model

:Column :Column :Column
name="cust_id" name="address_addr" name="address_phone_number"
type="Integer" type="String" type="Integer"
?
N cols cols cols
Table Table
fkeys o ke referTo o
name="Person" I_I name="Phone"
pkey
cols pkey
cols cols col cols
v A v
:Column :Column :Column :Column :Column
name="birthday_day" name="birthday_month" name="birthday_year" name="name" name="number"
type="Integer" type="Integer" type="Integer" type="String" type="Integer"

(b) Data Model as Metamodel-Instance

Figure 4.6: Sample Target RDBMS Model

In case of attributes which are definedpasnary, the corresponding generated columns have to
be specified as part of the primary key of the table to whicly thidd belong. The rulePrimary-
Attribute2PrimaryKeyColumis devoted to perform this transformation. Even though ithis is
logically distinct fromAttribute2Columnthe OUT_PATTERN descriptions differ for the update of
the functionpkey only (see linel1 below).

1 --Rule PrimaryAttribute2PrimaryKeyCol um

2 --1 N_PATTERN

3 do forall a in Attribute

4 choose ¢ in Cass : attrs(c,a) and transforned(c)!=undef and isPrimtiveDataType(type
(a)) and isPrimry(a)

5

6 - - OUT_PATTERN

7 extend Columms with col

8 nane(col) : =nane(a)

9 type(col): =type(a)

10 col s(transfornmed(c), col):=true

11 pkey(transforned(c), col): =true

12 endext end

13

14 endchoose

15 enddo

In cases like this the designer may adopt optimizationsdaserule merging. For instance, in

the running example only thattribute2Columrrule could be maintained by removing the term
not (i sPri mary(a)) inthe guard of thehoose rule and by adding the following condition in

the OUT_PATTERN specification:

w NP

A W NP

© 00 N o O

11
12
13
14
15
16
17
18
19
20
21

1
2
3
4

© 0w N o U

4.3 Model Transformation Rules 39

if isPrimary(a) then
pkey(transfornmed(c),c):=true
endi f

However, even though this kind of optimizations could redthe length of the specifications, we
believe that in general they should be avoided especiallgrvthe readability, reuse and mainte-
nance of rules could be compromised.

Generally, model transformation rules, given a matcheditingattern, produce more than one
single target element contrarily to the rules providedlumiiv. For instance, according to the
requirements of th&/ML2RDBMStransformation, each attribute with a persistent clasyjaes, t
gives place to aetof columns contained by the key of the pointed persistersis¢land a foreign
key referring to the table derived from the persistent clelssre the source attribute belongs. The
specification of this more intricateUT_PATTERN is given in the followingAttribute2ForeignKey
rule. In particular, for each attributehaving as type a persistent class and belonging to an already
transformed class (see lin@s4) the given output pattern has to be applied. For each primary
column ¢ol) belonging to the table generated from the persistent eléssh is the type of the
attributea (see line6), a new column for the table pointed byansf or med(c) is created and
the corresponding foreign key is also updated (lihgs15).

--Rul e Attribute2Forei gnKey
--1 N_PATTERN
do forall a in Attribute
choose ¢ in Cass: attrs(c,a) and transforned(c)!=undef and isPersistent(type(a)) and
not (i sPrimtiveDataType(type(a)))
- - OUT_PATTERN
do forall col in Columm : cols(transforned(type(a)), col) and isPrinary(col)
extend Colum with tc
nanme(tc): =nane(a)+"_"+nanme(col)
col s(transfornmed(c),tc): =true
extend FKey with fk
references(fk):=transforned(type(a))
col s(fk,tc):=true
fkeys(transforned(c), fk):=true
endext end
endext end
enddo
endchoose
enddo

The transformation of source associations is very simdathe transformation specified in the
Attribute2ForeignKeyrule. In fact, an association between persistent classarisformed in
the same way as an attribute with a persistent class as typthelcase of an associatiass
new columns are added in the table pointed: bynsf or med(src(ass)) with respect to the
primary key of the table r ansf or red(dest (ass)). Moreover, the new columns will be part
of the source table foreign key as specified in the links15 below

--Rul e Associ ati on2For ei gnKey
-- 1 N_PATTERN
do forall ass in Association
choose ¢ in Cass: src(ass)=c and transfornmed(c)!=undef and isPersistent(dest(ass)))

-- OUT_PATTERN
do forall col in Columm : col s(transforned(dest(ass)), col) and isPrimary(col)
extend Colum with tc
nanme(tc): =nane(ass)+"_"+nane(col)

40 Chapter 4. ASMs for Model Transformation Specification (AMMT)

10 col s(transformed(c),tc): =true

11 extend FKey with fk

12 ref erences(fk):=transforned(dest(ass))
13 col s(fk,tc):=true

14 fkeys(transforned(c), fk):=true
15 endext end

16 endext end

17

18 enddo

19

20 endchoose

21 enddo

The complet&JML2RDBMSmodel transformation is an extension of the presented lsagition
which takes into account also class inheritance and nosigbent classes. As required, in class
hierarchies only the top-most classes are mapped to tdtdwgever, one of the main requirements
for the considered model transformationtlie preservation of all the information in the class
diagram The specification of the transformation satisfying theséher requirements is based on
the concept of transitive closures of the class inherit@mzbassociation relations according to the
following definitions.

Definition 15 The transitive closurd Cl of the inheritance relatiorinherit from a top class: is
defined as follows:

TCl(c) = U ¢i

¢;€Class : inherit(c,c;)

where the relationnherit(c, ¢;) is trueif exists a path of inheritances that conneatith ¢;.

Definition 16 The transitive closurd CA of the association relatiompassodrom a classc is
defined as follows:

TCA(c) = U ass;

ass;€Association : Npassofe,ass)

where the relatiompasso(r, ass;) is trueif exists a path of associations that permits to reach the
associationuss; from the class:.

A4MT transformations which need complex computations erstburce model like the calculation
of transitive closures defined above, can exploit asynausmand recursive ASMs sub-machines
devoted to perform such computations without side-effeEkss is one of the characteristics that
mainly distinguish AAMT from graph transformation apprbes. In fact, differently to them,
A4MT do not “paint” the models with information only needeat the calculation. Furthermore,
such approaches need to polish the source models once tiséotraation has been performed.
Nor this operation is required by A4MT as it will be clarifiadthe following.

In the running example, the computation of the transitieseie of the inheritance relation is per-
formed by the sub-machirelculateTClthat takes a top class as input and iteratively updates the

e
s W N Rk O

T T
o o~ W NP O

17
18
19
20
21

© 0 N O U WN P

© 00 N O s WwN R

a b W NP

4.3 Model Transformation Rules 41

functioninherit. As explained in Chaptéll 3 an ASM machine is executed untihoe changes
occur on the algebra. This explains the use ofd¢heose rule in calculateTC] once the initial-
izationi nherit (top, top): =trueis performed, the rule in lin@ below is executed until the
guard of thechoose becomefalse In each iteration the rule searches for a new atagdich is
not in the transitive closure of the top class yet but thattbhdse added since exists a clas$C
in current transitive closure which is parent of the consgdeclass .

--Transitive closure conputation of class inheritance
asm cal cul at eTCl (t op: Cl ass)
is
init
i nherit(top,top):=true
endi ni t

choose ¢ in Cass:(inherit(top,c)=undef and
exists subC in Class: inherit(top,subC) and parent(c)=subC

)
inherit(top,c):=true
endchoose

endasm

The transitive closure of the association relation is dated by means of thealculate TCAsub-
machine which is very similar toalculateTCI In fact, apart from the initialization step, the im-
plemented logic is the same. In each iteration, an associatis in the setAssoci ati on is
selected whether it is not in the current transitive closugntained by the relationpassoc
and if exists another associatioear Ass for which npassoc(t op, near Ass) is true and the
destination class afear Ass is the source of the associatians.

--Transitive closure conputati on of association relation
asm cal cul at eTCA(t op: Cl ass)
is
init
do forall ass in Association
if (src(ass)=top) then
npassoc(top, ass): =true
endi f
enddo
endi ni t
choose ass in Association :((npassoc(top,ass)=undef) and (exi stsnearAss in
Associ ation : (npassoc(top, nearAss)) and (dest(nearAss)=src(ass))))
npassoc(top, ass): =true
endchoose
endasm

Th commonalities between the two sub-machines permit tfiaitien of a generic one able to
deal with the problem of the transitive closure in generadependently from the relation which
has to be considered.

--Ceneric transitive closure conputation

asm cal cul ateTC(se: _, set:String, relation:String, condition:String)

is

6
7

8
9
10
11
12
13

42 Chapter 4. ASMs for Model Transformation Specification (AMMT)

choose el ement in set :(($rel ation$(se, el ement)=undef) and
(exists nearElenent in set : (tcH(se, nearEl enent)) and
($condi tion$))
)

$rel ati on$(se, el enent): =t rue
endchoose

endasm

Thecal cul at eTCsub-machine is a tentative implementation of a genericsitiga closure cal-
culation. The input parameters of the sub-machine are tffeiog:

— se: itis the element on which the transitive closure is cal@da In the case of Cl and
TCAdefined abovese corresponds to the elememnbf the definitions;

— set : it is the name of the universe where the elements have tolbetsé in each itera-
tion. For thecal cul at eTCl andcal cul at eTCA sub-machine, theet string refer to the
universesCl ass andAssoci at i on respectively;

— rel ati on: it is the name of the relation in which respect the transittlosure is calcu-
lated;i nher i t andnpassoc are the relations on which the transitive closure computati
cal cul at eTCl andcal cul at eTCA are based respectively;

— condi tion: it describes when a new element should be added in the tiv@nslosure
being calculated. In the case of the inheritance relatiomva classc; can be added if a
exists an other class, already in the transitive closure, such thatent(c;) = co. In the
case of the association relation, a new associatian can be added if exists an association
asssy in the transitive closure such théist(asss) = sre(assy).

This generic machine is inspired by the concept of geneaicsformation which has been pro-
posed by Varr6 and Pataricza [n]121] where data typesidiny) model element types, are pa-
rameters of transformations which result to be more reesabl

The described sub-machines devoted to the transitive rdasamputations enable the complete
specification of thaJML2RDBMSmodel transformation by taking into account also classrinhe
itance and non-persistent classes. As required, in clasarbhies, once the top-most classes are
mapped to tables, additional attributes and associatimes @y subclasses have to be merged in
the top-most one. Furthermore, attributes or associapoiging to non-persistent classes, give
place to columns of the table corresponding to the origieasigtent class.

The following specifications deals with the extended versibthe attribute and association trans-
formation. Thel N.PATTERN of the rules makes use of tliherit function updated by thealcu-
lateTCl submachine. For instance, in thttribute Transformatiomrule, for each persistent class
(c1) which is top of a class hierarchy, all the attributes beioggo the subclasses (i.e. classes
co such thatinherit(cy, c2) is true) will be transformed by means of the rules described untiv no
with some minor modifications. For example, concerning thimary attribute transformations,
instead of searching the class to which the attribute beansformed belongs, in tHerimaryAt-
tribute2PrimaryKeyColumntule (lines11- 19) for each clasg?2 in the transitive closure af1,

all the attributes o€ 2 give place to columns of the table corresponding to the togtrolass 1.

© 00 N oA W

bR e
N P O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

1
2
3

4
5
6
7
8
9

10

4.3 Model Transformation Rules 43

--Rul e AttributeTransformation
-- 1 N_PATTERN
do forall cl in Class : isTop(cl) and isPersistent(cl)))
do forall c2 in Class : inherit(cl,c2)
-- OUT_PATTERN
--Attribute2Col um’ (cl, c2)
--PrimaryAttribute2PrimaryKeyCol umm’ (c1, c2)
do forall ain Attribute : (attrs(c2,a)) and (isPrimtiveDataType(type(a))) and
i sPrimary(a)
extend Columm with co
name(col) : =nane(a)
type(col): =type(a)
col s(transformed(cl), col):=true
pkey(transfornmed(cl), col):=true
endext end;
enddo
--Attribute2ForeignKey' (cl,c2)
--NonPer sAttr2Col um(cl, c2)
enddo
enddo

The rulesAttribute2Column’and Attribute2ForeignKey'are based on the same principle and for
readability reasons their specifications are not providexd.h However, the reader can refer to
their complete specification available for download at [35]

To better clarify how the transitive closure of the assaoiatrelation is exploited in the trans-
formation phase, let us consider the example in Eid. 4.5 agdZEd. For instance, the associ-
ationaddr ess between the sourdeer son andAddr ess classes is translated into the columns
addr ess_addr andaddr ess_phone_nunber of the target tabld_Per son. The latter is also a
foreign key (referring to the tablehone) which has been added in the tabléPer son since the
classPhone is in the transitive closure of the association relatiomrfrthe classPer son. The
AssociationTransformatiorule performs such a transformation whadsenPersAttr2Columinule
used above is a slight adaptation. ThePATTERN of AssociationTransformatiois the same of
the Attribute Transformatiomule in order to take into account the associations of alktiteclasses

of a given top class. TheUT_PATTERNis made up in turn by two other transformation rules able
to transform both associations with non-persistent angigtent classes. For each clagsin the
transitive closure o€ 1, these two transformations are iteratively and indepethdapplied until

no more matches of theirN.LPATTERN are found. Concerning the associations in the transitive
closure of the given clags?2 and targeting to non-persistent classes (fijygfor each attribute of
these classes a new column in the table corresponding topgheassc 1 has to be generated.

--Rul e Associ ati onTransf ornmati on

-- 1 N_PATTERN
do forall cl in Class : isTop(c) and isPersistent(cl)))
do forall c2 in Class : inherit(cl,c2)
- - OUT_PATTERN

- - NonPer sAssoc2Col um
- -1 N_PATTERN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
a1
42
43
44
45

44 Chapter 4. ASMs for Model Transformation Specification (AMMT)

do forall ass in Association : (npassoc(c2,ass) and not (isPersistent(dest(ass))))

- - OUT_PATTERN
do forall at in Attribute : (attrs(dest(ass), at))
extend Colum with tc
nanme(tc): =npassocNane(c2, ass) +"_"+nane(at)
col s(transforned(cl),tc):=true

type(tc): =type(at)
endext end
enddo

enddo

--Associ at i on2For ei gnKey’
--1 N_PATTERN
do forall ass in Association : (npassoc(c2,ass) and isPersistent(des(ass2)))

- - OUT_PATTERN
do forall col in Colum : (cols(transforned(dest(ass2)),col)) and (isPrinmary(

col)))

extend Colum with tc
name(tc): =npassocNane(c2, ass) +"_" +nane(col)
type(tc):=type(col)
col s(transfornmed(c),tc): =true
extend FKey with fk
ref erences(fk):=transforned(dest(ass))
col s(fk,tc):=true
fkeys(transfornmed(cl), fk):=true
endext end
endext end
enddo

enddo

enddo
enddo

The name of each new column is the name of the attribute pdefistn a string representing the
path from the clase2 to the attribute being transformed (available in the fuorctipassocNane
which have been updated during the transitive closure ctattipn of the association relation).
For instance, the associatiaddr ess in Fig.[£8.a gives place to the attributddr ess_addr in
the tableT_Per son in Fig.[£8.a.

In case of persistent target classes@&_PATTERN of the Associ at i on2For ei gnKey’ trans-
formation is applied. In particular, each primary key of thble corresponding to the target
classc2 gives place to a new column in the table obtained from thesdasand to a new for-
eign key referring to the table corresponding to the ctassFor instance the associatiphone
reachable from the clager son through the associatioaddr ess gives place to the column
addr ess_phone_nunber in the tableT_Per son. The foreign key of this table is also updated
(see linesd4- 38) to obtain the final model in Fi§.4.6.

In the next section, A4MT is collocated in the context of thHéTRFP (Request For Proposdl) [93]
issued by the OMG in 2002 in order to specify the requiremtrgsa transformation language in
a MDA setting should address. Then a comparison between Adiithe approaches presented
in Sec[Z3P is provided.

4.4 AAMT in the context of MOF 2.0 QVT RFP 45

4.4 AAMT IN THE CONTEXT OFMOF 2.0 QVT RFP

QVT RFP addresses the need for a standard language foramaragfon definitions in MDA. It
states a set of mandatory and a set of optional requiremeait©V T compliant languages should
address. In this section a summary of these requirementsviglpd and how A4MT satisfies with
them is also presented accordinglfal[77].

QVT Mandatory Requirements

e Query languageproposals should define a language for querying models;

e Transformation languageproposals should define a language for expressing tranafimm
definitions. Transformation definitions are executed ov€Rvnodels, i.e. models that are
instances of MOF meta-models;

e Abstract syntax definitionQVT languages should define their abstract syntax as a MOF
meta-model,

e View languageQVT languages should enable creation of views on models;

e Declarative languageproposals should define declarative transformation laggjua

QVT Optional Requirements

¢ Bidirectional transformation definitiongproposals may support transformation definitions
executable in two directions;

e Traceability: proposals may support generation of traceability inforomat

e Reuse mechanism&VT languages may support mechanisms for reuse and exteosio
generic transformation definitions;

e Transactional transformationgroposals may support execution of parts of transformation
as a transaction;

e Update of existing modelgroposals may support execution of transformations where t
source and the target model are the same;

It is possible to evaluate A4MT against the QVT requiremegiting place to the TablE4.4. Con-
cerning the mandatory requirements, A4AMT provides with arglanguage based on first-order
logic. In fact, as shown in thEML2RDBMSexample discussed above, first-order logic predi-
cates are used to express query. The transformations aressgd by using the ASMs constructs
whose MOF-based metamodel is available [102]. This permisatisfy the second and the third
mandatory requirements. A view language is not directlyioled even though &iew can be
obtained by means of queries and transformations (see Q\BE@Z.3P). Concerning the last
mandatory requirement, A4MT does not provide a pure deblareransformation language even
if the approach can be considered hybrid. In fact, modelgjaegied in a declarative way and
transformations are procedurally expressed.

Concerning the optional requirements, A4MT addresses aidsem. For example, a traceability
support is provided (as better described in the next sectidansformation rules can be embodied

46 Chapter 4. ASMs for

Model Transformation Specification (AAMT)

QVT Requirement

Support by AAMT

Query Language

First-order logic predicates are used to query mode

Is

Transformation language working on MOF modg¢

2|3 he approach is capable of expressing transformat
on MOF models even though it supports
transformation scenarios not addressed in QVT

ons

Abstract syntax definition

A MOF metamodel of ASMs is availablET1I02]

View language

Not available

Declarative transformation language

The approach is hybrid in the sense that models ar¢
gueried in a declarative way and transformations
are procedurally expressed

Bidirectional transformations

Only unidirectional transformations are supported

Traceability support

Available

Reuse and extension mechanisms

The approach provides with sub-machine facilities
enabling transformation libraries

Transactional transformations

Not available

Update of models

Available

Table 4.1: Support of the QVT requirements by AAMT

in sub-machines that other rules can invoke p

roviding a naoiiyy mechanism. However, the use

of sub-machines is suggested to perform complex compuagatio navigation on models without
side effects or to define libraries that can be reused inrdiftetransformations (the sub-machines
proposed above for the transitive closure computationa@example).

In place transformations are also supported
the next section) whereas transactional tran

by AAMT (thjzeeswill be better addressed in
sformatioasat supported yet. Finally, AAMT

permits the specification of unidirectional transformatin contrast with the first optional QVT

requirement.

4.5 COMPARING AAMT WITH OTHER APPROACHES

In this section, AAMT is classified with respect to the mapattires provided by Czarnecki and
Helsen in[[34] where they present a domain analysis of ejstiodel transformation approaches.
In the following, some of the main features are described@msidered for classifying AAMT

and comparing it with the transformation app
presented also in TaHle#.5.

roaches pteden Sec[2.3]2. The comparison is

4.5 Comparing A4MT with other Approaches 47

Paradigm. This feature refers to the programming paradigm used to eléfansformations. It
can be mainly distinguished betweiemperative declarativeandhybrid. A4AMT can be classified
as a hybrid approach since transformation rules hageeay which is declaratively defined as
first—order logic predicates over finite universes contajnnodel element representatives, and a
transformationpart which is procedurally expressed as parallel updatéseancoding algebra. In
this sense, the approach is similar to ATL, VIATRA2 and GReliTfact, ATL wraps imperative
bodies inside declarative shells. VIATRA2 and GReAT havesdatative rule language based
on graphs and an imperative language for rule applicatiglerorin VIATRA2, Abstract State
Machines are used for this purpose. AGG is a pure declarafipeoach which does not permit
the specification of imperative transformation statemdritsally, QVT-Relations and QVT-Core,
even though at two different level of abstractions, are twolarative languages differently to
QVT-OM which is an imperative one.

Directionality. Transformations may benidirectional or multidirectional Unidirectional trans-
formations map the source metamodel into the target metahtod not the converse. Although
this may appear a limitation, in practical cases this isrgsly unavoidable since a multidirec-
tional transformation, that can be executed in multipledions, could implies the adoption of
declarative rule-based formalisms that pose severe gusstibout the termination of transfor-
mations [IIP]. Multidirectional transformations are pariarly useful in the context of model
synchronization and can be achieved also by defining seseparate complementary unidirec-
tional rules, one for each direction. A4MT permits the sfieafion of unidirectional transfor-
mation like the other considered transformation languagespt QVT-Relations which supports
also multidirectional rules.

Cardinality. It indicates the number of input and output models involved itransformation
definition. A4MT permits the definition of transformationles able to query multiple source
models and eventually generate elements in different tange. This is feasible by means of
an encoding phase that permits to maintain the involved faiparated. For such a purpose
name conventions or auxiliary functions can be used. If tieoding is properly performed, the
transformation rules can be normally expressed as dedcirlie previous section. The unique
distinctive characteristic is the way the patterns aretamit In particular, theé N.PATTERN are
first-order predicates defined by means of terms coming flmrsignatures of different source
metamodels. In the same way, tOgT_PATTERN extends universes and updates functions en-
coding different target models. Except AGG which supports-1 transformations, the other
considered approaches permit the specification of M-tcaNsfiormations.

Traceability. Traceability links connect source and target elementstwdie essentially instances
of the mappings between the source and target domains. akititelinks can be established by
storing the transformation rule and the source elementsvira@ involved in creating a given target
element. Traceability links can tsutomaticor user-defined In the former case, the execution
engine is encharged to create and update the data strudeweted to store traceability links. In
the latter the transformation designer is responsible tthido

The availability of traceability distinguishes a transf@tion between persistent and stateless.
The former enables change propagation, in the sense tHatmperg the transformation when the
source model has changed does not always result in a nevdtiarenodel. In fact, persistence
implies version policies towards the target model that imbmation with the trace information
allows not to rewrite completely the target model for diffier incarnations of the transformation.

48 Chapter 4. ASMs for Model Transformation Specification (AMMT)

In AAMT the traceability is user-defined. For example, in tHdL2RDBMSexample discussed
above, the transformation designer uses the fundtiamsf or med to maintain the information
from which source class a target table has been generaterk ddmplex traceability structures
can be defined even though the transformation designer imeged to use them in the transfor-
mation rule specifications. ATL, QVT-OM and QVT-Relatioropide with dedicated support for
tracing, and traceability links are created automaticaltyen without dedicated support, in the
case of AGG, GReAT, VIATRA2 and QVT-Core, tracing infornmatican always be created just
as any other target element. Moreover, AGG and VIATRA2 reiytraceability links to prevent
multiple “firings” of a rule for the same input element.

Query Language.A transformation approach provides a mean to select elenfiemh the source
models to be considered in the transformation phase. A4\ploés the first-order logic to query
models in a declarative way. ATL and QVT-OM have a query laggubased on OCL. The other
approaches rely on the conceptpatternintended as a collection of model elements arranged
into a certain structure fulfilling additional constrairfés defined by attribute conditions or other
patterns). VIATRA2, GReAT and AGG express queries by meagsaph patterns whereas QVT-
Relation and QVT-Core supports object patterns.

Rule Application Strategy. It is the strategy for determining the model locations tockhrans-
formation rules are applied. In particular, a rule needset@jpplied to a specific location within
its source scope. As there may be more than one match for avithli|m a given source scope,
a strategy for determining the application locations isdeele The strategy could kietermin-
istic, nondeterministicor interactive Example of nondeterministic strategies incluztee-point
application, where a rule is applied to one non-determaaBy selected location, ancbncurrent
location, where one rule is applied concurrently to all rhatg locations in the source. In AAMT
the way in which the application locations are determineddsdeterministic and concurrent.
Concurrent application is also supported in AGG and VIATR®Rereas ATL, GReAT and QVT
adopt a nondeterministic one-point strategy.

Rule Scheduling.Scheduling mechanisms determine the order in which indalittansformation
rules are applied. A scheduling can ib&plicit or explicit The former implies that the user has
no explicit control over the scheduling algorithm definedthg tool. The only way a user can
influence the system-defined scheduling algorithm is bygiésj the patterns and logic of the
rules to ensure certain execution orddggplicit scheduling has dedicated constructs to explicitly
control the execution order. Furthermore, explicit sctieducan beinternal or external In
external scheduling, there is a clear separation betwemmnutks and the scheduling logic. In
contrast, internal scheduling is a mechanism allowing asfmation rule to directly invoke
other rules. In general, A4AMT provides with an implicit sdhéing rule. In fact, according to
the specified queries, the rules are iteratively and inmtpli@pplied until no more changes on
the algebra occur. Moreover, transformation rules can bieoeied in sub-machines that other
rules can invoke (providing an internal explicit schedg)in However, the use of sub-machines
is suggested only to perform complex computations or néeigan models without side effects.
The internal scheduling is supported also by ATL (that pitesithe implicit one too) and QVT-
OM, whereas QVT-Relation and QVT-Core provide with an iripliule scheduling.

VIATRAZ2 and GReAT have a dedicated language for specifyfregapplication order of rules. For
example, in VIATRA2 graph transformation is the primary me#or elementary model transfor-
mation steps which are invoked by using the control flow $tnés provided by ASMs.

4.6 Conclusions 49

In AGG the rule application order is specified by means ofiigygsd each graph transformation
rule is assigned to a certain layer. Starting with layer @, riiles of one layer are applied as
long as possible. Thereafter, the next layer is executedingaxecuted the highest layer, the
transformation is finished.

Rule Organization. Rule organization is concerned with composing and strimgjumultiple
transformation rules. For example, the organization caoéixon modularity andreusemech-
anisms based on rule inheritance or packaging to mentionva f&MT uses the ASMs sub-
machine facilities to specify computations that can be uselifferent transformation rules. The
transitive closure computations discussed inthdL2RDBMScase study is an example. ATL,
QVT and VIATRAZ2 allow packaging rules into modules. A modatn import another module
to access its content. Moreover, rule inheritance is altbimeATL and QVT, whereas AGG bases
the organization of rules on the layer concept explained/@b&ReAT rely on rule blocks that
provide the means to organize rules into higher-level hidias. Within a rule block, rules are
chained (and thus sequenced) by passing previously magtbeeknts from rule to rule. Using
rule block constructs, a complex transformation can be migosed into a sequence of simpler
rules. Moreover, rule blocks can be arranged into hieraschf blocks.

Source-Target Relationship.This feature concerns the creation of a new target modelhwdaa
be separate from the source one or not. Some approacheAT likenandate the creation of a new
target model that has to be generated from the source. In etilee approaches, such as AGG,
GReAT and VIATRAZ2, source and target are always the same hnibae is, they only support in-
place update. QVT allows creating a new model or updatingxestiieg one even though in-place
updates are also supported.

Concerning A4MT, transformation rules change algebraschvieincode both source and target
models. However they are maintained separated by means rajparpencoding that permit to
apply transformation rules to update the target models, ddifyr the source ones or both. This
means that even though during the application of transfiomaules, there is only one algebra,
source and target models are maintained distinct.

4.6 CONCLUSIONS

This chapter proposed A4MT, an Abstract State Machinesdbapproach which makes possi-
ble formal and implementation independent specificatidnsi@del transformation behaviours.
A4MT aims at providing the transformation developers wiik possibility to check their basic
design decisions against an accurate and executabledvghrhodel of the transformation itself.

A canonical encoding of models and metamodels was intratace theUML2RDBMSmodel
transformation case study (which is standard in the liteegtwas considered throughout the chap-
ter to highlight explicitly how ASMs can be used to desigmsf@rmations in general. The chapter
shown also how A4MT permits to specify complex computationamodels like the calculation
of transitive closures with respect to some relations. Thepter tried to give strategies, best
practices, design patterns for specifying transformatides and discussed how models could be
navigated and queried by means of first order predicatesadsif patterns which are lacking in
ASMs.

50 Chapter 4. ASMs for Model Transformation Specification (AMMT)

A4MT was collocated in the context of MOF 2.0 QVT RFP. Mostlod imandatory and optional
requirements of the request for proposal can be addressedllyFthe approach was compared
with some of today’s available transformation languagesdtiough AAMT aims to be an high-
level specification approach that can be used to design ditthteatransformation before their
actual implementation. In this way the transformation dtgwers can check their implementation
written in a specific language like AGG, ATL, QVT, etc. agdias accurate and executable high-
level model of the transformation itself given by means o4

uosiredwo) yoeouddy uonewlolsuel] gz a|gel

Category AAMT ATL VIATRA2 GReAT AGG QVT-Relations QVT-OM QVT-Core

Paradigm

- Declarative No Yes No No Yes Yes No Yes

- Hybrid Yes Yes Yes Yes No No No No

- Imperative Yes Yes No No No No Yes No

Query Language First-order Logic OCL based Graph Graph Graph Object OCL based Object
Predicates Pattern Pattern Pattern Patter Pattern

Rule Scheduling Implicit, Implicit, External External External explicit, Implicit Internal Implicit

Internal Explicit Internal Explicit Explicit Explicit Implicit Explicit
Rule Organization Sub-machine Rule Inheritance, Rule Hierarchy Layering Rule and Rule and Rule and
Libraries Packaging of Rule Blocks Transformation Transformation Transformation
Inheritance Inheritance Inheritance

Rule Application Strategy

Nondeterministic

Nondeterministic

Nondeterministic

Nondeterministic

Nondeterministic

Nondeterministic

Nondeterministic

Nondeterministic

(concurrent) (one-point) (concurrent) (one-point) (concurrent) (one-point) (one-point) (one-point)
Directionality
- Unidirectional Yes Yes Yes Yes Yes No Yes No
- Multidirectional No No No No No Yes No Yes
Cardinality
- M-to-N Yes Yes Yes Yes No Yes Yes Yes
- 1-to-1 Yes Yes Yes Yes Yes Yes Yes Yes
Traceability
- Automatic No Yes No No No Yes Yes No
- User-specified Yes No Yes Yes Yes Yes Yes Yes
Source-Target Relationship
- New Model Yes Yes No No No Yes Yes Yes
- In-Place Yes Yes Yes Yes Yes Yes Yes Yes

SUOoISN[PU0D 9'

TG

CHAPTERDS

A4AMT BENCHMARK

A4MT has been validated in different applicative domaind te results are reported in this chap-
ter. Sec[5]l discusses the use of A4MT to support the moielddevelopment of data-intensive
Web applications[T40]. Sectidn®.2 proposes the use of A4NThe development of middle-
ware systems highlighting the importance of having a fora@roach for specifying property
preserving transformations-[24]. Finally, Sect[onl 5.3aliees how it is possible to use the ap-
proach for specifying the dynamic semantics of Domain Sjpelcanguages in the context of the
AMMA framework [18]. A case study is discussed by formallyesfying the dynamic seman-
tics of ATL [[70], the transformation language described @tlZ. 3P which is part of the AMMA
framework.

5.1 A4MT FOR MODEL DRIVEN DEVELOPMENT OF WEB
APPLICATIONS

Over the last few years, Web-based systems became comroergrd underwent frequent mod-
ifications due to technological and commercial urges. Weds giapidly evolved from simple
collections of static pages to data-intensive applicatishich rely on dynamic contents usually
stored in databases enabling a much wider range of interacti

In this chapter, we describe a systematic approach to nivdeln development of data-intensive
Web applications meant as hybrid between hypermedia aondmation systemd[50]. Starting
from a suitable UML profile, called Webilé [89], conceptuasdriptions of these systems are
given asplatform-independent mode{PIMs), i.e. abstract descriptions that do not refer to the
technologies they assume to exist. The process of transfgrenPIM to obtain concrete imple-
mentations on the target architecture describeglatform specific model@SMs) is the ultimate
consequence of shifting the focus of software developmmemh toding to modeling. Different
PSMs can be generated from a Webile model in order to desdiffeeent aspects of J2EE Web
applications designed according to the Model-View-Cdterdb5] architectural pattern. In this
setting A4MT is used for specifying and executing the trarmsfations from the specified PIM to
the different PSMs.

The presentation of the this case study is organized asM®lld he next subsection illustrates an
extended version of the Webile profile, which is used for tascdiption of PIMs. Sectioi5.1.2

presents the founding elements for modeling J2EE Web ajalits designed according to the
MVC architectural pattern. Finally, the transformatiorissource Webile models are specified in
AAMT.

53

54 Chapter 5. AAMT Benchmark

==DataEntity== | | <<DataRelations> o | =eDataEntity== | cepataRelstionss 1. | S=DataEntity==

Professor Publication — ResearchArea
Prmfessar_Publication Punlication_Reseamh...

{Label=Frofs, e
Cardinalit=multipls |
Type=index}

42DataSourcer

==SfructuredContent=> et Linkes ==StructuredContent== <=SfructuredContent==
Professors HomeFage Fublications

ssCompose>>

2Composess

==BiructuredContent==
Header

Figure 5.1: A fragment of an academic site

5.1.1 WEBILE

Webile [39] is a UML profile for describing in a uniform and cmptual way the proper aspects
of data-intensive Web applications without referring tatfarm-specific assets. Leveraging the
recurrency of certain application patterns which typicalbmpose Web applications permits to
raise the level of abstraction adoptingh@del-centriadevelopment whose main artifacts are mod-
els. These models are supposed to span the entire life clyelesaftware system and ease the
software production and maintenance tasks.

Descriptions encompass several concerns by capturing pidas and navigation into extended
class diagrams. In particular, data are given similarly tB Enodels exploiting stereotyped
classes and associations to model entities and relatiespectively. The profile prescribes the
< DataEntity>>, < DataRelation>>, < DataStrongRelation>> and < DataAttribute>> stereotypes
for modeling data. For instance, in FI[g.15.1 the elementsadoed in the dotted area, represent
a simplifielﬂg conceptual data model of an academic site fragment, whefegsors Brofessor)
can have different publication®\blication), each belonging to one or more research arBas (
searchArea). Pages and their fragments are denoted by mearsStfucturedContent>> stereo-
typed classes that are eventually associated with datdesngiroviding contents by means of
< DataSource>>> stereotyped associations. These associations are guialifie a collection of
tagged values, amongst thaBardinality describes the cardinality of the items to be included in
the content, i.e. whether the content consists of a singia @r a list of them. In the figure, the
Professors structured content contains the list of all professors endatabase, which are retrieved
through the associated enti®yofessor, in contrast withHomePage which contains information
about one professor, respectively, because of the diffepatified cardinalities. Relevant aspects
of the data source association affect the way the data afevel to form structured contents. In
fact, different data source associations converging orsange structured content and denoted by
the same tagged valuabel define the same query operation (see $ecf15.1.3). On thexpgrin

For presentational purposes, we omitted attributes aret atformation which are not relevant at this stage of the
discussion.

5.1 AAMT for Model Driven Development of Web Applications 55

HomePage two different query operations are defined, because théslabehe associations with
Professor andResearchArea are different.

Hyperlinks are modeled by means of thkeCLink>> and <NCLink>>> stereotyped associations
which denote contextual and non-contextual links, re$gelgt The main difference among them
lies in the fact that the formers propagate parameters fi@rsburce structured content to the
target one. These parameters are used when data source@ssshave the tagged valBeund
set totrue to filter the data retrieved from the corresponding entitlesr instance, in Fig. 81 the
contextual link going out fronProfessors allows the user to select a single professor in order to
access her/his personal profileHnmePage, which is collected by means of tkeDataSource>>
stereotyped associations with the entitesfessor andResearchArea. Analogously, the contex-
tual link outgoing fromHomePage provides with the access tRublications of the selected re-
search area. Non contextual links are much simpler singedbienect structured contents which
are not semantically correlated.

The Webile profile was originally devised to generate codeatly from models in aone-step
fashion without any human intervention. The approach hawshimmediately problems not lim-
ited to poor consistency and traceability between modealscade, as the formers start to diverge
from the latter as soon as changes are operated on the ggheyatem. Thus, the approach has
been considerably extended introducing proper A4AMT madeisformations able to map Webile
models into model chains which, at different level of alditms, are descriptions of the chosen
implementation.

5.1.2 DeSCRIBING PSMs

MVC is an architectural pattern which aims at minimizing thegree of coupling between el-
ements to relate the user interface to underlying data mddedn effective way. Increasingly,
the MVC pattern is used in program development with obje@rted languages and in organiz-
ing the design of J2EE Web applications proposing a threefactoring paradigm based on the
following

¢ the model holds all data relevant to domain entity or procasd performs behavioral pro-
cessing on that data;

e the view displays data contained in the model and maintansistency in the presentation
when the model changes; and

e the controller is the glue between view and model reactirgignificant events in the view,
which may result in manipulation of the model.

The description of PSMs referring to the J2EE platform mayijuish the model from the view
and the controller. This separation of concerns is motiVatethe abundance of persistence frame-
works, such as EJB[#5] and JDO[66] to mention a few, whichgssts further refinements of
the model into more specific PSMs retaining the view-colgralesign (see Fi§.3.2). According
to the figure, a Webile specification is mapped into platf@peeific descriptions of the view-
controller and the model, respectively. This mapping i®austic and mathematically defined
by executable ASM transition rules as described in $ecf35.In the proposed approach, the

56 Chapter 5. AAMT Benchmark

Webile

| Conallen’s WAE XDW
View-Controller MWodel !

View-Controller Model

BN

Hibernate

| | |
v v v v

J2EE Web Application ‘

Figure 5.2: Different Views of the MVC pattern

View-Controller package (see Figb.2) is given by means afidlen’s Web Applications Ex-
tension [38] (WAE) whereas the Model package is given by rmeaxnthe data part of Webile
opportunely extended to some abstraction for realizingrgbusiness tier patterrid [7].

VIEW-CONTROLLER: CONALLEN’S WAE The Web Application Extension (WAE) is an exten-
sion of UML for modeling Web applications proposed by J. Glema Web pages are modeled by
giving both server-side and client-side aspects by meagsSafrver Page> and<Client Page>>
stereotyped classes, respectively. A server page can beiatssl with other server-side objects,
i.e. database, middle-tier components and so on, althoggirgvnot going to model data aspects
here. The<Client Page>>> stereotype represents a HTML page which is usually assatiaith
other client or server pages. In the last case<timild> stereotyped association is used to state
that a server page builds a client one. An hyperlink betwegep is modeled by<alink>> stereo-
typed association. If the hyperlink includes parametéiesy tire modelled as link attributes of the
association. A directional relationship between one sqrage and another server or client page
is modeled by the«forward>>> stereotyped association. This association representtetbgation

of processing client’s requests for a resource to anothgeisside page and it is a pivotal aspect
proper of the view-controller metaphor.

In fact, referring to FigiR]3 and according to the adoptettiepa, client requests are processed by
the controller server pages which perform the data retrigy@nvoking the proper operations on
the business delegate object (as explained in the nexbegcttach controller declares exactly
the operation which must be invoked according to the dateceaassociations in the conceptual
model, e.g. the server page classnePage Controller depends on the methogstProfData() and
getProfResArea() to retrieve the data. Once the data are available to theattamtrthe request
is forwarded to the corresponding view server page. In @adi, the figure illustrates how to
implement the application logic of the system describedignE by means of several views and
controllers; each structured content is mapped to a pattamaisting of linked client page, view
and controller server pages. Alternatively, the front coligr pattern([¥], i.e. a unique controller
which serves as a centralized access point for requestsrandéould have been adopted. It is
a solution which is widely used by software developers, Wheacodes information about the
navigation in the url requests, thus is less convenientldstite how the navigation in Webile
is propagated during model transformation. Finally, theaiadf adopting Conallen’s approach
for specifying PSMs in not novel, since it mainly represehtsimplementation and is therefore
suitable for PSMs rather than PIMs[89] 90].

5.1 AAMT for Model Driven Development of Web Applications 57

. == ==
==ClientPage== | «cpyilgs» | <=ServerPages= 2 sfommardss p fServerEage 1 process_request(y
Professors Professors View rofessors Caontroller ---{ BL.getProfs}
‘prucess_requesio

“<linke=>

==Business Delegate==
ED
s<ClientPage== | __ ... | =<SererPage== cefonmardss <=Sener Page=> ipmiMOdel
HomePage HomePage View HomePage Controller e
*process_reguest) ‘getF'rost
- getProfDatald
! %getProResAreal
process_request) 77| *getResPubs(
=<linkz > BO.getProflata -
Bb.getProfResArea)
==Client Page=> | . o..| ==<Gerver Pages» <sfonmards= <<3ener Pager> provess_requesty]
Publications Fublications View Fublications Controller -1 BD.getResPubs)
Sprocess_request]

Figure 5.3: Conallen’s View-Controller description

<<DataEntity>> |1 <<DataRelation»> " | <<DataBntity»> [-" <<DataRelation=> 1-N| <<DataEntitys>

Professor Frofessor_Publication Publication Fublication_Researchirea ResearchArea
<<Business Delegate>> <<Transfer Object=> <<Transfer Object=>
BD ResPubsTO ProfDataTO
:getProfSO : ProfsTO
getProfDatal) : ProfDataTO <<Transfer Obi et ChaeES
P ; ject== ransfer Objec
getProfResAreal) © ProfResAreaTO ProfsTO ProfResAreaTO

®getResPubs]) | ResPubsTO

Figure 5.4: XDW Model description

MODEL: EXTENDED DATA WEBILE This section presents how to describe the Model compo-
nent of the MVC pattern by means of an extension of the datagbaiebile, called eXtended
Data Webile (XDW). A better maintenance and flexibility ircassing business services requires
specific abstraction layers as the ones realized by meate dfusiness delegate and the trans-
fer object design patternsI[7]. In particular, the busirdedegate hides implementation details of
the business service and encapsulates access and lookbaniseas; whereas the transfer object
serves to optimize data transfer across tiers. Insteadnalirsg or receiving individual data ele-
ments, a transfer object contains all the data elementsiirgiesstructure required by the request
or response. To summarize, a controller can access busiaesses by performing requests to
a business delegate which implements the services anasete result as a transfer object. For
instance, Figihl4 depicts a diagram which describes by sneBKDW the Model components
of the application which has been modeled in Eigl 5.1. It ca@hends only the data aspects of
the original model and additionally introduces the busirgslegate and a transfer object for each
different query operation defined within the business dekegTo understand how such elements
are defined, let us consider the data source associatiog.[BBilabeledProfData betweerHome-
Page and Professor, this association defines the query operation in the busidekegate called
getProfData() which returns a transfer object of typeofDataTO. In order to keep a certain degree
of abstraction, the query operations in the business delega specified by means of relational
algebra expressions which are computed by A4MT rules ptedeand commented in SEc. 511.3.

58 Chapter 5. AAMT Benchmark

5.1.3 MODEL TRANSFORMATIONS

In the sequel, unidirectional stateless transformatioag/i&en to map Webile models into Conallen
and XDW ones. The transformations are specified by means bfTAWhich, as described in
Chap[%, starting from an algebra encoding the source madetn an algebra encoding the target
model. The signature of an algebra encoding a model is imdbgehe UML metamodel whose
elements define the sorts of the signature, for instancddke and association elements give place
to theClassandAssociatiorsorts, i.e. the algebra has two universes containing dissihed rep-
resentatives for all the classes and associations in thelm@&tereotypes extending the model
elements define subsets in the universes induced by thedexexiements itself. This is nicely
modeled since ASMs allow subsorting, for instance in the \§girofile the<DataEntity>> and

< DataSource>>> stereotypes induces the following subsorting relations

DataEntity < Class and DataSource< Association

Additionally, the metamodels induce also functions whictvide with support to model naviga-
tion, e.g. the associations have source and target fuisction

source, target Association— Class

which return the source and the target class of the assatidflethods are represented by the sort
Methodand the class they belong to is computed by the function

belong: Method— Class

further functions defined over methods asmeandbodywhich return the name and the body of
a method, respectively. Also tagged values are encoded baypsna functions, for example the
tagged valueCardinality of the <DataSource>> stereotyped association defines

cardinality : DataSource— {single,multiplg

Moreover, further functions and sorts are given by the bdata types and by those functions
which are used in transition rules to accumulate inforrmataring the transformation. As an
example, the algebraic encoding of the model in Eid. 5.1ustilated in FiglR15. In the next sec-
tions, the AAMT rules for generating the PSMs for the Model for the View and the Controller
are presented, respectively, according to the[Elg. 5.2.

MODEL TRANSFORMATION: VIEW-CONTROLLER The transformation introduced here consists
of a number of A4MT rules, in particular for each structureshtent the ruleStructuredContent
extends the algebra encoding the source model with threectamses, two server pages mod-
eling the view and the controller and a client page which isegated by the view server page.
Furthermore, the rule introduces the following functions

controller, serverView: StructuredContent—» ServerPage
clientView: StructuredContent— ClientPage

used to track the structured contents from which the cliedtserver pages have been generated.
The rule is as follows

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

© 0N O s WN R

5.1 AAMT for Model Driven Development of Web Applications 59

Compose

DataRelation

ontent

source ds3

source

Publication DataSource

DataEntity

Figure 5.5: A model encoded in an algebra

-- Rul e StructuredCont ent Transf or mati on
do forall x in StructuredContent

extend ServerPage with s1,s2 and CientPage with ¢ and Build with b
and Forward with r and Use with u
and Operation with op

source(b) := sl
target(b) :=c
source(r) := s2
target(r) := sl
source(u) := s2, target(u) := bd
controller(x) := s2
serverView(x) := sl
clientViewm(x) :=c
nane(op) := "process_request"
body(op) := Invocations(xz)
bel ong(op) := s2
endext end
enddo

Line 13 in the above rule contains a referencebth the representative of the business delegate

component which is incrementally assigned the query ojpaistline20 contains the invocations
to thelnvocationssub-machine which computes and returns the list of methagksavhich the
controllers have to invoke in their body.

The CLink rule for each< CLink>> stereotyped association in Webile extends the univeisie
with a new element whose source and target are the liGkedtPageandServerPaggerespectively
-- Rul e CLi nk2Li nk

do forall x in CLink

extend Link with |
source(l):=clientView source(x))
target(l):=controller(target(x))
endext end

enddo

60 Chapter 5. AAMT Benchmark

The rules described up to now are not very complex, they cewtsh be considered declarative,
since they make use only of the update rule (simpler thantiibatte grammars, for instance,

which requires some resolution). Algebraically, they carglven as a set of positive conditional

equations which induce a (free) functorial transformatiarthe source algebras. Finally, the rules
for handling the composition of structured contents and-camtextual links are missing, since

their complexity is comparable to that of the rules above.

MODEL TRANSFORMATION: MODEL The most interesting rules are not just attributions as the
ones above. It is crucial, to be able to collect informatidmilevnavigating the model, as when
computing the transitive closure of a relation for instandde following ruleDataSourcehas

to generate the specification of the query operations in tisabss delegate as relational algebra
expressions starting from the data sources in the Webileemd@kepending on the tagged value
Label of the «DataSource>>> associations, the way the contents are retrieved is defivatg
place to different expressions. All thkegDataSource>>> stereotyped associations related to a spe-
cific <« StructuredContent>>> can be grouped according to theabeltagged value and associated
to aLabelindexed query operation. The rule has to navigate the sounodel to understand which
data entities are involved in the relational algebra exgioes. TheDataSourceule is defined as
follows

-- Rul e Dat aSour ceTr ansf or mati on
Defi neAl | Contents
do forall x in StructuredContent and | in Label : cont(x,!|)!=undef

extend Operation with op
bel ong(op) := bd
nane(op) := "get"+nanme(l)
choose t in TransfObject : name(t)=nanme(l)+"TO'
type(op) : =t
endchoose
body(op) := Expr(x,!)
endext end

© 0N U~ WN R

N
5 W N PP O

enddo

whereDefineAllContentsub-machine creates lists of data sources according ticatiet tagged
value partitioning explained above. The rule is given betovd makes use afddListElement
which adds elements to a list

1 -- Rule DefineAllContents
2 do forall x in StructuredContent
3 do forall y in DataSource : target(y)=x
4 do forall | in Label : label(y)=
5
6 addLi st El ement (cont (x, 1) ,y)
7
8 enddo
9 enddo
enddo

[N
o

The sub-machin&xprof DataSourcegenerates the relational algebra expression whose ealuat
supplies the conteritfor the structured content.

1 -- Rule Expr(x,l)

2 extend Body with y

3 join(y) := unify(findPath(cont(x,1)))
4 sel ecti onKey(y) := findKey(cont(x,I))
5 returny

6 endext end

5.1 AAMT for Model Driven Development of Web Applications 61

To better understand this rule, let us consider [Elg. 5.6 eharabstract representation of a Webile
model is presented. The structured cont®@lis fed by three data sourcés;, ds; anddss with
the sameontllabel. In order to obtain a relational algebra expression

O'F(Tl Ny 15 Mo Ts... M, Tn)

two macro steps have to be executed:

— the definition of joins between the right relations and,

— the definition of the selection formula.

The former is obtained by means of theify rule, the latter by means of tHmdKeyone. Note
that the definition of the expression is not trivial and wesprdg the solution by outlining the
description for thdindPath unify andfindKeyrules. Two data entities involved in the definition of

a content by means of twe DataSource>>> associations, may give place to ambiguous scenarios.
In fact, £y andE5 in Fig.[5.8, are related by means of two different paths. Thisses problem for
the definition of the joins involving them. Webile deals wiltis problem by means of the tagged
value Relationsof the «DataSource>>> stereotype. This is used by tfiadPathrule which, for
each pair of entities involved in the content definition, filkde right path of relations connecting
them.

For this rule, the sefPath is defined asDataRelation® x Bool whose elements are terms
path(R,C)where the first parametét is the list of relations defining the path in the source model,
the second parameté€ is a boolean denoting whether the conditions of the joinslinrg the
entities in the relation chain are empty or equals to cortjans of equations involving the corre-
sponding keys. Forinstance, in Hig.]5iGdPathreturns the list containing the following elements:
{path(Ry, Ry, ..., Ry, true), path(Ry, ..., R;, false)}.

The unify rule evaluates the paths and defines the joins betwedndtoal relations in the paths
recursively, whereatndKeydefines the selection formula for the final expression. Adicgyly, if

E; contained the attributett; in Fig.[58, the formulaF’ would be the equatiof;.att1l = attl.
Otherwise, ifE; contained the attributett, then the key propagated by the contextual link has
no effect and the selection formula is empty. The relati@gébra expression defined with this
process represents the body of a server-side operatiofoie server page obtained by means
of the transformation of the structured cont&a

dsl ds2 ds3
label=contl | = - 4
' bound=false s,
‘\
label=contl
bound=true label=contl

bound=true
relations="Rk,Rm,..Rn"

[—— sC
key=attl

Figure 5.6: An abstract representation of a Webile model

W N O A WN R

©

10
11
12
13
14
15

62 Chapter 5. AAMT Benchmark

The last rule handles the creation of the transfer objeseiach query in the business delegate
returns a different transfer object type which needs to lieeld, as follows

--Rul e CreateTransf j
do forall | in Labe

extend TransfObject with t
nane(t) := nane(l)+"TO
do forall d in DataSource : |abel(d)=
do forall a in DataAttribute : bel ong(a)=source(d)
extend Attribute \awith al

nanme(al) := nane(a)
type(al) := type(a)
endext end
enddo
enddo
endext end

enddo

5.2 A4AMT FORMIDDLEWARE BASED SYSTEM DEVELOPMENT

Due to the widespread diffusion of network-based applicesti middleware technologies [44]
increased in significance. They cover a wide range of softvegstems, including distributed
objects and components, message-oriented communicatidmobile application support. Thus,
methodologies and tools are in need to analyze and verifglaichre-based applications since the
early stages of the software life-cycle.

Recently model checking has been proposed to verify aneesystem([[53, 671, 72], i.e. both the
middleware and the application, in a monolithic way. Therapph turned out to have two major
drawbacks: (i) it may result in the well known “state-expbws problem and, (ii) the middleware
needs to be verified every time. These considerations Higtirae led us to investigate the
compositional verificatiompproach([6ld,_ 80,-32] in order to validate the middlewareecamd for
all and reusing the results of the validation as base fofyirg the applications built on top of such
middleware. The key idea of compositional verification islewompose the system specification
into properties that describe the behavior of its subsystdmgeneral, checking local properties
over subsystems does not imply the correctness of the exytstem. The problem is due to the
existence of mutual dependencies among components.

In [25] an architectural decomposabilittheorem is presented that allows the decomposition of
software applications built on top of a middleware by exjigj the structure imposed on the sys-
tem by the Software Architecture (SA)_99]. This allows therification of middleware-based
applications since the early phases of the software lifdecyin fact, once the application spec-
ification (behavioral and structural) has been defined, #sigdier might want to validate it with
respect to some desired behaviors. Then, the communidaiidities are provided to the appli-
cation by means of a middleware infrastructure. In essaheehigh level SA is refined in order
to realize the desired communication policy by means oftamfdil components. These are the
proxycomponengtowards the middleware that allow the application to traneptly access the
services offered by the middleware. The decision of usimgices offered by a middleware may
invalidate all behaviors stated at the previous phasesadt) middlewares usually have a well

2While [I25] refers to these componentsiaterfaces here we make use of the teiroxiesin order to distinguish
them from the well defined CORBA Interfaces.

5.2 AAMT for Middleware Based System Development 63

defined business-logic that could not be suitable for thdicgijon purposes. Consequently, the
system has to be re-verified by considering also a full-featumodel of the middleware. In such
a context, thearchitectural decomposabilittheorem helps the designer to choose the right mid-
dleware by (i) freeing him from the middleware model implertation and, (ii) hiding low-level
details. Actually, the designer must have a deep knowletigatahe middleware and its internal
mechanisms needed to identify and properly modePitoxy entities.

In this chapter, techniques and tools to engineer the aathite decomposability theorem based
on AAMT are presented. In particular, we propose an apprtethautomatically generates the
proxy models that correctly use the middleware. In paricihe proposed approach starts from
the system SA and the components behaviours. Then by agpdgveral transformation rules,

formally described by means of A4AMT, the proxy models araioletd. By means of the proposed
transformations, the correctness of such models, w.rt.uie of the middleware, is guaranteed
without the need of validation of the hypothesis requiredhgytheorem.

The remaining of the section is organized as follows. Se@id.1 briefly introduces the architec-
tural decomposability theorem. SectlonBl2.2 presentswarall approach and a running example,
consisting of an ATM distributed system implemented on tbfhe CORBA middleware[191], is
considered throughout the entire discussion.

5.2.1 (GOMPOSITIONAL VERIFICATION OF MIDDLEWARE-BASED SA

Given an architectural description of the system and a setapferties which presents the desired
behaviors, specified by means of message sequence ¢hgr(M[BG), the architectural decom-
posability theorem states that the verification of the ergirstem is guaranteed provided that the
components satisfy the hypoth&isin this section, we illustrate the compositional verifioat

by means of an example which is going to be used throughoutligoeission. In particular, let
us consider the high-level SA description (depicted in Eig.a) of an ATM system that allows
users to: (i) buy a refill card for its mobile phone and, (iigch its bank account. The system has
been designed as the composition of a set of distributed aoerts whose behavior is described
as state machines (an example is shown in[Elg. 5.8)Utlee , the Phone Conpany, the Bank
Account and theTr ansacti on Manager that manages all the interactions between the user and
the other entities. In Fig.3.7.b a property of the ATM systeemavior, represented as an MSC
(in the remainder referred to @9, is satisfied by the high level SA. The property states thatye
time a refill card is bought, the corresponding credit is diitwn from the user’s bank account.

As already mentioned, the development of distributed apptins often relies on a middleware in-
frastructure which provides the required communicatiowises. In architectural terms this means
that the high-level SA will be refined in a more detailed SAt thi@sents additional components,
i.e. the middleware and the proxies. In Higl5.9.a, the CORBddleware communicates through
the proxies with the application componekkser, Tr ansacti on Manager, Phone conpany
andBank Account . In this context, the designer’s challenge is to understauitlis still valid

on the refined architecture. In fact, due to the introductb@ ORBA that offers services to the
application, the property could be falsified by the new SA.

3The interested reader can find more details about the theone[@H], although it is not required to follow the
approach presented here

64 Chapter 5. AAMT Benchmark

Transaction Phone Bank
User Manager Company Account
phone_req(credit,num)
result_gheck(r)
phone_bk login(ID, passwd) ?Tphone
phone_ko phone(cred,num) hone_req_ok
login_k check(ID)
|09i”_01 1 update(ID, credit)
update(ID,cred) »
CA_check(ID) phone_req(cred,num) o
- i T
BA e A ahackim ™ [— — — pC update_ok > update
result_CA_check(r) phone_req_ok L !
update_ok phone_req_ko g t
update_ko
@) (b)
Figure 5.7: a) ATM application; b} property
—— ~
i N
/ @ \
/ ?rés\uILCAich ck(r)
I ICA_check(ID) \ i
ENGROY
I |
\ lresu{f _check(p
7log|n(ID passwd) \ 2check(ID) / /
|D§II‘I ol /
\Q () p
RN
llogln ko ”phor{e(c edit, ﬁum) \\
lpthe ko \
/ \
\ !phone;/ok 'pho?\s_ko
llogin(ID passw) ?resylt_check(r) /
g' passw check(i) lupdaté(ID,cred) \
V3
‘ 'Iﬁogm Ok ?update_ko
’>I k | !phpne(cied,num) Iphone_req(cres,num)
ugln © ?phorie_ok ’>ph6ne ko 7update oK
(a) User (b) Transaction Manager

Figure 5.8: Component Behavior Descriptions

In Fig.[5.9.b and Fid. 510 therchitectural decomposabilittheorem has been applied to the ATM
system and’ is split in a set of local properties that the sub-parts ofiystem must satisfy. In this

new context a relabelling function is applied to the commisé order to let them to communicate
through the middleware (for example the components in[Egh&ve been relabelled as shown in

Fig.[511).

The properties that have to be proved are graphically ddniotéhe upper left corner of each
component in Fid.519. For verification purposes, CORBA Isstituted with a set of propertig?
that characterizes its behavior. In the following, we defireset of propertie®’, defined in LTL,
that assess the correct usage of CORBA.

V properties
1. O(—get_-IOR(ID) U reg_IOR(ID))

In order to retrieve the object reference (called IOR - loperable Object Reference), the
object has to be already registered.

5.2 AAMT for Middleware Based System Development 65

ATM Application
I

k]

User
Proxy

Bank

Account

Phone
El Company

Bank
Account

>
Company
™
Proxy
Hy
Y [}
Transaction Transaction
Manager Manager

(@) (b)

Figure 5.9: Architectural Refinement

2. 0(-< METHOD > U get_ IOR(ID))
In order to use the object methdfithe object reference must be obtained. It is obtained by
asking for it get_IOR(ID)).

The approach described ih’]25] assumes that the proxies Isnade explicitly given and then
verified with respect to the sét. In the following, we show how these two steps can be colldpse
by only assuming the component models and the constriirttsough A4MT transformations
which allow, byconstruction the generation of correct proxies.

5.2.2 HRROXY GENERATION

The generation of proxies is based on the transformatiooggsdepicted in Fig_5112. It starts
with an encoding step which takes the behaviour model of apoment and returns an algebra
encoding it. The AAMT rules are applied to the source algébgenerate an algebraic represen-
tation of the state machine which specifies the behavioureoforresponding proxy. For instance,
if we consider theTMcomponent in the ATM application described in Jec._$.2.1griter to let

it communicate with the other components via CORBA it reggslin proxy component. The
state machines of the transaction manager and of the assbpiaxy are illustrated in FifL. 5113,
respectively. For instance, when thglcomponent is in the statel, it can receive the message
TMcheck sent by thedser component (see Fig8.7) in order to reach the stateAs said above,
the components do not interact directly but they commueittmtough CORBA. This means that
in the example, &M Pr oxy component should be able to receive the messagek from the
middleware (originally sent by theser) and forward the correspondinM.check message to
the TMcomponent. These message sequences are depicted in tied gasts of the models in
Fig.[5I3. These models conform to the source and targetmoelels in FigCe. 14 and Fig_ 5115
respectively. They support the specification of state nmeshconsisting of states and messages
that permit to move from one state to another. The messagebase parameters and are sent
and received by components. The concepts that distinghéstwto metamodels are the type of
messages that can be specified. In fact, the metamodel iB.ERtakes into account the message
types that are necessary in the interactions through thdlewgre. In particular, a component
need to register itself to send and receive messagesRddiest r at i on class in the metamodel

4In the formula,< METHOD>> is just a placeholder that must be replaced by an actual metgoature

66 Chapter 5. AAMT Benchmark

User

User_result_check(r) User login(ID passwd)
User_phone_ok User_phone(cred,num)
User_phone_ko
User_login_ko | A
User login_ok

User_check(ID)

User BA_update(ID,cred)
Proxy BA_CA_check(ID)
CA_check(ID) BA Bank

result_check(r) + o a

ginfID passwd) update(ID,cred) BA result CA. check(r
phone_ok phorle(cred num) | Proxy e ©_| Account
phone_ko | chedk(ID) Py _update_ol
login_ko result £A_check(r) BA_update_ko

login_ok | A update_ok
date_ko
g1
Middleware hone_req(cred,num)
1T =~ Fom K PC_phone_req(cred,num)_ |
result|chedk(n) phohe_req_ko Donered A ! numl,
phune,okcr phohereq ok POMeTRLkC PC Phone
phone_ko restit_ CA_check(r) ~ Proxy |« — — — — Company
loginfo | |updhie_ok PC_phone_req_ok
login_pk update_ko PC_phone_req_ko
CA_check(ID) | check(ID)
phone_req(cred,num; phone(cred,num)
update(ID cred) | v ylogin(ID,passwd)
™
Proxy

A
TM_result check(r)
TM,phone,okT |
TM_phone| ko
TM_login_ko |
TM_login_ok

TM_CA_check(ID) | | | ™ogin(D,passwa)

TM_phone_req(cred,nurh) TM_phone(cred,num)

TM_update(ID cred) | ¥ ¥ 7™ check(D)

TM_phone_req_ko
TM_phone_req_ok
TM_CA_check(r)

TM result_CA_check(r)
TM_update_ok
TM_update_ko

Transaction
Manager

Figure 5.10: Detailing SA

is devoted to specify messages like the messagel OR in Fig.[5.13.b that th&M pr oxy com-
ponent send to the middleware to register itself. As said/@abto send messages to a given
application component the corresponding object referen@muired. The messaget _| OR per-
mits to perform this task and it is captured by the classect Ref Ret ri eval of the metamodel.
The results of these kind of requests are modeled by medesaf t messages, like the message
resul t (ba) in Fig[eI3.b wherda represents the identifier of tlBank Account component
previously requested by theM pr oxy through the messagget | OR(* * ATM BA'). The class
Condi t i on permits to specify different behaviours with respect tastheesults. To summarize,
the metamodel in Fi§.5.14 contains concepts for the beataspecification (justifying the prefix
“B_" of all the universe names in the encoding) of the applicatiomponents. The metamodel in
Fig.[5I% extends these concepts to capture specific CORfBAautions (this justifies the prefix
“CB_." in the metamodel encoding).

Taking into account the source and the target metamodetsilled above, the proxy generation
has to address the following requirements:

R1. the generated state machine has to contain the messpgmses needed for the registration
CORBA dependent of the proxy component whose behaviour himteing generated;

R2. the generated state machine has to contain the messggases for the resolutions CORBA
dependent to retrieve the identifiers of all the applicatomponents involved in the com-
munications with the proxy;

R3. each sent message in the source model (e.g. the meddagecheck between the state
a2 anda3 in Fig.[5.13.a) induces the generation of a sequence cimpisfta received and
a sent message (e.g. the messag@sA check andCA check between the statds3, b4
andb5 in Fig.[513.b);

0 N o s W NP

5.2 AAMT for Middleware Based System Development 67

?}Q/I_result_CA_check(r)
ITM_CA_check(IDy,

X I 7reswt/7check(r)
?TM_login(ID,passwd) 2TM_checl (ID)/

/_\\ ITM_login_ok
oo

4
ITM\ o in’l:J 2TM_pjion (credit,num)\\
ean- / !TM!phone_ko\
s \

?U8er_result_check(r /

/ \
) ITM_phone/ ok
/

!User_login(ID,passwd) 1User_checK(ID)) ITM_pHone_ko
- \

/\ ?User_login_ok
EENO

S——~ 1User_pphong(credynum)

?User_login_ko

ITM_update(ID,cred) \‘

7TM7update7ko><>
ITM_phone_req(cred,num)

?TM_update_ok

(a) Relabeled User (b) Relabeled Transaction Manager

Figure 5.11: Components Relabelling

~Fo-=-Bp-

Source model: Algebra encoding the Algebra encoding the Target model:
ATM Application component state machines proxy state machines Proxies

Figure 5.12: The transformation process

R4. each received message in the source model (e.g. theged@ssaheck between the state
al anda2 in Fig.[5.13.a) induces the generation of a sequence cimpisfta received and
a sent message (e.g. the messagesk andTMcheck between the statdsl, b2 andb3

in Fig.[513.b);

R5. the generated models have to preserve the messagesegjoétihhe source model, assuming
that the communication via CORBA is synchronous.

In order to accomplisiiR5, the auxiliary functiorbor der will be used in the transformation rule
specifications. It keeps track of the states whose outgoiessages still have to be transformed.
At each application of the proper transformation rulesagesin thebor der is taken into account
and all its outgoing messages are transformed. Additipreaitate is added in ther der ifitis a
non-visited target state of the message under transfamaoreover, to satisfy the requirements
R1landR2 (preserving thé/ properties described in Se€5.2.1), the following ASM is defined.

asm MAIN i s

if (initial=undef) then
Regi strati on; Resol ution
border (sourcelnitState): =true
initial:=true

endi f

68 Chapter 5. AAMT Benchmark

Ve ~
/ N\
/ \
/ 7res\m CA_check() \
/ cA_checkfiD)
- — \
s N / @ \
/ \ ! \
/ ITM_resultCA_check(r)
\ 1 21w ca_checkap) \
/ 2T result\CA _check(r) Iget_IOR(*ATM.PC") | \
ITM_CA_check(IDy, ‘ foat=nul] | @ @ |
| [petnull] | 2TM_resiit_check(r) |
'I resylt(bal Ipe==null | [TM-checkliD) v I
\\ . result/chec’(r) 2login(ID,passwd) \\ /I
v
™ Iogm(ID passwd) V7TM_chec ('D) ITM_login(ID, asswd) “llogin_ko resylt”check(r) /
ITM 7’
{n - / Iget_IOR(‘AT.BA’ 2TM _Jogin_ko /
V\/\ [ba=nuil O: _?TM_login ok ~ /
N \Dhone ok N ‘phhhe‘,(k'/
’7TM |_plong(credit, num) - ’7phune erednum) o~

ITM Iogln ko

Ireg_IOR(‘ATM.TM",0bj)

IpRone_ko)
?TM_phone ol I O

?TM,{:nune,ko

¥i_phone_ko
?TM_update_ko 2TM_update(ID,cred)
———= 2TM_phone_|req(cred,num) ™ upda[e ko
ITM_phone_req(cred,num) {TM_update_

ok
2TM_update_ok Q
lupdate(JD,cred)
7”pda'§b°k ’?update ko

(a) TM component (b) TM proxy

Iphone._regcred,num)

Figure 5.13: TM State Machine models

9 choose x in B _State : border(x)=true
10 - - Message2Messages(x)

11 endchoose

12

13 endasm

It is a main machine which triggers other sub-machines amastormation rules and has the
control over the states which has to sited according to the information held by tther der
function. Moreover, the messages related to the registrati the proxy and to the retrieval of the
identifier objects of all the application components aresgated before to transform the messages
of the source maodel. Then ther der function is updated on the tersmur cel ni t St at e which
refers to the start state of the source state machine. Oase tieps are performed, all the source
messages are transformed by means oMbesage2Messagéasnsformation rule.

The generation of the registration messages is performettiays of the followingregi st rat i on
sub-machine. For readability reason, in the specificat@mnesconstants are usedonponent
refers to the algebraic representative of the componensg/pmxy is being generated and referred
by means of the constapt oxy. Finally, m ddl ewar e refers to the middleware component.

1 asm Regi stration

3
4 extend CB State with a,b and CB Registration with m
5 source(m: =a

6 target(m: =

7 anchor St at e: =b

8

9

extend CB_Paraneter with pl, p2
10 name(pl): =nane(conponent)
11 nanme(p2): =i or (conponent)

12
13
14
15
16
17
18
19
20
21

1

5.2 AAMT for Middleware Based System Development 69

¥ = (S,0P)

S := {B_-Component, B_Message, B_State,
B_Parameter}
OP :=
name : B_Component — String

Component + sender +sent Message
+namestring name : B_Message — String

+name:String "
9 |+ receiver treceived T

name : B_State — String

name : B_Parameter — String

" sourte | +target sender : B_Message — B_Component

Parameter *parameters state receiver : B_Message — B_Component

Fname:String +name: String sent : (B_Message, B_.Component) — Bool
+type:String

received : (B_Message, B_Component) — Bool
source : B_Message — B_State

target : B_Message — B_State

parameters : (B_Message, B_Parameter) — Bool

Figure 5.14: Source Metamodel

parans(m pl): =true
parans(m): =true
endext end

sender (M) : =pr oxy
recei ver(m: =n ddl ewar e
endext end

endi f

The functionanchor St at e is used in theResolutionsub-machine in order to have the last
state of the registration message as the first state of tlduties message sequence. In this
sub-machineanchor St at e is updated at each iteration. In particular, the rule geasra
proper target sequence message for each component thai basésolved. For example, the
sent messag€A check that the TM component send to thBank Account (see Fig[hd3.a
and Fig.[5Y) gives place to the resolution of the bank adcexpressed through the message
get I OR(* * ATM BA' ’) in the target model depicted in Fig_5l13.b. This messageciadhe
reception of the result that can @l | or contain the requesteidor . In particular, for each
component to which a message is sent (seed)na corresponding sequence of messages for its
resolution is generated (see lines32): anhj ect Ref Ret ri eval message is generated and the
target state is the source one of a gener&exlil t message. Finally, @ondi t i on message is
created in order to enable the check of the returned objeatifder.

asm Resol uti on

choose x in C Message : (sender(x)=conponent) and (resol ved(receiver(x))=undef)

extend CB_ObjectRefRetrieval wth nl, CB Result with n2 and
CB_Condition with n8 and CB_State with b,c,d

sour ce(ml) : =anchor St at e

target(nml): =b

extend CB_Paraneter with pl
nane(pl): =nanme(recei ver (x)
par ans(ni, pl): =true

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

1
2
3
4
5
6
7
8
9

70 Chapter 5. AAMT Benchmark
3 =(S,0P)
S := {CB_-Component, C B_Message, C B_Registration
C'B_Result, C B_State, C B_.Condition,
CB_Parameter}
Object Re fRetrieval oP =
name : CB_Component — String
P ior : CB_Component — Integer
Component |+ sender _+sent— name : C B_Message — String
essage
e +name:string — name : CB_State — String
Fraceiver T name : C B_Parameter — String
sender : CB_Message — C B_Component
N e S Sundiion receiver : CB_Message — C B_Component
Parameter ¥ parameters State sent : (CB-Message, C B_-Component) — Bool
+name:string +name:String + targetifMull
received : (CB_Message, C B_.Component) — Bool
source : CB_Message — C'B_State
target : CB_Message — C B_State
parameters : (CB_Message, C B_Parameter) — Bool
Figure 5.15: Target Metamodel
endext end
sender () : =pr oxy
recei ver (ml): =m ddl ewar e
source(n?): =b
target (n): =c
extend CB_Paraneter with p2
nanme(p2): =ior(receiver(x))
parans(n2, p2): =true
endext end
sender (nR) : =m ddl ewar e
recei ver (nR): =proxy
target (nB): =d
target!|fNul | (nB): =anchor St at e
anchor St at e: =d
endext end
endchoose
endasm

Once the messages devoted to the registration and resolitiases have been generated, the
messages in the source model can be transformed. This taskasnplished by means of the

Message2Messagasnsformation rule. Given a state of the source modeliitsfiarms all outgo-

ing messages and manages the funchiorder explained above. The message transformation is

distinguished intcentMessage2MessagerlReceivedMessage2Messagesrder to satisfy the
requirementfk3andR4respectively.

- - Message2Messages(sour ceCurr St at e:

do forall

X in C_Message :

i f (sender(x)=conponent) then
- - Sent Message2Messages(x)

bor der (sour ceCurr St at e) : =undef

else if (receiver(x)=conponent)
- - Recei vedMessage2Messages(x)

St at e)

(source(x)=sourceCurr St at e)

10
11
12
13
14
15
16
17
18
19

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

5.2 AAMT for Middleware Based System Development 71

bor der (sour ceCurr St at e) : =undef
endi f

if (transforned(target(x))=undef) then
bor der (target(x)): =true
endi f

enddo

endasm

Since the logic besides the two transformation rules is #mees in the following onlySentMes-
sage2Messagewill be described. However, the reader can refer id [24] aaw download the
complete implementation of the transformation rule$ _a}.[35

Given a sent messagein the source model two messages and one state is generatedtanget
one (see line). The functionssour ce, t ar get for the new messages are properly updated. The
functiont r ansf or ned is used as it maintains the reference to the state in thet targeel that
has been generated from a state in the source one. The fusistiader , r ecei ver as well as

par anet er s of each of the generated message are updated.

- - Sent Message2Messages(m : Message)
extend CB State with b and CB_Message with nml, with n?2

if (transforned(source(n)) = undef then
sour ce(ml): =anchor St at e
el se
source(ml): =transformed(source(m)
endi f
target (ml): =b
do forall p in B_Paraneter : paraneters(m p)
extend CB_Paraneter with t
name(t): =nane(p)
paraneters(ni,t): =true
endext end
enddo
sender (ml) : =conponent
recei ver (ml) : =pr oxy

source(n?): =b
if (transforned(target(m)=undef) then
extend CB State with c
transforned(target(m):=c
target(nR): =c
endext end
el se
target (nR):=transforned(target(m)
endi f

do forall p in B_Paraneter : paraneters(ng,p)
extend CB_Paraneter with t
name(t): =nane(p)
paraneters(nR,t): =true
endext end
enddo
sender (nR2) : =pr oxy
receiver (n2): =m ddl ewar e
endext end

72 Chapter 5. AAMT Benchmark

5.2.3 HROPERTYPRESERVING TRANSFORMATIONS

As already discussed, by automating the application of itti@tectural decomposability theorem,
the correctness of the target models is granted withoutdlee o validate each of them w.r.t. the
theorem hypothesis. In particular, we need to prove thagénerated state machines are satisfying
the V' properties listed in SeE_5.2.1 by construction. The folfmpsketches such a proof.

A generated state machine is obtained by means of precissfdarenation steps which consist
of an initialization step and subsequent message tranafamns. The first step generates a frag-
ment of the target model which includes the registratiorhef¢component whose proxy is being
generated and the identification of all the components whbiw it communicates via CORBA.
The initialization step suffices to guarantee that the pitageel’1 and V2 are preserved. In fact,
the model fragments are generated by means oR#éggstrationand Resolutionrules described
in the previous section which are fired in the right order byarmseof theMAIN rule. The rule
Registrationassures the preservation of the registration propettyy generating a component
registration message (and the corresponding source aget sates) as shown in Fig_513.h.
Analogously, the property’2 is guaranteed by the ruResolutiorsince such a rule generates the
resolve messages to the middleware to retrieve the compateiifiers as stated by 2.

5.3 GVING DYNAMIC SEMANTICS TODSLS THROUGHASMS

This section describes another application of ASMs in theexd of MDE. In particular, over the
last years, MDE platforms evolved from tools based on fixetarmeodels (e.g. a UML CASE
tool with ad-hoc Java code generation facilities) to comsgstems with variable metamodels.
In MDE, metamodels are used to specify the conceptual steicif modeling languages. The
flexibility in coping with an open set of metamodels enablestiandling of a variety of Domain
Specific Languages (DSLS), i.e. languages which are cloagieen problem domain and distant
from the underlying technological assets. The current ME@ms are increasingly adopted to
solve such problems as code generation [92], semanticrteoperability [18], checking mod-
els [15], and data integration [B2]. However, these platfoare often limited to specifying the
syntactical aspects of modeling languages such as absmdctoncrete syntax. Definition of
precise models and performing various tasks on these medelsas reasoning, simulation, val-
idation, verification, and others require that precise s#itsof models and modeling languages
are available. To achieve this, existing MDE platforms hewvbe extended with capabilities for
defining language semantics.

In this section we use the ATLAS Model Management Architee{AMMA) as a framework for
defining DSLs following MDE principles. AMMA treats a DSL ascallection of coordinated
models, which are defined using a set of core DSLs. The cusedrdf core DSLs allows to cope
with most syntactic and transformation definition issuelsimguage definition. Formal semantics
specifications are necessary to have a precise definitioheofmeaning of the models. In this
respect, AMMA should be extended to broaden the approaactntaustics definition. This section
presents an extension of AMMA to specify the dynamic sersardf a wide range of DSLs by
means of ASMs, which are introduced in the framework as ddéurtore DSL. Thus, DSLs can
be defined not only by their abstract and concrete syntaxlotiy their semantics in a uniform
and systematic way. Having the support for a precise sensagfiecification of DSLs permits

5.3 Giving Dynamic Semantics to DSLs through ASMs 73

to improve the design and the validation phases of the lajgl®ing developed. Executable
ASMs descriptions will be a reference for what can and whatra@ happen in the execution of

models defined by means of the considered DSLs. Furtherith@régnguage developers have the
possibility to deeply understand the defined DSL exploitiogurate and executable high-level
models of the language itself.

The proposed approach is validated by specifying the dyna@inantics of the ATL transfor-
mation language described in Chhp. 2. ASMs specificatioptudag the intentions of the ATL
language designer are formally defined. They permit thelatbn of model transformations that
can be applied by means of the available ATL implementatidhthe discussion is organized as
follows. Sectio 5311 provides the basic definitions anstdbes the interpretation of DSLs in
a MDE setting. Sectioff’5.3.3 describes the current statecoAMMA framework. Sectioi 5.3 4
presents the extension of AMMA with ASMs. In Sectlon bl 3.5aestudy is proposed where the
dynamic semantics of ATL is proposed.

5.3.1 DoOMAIN-SPECIFICLANGUAGES AND MODELS

DSLs are languages able to raise the level of abstractioanigeyoding by specifying programs

using domain concepts[I118]. In particular, by means of D$he development of systems can
be realized by considering only abstractions and knowlddya the domain of interest. This

contrasts with General Purpose Languages (GPLs), like G+Jawa, that are supposed to be
applied for much more generic tasks in multiple applicadomains. By using a DSL the designer
does not have to be aware of implementation intricacieschvhare distant from the concepts of
the system being implemented and the domain the systemracEurthermore, operations like

debugging or verification can be entirely performed witthiia tomain boundaries.

Over the years, many DSLs have been introduced in diffengplication domains (telecommu-
nications, multimedia, databases, software architestiieb management, etc.), each proposing
constructs and concepts familiar to experts and profealamorking in those domains. However,
the development of a DSL is often a complex and onerous tagsleed understanding of the do-
main is required to perform the necessary analysis andditeddi the requirements the language
has to meet.

As any other computer language (including GPLSs), a DSL stssif concrete and abstract syntax
definition and possibly a semantics definition, which may dxeniilated at various degrees of
preciseness and formality. In the context of MDE we percaifdSL as a collection of coordinated
models. We are in this way, leveraging the unification powenodels [12]. Each of the models
composing a DSL specifies one of the following language dspec

e Domain definition metamodehs we discussed before, the basic distinction between DSLs
and GPLs is based on the relation to a given domain. DSLs haleady identified, con-
crete problem domain. Programs (sentences) in a DSL reyiresacrete states of affairs
in this domain. A conceptualization of the domain is an austentity that captures the
commonalities among the possible state of affairs. It thices the basic abstractions of
the domain and their mutual relations. Once such an abgndity is explicitly represented
as a model it becomes a metamodel for the models expresskd DSL. We refer to this

74 Chapter 5. AAMT Benchmark

metamodel as a Domain Definition MetaModel (DDMM). It playsemtral role in the def-
inition of the DSL. For example, a DSL for directed graph npafetion will contain the
concepts of nodes and edges, and will state that an edge magatoa source node to a
target node. Similarly, a DSL for Petri nets will contain ttencepts of places, transitions
and arcs. Furthermore, the metamodel should state thategamly between places and
transitions;

e Concrete syntaxesA DSL may have different concrete syntaxes, which are deflmed
transformation models that maps the DDMM onto display swfaetamodels. Examples
of display surface metamodels are SVG or DOTI [51], but alsoL XK possible concrete
syntax of a Petri net DSL may be defined by mapping from plazesdles, from transitions
to rectangles, and from arcs to arrows. The display surfest@ammodel in this case has the
concepts of Circle, Rectangle, and Arrow;

e Dynamic semantics.Generally, DSLs have different types of semantics. For g@tem
OWL [1Z1] is a DSL for defining ontologies. The semantics of DW defined in model
theoretic terms. The semantics is static, that is, the nafahanges in ontologies happen-
ing over time is not captured. Many DSLs have a dynamic seosgmhbhased on the notion
of transitions from state to state that happen in time. Dyina®mantics may be given in
multiple ways, for example, by mapping to another DSL havigglf a dynamic semantics
or even by means of a GPL. Here, we focus on DSLs with dynanm@gécs;

e Additional operations over DSLdn addition to canonical execution governed by the dy-
namic semantics, there are plenty of other possible opesatnanipulating programs writ-
ten in a given DSL. Each may be defined by a mapping represéytedmodel transfor-
mation. For example, if one wishes to query DSL programsaadstrd mapping of the
DDMM onto Prolog may be useful. The study of these operataes DSLs presents many
challenges and is currently an open research subject.

The semantics of a DSL captures the effect of “sentencediefanguage. As previously said,
here we are interested dynamic semantioghich deals with the behavior expressed by a language
term (what somethingoe$, contrarily to thestatic semanticsvhich express the structural mean-
ing of a language term (what somethiisy Unfortunately, specifying the semantics of languages
is a difficult task and there is not a generally accepted fismafor it. Over the last decades sev-
eral semantics formalisms have been proposed but none ethasguniversal and commonplace,
as for instance happened to the EBNF for context-free sgsta@epending on the application pur-
pose (formalization, simulation, verification, consigigichecking, etc.) a number of formalisms
are available (Object-Z_[112], ASMER0], Structured Opierzal Semantics (SOS)[10D0], etc.)

Since we are interested in language design our attenti@viged towards those mathematical for-
malisms which present enough pragmatic qualities allowhegdesigner to convey her/his design
decisions into documents being still able to backtrack, mexize, and enhance specifications. In
this respect, ASMs is the formalism which has been chosebré@dening AMMA to the specifi-
cation of DSL semantics. The choice has several justifinatid SMs have been extensively used
in a number of applications and also for giving the semarttdsill scale languages, such as C,
C++, Java, Oberon, Prolog, SDL, VHDL, to mention a féw [1].M&captures in mathematically
rigorous form the fundamental operational intuitions ofngaiting. The provided notation has a
simple syntax that permits to write specifications that carséen as “pseudocode over abstract
data”. ASMs allows one to specify language interpreters $eave a number of purposes such

5.3 Giving Dynamic Semantics to DSLs through ASMs 75

asdesignand validation of languages[[113]. Theesigngoal is to provide an implementation
independent definition which directly reflects the intuisoand design decisions underlying the
language and which supports the programmer’s understgmdiprograms written with the lan-
guage being developed. Being more precise, ASMs will be tesémmally specify the behaviour
of the language sentences. ASMs descriptions will be defiyetie language designers in order
to formally produce a reference for what can and what can appén in the execution of models
defined by means of the language being developed.val@ation concern is to provide the lan-
guage implementors the possibility to check their basidgtledecisions against an accurate and
executable high-level model of the language itself.

5.3.2 DSL DrNAMIC SEMANTICS SPECIFICATION WITH ASMS

In general, giving dynamic semantics to a DSL with ASMs cstssbf the specification of an
abstract machine able to interpret programs defined by nmadahe given DSL. The ASMs spec-
ification of such a machine is composed of the following parts

e Abstract Data Model (ADM)It consists of universes and functions corresponding to the
constructs of the language and to all the additional elespémmguage dependent, that are
necessary for modeling dynamics (like environments, staenfigurations, etc.);

e Initialization Rules.They encode the source program that has been defined witlivire g
DSL. The encoding is based on the abstract data model. I dive initial state of the
abstract machine;

e Operational Rules.The meaning of the program is defined by means of operatiaed r
expressed in form of transition rules. They are conditigntited starting from the given
instance of the ADM, modifying the dynamic elements like ismwment, state etc. The
evolution of such elements gives the dynamic semanticseoptbgram and simulates its
behaviour.

The remaining of the section shows how ASMs can be used in a Bddihg for specifying the
dynamic semantics of DSLs whose syntactical parts have peen by means of the AMMA
facilities briefly presented in the next section.

5.3.3 THE AMMA F RAMEWORK

AMMA (A TLAS Model Management Architecture) is an MDE framework for dimy DSLs. It
provides tools to specify different aspects of a DSL (sed@ef.31). These tools are based on
specific languages. The domain of each of this tool corredpom one of the aspects of a DSL.
AMMA is currently organized around a set of three core DSLs:

e KM3. The Domain Definition MetaModel (DDMM) of a DSL is captured a&M3 [69]
metamodel. KM3 is based on the same core concepts used in RBIG[96] and EM-
F/Ecore [41]: classes, attributes and references. Compgar&OF and Ecore, KM3 is

76 Chapter 5. AAMT Benchmark

Figure 5.16: Present State of AMMA

focused on metamodeling concepts only. For instance, tree clade generation facilities
offered by Ecore are not supported by KM3. The default cdeggntax of KM3 is a simple
text-based notation.

e ATL.Transformations between DSLs are represented as ATL [70]4A Transformation
Language) model transformations. Such transformationseaused to implement the se-
mantics of a source DSL in terms of the semantics of a targét D#her potential uses of
ATL are: checking model§]15], computing metrics on modets,

e TCS.Textual concrete syntaxes of DSLs are specified in TCS (&&xX@oncrete Syntax).
This DSL captures typical syntactical concepts like keydgprsymbols, and sequencing
(i.e. the order in which elements appear in the text). Wiik thformation, models can
be serialized as text and text can be parsed into models. tderbdel translation is, for
instance, achieved by combining the KM3 metamodel and TC&ehaf a DSL and gener-
ating a context-free grammatr.

Figure[RI6 gives an overview of AMMA as a set of core DSLs. #mtipular, DSLx stands
for any DSL. The DDMM of each DSL is specified in KM3. TCS is ugedspecify concrete
syntaxes. ATL transformationsM32Ecore ATL2VM and TCS2EBNFare used to respecively
map the semantics of KM3 to EMF/Ecore, of ATL to the ATL Virtdachine, and of TCS to
EBNF (Extended Backus-Naur Form).

Using AMMA does not necessarily mean using only these thoee DSLs. For instance, MOF or
Ecore metamodels can also be used and transformed from &hd3oMoreover, UML class dia-
grams specifying metamodels can be used too (i.e. with the2NMDF.atl transformation). Other
AMMA DSLs are also currently the subject of active reseafoh,example AMW [82] (ATLAS
Model Weaver) and AM317] (ALAs MegaModel Management). An overview of AMMA in-
cluding AMW and AM3 can also be found i J116].

5.3.4 KTENDING AMMA wWITH ASMS

There is currently no tool in AMMA to formally capture ttdynamic semanticef DSLs. The
main principle on which AMMA is built is to consider everytly as a model[[12]. Following this

5.3 Giving Dynamic Semantics to DSLs through ASMs 77

4 TCS2EBNF ‘

Figure 5.17: Extending AMMA with ASMs

unification idea, the dynamic semantics of a DSL should atsspgecified as a model. What is
required is a DSL in which to specify this semantic model.

We decided to integrate ASMs in AMMA instead of designing & mSL from scratch. For this
purpose, we need to specify a KM3 metamodel and a TCS modélStts. Figurd5.1l7 shows
how the ASMs DSL is defined on top of AMMA: its DDMM is specified KM3 whereas its

concrete syntax is specified in TCS. The KM3 metamodel for AS&/available on the Eclipse
GMT website [10]. ASMs may now be considered as an AMMA DSLidNthat there is no
semantics specification for ASMs. The reason is that we gesstimantics by extracting ASMs
models into programs that we can compile with an ASMs compile

The next step is to use our newly created ASMs DSL. Next secfives details on how the ATL
dynamic semantics can be specified with ASMs giving placdé¢aléefinedinarrow going from
ATL.xasnto the ASMs DSL depicted in Fig.5117.

5.3.5 DyNAMIC SEMANTICS OFATL

The operational context of ATL is shown in the left hand sifiEig.[EI8. An ATL transformation

is a model W 47;) conforming to the ATL metamodeMM 411) and it is applied to a source
model (M,,) in order to generate a target ord,). The source and the target models conform to
the sourceNIM,,) and targetMM,;) metamodels respectively. Parts of the abstract stateinmesch
(in the right side of Fig-5.18) able to interpret ATL transfations are automatically derived from
the components in the left hand side of the figure.

The Abstract Data Model (ADM) consists of declarations of universes and functiossdito for-
mally encode the given ATL transformation and the sourcetargkt models. These declarations
can be automatically obtained via model transformationsnfmetamodels described in KM3.
For example, we transform the KM3 fragment of tetriNet metamodel (Fid_5.19) to the corre-
sponding ASMs code in Fi.5P0. THKVI32ASMATL transformation performs this canonical
translation. For each class in the metamodel, a correspgndiiverse is specified. If the class
is an extension of other classes in the metamodel, the gtibgséacility of ASMs is used. For
example, the clasBansition (Fig.[519) is transformed to the univerBetriNet_Transition declared

1
2
3
4
5

78 Chapter 5. AAMT Benchmark

confarmsTo
Km3
o conformsTo_ _ - ——-——— e
T e R ATLSemantics.xasm

% ~s s Abstract Data Model
= 7 Trace link

Initialization Rules

conformsTo conformsTo R e

Bl [

S S s e e P Operational Rules

oo T Semantic Rules

S5 KM32ASM

— == > Model2ASM

Figure 5.18: Structure of the dynamic semantics specificaif ATL

as a subset of the univerBetriNet_Element. The references of the classes are encoded as boolean
functions. For example, the incoming arcs of a transitioh & encoded with the functioim-
comingArc whose value will be true for all the transitions and arcs lfis tase place to transition
arcs) that are connected and false otherwise.

The ADM also includes the declaration of universes and fanstused for the specification of
the dynamic part that evolves during the execution of an ABlngformation. This declaration
cannot be automatically generated as it depends on thetmpedarules that specify the dynamic
semantics of ATL. In particular, as explained in the follogithe provided ATL dynamic seman-
tics is based on the execution of declarative transfornmatides Executing a rule on a match
(i.e. elements of the source model) creates a trace linkétetes three components: the rule, the
match and the newly created elements in the target modelufikierseTraceLink (see Figla21)
contains the trace links that are generated during the &reacof the transformations. The source
and target elements of the trace link are maintained in theetgesSourceElement andTargetEle-
ment respectively. For each of them the functiaisment andpatternElement are provided. The
function element returns the element of the source model that has matchedthatgiven rule.
When applied to an element ffargetElement universe, it returns the new element that has been
created in the target model. ThatternElement function, when applied to a source element, re-
turns the source pattern definition of the corresponding Allé. The source pattern is a member
of universeATL_SimplelnPatternElement. This universe is derived from the ATL metamodel. In a
similar way, when the function is applied to a target elemigmeturns the target pattern member
of the universeATL_SimpleOutPatternElement (line 12).

class Transition extends El enent {
reference i ncom ngArc[1-+] : PlaceToTransition oppositeX to;
reference outgoingArc[1-*] : TransitionToPl ace oppositeC from

Figure 5.19: Part of the PetriNet Metamodel expressed in KM3

1
2
3

5.3 Giving Dynamic Semantics to DSLs through ASMs 79

uni verse Petri Net_Transition < Petri Net_ El enent
function incom ngArc(a:PetriNet_Transition, b:PetriNet_PlaceToTransition)->Bool
function outgoingArc(a: Petri Net_Transition, b:PetriNet_TransitionToPl ace)->Bool

Figure 5.20: Part of the PetriNet Metamodel encoding

uni verse Traceli nk
function rule(t:TraceLink, r: ATL_MatchedRul e)->Bool
function sourcePattern(t: TraceLi nk, x: Sour ceEl enent) - >Bool
function targetPattern(t: TracelLi nk, x: Target El enent) - >Bool

uni ver se Sour ceEl enent
function el enment (t: SourceEl enent) ->_
function patternEl ement(t: Sour ceEl ement) - >ATL_Si npl el nPat t er nEl enent

uni ver se Tar get El enent
function el enment(t: Target El enent) ->_
function patternEl ement(t: Target El ement) - >ATL_Si npl eCut Pat t er nEl enent

Figure 5.21: ASM specification for the trace links managemen

The Initialization Rules of the machine depicted in Fif.5]18 encode in a formal waysthece
model and the ATL transformation that has to be interpretdek encoding is based on the ADM
previously described and it gives the initial state of thetedzt machine. This encoding can be au-
tomatically obtained by transforming the source model &rdXTL program (see thielodel2ASM
transformation in Fid.5.18).

The Operational Rules of the machine in Figi_5.18 play a key role in the specificatifrthe
dynamic semantics of ATL. In particular, tlBemantic rulepart describes the dynamics related
to the execution of ATL transformation rules. These ruldsrioret the given ATL transformation
applied to the provided source mod#l) and generate a formal representation of the target model

(Mp).

The execution of ATL transformation rules can be describedhkans of an algorithni[70] con-
sisting of two steps. In the first step all the source pattefrie rules are matched and the target
elements and trace links are created. In the second stepdhad initializations of the newly
created elements are performed on the base of the previogslted trace links and following the
bindings specified in the rule target patterns. In the faltlgrthe ASMs specification encoding
the matching and the application of declarative transféionaules are explained with details.

MATCHING RULES The formal specification of the first step of the algorithmaséd on the sub-
machineMatchRule shown in FigLE.2P. This machine is invoked for each matchéglgontained

in the given ATL module. For example, for the module in Figd,2he machine is invoked just
once for the interpretation of thHelace rule. Given a matched rule, the machine searches in the
source model the elements that match the type of the souttampaln the lines-8 the machine
selects the elements that defines the source pattern of ttebiedarule in the universes induced
by the ATL metamodel. Such elements are used in the liGekl for the determination of the
universe identifier (of the source metamodel) containimgeflements that match the source pattern
of the considered rule. For example, for the source pattetineorule in Fig[2Zb, the line$0-11

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

80 Chapter 5. AAMT Benchmark

asm Mat chRul e(e: ATL_Mat chedRul e)
is
choose ip in ATL_InPattern, ipe in ATL_Si npl el nPatternEl enent,
i pet in ATL_Ccl Model El ement, op in ATL_QutPattern
inPattern(e,ip) and el enments(ip, ipe)
and type(ipe,ipet) and outPattern(e, op)
do forall c in
$sVal ue(get Val ue(" nane", (get Val ue("nodel ",ipet))))+"_"
+sVal ue(get Val ue("nane",ipet))$
extend TraceLink with tl and SourceEl enent with se
sourcePattern(tl,se) := true
patternEl enent(se) := ipe
el enent(se) :=c¢
rule(tl,e) :=true
do forall ope in ATL_Si npl eQut Patt er nEl enent
if (elements(op, ope)) then
extend TargetEl enent with te
do forall opet in ATL_Ccl Mbdel El enent
if (type(ope,opet)) then
ext end
$sVal ue(get Val ue(" nanme", get Val ue(" nodel ", opet)))+"_"
+sVal ue(get Val ue("nane", opet)))$ with t
targetPattern(tl, te) := true
elenent(te) :=t
patternEl enent(te) := ope
endext end
endi f
enddo
endext end
endi f
enddo
endext end
enddo
endchoose
endasm

Figure 5.22: MatchRule sub-machine specification

return the universe identifidtetriNet_Place of the sourcePetriNet metamodel. To obtain this the
external functiongetValue andsValue are used to handle primitive values.

For each element of the source model contained in the oldtaineerse, the universdsaceLink
andSourceElement have to be extended and the corresponding functions haweupdated (lines
12-16). Furthermore, the univergargetElement has to be extended for each new element that will
be created according to the target pattern of the matchedlinés18-32). The identifier of the
universes belonging to the target metamodel that have tatbaded are determined by means of
the code in the lineg3-24. For example, for the transformation of HIg.12.5, the urgesrthat will

be extended by th#®atchedRule machine will bePNML_Place, PNML_Name and PNML_Label
belonging to the encoding of tHRNML metamodel.

APPLYING RULES After the creation of the trace links induced by the matchdés; the feature
initializations of the newly created elements have to béopered. For example, during the ex-
ecution of theMatchedRule machine on the rul®lace in Fig.[Z3, thePNML_Place universe is

© 0 N O O b~ WN PP

5.4 Conclusions 81

do forall tl in TraceLink
do forall te : (targetPattern(tl,te))
choose pe : patternEl enent(te)=pe
do forall b in ATL_Bi nding
i f (bi ndi ngs(pe, b)) then
| et VExp = getVal ue("value", b) in
let v = ocl Eval (tl, VvExp) in
set Val ue(sVal ue(get Val ue(" propertyNanme", b)), elenent(te), resolve(v))
endl et
end| et
endi f
enddo
endchoose
enddo
enddo

Figure 5.23: Apply rule specification

extended with new elements for which the functior@ne id andlocation have to be initialized.
The ASMs rules in Fid_5.23 set these functions.

For all the trace links, all the bindings of each target patteave to be evaluated. The bindings
are contained in thATL_Binding universe corresponding to tieénding concept of the ATL meta-
model. The propertiegalue and propertyName are also part of the binding specification in the
metamodel. For example in the bindingcati on <- e. | ocati on (line 13, Fig.[Z3),proper-
tyName corresponds to the attribut@cat i on whereavalue is the OCL expressioa. | ocat i on.
The lines6-10 play a key role for the feature initializations of the newneénts added during the
first step of the algorithm. The external functiociEval is called for the evaluation of the OCL ex-
pression of the binding. The value obtained by this evadnafsee line7), will be then used for the
initialization of the target element feature named withutakie ofpropertyName (see line8). The
availableoclEval implementation is able to evaluate basic OCL expressiohs.ifiprovement of
this function for supporting the evaluation of complex OCGlpeessions could be done by using
an available work that describes the dynamic semantics af @by using ASMs[[4[7]. Due to
space limitation, the ASMs code of tlhelEval function is not provided here. After the expression
of a binding has been evaluated, the resulting value is Bsilved before being assigned to the
corresponding target element. For this resolution (#in€ig.[5.2Z3) the external functiomsolve

is used. The resolution depends on the type of the valueelfythe is primitive then the value is
simply returned. If the type is a metamodel type there arepessibilities: when the value is a
target element (like lina1 in Fig.[Z8), it is simply returned; when the value is a sowetmment
(line 12, Fig.[ZB), it is first resolved into a target element usiregérlinks. The resolution results
in an element from the target model which is then returnex (b).

All the ASMs specifications and the ATL transformations dixe here are available for down-
load from [10]. Furthermore, the given semantics specifioahas been validated by formally
interpreting the already availabRetriNet2PNLM[LJ] ATL transformation.

5.4 CONCLUSIONS

This chapter reported three different applications of A4MTthe first one, the approach was
used to support a model-driven methodology for the devetoirof data-intensive Web applica-
tions. Starting from conceptual models that do not refemtptachnological asset, formal model

82 Chapter 5. AAMT Benchmark

transformations are used to obtain several PSMs which ibesitre different aspects of an MVC
conformant J2EE application. Compared with techniquesclviilow one-stepmodel-to-code
generation, flexible and practical model transformatiamsagace traceability and consistency be-
tween models and code, since they tend to diverge as sooraagashare manually operated on
the generated applications. Complex transformation nuky® developed to generated relational
algebra expressions with respect to the transitive closgéven relations in the source model.

Another case study illustrated how to engineer the ardhitatdecomposability theorem to the
analysis of middleware-based applications by automéaticgnerating the proxies needed by the
components in order to properly interact with each othertiea CORBA middleware. A4MT
model transformations, are used to generate the proxy moeglired by the middleware-based
SA. Such transformations are expressed formally and urgarabgly enabling the automatic ap-
plication of the architectural decomposability theorem.tHis way, the correctness of the target
models is granted without the need to validate each of them.

In the last application A4AMT was used to specify the dynareimantics of Domain Specific Lan-
guages in the context of Model Driven Engineering. Since weavinterested in language design,
our attention was devoted towards those mathematical fmmms which present enough prag-
matic qualities allowing the designer to convey her/higgiedecisions into documents being still
able to backtrack, modularize, and enhance specificatidms chapter proposed A4MT as a good
candidate to cope with these issues and a case study cogg$tihe dynamic semantics speci-
fication of ATL was presented. The proposed approach idlgtrielated to [29] in which ASMs
are used as semantic framework to define the semantics oflimptenguages. The proposal is
based on basic behavioral abstractions, caltantic unitsthat are tailored for the considered
problem domain. Semantic units are specified with ASMs aed #nchored by means of model
transformations to the abstract syntax of the modelinguagg being specified. The major differ-
ence with the work described in this thesis is that the ASMsifdism is integrated in the AMMA
platform. In that way the semantic specifications are modetsmay be manipulated by opera-
tions over models (e.g. model transformations). In the sgimanchoring approach the semantics
specification is given outside the model engineering platfan this case the Generic Modeling
Environment (GME)[[7B].

CHAPTERG

A4AMT-BASED MODEL WEAVING

The separation of concerns in software system modelingdavibie constructions of large and
monolithic models which are difficult to handle, maintairdereuse. At the same time, having
different models (each one describing a certain concermor©aih) requires their integration into
a final model representing the entire dom&n]101]. As saidhapteEPmodel weavingypically
exploited for database metadata integration and evolutiam be used for setting fine-grained re-
lationships between different models or metamodels andutixeg) operations on them based on
link semantics[[12]. This chapter describes how AAMT can &edufor specifying the seman-
tics of weaving operators used for defining weaving modetdarming to appropriate weaving
metamodels obtained by extending a generic one (inspirg8jy Sectiorf &1l proposes weaving
models to specify formal relations between the differeetwd produced during the model driven
development of Web applications. Sect[onl 6.2 discussesgbef weaving operators to extend
DUAL LY, a UML profile conceived to specify software architecturedeis.

6.1 WEAVING CONCERNS OFWEB APPLICATIONS

Today’s Web applications require instruments and teclesdble to face their complexity which
noticeably increased at the expense of productivity anditgudactors. To cope with the techni-
cal difficulties of these systems many design methodololgéa® been proposed like Hefa]49],
OO-H [58], OOHDM [108], UWE [75], W2000[[54], WebMLL[27] and &bile [39]. All of them
adopt a number of notations, even if as expected many caneeptsimilar and could constitute
a common metamodel for the Web domdinl[76]. In particulazséhmethodologies propose sev-
eral views comprising at least a conceptual, a navigatiehaapresentation model although with
different terminologies. While the constructs specifyguch aspects can be precisely unified,
consistency among them is guaranteed by less formal negatidsually, models are kept related
through name conventions exploiting shared namespacesdtiar on each of them or by means
of tools that use internal mechanisms hidden to the develdjpe consequent lack of abstraction
in the separation between the concerns and their conneatmid hamper some quality factors,
like reuse of models which result intertwined and not autooosly maintainable. Furthermore,
having models that explicitly express relations amongststburce view specifications is a neces-
sary prerequisite to the use of general purpose theoriefoaedabling tool chaing119].

This section proposes weaving modéld [12] to specify fomslations between the different views
produced during the development of Web applications. Thavimg models do not interfere with
the definition of the views on either side, achieving a clegrasation of them and their connec-
tions. Furthermore, designers can gain a deeper undeirsgaadout the explicit dependencies

83

84 Chapter 6. A4MT-based Model Weaving

between the parts, and they are able to recognise the carssrpuof local changes to the whole
system. Finally, the weaving descriptions enable the aaticnprocessing and manipulation of
the related models executing operations based on the Imh&rstics.

In the proposed approach, the source views are woven togaticerding to weaving models
whose semantics is given by means of automated model tramstions that are mathematically
specified through A4MT. The proposed constructs for the \@pecifications are inspired 0]76]
which represents a step towards a common reference methfoodeb modeling languages.
The views and the weaving models conform to metamodels thatracisely defined in KM3[69]
which is a text based language for the description of metafsod prototypical implementation
of the approach is available at]35] supporting the develamrof all the source artifacts by using
graphical editors which have been realized through thepEelGraphical Modeling Framework
(GMF) [43]. Furthermore, XASM<]8] based transformations provided to define the semantics
of the given weaving operators and to generate equivalesemvonodels defined according to
target Web modeling languages.

The presentation of the approach is based on a running egaaipked to develop a simple Web
application. Once the source views are defined, they areededand kept consistent with respect
to weaving descriptions that enable the generation of Bpations written by means of two target
modeling languages that are Webile and WebML. The sourceerns are produced by using
simple metamodels in order to give a flavor of the approaclehviiainly focuses on the weaving
operations, despite the limited expressiveness of themumetals whose discussion is beyond the
scope of this work.

The structure of the section is as follows: next subsectiates the problem we want to deal with
and introduces the proposed solution. Sediion b.1.2 riitest the metamodels used to describe
the source views that will be related through the weavingef®discussed in Sectian 6.11.3. Then
A4MT will be used in Sectiol’6.71.4 to specify the automatedisformations for weaving together
the source concerns.

6.1.1 DeEALING WITH WEB APPLICATION CONCERNS

Most of the current methodologies for Web application depeient propose a humber of views
comprising at least aonceptual a navigationand apresentationmodel. The first one consists
of the data specification the application being modeled sethaon. Usually well-known object-
oriented modeling principles or Entity/Relationship (Efggrams|[30] are used for this purpose.
The navigation model describes those objects the user aah:rby means of concepts likede,

Li nk and their specializations, the designer specifies the attiseventually the access primi-
tives which are usual in hypermedia applications. Findlig presentation model specifies how
navigation nodes have to be graphically arranged in theeptaon space by means of concepts
like Locat i on and its specializations.

The constructs provided by the available methodologiesnagirto specify the concerns of a Web
application can be precisely unified into a common metamiikizin [[/6]. On the contrary the

consistency among the views is guaranteed by less fornaiaes$. In fact, the formalisms specify
under which conditions the views can be integrated or cdittr&ach other through name con-
ventions and/or ad-hoc tool support. For instance, [Eigpfesents a small fragment of an OO-H

6.1 Weaving Concerns of Web Applications 85

l
3% e e |
Track |
3 ?‘5'* 0.4 Pliname isAssigr‘JedPayer
T ~|description |
0l ~|/totalPapersTrack
~|/totalPapersAccepted -
" |/totalPapersRejected
- BlsnewTrack) 1
] 1,4
e
0"
| <<singleton>> Conference |
Mname
_2 abstractSubmissionDL
{E2paperSubmissionDL
| R4 reviewDL o
,,,,, | E4|notificationDL | <<enur
¥ cameraReadyDL I -
| B8 processstatus E : ig;:'
rsQ) <<enumeration>>PaperStatus I “°"fe’e“”3;§e | Peceh:
accepted : e ’ PCMe‘
P irejected ‘ S newConference() i < :::::C';'
i |toBeDiscussed - changeConferenceStatus() |
e | ilchangeConferenceData() I
ence.population>0]"
e
| Conference: Conference
name(V)
| abstractSubmissionDL(V)
| paperSubmissionDL(V) Track: Track
reviewDL(V) .
notificationDL(V) name(V)
cameraReadyDL(V) i Tre 0] description(V)
processStatus(V) il acks =
conferenceDate(V) :)—-—‘*‘ﬁ T - {£>newTrac
conferenceURL(V) Ls: “Create Track
s
changeConferenceStatus
chanfgonferencebam Li:"Subjacts”
Subject: Subject
1ce Data"” name(V)

Figure 6.1: A fragment of the OO-H Conference Review Syst@ecBication

specification where the upper and the lower sides correspesgectively, to (portions of) the con-
ceptual and navigation models of a conference review sygteem in [23]. The models are kept
connected by means of a common namespace which occurs osidhesh In particular, th@r ack
andConf er ence entities in the conceptual model are referred by means opoomd class names
whose form isnodeName:entityNamsuch asTr ack: Tr ack and Conf er ence: Conf er ence
nodes in the navigation model (by coincidence the name df th& nodes and the entities are the
same).

A similar problem affects WebML as shown in Hig.16.2 whereafnent of the conference review
system described in[28] is modeled. The consistenciesdmetwhe data and hypertext views
are guaranteed by the WebRatfio Tl124] tool support accortirtge references embedded in the
models. For example, in the navigation model presenteddnitit-hand side of the figure the

data unitConf er ence, in the dashed part of the pageeat e subj ects and tracks, refers

to the data entityConf er ence of the data model in the left-hand side of the figure.

The consequent lack of abstraction in separating betweeadhcerns and thelirard-codedcon-

86 Chapter 6. A4MT-based Model Weaving

Track -
Tl Create subjects and tracks
Description Subjects Tracks
Accepted Papers
Rejected Papers - Traok
Submitted Papers OnN Subfect 15
Acceptance Rate / ’__f/
11 >
S-N oN Mew subject /" Conference Create track
I T } [Newtrack
Conference I% \] L
Name \ | conference / Track
Submission Date , \N_-\-’
Location L .
Review Date 1
Notification Date Create subject Connect conference to subjecljk
Start Date
End Date q i G"
Conference Status Sublact Conference_3ubject

Figure 6.2: A fragment of the WebML Conference Review SysBgacification

nections could reduce some quality factors of models matkiegn intertwined, not autonomously
maintainable and not fully reusable. For example, hypegpecifications with embedded refer-
ences to data structures could be not completely suitaldegign different systems sharing part
of the same navigation structure or page compositions.

To improve the separation of concerns in Web applicatioreld@ment, the approach depicted
in Fig.[633 is proposed. The views are related by additionadies, calledveaving modelflZ]

to explicitly describe the connections between the elembgtonging to the different concern
specifications. Originally introduced for metadata ingigm and evolution in databasds][86],
weaving models represent a useful technique also in sadtwendeling. They can be used for
setting fine grained relationships between models or madats@nd executing operations on
them based on the link semantics. Adhering to the “evergtisra model” principle[[12], model
weaving offers a number of advantages. All the informati@tationships and correspondences
between the concerns, could be described by specializedmvgeaodels avoiding to have large
metamodels for capturing all the aspects of a system. Runtire, metamodels focusing on their
own domain can be individually maintained, and at the same interconnected into a “lattice of
metamodels”[[12]. In other words, each metamodel couldessrt a domain-specific language
dealing with a particular view of a system, while weavindggmpermit describing the aspects both
separately and in combination.

Weaving models conform to precise metamodels defined armibdiged for the given domain. A
weaving metamodel is proposed for specifying how to rel&eents belonging to Web appli-
cation concerns pursuing a better separation of the viewgtair connections. Finally, model
transformations can be applied to the source concern sgaifis for generating woven descrip-
tions with respect to the semantics of the weaving operatdtgs operation is performed in a
formal way by means of model transformations mathemayicatpressed and executed as pro-
posed in Chaptdid 4.

Inspired by the Web development methodologies mentionedeabnd by the metamodel pre-
sented in[[7B], the approach proposes metamodels for esipgethe data, navigation and page
composition perspectives without considering the predemt one. These metamodels could be
extended by taking into account a number of available doutions [76/105], even if this work
mainly focuses on the weaving operations and their appicator the Web domain.

o g~ WN P

6.1 Weaving Concerns of Web Applications 87

g

"

%

R
P ~ KM3toASM i o Webile
\\i\ Specification
ASM-based
Model Transformations

I
! I
| :
! N Data-Composition

I
| I ¥
i
! Composition Model 3 i

N,

I b
| AN)
| P
| : BN
! I o of
] i 3

I
| I
|

Weaving Model
'y
KM3toASM \/ _\\\‘ §§ WebML
__ Concer Specifications Fo Weaving Specifications \ : Specification

Composition-Navigation
Weaving Model

*************** - Tt ASM-based
Model Transformations

Figure 6.3: Overall Approach

In order to have a precise and formal definition of the metatspdhe KM3 [69] language of the
AMMA framework is used. The use of KM3 is mainly justified by isimplicity and flexibility

to write metamodels and to produce domain-specific languafyemumber of experimental KM3
metamodels have been specified both from academia andripdnst are currently collected into
a library that can be found af110]. Furthermore, the avélédol support is able to generate Ecore
and MOF metamodels corresponding to the given KM3 spedificat This facility has been very
helpful for developing the prototypical implementatiortioé approach discussed here. In fact, the
GMF-based graphical editors of the source concerns andimgdescriptions are developed on
top of the corresponding metamodels that have to be nedgssarressed in Ecore. In this sense
the KM3 to Ecore facilities of the KM3 tool have been expldite

In the sequel, each phase of the approach (sed_Elg. 6.3) lzdexbstarting from the next sub-
section where the meta-models devoted to the definitionefkeb application perspectives are
illustrated.

6.1.2 QGONCERN SPECIFICATIONS

This section illustrates the metamodels that will be usediéscribing the data (Sdc._61.2), navi-
gation (Sed_6.1]12) and page composition (Eec.16.1.2) vidWgeb applications according to the

left-most side of Figl8]3. The discussion is based on a ngnekample consisting of a simple

academic Web site that will be considered in the presemtatiohe overall approach. The sample
application is intended to provide information about dépants, affiliated professors and papers
which have been published. From the index of departmentgsiigbr may access the description
of a selected one, e.g. the list of all professors affiliatethat given department, who in turn can
be further selected to access the details in their homejpadeding the publication list.

DATA MODELING The specification of data on which the system under study ssdavill be
given exploiting ER modeling principles giving place to timetamodel in Fig—8l4 and the KM3
code in listing[&I. In particularEnti ti es represent common features that can have typed
Attributes and can be associated with each others by meameladt i onshi ps. For each

of the entities involved in a relationship, a correspondig e description is given.

cl ass Dat aMbdel {
reference entities[0-+*] container : Entity;
reference rel ati onshi ps[0-*] container : Relationship;

}

class Entity {

7

8

9
10
11
12
13
14
15
16
17
18
19

88 Chapter 6. A4MT-based Model Weaving
DataModel relationships Relationship
* [+name : string
entities source |1 1 | target
*
Attribute . Entity enity Role
+name : string attributes — +minCard : string
+contentType : string fname : string t +maxCard : string

Figure 6.4: Data Metamodel

attribute nane : String;
reference attributes[0-+] container : Attribute ;

}

class Attribute {
attribute nane : String;
attribute contentType : String;

}

class Rel ationship {
attribute nane : String ;
ref erence source container :
reference target container :

Rol e;
Rol e;
}

class Role {
attribute mnCard : String;
attribute maxCard : String;
reference entity : Entity ;

}
Listing 6.1: KM3 Specification of the Data Metamodel

The KM3 specification of the data metamodel is canonicallgioied by taking into account the
following rules: each metaclass of the metamodel is defiryetthdo keywordel ass; the keyword
attri but e is used for defining metattributes of the metaclass beingifspe. The relationships
between metaclasses are declared by using the keywvedrelr ence. If a given relationship is a
composition (like the one between the metaclagsetity and Relationshipin Fig.[6.4) the attri-
butioncont ai ner is added to the reference definition. In the rest of the sectar presentation
purposes the metamodels will be graphically representd the interested reader can consider
the corresponding KM3 specifications available for dowdlaa[35].

Palette 4
% Select
'+, Zoom
= Note
= Data *
|2 Entity
< Aftribute

.~ Relationship

[+

|| Department || Professor || Publication

name : string name : string
.)
1.7 surname : string ~ 1.*

email : string

abstract : string
title : string
ref : string

[«

Kl [¥] | Geometric Sha...

Figure 6.5: Sample Data Model

6.1 Weaving Concerns of Web Applications 89

According to the sample application requirements, the @sed metamodel can be used for spec-
ifying the data model shown in Fig—®.5. In particular, th@oeptual structure consists of depart-
ments (modeled with the data entibgpar t ment) which have several professom@r of essor)
and each of them has a number of publicatidhsb(i cat i on). The direction of the relationships
specifies kind of subordination amongst the entities whaspgse will be clarified in the rest of
the section.

NAVIGATION MODELING The navigation view describes the paths a user can folloverimg
of reachable nodes connected through links. This view girdg the navigation map of the
application without defining, for instance, the data thdkt e published or the link properties, i.e.
whether a link should propagate relevant information tdee¢ data in the target node.

NavigationModel

I 1

* *

nodes links

source
1

target
1

NavigationNode \NavigationLink

+name : string

tname : string

Figure 6.6: Navigation Metamodel

Borrowing concepts froni[76], a navigation metamodel isppsed in Fig[[6l6 consisting of di-

rected links Navi gat i onLi nk) and nodesNavi gat i onNode). This is used to define the navi-

gation model of the running example (see Eigl 6.7) which ideng of four nodegpar t nent s,

Pr of essor s, Pr of essor HonePage, Publ i cat i on) connected by links with respect to the ap-
plication requirements.

=8
z Palette ¥
e o [y Select
= . *, Zoom
(_ 4g4 Departments j———————(%34 Professors b = Note o
T ——a— (= Navigation *
\ 224 Node
J _ Link
@ Publication e ¢ -& PrafessorHomePage 5
(o [t | Geometric Sha.. |

Figure 6.7: Sample Navigation Model

ComPOSITION MODELING The structure of pages is captured by a composition modélaaibs

ing from data and navigation details. These information kgl available once this model will be
related to the navigation and data descriptions (sed.SEQ@) 6lnitially, for each page the designer
defines the name and the available contents only and, in tordistinguish whether the data that
will be published activate some link or not, the typasiex or dat a can be used, respectively

(see Fig[&B).

90 Chapter 6. A4MT-based Model Weaving

«enumeration»
ContentType

+data

+index

CompositionModel

« |pages

Page ownerPage contents Content

+ |-name : string
-type : ContentType

+name : string

Figure 6.8: Composition Metamodel

The composition model of the running example is provided i E.9: it specifies the page
Pr of essor Hone as consisting of two content®y of | nf o and Pubs, respectively, which will
be fed later on by the proper data according to the weavingtaadhich will be introduced in the
sequel.

=g
Palette 4
I3 Select

| DepartmentList = |PrafessorsList L Zoom
- = Note

Departments (type=index) Profs (type=index) (= Page Compo... #

[Page

[J Content

Iv]

= Publicationinfa +w| ProfessarHome

Fubinfa (type=data) Eﬁﬂsﬂ&ﬂy étgf;?ézga)

[«] [»|7 (= Geometric Sha...

Figure 6.9: Sample Composition Model

6.1.3 WEAVING SPECIFICATION

Once the different concerns of a Web application are spdcifieey have to be related and kept
consistent with respect to the application requiremeras.iristance, Fid_8l7 represents a naviga-
tion topology without taking into account information abethich data have to be mined to fill the
pages. Furthermore, the structure of each page is spedfjaddiess its location in the navigation
structure.

This section describes how relations among concerns caepsately specified by means of
weaving models which conform to a metamodel inspired’by.[&2sically, the proposed weav-
ing operation involves two models in order to define a set midibetween elements occur-
ring in these models. By going into more details, a weavinglehd\wbdel) consists of el-
ements \\El enent) related through weaving linksA(i nk). According to the different kind
of elements involved in weaving operations, tNE enent concept is further specialized into
Dat aWEl ement , Conposi ti onVEl enent andNavi gat i onVEl enent (see Fig[&.10). More-
over, Dat aConposi ti onW.i nk and Conposi ti onNavi gati onW.i nk specialize theALi nk
concept because of the different kind of links that can benddfbetween data and composition
models, or between composition and navigation modelsentisply.

Linked elements belonging to the composition and data nscgjedcify the correspondences be-
tween each page content defined in the composition modelhendata entities from which the

6.1 Weaving Concerns of Web Applications 91

«enumeration» «enumeration» WModel
(CompositionElementType DataElementType

+Page +Entity
+Content ? ?

«enumeration» |
NavigationElementType

WElement WLink

+Page -

+Content +name : string +name : string

+modRef : string A A
DataWElement CompositionWElement NavigationWElement
+elementType : DataElementType +elementType : CompositionWElement -elementType : NavigationWElement
1 source 1 target 1 source 1 target
ompositionNavigationWLink

DataCompositionWLink

restricted : bool

Figure 6.10: Core Weaving Metamodel

information has to be retrieved. In this case the weavinkslinave the attributeestri ct ed

to denote whether the data collection has to be filtered veiipect to information local to the
page the content has to be delivered. For example, in theimgeavodel in Fig[6. 1 the con-
tent Pr of s is connected with thér of essor entity, moreover such an association has the at-
tributerestri ct ed set totrue. This denotes that the information forwarded by the incamin
links of the Pr of essorsLi st page will be used for filtering the data that will be retrieved
and then published to the user. This information forms th&teed of the page whose seman-
tics is defined by weaving together the composition and thegadon models by means of
Conposi ti onNavi gat i onW.i nk elements illustrated in Fi§_6112 where for example the page
Pr of essor HomePage of the navigation model is linked to the pageof essor Hone of the
composition model.

The weaving operation can be supported by heuristics gpistnautomation level. However,

S
Z' Palette 4
(restricted=false) % Shlbck
< <Content= CompositionModel:Departments <4 <DataEntity= DataModel‘Department *\ Zoom
= Note
= Weaaving b |
< WElement
7 CompositionNavigationWLink
[< <Content> CompositionModel::Profs L” { restricted=true) 2~ DataCompositionWlink
= =] < <DataEntity= DataModel Professor l
[< =Content= CompositionModel: Profinfa J‘(//'mmned:t\ ue)
[< =Content> CompositionModel:Pubinfa]&\j restictsd=true)
i
- <4 <DataEntity> DataModel:Publication
[4 <Content> CompositionMadel:Pubs](’mmdzn_“a)
& [¥] (= Geometiic Shapes

Figure 6.11: Sample Data-Composition Weaving Model

© 0N o O A WN R

N
5w N R O

92 Chapter 6. A4MT-based Model Weaving

Iv}

[Palette v
[3 Select

[4 <Page= Cor i D ist | 3 3 [<+ <Node= NavigationModel: Departments l * Zoom
] i = Note

(= Weaving 1
< WElement

<~ CompositionNavigationWLink
2~ DataCompositionWlink

[<4 =Page= CompositionModel::ProfessorHome] [4 =MNode= ProfessorHomePage l

I L

[<4 <Page= Ci i R ist } | <4 <Node> NavigationModel::Professors ‘

L

[4 <Page> G i F i } - .][< <Node= NavigationModel: Publication l

K1 5] (= Beometric Shapes

Figure 6.12: Sample Composition-Navigation Weaving Model

sometimes complex computations have to be executed, famics, to derive further information
that can be obtained only by performing some analysis overdlated models. Hence, in the
remainder of the section, a discussion on how to deal withtrigial situations by means of model
transformations specified in A4MT is presented. Subsetyéiebile and WebML models are
generated from the given source concerns and weaving sjaeicifis.

6.1.4 TARGET MODEL GENERATIONS

As already mentioned, the different Web application come¢hat are described by different mod-
els can be connected by means of explicit weaving modelsn AgMs-based transformations,
defined in advance once for all, can be used to weave togédtletifferent concerns in order to
generate target specifications comprising all the aspéth®e ystem.

The rest of the paper describes with more detail the tramsftion phase for the generation of We-
bile and WebML models describing the sample applicationsehmoncerns have been separately
described above and explicitly connected through the giveaving models. The transformation
rules start from an algebra whose signature includes thesrggis and functions induced by the
involved metamodels that are tBata, Navigation Compositionand Weaving The application
of ASM rules generates a target algebra whose signaturalieéu by the target metamodels,
that is Webile profile and WebML in our example. In the progital implementation of the pro-
posed approach, the signatures are specified in XASM andatfeegutomatically obtained from
the KM3 specification of the metamodels. For example, wipeet to the canonical encoding
described in Setl 4, tHeata metamodel specified in the listilg 6.1 gives place to theofalhg
XASM specification

uni ver se DATA Dat aMbdel
function entities(a : DATA Datawbdel, b : DATA Entity) -> Bool
function rel ationshi ps(a : DATA DataMdel, b : DATA Rel ati onship) -> Bool

uni verse DATA Entity
function name(a : DATA Entity) -> String
function attributes(a : DATA Entity, b : DATA Attribute) -> Bool

uni verse DATA Attribute
function name(a : DATA Attribute) -> String
function content Type(a : DATA Attribute) -> String

uni ver se DATA Rel ati onshi p
function nanme(a : DATA Rel ationship) -> String

6.1 Weaving Concerns of Web Applications 93

function source(a : DATA Rel ationship) -> DATA Rol e
function target(a : DATA Rel ati onship) -> DATA Role

uni ver se DATA Rol e
function mnCard(a : DATA Role) -> String
function maxCard(a : DATA Role) -> String
function entity(a : DATA Role) -> DATA Entity

For each class in the KM3 specification a corresponding sagtven by means of the keyword
uni ver se. The name of the sort is obtained from the name of the KM3 glasfixed with the
name of the metamodel being encoded. The attributes ancmets in the KM3 specification
induce corresponding functions.

GENERATING WEBILE SPECIFICATIONS Before defining the transformations, a brief introduc-
tion to few Webile concepts is given through the model in which is the result of the
weaving operation obtained by applying the transformatiginen in the rest of the section. Such
model presents commonalities with the concern models defim8ec[6. TR since it merges them
opportunely. Data are modeled in an Entity/Relationshghifan using the«Dat aEnti ty>>
and «Dat aRel ati on>> stereotypes. The application functionalities lie on a ephgal struc-
ture consisting of departmentBepar t nent) which have several professor@r of essor) and
each of them has a number of publicatio®sl{l i cati on). Pages are denoted by means of
< St ruct uredCont ent > classes whose content is specified by meansbht aSour ce>>
stereotyped associations which allow to define how and witéth have to be retrieved from the
conceptual structure.

In the figure,Pr of essor sLi st contains the index of the professors which belong to thectede
department in the padeepar t nent ; the pagePr of essor Hone contains information about the
selected professor and all her/his publications. This $eidieed by annotating the corresponding
data source associations. In fact, the Bagnd of a Dat aSour ce stereotype states whether the
data retrieval has to consider the context of the involvadtsired content, in other words declares
that the data have to be filtered. Moreover, different datacsassociations targeting the same
structured content and denoted by the same tagged kaked define a join operation. On the
contrary, inPr of essor Hone two different query operations are defined, because thdslalme
the associations witRr of essor andPubl i cat i on are different. Hyperlinks are modeled by
means of thex CLi nk>> and<NCLi nk>> stereotyped associations which denote contextual and
non-contextual links, respectively. The main differenc@ag them is based on the fact that the
former propagate parameters from the source to the targetsted content, as in the case shown
in the figure where the unique identifier of a selected prafeisspropagated to her/his home page.

»

<< DataEntity > =< DataRelation => << DataEntity = << DataRelation == << DataEntity =
Depart ment Professor Pub licat ion
1" 1"
EBound=true
Type=data Eound=true
Label=Frofirf o [Type=data
S Label=Publrfo}
Bound=falze
Type=index
Label=Departm ents << Datasourte > Eound=true << DataSource == <= DataSource »» <« DataSource >
B Type=index << DataSource >
Label=Frofsy {EBound=true
Typa=index
Label=Pubs}
<< StructuredContent =5 << StructuredContent =5 < CLink >3 << StructuredContent =5 <= StructuredContent =
Department List e CLiRk =2 ProfessorsList Profess orHome e CLink =2 Pub licat ion nfo
<= MCLink ==

Figure 6.13: Sample Webile Specification

94 Chapter 6. A4MT-based Model Weaving

«stereotype»
«metaclass» «metaclass» NCLink
Class Association
«stereotype»
f ZE flx ZE CLink
«stereotype» «stereotype» «stereotype» «stereotype» «enumeration»
StructuredContent DataEntity DataRelation DataSource DataSourceType
Habel : bool -data
Fbound : bool -index
Hype : DataSourceType

Figure 6.14: Core Webile Profile

A more detailed discussion about Webile can be found1h[@pwhile a fragment of its graphical
specification is given in Fig._6.14.

The transformation process is logically decomposed intw foain phases, each devoted to the
generation of specific fragment of the target model. In paldir:

— The first phase generates Webile data entities and redatidh respect to the sourd@ata
model, giving place to the data structure description ofaglication being developed;

— The second phase is devoted to the generation of targetws&d contents (that is pages)
according to the nodes defined in the soXerigationmodel;

— Then the transformation produces the Webile data soueoestits establishing relationships
between previously generated target data entities andtsted contents. In this phase
the sourceData-Compositionweaving specification plays a key role as explained in the
following;

— Finally, navigation links between target pages are géaeéraDuring this phase all the five
source models are taken into account in order to distingtaigiet Webile contextual and
non-contextual links.

By going into more detail, in each of the previous specifiepst the first phase generates the
algebraic representatives of the Webile data structurerigegion the application is based on. This
phase is performed by means of the following ASMs specificatvhere for eaclbat a_Entity

in the sourceData model, a corresponding Webile data entity is generatedlifse®1- 2 in the
following ASM specification fragment). In this phase the iiary function

transformed DATA Entity — WEBILE DataEntity

is used form maintaining trace information that will be wséf the overall transformation process.

1 do forall de in DATA Entity
extend WEBI LE DataEntity with wde
nanme(wde) : =nane(de)
transf orned(de) : =wde
endext end
enddo;

2
3
4
5
6
7
g8 do forall dr in DATA Rel ationship

9
10

19

© 0 N O O b~ WN PP

[N
o

© 0 N O b~ WN PP

[
o s wWN RO

6.1 Weaving Concerns of Web Applications 95

extend WEBI LE Dat aRel ati on with wdr
ext end WEBI LE _Associ ati onEnd wi th waes
sour ce(wdr) : =waes
endext end
extend VEBI LE Associ ati onEnd wi th waet
target (wdr): =waet
endext end
endext end
enddo;

The derivation ofSt r uct ur edCont ent stereotyped classes is performed dependently on the
sourceNavigationmodel. For each navigation node a corresponding structtmatent element

is generated (lineg- 7 below) and the name of the new element is the same of the page (s
Fig.[6:12) which is woven with the considered navigationenhe 2).

do forall nn in NAVI GATI ON_Node
choose W in WEAVI NG Conposi ti onNavi gati onW.i nk: name(t ar get (W)) =nane(nn)

extend WEBILE_StructuredContent with wsc
nane(wsc) : =nane(source(w))
transf orned(nn): =wsc

endext end

endchoose
enddo;

Dat aSour ce elements are generated by the following code fragment \eipact to thdata-
Compositionweaving specification. In particular, each weaving linkvieen theData and the
Compositionmodels gives place to Bat aSour ce stereotyped association (lirg in the target
model . The transformed of the woven data element will be tita dounterpart of the created
Dat aSour ce association (lines- 11). The determination of thét r uct ur edCont ent element
involved in this association is performed by considering ¢bntent which is woven in the source
Data-Compositiormodel. This content is used to find out the correspondinggadizin element
by traversing th&€€omposition-Navigatiomveaving model (lineg- 6). Then the trace information
stored in the function r ansf or ned (line 10) is used to discover th8tructuredContenthat has
to be involved in thedat aSour ce stereotyped association being generated.
do forall w in WEAVI NG Dat aConpositi onW.i nk
choose wsc in WEBILE StructuredContent, c in COWGCSI TI ON_Cont ent,
cnl in WEAVI NG Conposi ti onNavi gati onW.i nk, p in COVWGSI TI ON_Page,
nn in NAVI GATI ON_Node, d in DATA Entity : isWven(p,nn,cnl) and

i swoven(d,c,w) and (ownerPage(c) = p) and
(transfor med(nn) =wsc)

ext end WEBI LE Dat aSource with wds
sc(wds): =wsc
dat a(wds) : =t ransf or ned(d) ;
| abel (wds) : =nane(c)
endext end
endchoose
enddo;

The derivation of theCLi nk and NCLi nk stereotyped associations is more complex as a navi-
gation through the five source models is necessary to establether d.i nk specified in the
Navigationmodel has to propagate data. This information is evaluagatidans of queries over

96 Chapter 6. A4MT-based Model Weaving

the involved elements. In particular, the navigation ligkgen in the sourc&avigationmodel in
Fig.[61 states the navigation map of the application. Asipusly said, a non-contextual link is a
simple connection between pages and does not affect thextaitthe target one, i.e. it does not
propagate any information to the destination page. Coms#tyl aNCLi nk stereotyped associa-
tion is created by the following rules in two cases: whenghertarget of a navigation link is not
connected to data entities according to the weaving motile¢s2- 10), and when the contents of
the corresponding pages are not related @ihe34) through a data relationship path. Otherwise,
for each couple of contents that belong to linked navigatiodes and that are woven with data
entities related by a relationship pathClai nk stereotyped association is created as specified in
the lines13- 29

1 do forall | in NAVI GATI ON_Li nk

2 if (not(exists c¢c in COVPCSI TI ON_Content, p in COVPCSI TI ON_Page,

3 d in DATA Entity, wl in WEAVI NG Conposi ti onNavi gati onW.i nk,
4 W2 i n WEAVI NG Dat aConposi ti onW.i nk : owner Page(c)=p and
5 i sWoven(p,target(l),wl) and i sWoven(d, c,w2)))

6 then

7 extend WVEBI LE_NCLi nk with x

8 sour ce(x): =transfornmed(source(l))

9 target(x):=transfornmed(target(l))

10 endext end

11 else

12 do forall cl in COVPGSI TI ON_Cont ent

13 if (exists p in COWOSI TI ON_Page,

14 wl i n WEAVI NG _Conposi ti onNavi gati on\W.i nk: owner Page(cl)=p and
15 i sWoven(p, source(l))

16 t hen

17 do forall c2 in COWGSI TI ON_Cont ent

18 choose wl in VEAVI NG _Conposi ti onNavi gati onW.i nk,

19 p in COWPOSI TI ON_Page, w2 in WEAVI NG Dat aConposi ti onW.i nk,
20 d in DATA Entity: ownerPage(c2)=p) and

21 i sWoven(p, target(l),wl) and i sWven(d, c2, w2)

22 if ((related(cl,c2)) and (restricted(w2))) then

23 if (type(cl)="index") then

24 extend WEBILE CLink with cl

25 source(cl):=transformed(source(l))

26 target(cl):=transforned(target(l))

27 L.

28 endext end

29 endi f

30 el se

31 extend WEBI LE NCLi nk wi th ncl

32 source(ncl): =transfornmed(source(l))

33 target(ncl): =transforned(target(l))

34 endext end

35 endi f

36 ...

37 endif

38 enddo

Different auxiliary submachines are used in the above toamation rules, assWoverp, n, w)
that returnstrue if the pagep is woven with the navigation node by means of the weaving
link w described in theComposition-Navigatiorweaving model. Another submachine, called
relatedc;, ¢2), returnstrue if there exists a relationship path amongst the data emtiievhom
the contents:;; andc, are woven in thddata-Compositiorweaving model. These submachines
do not perform any change in the algebras and are used tafcivifermation by navigating the
models as for instance to compute the transitive closurerefagion. The interested reader can
observe and execute the complete implementation of theidedcaules available for download
at [35].

6.1 Weaving Concerns of Web Applications 97

Professor Publication
Department Qi QlD
[&][%) FO:N 0:N4 email FO:H———————0:N{ ahstract
name name ref
surname title
(a) Data Model
DepartmentList ProfessorList ProfessorHome Publicationinfo
DERERME AR Profinfo Pubilnfo
—) —
— —
= = ™ @ =]
Department Professor .
[Department_2_Professor] V\‘ Pmé;“w /\7 Publication

Publication
[Professor_2_Publication]

(b) Hypertext Model

Figure 6.15: Sample WebML Specification

GENERATING WEBML SPECIFICATIONS WebML is a modeling language that allows the con-
ceptual description of Web applications under two concdpdimensions: a@ata modebkpecifies
the schema of resources according to ER principlasypertext modetlescribes how resources
are assembled into information and pages, and how suchamitpages interconnect to constitute
a hypertext[[2l7]. The WebML specification of the running epércan be seen in Fif_6J15. In
particular, FigL6.15.a specifies the data organizatioerims of the relevant entities and relation-
ships. Concerning the hypertext description, the langpagedes the designer with a number of
different content units that can be composed into pageste@buanits can be related by means of
links that express Web site navigation as well as infornmatiansfers from one unit to another.

In the hypertext model in Fig_6.115.b four pages are specitieelDepart ment Li st page con-
tains theDepar t ment s index unit which will publish all the instances of tilepar t ment data
entity. This kind of unit enables the selection of one of thelished instances and the outgoing
link will bring the identifier of the selected instance to tta@get content unit. The index unit
Pr of s in thePr of essor Li st page will publish instances of the data enftyof essor selected
by the incoming identifier and filtered with respect to thatieh between th®epart nent and
Pr of essor data entities. Links can be also expressed between ungadiaf to the same page
like in Pr of essor Homre where the data unitr of | nf o is linked with the index uniPubs. In this
case, once ther of essor Hone page is reached frorr of essor Li st , the information about
the selected professor is published and the index of pulditais automatically updated with the
data coming from the data entiBubl i cat i on according to theér of essor _2_Publ i cati on
relation.

The rest of the section describes the ASMs transformatil@s able to generate the models shown
in Fig.[6.I% (and conforming to the metamodel in EIg.6.1@&pading to the weaving specification
given in Sed_6.113. There is no official metamodel of WebMéreif a number of research groups
have been working on ifT105,B7]. The one in the figure is asubkthe available metamodels
and contains only the concepts that will be considered imgkeof the section.

The transformation process is decomposed into three phaseglained below:

98 Chapter 6. A4MT-based Model Weaving

WebMLModel
DataSpecification HypertextSpecification

h dataSpec hypertextSpec [+name : string
ages
ssssss i ourcePage —
1. SiteView
entities
Attribute - relationships Relationship
(RPN Entity ,-g,% targetPage

tname : string [aumuec@® — +name : string
[+type : string ' [#name : string é‘e -+maxCard : string

+minCard : string

+name : string

hnksI -

Link

0.1| ‘entity

NonContextualLink
relationship | 0..1
°°°°°° ContextualLink
/\

co:dman DisplayUnit Q—, I—,

+Page
+Content <]—| IndexUnit
' L 1

attribute | 0.1

SelectorCondition

Figure 6.16: Core WebML Metamodel

— afirst phase generates the WebML data model the specifiéidatjmm is based on (like the
one in Fig[6.1b.a);

— the second phase produces the Web pages that will be cedrigcteans of the following
step;

— the links connecting the units belonging to the same paddhmse amongst distinct pages
are created giving place to an hypertext like the one in[EIfH.®;

Concerning the first phase of the transformation, for éathra_Ent i t y in the source data model,

a corresponding WebML data entity (lingés4 of the following ASMs fragment) is obtained. Fur-
thermore, for eacDATA Rel at i onshi p two corresponding WebML relations have to be gener-
ated, one for each direction (lin8s16).

1 do forall de in DATA Entity

2 extend WebM__Entity with wr de
3 name(wn de) : =nane(de)

4 L.

5 enddo

6 endextend

7 enddo;

8

9

do forall dr in DATA Rel ationship
extend WebM__Rel ati onship with wnirl
name(wn r 1) : =name(entity(source(dr)))+"_2 "+nanme(entity(target(dr)));

B
= o

12 endext end
13 extend WebM__Rel ationship with wrr2
14 nanme(wn r2) : =nanme(entity(target(dr)))+"_2 "+nane(entity(source(dr)));

16 endext end
17 enddo;

The hypertext generation needs to visit all the source nsaaiekpecified in the following ASMs
rules. In particular, for each navigation node a correspanthrget page is created (linés2). If
the type of the content expressed in the so@ompositiormodel isdat a, aDat aUni t is defined
(lines 7- 12) otherwise an ndexUnit (line 15- 24) will be put in the page being generated.
The information that will be published in each content urds o be specified by referring to
data or relationship belonging to the conceptual structéi@ example, according to the model

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

© 00 N o s WNPR

NNN B R R E BB B B BB
NP O ®©®®~N®0 A~ WN B O

23
24
25

6.1 Weaving Concerns of Web Applications 99

in Fig.[&1% the data published in thRe of | nf o unit are retrieved from ther of essor data
entity, whereas th€ubs index unit will contain data coming from theubl i cat i on data unit
selected by means of tiRe of essor _2_Publ i cat i on relation. This generation is performed by
exploiting the submachinealculateSelectorRelationship(c(ines7- 21) devoted to calculate the
data relationship which has to be used to select the data afthtent unitu.

do forall nn in NAVI GATI ON_Node
choose cp in COVWPCSI TI ON_Page, cnl i n WEAVI NG _Conposi ti onNavi gati onW.i nk:
i sWven(cp, nn, cnl)

extend WebM._Page with wr p

do forall cc in COVWPGCSI TI ON_Cont ent
i f (ownerPage(cc)=cp) then
if (type(cc)="data") then
extend WebM__DataUnit w th du
name(du) : =nane(cc)
endext end
endi f
if (type(cc)="index") then
extend WebM__I ndexUnit with iu
name(i u): =nane(cc)
ext end WebM__Sel ect or Condi ti on with wsc
sel ector(iu):=wsc
rel ati onshi p(wsc): =cal cul at eSel ect or Rel at i onshi p(cc)
endext end
endext end
endi f

endchoose
enddo;

Finally, the links connecting the units belonging to the sgrage and those amongst distinct pages
are created as follows

do forall nl in NAVI GATI ON_Li nk
do forall ccs in COVWPGSI TI ON_Cont ent
choose cps in COWPGCSI TI ON_Page
cnl i n VEAVI NG _Conposi ti onNavi gat i onW.i nk
wne i n WEAVI NG Navi gati onWEl enent: (owner Page(ccs) =cps) and
i sWoven(cps, source(nl),cnl)
do forall cct in COVWPGCSI TI ON_Cont ent
choose cpt in COWOSI TI ON_Page, cnlt i n WEAVI NG Conposi ti onNavi gati onW.i nk
(owner Page(cct)=cpt) and i sWwven(cpt,target(nl),cnlt)
if (type(ccs)="index") then
if (related(ccs,cct)) then
ext end WebM__Cont ext ual Li nk wi th wcl
source(wel) : =ccs
target(wel): =cct
endext end
el se
ext end WebM__NonCont ext ual Li nk wi th wcl
sour cePage(wcl) : =t ransf or ned(source(nl))
target Page(wecl) : =transfornmed(target(nl))
endext end
endi f
endi f
endchoose
enddo

Being more precise, a contextual link between an index andta uhit (belonging to different

100 Chapter 6. A4MT-based Model Weaving

pages) is obtained whether they are related (lihpand belong to pages that are connected ac-
cording to the sourc€omposition-Navigatiomveaving andNavigationmodels respectively (lines
2-9). Otherwise a non-contextual link between the involvedgsag generated (linds - 20).

6.2 WEAVING SOFTWARE ARCHITECTUREMODELS

Over the last years, traditional formal architecture dpsion languages (ADLS) have been pro-
gressively complemented and replaced by model-basedfisptions. The increased interest in
designing dependable systems, meant as applications whesgptions include non-quantitative
terms of time-related aspects of quality, has favoured thkf@ration of analysis techniques each
one based on a slightly different UML profiles or meta-modéis an immediate consequence,
each profile or metamodel provides with constructs thatiy®epport some specific analysis and
leave other techniques unexplored. The resulting fragatientinduces the need to embrace dif-
ferent notations and tools to perform different analysighatarchitecture level: for instance, sup-
posing an organization (using UML notations) is interestedeadlock and performance analysis,
a comprehensive result is obtained only using two diffes®bt.s. Additionally, whenever the
performance model needs to be modified, the deadlock modst Ileumanually adjusted (based
on the performance results) and re-analyzed, causingdrgamisalignments among models.

In this section, the coexistence and integration of difieenalysis techniques at the architectural
level is reduced to the problem of enriching multi-view d@steons with proper UML elements
through directed weaving operations (realized by meansaafettransformations). In particular,
this integration is obtained by firstly setting a formal gnduvhere models and metamodels are
specified, then weaving operators are defined for the iniegraf the propose®UAL LY [64]
UML profile with the constructs needed for performing spediinalysis. The weaving operators
are mathematically specified through A4MT able to execuaritegration.

The remaining of the section is structured as follows: thet sebsection sketches languages
available for software architecture specification and gjitree preliminaries for the definition of
DUAL LY. The proposed weaving operators are presented in[Sed tégether with the def-
inition of the DUAL LY profile. Sec[6.214 describes a case study which illustidtesise of
DUAL LY and how it can be integrated following the proposed appredtih constructs needed
for performing fault tolerance analysis.

6.2.1 MODELING SOFTWARE ARCHITECTURES

Two main classes of languages have been used so far to mdtehioarchitectures: formal
architecture description languages (ADLs) and modeldbapecifications with UML. ADLs are
formal languages for SA modeling and analysis. Althoughessvstudies have shown the suit-
ability of such languages, they are difficult to be integuateindustrial life-cycles and only par-
tially tool supported. The introduction of UML as a modeliagguage for software architectures
(e.g. [83]) has strongly reduced this limitation. Howedfferent UML-based notations are still
needed for different analysis techniques, thus induciegided to embrace different notations and
tools to perform different analysis at the architecturelev

6.2 Weaving Software Architecture Models 101

ADL FOR SOFTWARE ARCHITECTURE MODELING Formal architecture description languages
are well established and experienced, generally formabaptisticated notations to specify soft-
ware architectures. An (ideal) ADL has to consider suppmrcbmponents and connectors spec-
ification, and their overall interconnection, compositi@bstraction, reusability, configuration,
heterogeneity and analysis mechanisms][111].

Then, many ADLs have been proposed, with different requareshand notations, and permitting
different analysis at the SA level. New requirements enttrgach as hierarchical composition,
type system, ability to model dynamic architectures, ghith accommodate analysis tools, trace-
ability, refinement, and evolution. New ADLs have been pemubto deal with specific features,
such asconfiguration managemerdistribution and suitability forproduct line architecturenod-
eling. Structural specifications have been integrated bdthavioral ones with the introduction
of many formalisms such as pre- and post-conditions, psoakgebras, statecharts, POSets, CSP,
m-calculus and other§[84].

Papers have been proposed to survey, classify and compateg@ADLs. In particular, Med-
vidovic and Taylor in[[84] proposed a classification and cangon framework, describing what
an ADL must explicitly model, and what and ADL can (optiogalmodel. A similar study has
been performed for producing xArdH [2], an XML schema to esgnt core architectural elements.
ACME [3], the architecture interchange language, alsotifies a set of core elements for archi-
tecture modeling, with components, connectors, portestgroperties and constraints. Although
several studies have shown the suitability of such formaduages for SA modeling and analysis,
industries tend to prefer model-based notations.

UML FOR SOFTWARE ARCHITECTURE MODELING UML (with many extensions) has rapidly
become a specification language for modeling software t@atiires. The basic idea is to repre-
sent, via UML diagrams, architectural concepts such as ooemts, connectors, channels, and
many others. However, since there is not a one-to-one mggpimong architectural concepts and
modeling elements in UML, UML profiles have been presentedxtend the UML to become
closer to architectural concepts.

Many proposals have been presented so far to adapt UML 1.»ottehsoftware architectures.
Since such initial works, many other papers have comparedtbhitectural needs with UML
concepts, extended or adapted UML, or created new profilepdoify domain specific needs
with UML. A good analysis of UML1.x extensions to model SAsidze found in[[8B]. With the
advent of UML 2.0, many new concepts have been added and ewddibridge the gap with
ADLs. How to use UML 2.0 (as is) for SA modeling has been aredlyin some books. The
UML 2.0 concepts of components, dependencies, collalomstind component and deployment
diagrams are used. In order to bridge the gap between UMLI0ADLS, some aspects still
require adjustments. Therefore, much work has been prdpns#der to adapt and use UML 2.0
as an ADL [103].

MODELING SOFTWARE ARCHITECTURES A PRACTICAL PERSPECTIVE The introduction of
UML-based notations for SA modeling and analysis has imgudhe diffusion of software archi-
tecture practices in industrial contexts. However, mafffedint UML-based notations have been
proposed for SA modeling and analysis, with a proliferatiéslightly different notations for dif-
ferent analysis. Supposing an industry making use of UMlatians is interested in combining
deadlock and performance analysis, a satisfactory reanlbe obtained only using two different

102 Chapter 6. A4MT-based Model Weaving

< profile ==
Dually

<< metaclass > << metaclazs >> << Mmetaclass =>
Component Ass ethbly Connector Dependency

A Fy Fy A

<< sterentype == |<<stereotype == | << sterectype > << sterentype ==
SAComponent SAConnector SAChannel SARelat onships
<< metaclass = << sterentype ==
Package 4 Behavior

Figure 6.17: ThdUAL LY profile

notations: whenever the performance model needs to be madifie deadlock model needs to
be manually adjusted (based on the performance resultgeeaamublyzed. This causes a very high
modeling cost, and creates a frequent misalignment amoiaiglsio

The solution that we have proposedlinl[38] is a synergy betwHdL and ADLSs proposing a new
ADL, called DUAL LY, which maintains the benefits of the ADLs formality and witte tintu-
itive and fashioning notation of UMLDUAL LY differs from previous work on ADLs and UML
modeling for many reasons: while related work on ADLs mof#tisus on identifying “what to”
model [84B[R]DUAL LY identifies both “what to” model (i.e., the core architecturancepts)
and “how to” model (via thdDUAL LY UML profile). Differently from related work which ex-
tend UML for modeling specific ADLs, thBUAL LYy UML profile focuses on modeling just the
minimal set of architectural concepts. The definition of BHéAL LY UML profile allows for an
easier integration of software architecture modeling aralyeis in industrial processes. However,
different notations are still needed for different anaysichniques. To overcome this problem we
outline an extendible framework that permits to add modedsta extend existing ones in order to
support the introduction of analysis techniques. Weavipgrations will be introduced and used
for the purpose of binding different elements of differerddals.

Next subsections proposes tb&JAL LY profile and discuss the extensibility mechanism based
on weaving operations.

6.2.2 DUALLY PROFILE

Goal of theDUAL LY profile is extend UML 2.0 in order to model core architectwwahcepts:
components (with required and provided interfaces, typesports), connectors (with required
and provided interfaces and types), channels, configurdtiith hierarchical composition), tool
support, and behavioral modeling. This profile is not meamréate a perfect matching between
UML and architectural concepts. Instead, it wants to prexadpractical way, for software engi-
neers in industry, to model their software architecturdd ML, while minimizing effort and time
and reusing UML tools.

TheDUAL LY profile is depicted in Figule6.1l7 and defined irarofile>>> stereotyped package.

6.2 Weaving Software Architecture Models 103

<< profile = << profile =>
Dually Ideal Com ponent

<< metaclass =>
Component

< Stereotype =
1C_Component

<< stereotype x|
SAComponent

+HasException:Boolean

<< integrate > f f

< stereotype = < Stereotype =
Norma lComponent| |ExceptionComponent

<< inherit > << stereotype >

<< metaclass => Raiser Interface
Interface — << Stereotype

<< inherit = Hand ler interface

<< metaclass =5 << stereotype =
Fort << inhefit=> 1C_Port

Figure 6.18: Weaving Models

Within this package the classes of the UML metamodel thateatended by a stereotype are
represented as a conventional class with the optional kel/metaclassA stereotype is depicted
as a class with the keyworstereotype The extensionrelationship between a stereotype and a
metaclass is depicted by an arrow with a solid black triapgieting toward the metaclass. In
particular, the new concepts provided DEAL LY profile are discussed in the following:

Architectural components: an SA component is mapped into UML components. “Structured
classifiers” permit the natural representation of architechierarchy and ports provide a natural
way to represent runtime points of interactions. As noticefLl03], SA components and UML
components are not exactly the same, but we believe thegseptr a right compromise.

Relations among SA componentsthe “Dependency” relationship between components in UML
2.0 may be used to identify relationships among componeititsn interface information or details
are missing or want to be hidden.

Connectors: while a connector is frequently used to capture single cotmmg lines (such as
channels), they may also serve as complex run-time interecbordinators between components.
The DUAL LY profile makes use of UML (stereotyped) components that, fiteenarchitectural
point of view, seems the cleanest choice.

Channels: a channel is usually considered as a simple binding meahamitween components,
without any specific logic. UML 2.0 provides the conceptaekembly connectors which is se-
mantically equivalent to the concept of architectural cten

Behavioral viewpoint: depending on the kind of analysis required, state-basedhimesor sce-
narios notations are usually utilized to specify how congsis and connectors behave. As a
core element, we take UML 2.0 state machines and sequengeauhia as native notations for
behavioral modeling.

6.2.3 EXTENDING DUALLY

In the sequel, weaving operators for extending$AL LYy profile are described and an example
of their application is also provided. Such operators aspined by[101] and they aim at extending

P
P O © ®~N O U A ®WN R

104 Chapter 6. A4MT-based Model Weaving

the profile in a conservative way in the sense that deletidreomstructs are denied, and only
specializations or refinements of them are allowed. In Ealdtr,

— theinherit operator used for connecting an element of a UML profile with of DUAL LY
is used in weaving models by means<ainherit™> stereotyped associations as the one in
Figurel6.IB. The result of its application is the extensibBOAL Ly with a new stereotype
(if it does not exist) having as base class the target eleofethie stereotyped association
and the tags of the source one. The operator can be applietemding theDUAL LY
elements and all the metaclasses of the UML metamodel.

— theintegrateoperator is used by means@fintegrate>> stereotyped associations as for ex-
ample the one in Figule &118. The aim of such operator is Eneixthe availabl®UAL LY
constructs with the characteristics of elements belongingther UML profiles. For ex-
ample, the profile depicted in FiguEe_8l 19 (described lateBection6.2]4) and the one
in Figure[6&1¥ both extend the standard metacasmponent The former provides an
additional tag not provided in the latter. Connecting thiege elements by means of an
<integrate>> stereotyped association will result in the addition of tgstbelonging to the
source element into the target one. In case of conflicts, @@gs with the same name but
with different types) the elements BUAL LY are predominant. Furthermore, the exten-
sions of the source elements are added to the target one.

The semantic and the execution of the discussed operawdefined by means of A4MT trans-
formation rules. This allows preserving the same formaugtbfor model specifications, their
transformations and weaving operations among them as Wk transformation phase which
has to extend thBUAL LY profile starts from an algebra whose signature includesalf@afing
universes and functions which are the union of the signatdegived from the metamodels of the
involved source models, i.e. the profile specifications &editeaving model respectively.

uni ver ses Met aCl ass, Stereotype, Extension, Tag

uni verses |nherit, Integrate

function name(_) — String
function source(_) — _

function target(_) — _

function bel ong(Tag) — Stereotype
function type(Tag)} — DataType
function dually() — Bool

function icProfile() — Bool

Some auxiliary functions are used, in particular the fuorctiually() andicProfile() are defined
in order to establish whether, given an element, it belonghé algebra encoding the2UAL LYy
profile or theldeal Component one. Moreover, the functiorselong()andtype() given an element
of the sefTag, return the stereotype to whom it belongs and its data tygsperctively.

The weaving operation mainly consists of two transformmatidles each devoted to the manage-
ment of the previously described weaving operators. Spadifj thelnherit rule for each element
contained in the sénherit of the algebra encoding the weaving model, extends the @ gairod-
ing theDUAL LY profile. The updating of the algebra consists of the additibmew stereotypes
(see line3d below) which can have as base class a UML metaclass (seé betow), as for the
associations depicted in Figure .18 whereltiterfaceand Port metaclasses are involved, or an
existentDUAL LY stereotype (see ling2 below).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

0 N o s W NP

6.2 Weaving Software Architecture Models 105

<= profile ==
Ideal Cam panent|
<< metaclass >> << metaclass >>
Compohent Fort

F Y

<< sterentype >
<< stereotype = IC_Fort

1C_Component
+HasException:Boalean <« metaclass =>
A Fy Interface

<< sterentype >>
NormalComponent

<< sterentype =
Exception Component

<< sterentype ==
Hand kerinterface

<< sterentype =
RaiserInterface

Figure 6.19: The Ideal Component UML profile

asm I nherit is
do forall x in Inherit
extend Stereotype with s
nane(s): =nane(source(x))

dual ly(s):=true
extend Extension with e
choose ¢ in MetaC ass : nane(c)=nane(target(x))
source(e): =s
target(e): =c
endchoose
choose ¢ in Stereotype : nane(c)=nane(target(x))
source(e): =s
target(e):=c
endchoose
dual ly(e):=true
endext end
pr opagat eExt ensi on(s, source(Xx))
endext end
enddo
endasm

The auxiliary submachinpropagateExtension(,ss) recursively updates the sefstension and
Stereotype of the algebra encodinQUAL LY, in order to extend the stereotypgwith the exten-
sions (if available) of the stereotype.

The Integraterule aims at weaving the source element of &imntegrate>> stereotyped associa-
tions with the target one. Firstly, all tags of the sourceesitype are added to the target one if
there are not conflicts (see ligef the rule) and in case of overlapping, the elementBUGAL LY
are predominant. In lin@5 of the rule the submachinaopagateExtension(,s,) is called. For
instance, the application of tHategrate rule, taking into account the weaving model of Fig-
ure[6.I8, will modify theDUAL LY stereotype< SAComponent>> by adding the taddasExcep-
tion and the stereotypesNormalComponent> and < ExternalComponent> as extensions of
< SAComponent>>>.

asmlIntegrate is
do forall i in Integrate
do forall ¢ in Tag
if (icProfile(t;) and bel ong(t¢;)=source(i))
t hen
if not (exists ¢tz in Tag: dually(t2) and
nane(t2) =name(t1))
t hen

10
11
12
13
14
15
16
17

19
20

106 Chapter 6. A4MT-based Model Weaving

extend Tag with t3
nanme(t3) : =nanme(t1)
type(ts): =type(ti)
bel ong(t3): =target (i)
dual ly(t3):=true

endext end
pr opagat eExt ensi on(target (i), source(i))
endi f
endi f
enddo
enddo
endasm

Once the weaving operation is performed, the obtained dgtbalgebra contains all the informa-
tion required to translate it into the corresponding mod&le next section describes a case study
showing firstly the use dDUAL LY for describing a software architecture, then the exteneed v
sion of the profile, obtained by means of the previously deedrweaving operation according to
Figure[6.I8, is used to design the same system with othetrootsneeded for performing some
fault-tolerant analysis.

6.2.4 |BING DUALLY FOR DESIGNING FAULT-TOLERANT SYSTEMS

In this section we show ho®UAL LY can be extended in order to integrate SA-based concepts
with fault tolerance information. We make use of the minimgtcol system case study [104], a
simplified system for the mining environment. The minerafaotion from a mine produces water
and releases methane gas on the air. These activities mosbritored. Figur€6.20 shows the
SA for the control system modeled by using the basic featafé3UAL LY. It is composed of
two components, th®perator Interfacecomponent, which represents the operator user interface,
and theControl Station which is divided in three subcomponer®ump Contral Air Extractor
Control, andMineral Extractor Control Pump Controlis responsible of monitoring the water
level, Air Extractor Control switching on and off the subcomponehit Extractor, controls the
methane level, and finally the mineral extraction is momitbloyMineral Extractor Control

However, the possible responses of a component when imptecthe@nd operating are normal
and exceptional. While normal responses are those sihgatihhere components provide normal

<<SA Component>>
Control Station
<<SA Component>>

Air Extractor Control
<<SA Component>>
[Air Extractor

<<SA Component>>

Pump Control

<<SA Component>> <<SA Channel>:
Operator Interface

<<SA Component>>
0 Mineral Extractor
Control

Figure 6.20: The mining control system SA

6.2 Weaving Software Architecture Models 107

<<SA Component>>

<<<<<<

<<SA Component>>
Air Extractor Control <<delegate>> <<ielegate>>
<<ddlegate>> (!2/

<<Raiser Interface>
<<Raiser Interface>> E_SwitchAirExtractofOn
<Raiser T <<Raiser Inferface>> =
E_SwitchAirExtractorOf E_AirExtrhctoFailure]

e>>
<<Handler Interf;

<<Normal Component>>
) I_SwitchAirExtractorOn £ I C
et Al EXtractor Control «aser inertace>_ cxctiandier ertace-» <<ExCeptional Component>>

<<SA Component>> <<SA Channel>> J/{
Operator Interface ~|

{HasException=fase}

<<SA Component>>

Air Extractor

{HasException=false}

<<Raiser Interfacez>-_ <<Handler Ifterface>>

LAirExtracRrFaMure

<<SA Component>>
Pump Control
{HasException=false}

<<SA Component>>
Mineral Extractor
Control

{HasException=true}

{HasException=false}

Figure 6.21: Air Extractor Control component with faultearance information

services, exceptional responses correspond to errorstelétato a component. Typically, ex-

ceptional responses are called exceptions. Thereforg natural to design not only the normal
behavior, but also the exceptional one. Similarly to themadrbehavior, exceptional behaviors can
be elicited from requirements and modelled. In order to sssiully model fault tolerant systems,

the basic features offered IBUAL LY are not enough.

Ideally components are composed of two different partsmaband exceptional activities [104].
The normal partimplements the component’s normal senandshe exceptional part implements
the responses of the component to exceptional situatignedans of exception-handling tech-
nigues. When the normal behavior of a component signals @pérn, callednternal exception

its exception handling part is automatically invoked. K tixception is successfully handled the
component resumes its normal behavior, otherwisexarnal exceptions signaled. External
exceptiongare signaled to the enclosing context when the componelizegdhat is not able to
provide the service.

Figure[&.ID shows the profile for the idealized componente SA componeris specialized in
the stereotypexIC component> that contains the boolean tatpsExceptiorthat is true if the
component have a description of the fault tolerant behayialse otherwiselC Componenis
even specialized with the stereotypgdNormalComponent>> and < ExceptionalComponent>>>
describing the normal and the exceptional behavior res@é¢t Ports are specialized by the
stereotype<IC Ports>> in order to model communication ports for signaled exceystioFinally
interfaces are used for the exceptions propagation fromdhmal to the exceptional part special-
ized with the stereotypegHandlerinterface>>> and < RaiserInterface>> representing the handler
and the signaler respectively.

Figure[G2lL shows the result of the weaving, obtained apglyfie mega operators, inherit and
integrate, between thBUAL LY profile, depicted in FigurBEZ617, and the idealized compbnen
profile shown in Figur€6.19. As show in Figire d.18 tBeComponents “integrated” with the
SA component oDUAL LY. Consequently the components in Figlreb.21 are SA comp®nen
extended with the tagdlasExceptiorand they can be specialized NormalComponenand Ex-
ceptionalComponentas happens for thair Extractor Controlcomponent. On the contrary the

108 Chapter 6. A4MT-based Model Weaving

inherit operator is used for interfaces and ports. In fact for exoaptpropagation we want to
use ports and interfaces of the IC profile while for the clescommunication between com-
ponents we want to use elements of YAL Ly profile. Being more precise, the exceptions
| _SwitchAirExtractorOff |_AirExtractorFailure, and|_SwitchAirExtractorOnare internal excep-
tions signaled by the normal part (Raiser Interfaces). @leaseptions are catched by the excep-
tional part (Handler Interfaces), which signals externaleptions in the case of the exceptional
component realizes that is not able to provide the serviegséRr Interfaces and IC Ports).

The subcomponenAir Extractor does not have exceptional behavior and then is modelled as
an extendedUAL Ly component, contained into the normal part of &ie Extractor Control
component.

6.3 CONCLUSIONS

The chapter proposed two applications of model weaving mhipation with AAMT. The first
one experiments how the distinct concerns of a Web apmicatan be better connected by means
of weaving models. The main idea consists of the specificaifoveaving operators to establish
relationships among the models that describe the variotgpeetives of the application being
developed. The execution of the operators is based on a emdefined in term of model trans-
formations formally specified by means of A4MT. The operstoould simply perform analysis
on the involved models or merge the distinct concerns, astgmiout above, according to the
defined relations. In this way, the different models arelgdsipt separated, enabling focused
changes to small portions of the specification, whereasoéim hame conventions even nar-
rowed modifications could require a wide inspection of thecdgtion in order to restore previous
links. Furthermore, expliciting relationships betweenaarns by means of models permits taking
advantages from current model-driven methods and techieslo For example, it is possible to
(re)use weaving models for validation and analysis purpose

Weaving operations may be applied also at meta-model l&Wéd.is the case of the second appli-
cation shown in the chapter where two weaving operators p@@osed to support the extension
of a UML profile, calledDUAL LY, explicitly defined for software architecture modeling. In
particular, various communities require different infation to be accommodated in a software
architecture model depending on the specific concern bdisgreed. Over the years, either a
unique language for representing SAs, nor a unique fit betw#dL and ADLs is emerged. In
the chapteDUAL Ly was proposed as an extendible UML-based ADL which permitsibgins
of model transformation techniques to widen existing UMLations to support different analysis
techniques.

CHAPTER7Y

CONCLUSIONS

This work can be considered a contribution to the study of ehedinsformation and weaving
operations that have constituted and continue to be an ame®iose research. Both academia and
industry are putting their efforts giving place to a numbEaaguages and approaches each with a
certain suitability for a specific set of problems. Chapleef@orts the main results that have been
achieved over the last years together with the basic defirsitof model, meta-model, MDE, and
MDA.

Like for any software system, model transformations regaidevelopment process that permits
to manage their complexity. Nowadays, a number of modestommation languages can be used
to implement transformations that should be precisely ifipdcin advance. Shifting the focus
from implementation to the problem of specifying the bebaviof model transformations in a
precise way, we recognize the need of having a high-levaliipation language capable to pro-
duce precise, formal and implementation independent foemations. The objective is provide
the transformation developers with the possibility to ¢héweir implementations (written in a
specific language like ATL, QVT, etc.) against an accurate executable high-level model of
the transformation itself. A number of graph transformatmproaches have been defined to deal
with these issues. Chapfér 4 proposes A4MT, an alterngpproach to the specification of model
transformations based on Abstract State Machines thatliee® used extensively in a number of
applications (as discussed in Chapler 3). Even though ASdsde with a notation characterized
by a simple syntax that permits to write specifications tlzet lbe seen as “pseudocode over ab-
stract data”, the formalism is mathematically rigorous esqtesent a formal basis to analyze and
verify transformations. ASMs have been used also in VIATR#&R2scheduling explicitly basic
graph transformation rules. This permitted to cope withgbssible lack of confluence and termi-
nation of transformations due to the usual fixpoint schedwiith concurrent application proper
of graph transformation approachEgsl[34].

The suitability of A4AMT for the specification of model trapsiations was presented throughout
the thesis. Chapté&l 4 shown how A4MT supports the speciicaif complex computations on
models like the calculation of transitive closures withpes to some relations. The chapter tried
to give strategies, best practices, design patterns faifgpey transformation rules and discussed
how models could be navigated and queried by means of firet preédicates instead of patterns
which are lacking in ASMs. Furthermore, A4AMT was validatadlifferent applicative domains.
It was used to support the model driven development of Welicapions and the compositional
verification of middleware-based systems (see Chépter B Mbpect to the former application,
A4MT was able to specify complex transformations wheredhesais the need to perform different
calculations on the models like for the generation of retal algebra expressions. In the latter,
property preserving transformations were implementedthis case study, AAMT was used to

109

110 Chapter 7. Conclusions

specify transformations, in the context of middleware dasaftware development, and to prove
that the target models which can be generated preserve soperfies by construction.

A4MT was also used to specify the semantics of weaving operalaking into account the possi-
bility of using model weaving for setting fine-grained resaships between models or metamodels
and executing operations on them based on link semanti€&haptefb two different applications
were proposed. In a first one, the use of weaving models wesdinted to support the model
driven development of Web applications. In particular, vieg models were used to specify for-
mal relations between different models produced duringlévelopment of Web applications. The
weaving models do not interfere with the definition of thewgeon either side, achieving a clear
separation of them and their connections. Furthermorégues can gain a deeper understanding
about the explicit dependencies between the parts, anatkeapble to recognise the consequences
of local changes to the whole system. In this context, AAMB wsed to specify the semantics
of the used weaving operators enabling the automatic psoeand manipulation of the related
models by means of the execution of operations based onvbe fijnk semantics. The proposed
weaving approach was used also at meta-model level. Thésterexe and integration of different
analysis techniques at the architectural level is reducettié problem of enriching multi-view
descriptions with proper UML elements. Weaving operatoesendefined for the integration of a
proposed UML profile (that captures core concepts for saiveachitecture modeling) with the
constructs needed for performing specific analysis. Thesingaperators were mathematically
specified through A4MT in order to perform the meta-modetgnation according to the seman-
tics of the proposed operators. All the applications of Addiigcussed in the thesis are completely
implemented and are available for download at [35].

Having set a foundation for the common use of Model Drivenigegring and Abstract State
Machines, this open several new paths of investigation.altiqular, an ongoing activity aims at
developing a metamodeling and transformation tool baseti@proposed A4MT approach. The
objective is to provide with a metamodeling platform whiclkinty supports formal and imple-
mentation independent specifications of model transfaomatand weaving and the dynamic se-
mantics of a wide range of domain specific languages. More®iece we are going to have
a high number of such domain specific languages, anotherriengaresearch activity will in-
vestigate how to cope with the global organization betwéemt Having formal specifications
of models - like the one proposed in this work - could give tlegibility to reason about how
various model-driven engineering artifacts interconn&cm models and metamodels to model
transformations and programs, to repository and modetints {115].

REFERENCES

[1] The ASM Michigan Webpage. http://www.eecs.umich.gdsm/.

[2] xArch. http://www.isr.uci.edu/architecture/xarcroposed by the University of California,
Irvine.

[3] Acme. http://www-2.cs.cmu.edwacme/, Since: 1998. Carnegie Mellon University.

[4] A. Agrawal, G. Karsai, Z. Kalmar, S. Neema, F. Shi, and Azhanyo. The Design of a
Language for Model Transformationdournal of Software and System Modeli2§05.

[5] D. H. Akehurst and S. Kent. A Relational Approach to DeigiTransformations in a
Metamodel. InProcs of the 5th Int. Conf. on The UMpages 243-258. Springer-Verlag,
2002.

[6] M. Aksit, I. Kurtev, and J. Bézivin. Technological Sgc an Initial Appraisal. Interna-
tional. Federated Conf. (DOA, ODBASE, CooplS), Industfiedck, Los Angeles, 2002.

[7] D. Alur, J. Crupi, and D. Malks.Core J2EE Patterns Sun Microsystems Press (Prentice
Hall), 2nd edition, 2003.

[8] M. Anlauff. XASM — An Extensible, Component-Based Almtt State Machines Lan-
guage. InAbstract State Machines: Theory and Applicatiov@ume 1912 of NCS pages
69-90. Springer-Verlag, 2000.

[9] M. Anlauff and P. Kutter. The XASM open source project020 http://www.xasm.org.
[10] ATLAS Group. The Atlantic Zoo. http://www.eclipsegigmt/am3/ zoos/atlanticZoo/.

[11] J. A. Bergstra and C. A. Middelburg. Process algebraasdits of SDL. InProc. 2nd
Workshop on Algebra of Communicating Proces&895.

[12] J. Bézivin. On the Unification Power of Model3our. on Software and Systems Modeling
(SoSyM)4(2):171-188, 2005.

[13] J. Bézivin, H. Bruneliere, F. Jouault, and |. KurteModel Engineering Support for Tool
Interoperability. InProcs of WiSMEMontego Bay, Jamaica, 2005.

[14] J. Bézivin and O. Gerbé. Towards a Precise Definitibthe OMG/MDA Framework. In
Automated Software Engineering (ASE 200ddges 273-282, Los Alamitos CA, 2001.
IEEE Computer Society.

[15] J. Bézivin and F. Jouault. Using ATL for Checking Mosleln Proceedings of the Interna-
tional Workshop on Graph and Model Transformation (GraMdlgllinn, Estonia, 2005.

[16] J. Bézivin, F. Jouault, P. Rosenthal, and P. ValdurMndeling in the Large and Modeling
in the Small. InModel Driven Architecture, European MDA Workshops: Fourae and
Applications volume 3599 of. NCS pages 33—46. Springer, 2004.

112 REFERENCES

[17] J. Bézivin, F. Jouault, and P. Valduriez. On the NeedM&gamodels. IrProcs of the
OOPSLA/GPCE: Best Practices for Model-Driven Softwareddgyment workshq2004.

[18] J. Bézivin, B. Rumpe, S. Schirr, and L. Tratt. Modedfisformation in Practice Workshop
Announcement, 2005. htt://sosym.dcs.kcl.ac.uk/eventig/

[19] J. Billington, S. Christensen, K. M. van Hee, E. Kindlé. Kummer, L. Petrucci, R. Post,
C. Stehno, and M. Weber. The Petri Net Markup Language: Guscdechnology, and
Tools. InICATPN pages 483-505, 2003.

[20] E. Borger. The Origins and the Development of the ASMitbel for High Level System
Design and AnalysisJour. of Universal Computer Sciend®(1):2—74, 2002.

[21] E. Borger and J. Schmid. Composition and submachimeats for sequential ASMs. In
P. Clote and H. Schwichtenberg, editad@gmputer Science Logic, 14th Annual Conference
of the EACSL, Fischbachau, Germany, August 21-26, 200@eedingsvolume 1862 of
LNCS pages 41-60. Springer, 2000.

[22] E. Borger and R. StarlAbstract State Machines - A Method for High-Level SystenigDes
and Analysis Springer-Verlag, 2003.

[23] C. Cachero, J. Gobmez, A. Parraga, and O. Pastor. @mde Review System: A Case of
Study. InFirst Int. Workshop on Web-Oriented Software Technal@§p1.

[24] M. Caporuscio, D. Di Ruscio, P. Inverardi, P. Pelliauép and A. Pierantonio. Engineering
MDA into Compositional Reasoning for Analyzing MiddlewaBased Applications. In
EWSA 05volume 3527 oL NCS pages 475-490. Springer-Verlag, 2005.

[25] M. Caporuscio, P. Inverardi, and P. Pelliccione. Cosifianal verification of middleware-
based software architecture descriptions.Pmceedings of the International Conference
on Software Engineering (ICSE 200&dinburgh, 2004.

[26] G.D. Castillo.The ASM Workbench. A Tool Environment for Computer-AidedyAis and
Validation of Abstract State Machine ModeBhD thesis, Universitat Paderborn, 2001.

[27] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Laage (WebML): a Modeling
Language for Designing Web siteSomputer Networks33(1-6):137-157, 2000.

[28] S. Ceri, P. Fraternali, M. Matera, and A. Maurino. Desng Multi-Role, Collaborative
Web Sites with WebML: a Conference Management System Casly SWWOST, Valen-
cia, Spain, June 2001.

[29] K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. JackSemantic Anchoring with Model
Transformations. IiECMDA-FA volume 3748 oL NCS pages 115-129. Springer-Verlag,
Oct 2005.

[30] P. Chen. The Entity-Relationship Model - Toward a Unifiew of Data. ACM Transac-
tions on Database Systenig1):9-36, 1976.

[31] A. Cicchetti, D. D. Ruscio, and R. Eramo. Towards Praim of Changes by Model
Approximations. INWMEC, EDOC 2006 Workshopiong Kong, 2006. to appear.

[32] E. M. Clarke, O. Grumberg, and D. A. Pelddodel Checking The MIT Press, 2001.

REFERENCES 113

[33] J. Conallen. Modeling Web Application ArchitecturegmJML. Comm. ACM42(10):63—
71, 1999.

[34] K. Czarnecki and S. Helsen. Feature-based Survey oféMibdinsformation Approaches.
IBM Systems J45(3), June 2006.

[35] D. Di Ruscio. A4MT-based Model Transformations, 2006.
http://www.di.univag.it/diruscio/a4mt.php.

[36] J. de Lara and H. Vangheluwe. ATGMA tool for multi-formalism and meta-modelling.
In R.-D. Kutsche and H. Weber, editorSASE volume 2306 ofLNCS pages 174-188.
Springer, 2002.

[37] D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, and AeRantonio. Extending AMMA for
Supporting Dynamic Semantics Specifications of DSLs. TeethReport n. 06.02, Labora-
toire d’Informatique de Nantes-Atlantique (LINA), ApriD®6. Submitted for publication.

[38] D. Di Ruscio, H. Muccini, P. Pelliccione, and A. Pieranto. Towards Weaving Soft-
ware Architecture Models. IMBD/MOMPES Workhops within the ECB$ges 103—-112.
IEEE, 2006.

[39] D. Di Ruscio, H. Muccini, and A. Pierantonio. A Data Mditg Approach to Web Appli-
cation Synthesisint. Jour. of Web Engineering and Technolpdy3):320-337, 2004.

[40] D. Di Ruscio and A. Pierantonio. Model Transformatianshe Development of Data—
Intensive Web Applications. IITCAISE '05 volume 3520 ofLNCS pages 475-490.
Springer-Verlag, 2005.

[41] Eclipse. Eclipse Modeling Framework (EMF), 2005. Hitpww.eclipse.org/emf.

[42] Eclipse. Generative Modeling Technologies (GMT) paij 2006.
http://www.eclipse.org/gmt/.

[43] Eclipse project. GMF - Graphical Modeling Frameworktph/ www.eclipse.org/gmf/.

[44] W. Emmerich. Software engineering and middleware: admoap. InProceedings of the
conference on The future of Software engineering (ICSE)20B0ture of SE Trackpages
117-129, Limerick, Ireland, 2000. ACM Press.

[45] Enterprise JavaBeans. http://java.sun.com/prcdeity.
[46] J.-M. Favre. Towards a Basic Theory to Model Model Dniiengineering. WiSME 2004.

[47] S. Flake and W. Mueller. An ASM Definition of the DynamicOR 2.0 Semantics. In
T. Baar, A. Strohmeier, A. Moreira, and S. J. Mellor, editdsd/IL 2004 volume 3273 of
LNCS pages 226-240. Springer-Verlag, 2004.

[48] M. R. Foundations of Software Engineering Group. AsmiVeb page, 2006.
http://research.microsoft.com/foundations/AsmL.

[49] F. Frasincar, G. Houben, and R. Vdovjak. Specificaticamfework for Engineering Adap-
tive Web Applications. WWW 2002.

[50] P. Fraternali. Tools and Approaches for Developingadatensive Web Applications: A
Survey.ACM Computing Survey81(3):227—-263, 1999.

114 REFERENCES

[51] E. R. Gansner and S. C. North. An open graph visualinagigstem and its applications to
software engineeringSoftware - Practice and Experiencg0(11):1203-1233, 2000.

[52] A. Gargantini and E. Riccobene. ASM-based testing: €tage criteria and automatic test
sequenceJour. of Universal Computer Sciencg11):1050+, 2001.

[53] D. Garlan, S. Khersonsky, and J. S. Kim. Model CheckindplRh/Subscribe Systems.
In Proceedings of The 10th International SPIN Workshop on MGthecking of Software
(SPIN 03) Portland, Oregon, May 2003.

[54] F. Garzotto, L. Baresi, and M. Maritati. W2000 as a MOFRanmeodel. InThe 6th World
Multiconf. on Systemics, Cybernetics and Informatics-Bledineering track2002.

[55] S.P.G.E.Krasner. A cookbook for using the model-vientooller user interface paradigm
in Smalltalk-80.Jour. of Object-Oriented Programming(3):26—49, 1988.

[56] M. Gelfond and V. Lifschitz. The Stable Model SemanfimsLogic Programming. In R. A.
Kowalski and K. Bowen, editor&roceedings of the Fifth Int. Conf. on Logic Programming
pages 1070-1080, Cambridge, Massachusetts, 1988. The fd$§.P

[57] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A.Woodansformation: The Missing
Link of MDA. In 1st International Conference on Graph Transformation

[58] J. Gbmez and C. Cachero. OO-H Method: extending UML taleh web interfaces. pages
144-173, 2003. Idea Group Publishing.

[59] O. M. Group. OMG/Unified Modelling Language (UML) V1.2001.

[60] O. Grumberg and D. E. Long. Model Checking and Modulaifitation. ACM Transaction
on Programming Languages and Systei&846—-872, 1994.

[61] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. @ag9-36, 1995.

[62] Y. Gurevich. The sequential ASM thesBullettin of European Association for Theoretical
Computer Scien¢&7:93-124, 1999.

[63] J. H. Hausmann and S. Kent. Visualizing model mappimgdML. In Procs of the 2003
ACM Symposium on Software Visualizatipages 169-178. ACM Press, 2003.

[64] P. Inverardi, H. Muccini, and P. Pelliccion@UAL LY: Putting in Synergy UML 2.0 and
ADLs. In 5th IEEE/IFIP Working Conference on Software Architect(féiCSA 2008)
Pittsburgh, PA, 6-9 November 2005.

[65] ITU-T Recommendation Z.120. Message Sequence CHaittsTelecommunication Stan-
dardisation Sector.

[66] Java Data Objects. http://java.sun.com/produats/jd

[67] J.Bradbury and J. Dingel. Evaluating and Improving fheomatic Analysis of Implicit
Invocation Systems. IEuropean Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering. CHSEE 2003) Helsinki, Fin-
land, September 2003. ACM Press.

[68] C. B. Jones.Systematic Software Development Using \\Oernational Series in Com-
puter Science. Prentice-Hall, Second edition, 1990.

REFERENCES 115

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

F. Jouault and J. Bézivin. KM3: a DSL for Metamodel Sfieation. In FMOODS’'06
volume 4037 oLLNCS pages 171-185. Springer-Verlag, 2006.

F. Jouault and I. Kurtev. Transforming Models with ATIn J.-M. Bruel, editorMoDELS
Satellite Eventsvolume 3844 oL NCS pages 128-138. Springer-Verlag, 2005.

G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the WéeGraph Transformation
in the Formal Specification of Model Interpreterdour. of Universal Computer Science
9(11):1296-1321, 2003.

N. Kaveh and W. Emmerich. Validating distributed oltj@ond component designs. In
M. Bernardo and P. Inverardi, editoisprmal Methods for Software Architectyreolume
2804 ofLNCS 2003.

S. Kent. Model driven engineering. In M. J. Butler, Ltfeg and K. Sere, editorfntegrated
Formal Methods, Third International Conference, IFblume 2335 o£.NCS pages 286—
298. Springer-Verlag, 2002.

A. Kleppe and J. WarmeiMDA Explained. The Model Driven Architecture: Practice and
Promise Addison-Wesley, 2003.

N. Koch and A. Kraus. The expressive Power of UML-baseebVEngineering. 10W-
WOST volume 2548 oL NCS pages 105-119. Springer-Verlag, 2002.

N. Koch and A. Kraus. Towards a Common Metamodel for tlewddopment of Web Ap-
plications. Ininternational Conference on Web Engineering (ICWE 2008ume 2722 of
LNCS pages 497-506. Springer-Verlag, 2003.

I. Kurtev. Adaptability of Model Transformation$’hD thesis, University of Twente, 2005.
ISBN 90-365-2184-X.

P. Kutter.Montages - Engineering of Computer LanguadeD thesis, ETH-Zurich, 2004.

A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, Thomason, G. Nordstrom,
J. Sprinkle, and P. Volgyesi. The Generic Modeling Envirenin In Procs Workshop
on Intelligent Signal Processin@udapest, Hungary, 17 May 2001. IEEE.

D. Long.Model Checking, Abstraction and Compositional ReasarftdD thesis, Carnegie
Mellon University, 1993.

M.Didonet Del Fabro, J. Bézivin, F. Jouault, and P.déalez. Applying Generic Model
Management to Data Mapping. In V. Benzaken, ediRigcs 2Emes Jourées Bases de
Donrees Avangees, BDA 2005, Saint Malo, Act&$05.

M.Didonet Del Fabro, J.Bezivin, F. Jouault, E. Bretand G.Gueltas. AMW: A generic
Model Weaver. Innt. Conf. on Software Engineering Research and Practi&eR{®05)
2005.

N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and JREbbins. Modeling Software
Architectures in the Unified Modeling Languag&CM Transactions on Software Engi-
neering and Methodology (TOSEM)L(1):2-57, January 2002.

116

REFERENCES

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]
[93]
[94]
[95]
[96]

[97]

[98]
[99]

[100]

[101]

N. Medvidovic and R. N. Taylor. A Classification and Caoanigon Framework for Software
Architecture Description LanguagetEEE Transactions on Software Engineerir&H(1),
January 2000.

S. J. Mellor, A. N. Clark, and T. Futagami. Guest Editdrdroduction: Model-Driven
DevelopmentlEEE Software20(5):14-18, 2003.

S. Melnik, E. Rahm, and P. Bernstein. Rondo: a programgnpiatform for generic model
management. IfProcs Int. Conf. on Management of Dataages 193-204. ACM Press,
2003.

N. Moreno, P. Fraternalli, and A. Vallecillo. A UML 2.0rgfile for WebML modeling. In
ICWE '06: Workshop proceedings of the sixth Internationah@rence on Web engineer-
ing, page 4, New York, NY, USA, 2006. ACM Press.

P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weavkxecutability into Object-Oriented
Metalanguages. IACM/IEEE 8th International Conference on Model Driven Eregring
Languages and Systenpmages 264—-278, Montego Bay, 2005.

P.-A. Muller, P. Studer, and J. Bezivin. Platform indapent web application modeling. In
UML 2003 volume 2863 oL NCS pages 220-233. Springer, 2003.

A. V. N. Moreno. Using MDA for Designing and Implemengrweb-based Applications.
In International Conference on Web Engineering (ICWE 20040nich, Germany, 2004.
Tutorial.

OMG. Common Object Request Broker Architecture (CORIBAP), v3.0.3. OMG docu-
ment formal/04-03-01.

OMG. MOF Model to Text Transformation. OMG Document @&05-04.pdf .

OMG. MOF 2.0 Query/Views/Transformation RFP, 2002. GMocument ad/2002-04-10.
OMG. XMl Specification, v1.2, 2002. OMG Document forrs-01-01.

OMG. MDA Guide version 1.0.1, 2003. OMG Document: on@f)3-06-01.

OMG. Meta Object Facility (MOF) 2.0 Core Specification, OMG Do@mhptc/03-10-04
http://www.omg.org/docs/ptc/03-10-04.pdf, 2003.

OMG. MOF QVT Final Adopted Specification, 2005. OMG Adeg Specification ptc/05-
11-01.

OMG. OCL 2.0 Specification, 2006. OMG Document form@0dg-05-01.

D. E. Perry and A. L. Wolf. Foundations for the study ofte@re architecture. I8SIGSOFT
Software Engineering Notegolume 17, pages 40-52, Oct. 1992.

G. D. Plotkin. A Structural Approach to Operationahstics. Technical Report DAIMI
FN-19, University of Aarhus, 1981.

T. Reiter, E. Kapsammer, W. Retschitzegger, and Ww8aer. Model Integration Through
Mega Operations. 2005. accepted for publication at the #amk on Model-driven Web
Engineering (MDWE2005).

REFERENCES 117

[102] E. Riccobene and P. Scandurra. Towards an Interchaagguage for ASMs. In W. Zim-
mermann and B. Thalheim, editoisbhstract State Machines 2004. Advances in Theory and
Practice, 11th International Workshppolume 3052 ofLNCS pages 111-126. Springer,
2004.

[103] S. Roh, K. Kim, and T. Jeon. Architecture Modeling Laage based on UML2.0. In
Proocedings of the 11th Asia-Pacific Software Engineeringf€ence (APSEC’042004.

[104] C. M. F. Rubira, R. de Lemos, G. R. M. Ferreira, and F. ithd: Exception handling in
the development of dependable component-based sysBafta. Pract. Exper35(3):195—
236, 2005.

[105] A. Schauerhuber, M. Wimmer, and E. Kapsammer. Briggisting Web Modeling Lan-
guages to Model-Driven Engineering: A Metamodel for WebMIn 2nd International
Workshop on Model-Driven Web Engineerjifalo Alto, California, July 2006. to appear.

[106] J. Schmid. Executing ASM specifications with AsmGofettp://www.tydo.de/AsmGofer.

[107] J. Schmid. Compiling Abstract State Machines to Cdaur. of Universal Computer Sci-
ence 7(11):1069-1088, 2001.

[108] D. Schwabe and G. Rossi. An object oriented approadiieio-based applications design.
Theor. Pract. Object Sys#(4):207-225, 1998. John Wiley & Sons, Inc.

[109] E. Seidewitz. What Models MealEEE Software20(5):26-32, Sept./Oct. 2003.

[110] B. Selic. The Pragmatics of Model-driven DevelopmefEEE Software 20(5):19-25,
2003.

[111] M. Shaw and D. GarlanSoftware Architecture: Perspectives on an Emerging Diswp
Prentice-Hall, Englewood Cliffs, 1996.

[112] G. Smith. The Object-Z specification languag&luwer Academic Publishers, Norwell,
MA, USA, 2000.

[113] R. Stark, J. Schmid, and E. Borgdava and the Java Virtual Machine: Definition, Verifi-
cation, Validation Springer-Verlag, 2001.

[114] R. F. Stark and S. Nanchen. A logic for Abstract Statachnes. Jour. of Universal
Computer Scien¢&(11):981-1006, 2001.

[115] J. Steel and J.-M. Jézéquel. Model Typing for ImpmgvReuse in Model-Driven Engi-
neering. InModel Driven Engineering Languages and Systems (MoDEIdR)me 3713
of LNCS pages 84-96. Springer-Verlag, Oct. 2005.

[116] G. Taentzer. AGG: A graph transformation environmfemtmodeling and validation of
software. In J. L. Pfaltz, M. Nagl, and B. Bohlen, editod& TIVE volume 3062 0. NCS
pages 446-453. Springer, 2003.

[117] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. LengyelLevendovszky, U. Prange,
D. Varro, and S. Varro-Gyapay. Model Transformation bygr Transformation: A Com-
parative Study. IACM/IEEE 8th International Conference on Model Driven Eregring
Languages and SysteniMontego Bay, Jamaica, Oct. 2005.

118 REFERENCES

[118] J.-P. Tolvanen and S. Kelly. Defining Domain-Specifioddling Languages to Automate
Product Derivation: Collected Experiences. SRLG volume 3714 oLLNCS pages 198—
209. Springer-Verlag, Oct. 2005.

[119] L. Tratt. Model transformations and tool integratialour. on Software and Systems Mod-
eling (SoSyM)4(2):112-122, May 2005.

[120] D. Varr6. Automated Model Transformations for the Analysis of IT 8Syst PhD the-
sis, Budapest University of Technology and Economics, Biepent of Measurement and
Information Systems, 2004.

[121] D. Varré and A. Pataricza. Generic and Meta-Trams#tions for Model Transformation
Engineering. Irinternational Conference on the Unified Modeling Langugusges 290—
304, 2004.

[122] D. Varro, G. Varro, and A. Pataricza. Designing theoanatic transformation of visual
languagesScience of Computer Programmimg(2):205-227, Aug. 2002.

[123] D. Vojtisek and J.-M. Jézéquel. MTL and Umlaut NG:diive and Framework for Model
Transformation. http://www.ercim.org/publication/Enc News/enw58/vojtisek.html.

[124] Web Models. WebRatio Tool. http://www.webratio.com

[125] K. Winter. Model checking Abstract State MachineBhD thesis, Technical Universisty
Berlin, 2001.

[126] J. Woodcock and J. Davieslsing Z. Specification, Refinement, and Prdefentice Hall,
London, 1995.

[127] World Wide Web Consortium (W3C). Web Ontology Langeag(OWL).
http://www.w3.0rg/2004/OWL.

[128] Xactium. Xmf-mosaic. http://xactium.com.

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Outline of the Thesis
	List of Publications
	Funding Acknowledgements

	Basic Concepts
	Model Driven Engineering
	Models and Meta-models
	Model Transformations
	Classification
	Languages

	Model Weaving
	Conclusions

	Abstract State Machines (ASMs)
	Overview
	Mathematical definition of ASMs
	Vocabulary and states of ASMs
	Terms, variable assignment and formulae
	Transition rules, consistent updates, firing of updates

	The XASM Specification Language
	Conclusions

	ASMs for Model Transformation Specification (A4MT)
	Overview
	Model and Metamodel encoding
	Model Transformation Rules
	A4MT in the context of MOF 2.0 QVT RFP
	Comparing A4MT with other Approaches
	Conclusions

	A4MT Benchmark
	A4MT for Model Driven Development of Web Applications
	Webile
	Describing PSMs
	Model Transformations

	A4MT for Middleware Based System Development
	Compositional Verification of Middleware-based SA
	Proxy Generation
	Property Preserving Transformations

	Giving Dynamic Semantics to DSLs through ASMs
	Domain-Specific Languages and Models
	DSL Dynamic Semantics Specification with ASMs
	The AMMA Framework
	Extending AMMA with ASMs
	Dynamic Semantics of ATL

	Conclusions

	A4MT-based Model Weaving
	Weaving Concerns of Web Applications
	Dealing with Web Application Concerns
	Concern Specifications
	Weaving Specification
	Target Model Generations

	Weaving Software Architecture Models
	Modeling Software Architectures
	Dually profile
	Extending Dually
	Using Dually for Designing Fault-tolerant systems

	Conclusions

	Conclusions
	References

