
Dipartimento di Informatica
Università di L’Aquila

Via Vetoio, I-67100 L’Aquila, Italy

http://www.di.univaq.it

PH.D. THESIS IN COMPUTER SCIENCE

XIX

SPECIFICATION OFMODEL TRANSFORMATION AND
WEAVING IN MODEL DRIVEN ENGINEERING

Ph.D. Thesis of:
Davide Di Ruscio

Advisor:
Prof. Alfonso Pierantonio

Supervisor of the Ph.D. Program:
Prof. Michele Flammini

CICLO XIX

c© Davide Di Ruscio, 2007. All rights reserved

ABSTRACT

Last years witnessed an increasing intricacy of both software systems and technologies. A num-
ber of platforms (e.g. CORBA, J2EE, .NET) have been introduced which often came in bundle
with their own programming language (e.g. C++, Java, C#). This has made the software develop-
ment process a difficult and expensive task. Model driven engineering (MDE) aims at preserving
the investments in building complex software systems against constantly changing technology
solutions, by advocating the raising of the abstraction level in system specification and increas-
ing automation in system development. The concept of model driven engineering emerged as a
generalization of Model Driven Architecture (MDA) proposed by the Object Management Group
(OMG) in 2001 [95]. The MDA based software development starts by building a Platform In-
dependent Model (PIM) of that system which is refined and transformed to one or more Plat-
form Specific Models (PSMs). Then, the PSMs are transformed to code. In this scenario, model
transformation plays a central role. Many languages and tools have been proposed to specify
and execute transformation programs. In 2002 the Object Management Group (OMG) issued the
Query/View/Transformation (QVT) request for proposal [93] to define a standard transformation
language, whereas in the meanwhile, a number of model transformation approaches have been
proposed both from academia and industry. However, since MDE approaches rely on complex
model transformations, the problem of specifying them in a precise way has to be sufficiently
achieved since the automation introduced by transformations gives place to additional require-
ments on assuring the quality of mappings; correct conceptual designs may implant bugs into the
applications if the automated transformations are erroneous [122]. Another central operation in
MDE is model weaving intended as the operation for setting fine-grained relationships between
models or metamodels and executing operations on them basedon the semantics of the weaving
associations specifically defined for the considered application domain [12].

This work proposes A4MT (ASMs for Model Transformation Specification) an approach based on
Abstract State Machines (ASMs) [22] to support the formal specification and execution of model
transformation and weaving. The choice of ASMs is motivatedby the extensive use of this formal-
ism in the specification and analysis of many software and hardware systems [1]. The formalism
has a simple syntax that permits to write specifications thatcan be seen as “pseudocode over ab-
stract data” and makes possible formal and executable specifications of model transformations
enabling theirdesignandvalidation. A4MT aims at formally specifying the behaviour of transfor-
mations in order to produce a formal and implementation independent reference for what can and
what can not happen during their execution. In this way, the transformation designers have the pos-
sibility to check their basic design decisions against an accurate and executable high-level model
of the transformation itself. A4MT has been validated in different applicative domains. Con-
cerning the specification of model transformations, it has been used mainly to support the model
driven development of Web applications and the compositional verification of middleware-based
systems. With respect to model weaving, A4MT has been used toformally specify the semantics
of weaving operators and the approach has been validated in two kind of applications: decou-
pling of concerns in model driven development of Web applications and for software architecture
modeling.

ACKNOWLEDGMENTS

This work is the synthesis of support and encouragement coming from different sources in various
ways. First of all, I would like to thank Prof. Alfonso Pierantonio, without his support this thesis
would not have been possible. Moreover, the friendly and supportive atmosphere inherent to the
whole Computer Science Department of the University of L’Aquila contributed essentially to the
final outcome of this work.

I would like to thank the people from the ATLAS group of the Unversité de Nantes, since this
PhD project profited a lot from our interesting discussions and the many new impulses I received
from them. I also thank Prof. Jean Bézivin and Prof. AntonioVallecillo for carefully reading the
preliminary version of this thesis and offering valuable corrections and suggestions.

Apart from my colleagues, I would like to thank Marianna, my family and friends who have never
lost faith in this long-term project. Their support and patience were fundamental in concluding
this project.

This work received financial support from the TecnoMarche S.c.a r.l. (Parco Scientifico e Tecno-
logico delle Marche - Italy).

”...Rien ne se perd, rien ne se cré,
tout se transforme...”

Antoine-Laurent de Lavoisier

TABLE OF CONTENTS

Abstract i

Acknowledgments iii

Table of Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Outline of the Thesis .. . 3
1.2 List of Publications 4
1.3 Funding Acknowledgements 5

2 Basic Concepts 7
2.1 Model Driven Engineering 7
2.2 Models and Meta-models .. . 8
2.3 Model Transformations 10

2.3.1 Classification . 10
2.3.2 Languages . 12

2.4 Model Weaving . 16
2.5 Conclusions .18

3 Abstract State Machines (ASMs) 19
3.1 Overview . 19
3.2 Mathematical definition of ASMs 20

3.2.1 Vocabulary and states of ASMs .. 20
3.2.2 Terms, variable assignment and formulae 21
3.2.3 Transition rules, consistent updates, firing of updates 23

3.3 The XASM Specification Language 27
3.4 Conclusions .30

4 ASMs for Model Transformation Specification (A4MT) 31
4.1 Overview . 32
4.2 Model and Metamodel encoding 32
4.3 Model Transformation Rules 33
4.4 A4MT in the context of MOF 2.0 QVT RFP 45
4.5 Comparing A4MT with other Approaches 46
4.6 Conclusions .49

5 A4MT Benchmark 53
5.1 A4MT for Model Driven Development of Web Applications 53

viii TABLE OF CONTENTS

5.1.1 Webile . 54
5.1.2 Describing PSMs . 55
5.1.3 Model Transformations .. 58

5.2 A4MT for Middleware Based System Development 62
5.2.1 Compositional Verification of Middleware-based SA 63
5.2.2 Proxy Generation . 65
5.2.3 Property Preserving Transformations 72

5.3 Giving Dynamic Semantics to DSLs through ASMs 72
5.3.1 Domain-Specific Languages and Models 73
5.3.2 DSL Dynamic Semantics Specification with ASMs 75
5.3.3 The AMMA Framework . 75
5.3.4 Extending AMMA with ASMs . 76
5.3.5 Dynamic Semantics of ATL . 77

5.4 Conclusions .81

6 A4MT-based Model Weaving 83
6.1 Weaving Concerns of Web Applications 83

6.1.1 Dealing with Web Application Concerns 84
6.1.2 Concern Specifications .. 87
6.1.3 Weaving Specification .90
6.1.4 Target Model Generations .. 92

6.2 Weaving Software Architecture Models 100
6.2.1 Modeling Software Architectures 100
6.2.2 Dually profile . 102
6.2.3 Extending Dually . 103
6.2.4 Using Dually for Designing Fault-tolerant systems 106

6.3 Conclusions .108

7 Conclusions 109

References 111

L IST OF FIGURES

2.1 The four layer meta-modeling architecture 8
2.2 MDA based development Process 9
2.3 Basic Concepts of Model Transformation 10
2.4 QVT Architecture .. 12
2.5 Fragment of a declarative ATL transformation 14
2.6 Weaving Operation .. 17

3.1 Subasm Call . 28
3.2 Function Call .29

4.1 Model Transformation through A4MT 32
4.2 Algebraic encoding of a sample UML metamodel 33
4.3 Algebraic encoding fragment of a Sample UML model 34
4.4 Sample RDBMS metamodel .35
4.5 Sample Source UML Model .37
4.6 Sample Target RDBMS Model .. 38

5.1 A fragment of an academic site 54
5.2 Different Views of the MVC pattern 56
5.3 Conallen’s View-Controller description 57
5.4 XDW Model description .. 57
5.5 A model encoded in an algebra 59
5.6 An abstract representation of a Webile model 61
5.7 a) ATM application; b)Z property . 64
5.8 Component Behavior Descriptions 64
5.9 Architectural Refinement 65
5.10 Detailing SA .66
5.11 Components Relabelling 67
5.12 The transformation process 67
5.13 TM State Machine models .. . 68
5.14 Source Metamodel .. 69
5.15 Target Metamodel .. . 70
5.16 Present State of AMMA .. 76
5.17 Extending AMMA with ASMs .. 77
5.18 Structure of the dynamic semantics specification of ATL. 78
5.19 Part of the PetriNet Metamodel expressed in KM3 78
5.20 Part of the PetriNet Metamodel encoding 79
5.21 ASM specification for the trace links management 79
5.22 MatchRule sub-machine specification 80

x LIST OF FIGURES

5.23 Apply rule specification 81

6.1 A fragment of the OO-H Conference Review System Specification 85
6.2 A fragment of the WebML Conference Review System Specification 86
6.3 Overall Approach .. 87
6.4 Data Metamodel .88
6.5 Sample Data Model .88
6.6 Navigation Metamodel .. . 89
6.7 Sample Navigation Model .. . 89
6.8 Composition Metamodel .. . 90
6.9 Sample Composition Model .. . 90
6.10 Core Weaving Metamodel .. . 91
6.11 Sample Data-Composition Weaving Model 91
6.12 Sample Composition-Navigation Weaving Model 92
6.13 Sample Webile Specification 93
6.14 Core Webile Profile .. . 94
6.15 Sample WebML Specification 97
6.16 Core WebML Metamodel .. 98
6.17 TheDUAL LY profile . 102
6.18 Weaving Models .103
6.19 The Ideal Component UML profile 105
6.20 The mining control system SA 106
6.21 Air Extractor Control component with fault-toleranceinformation 107

L IST OF TABLES

3.1 Semantics of transition rules in ASMs 26

4.1 Support of the QVT requirements by A4MT 46
4.2 Transformation Approach Comparison 51

CHAPTER 1

INTRODUCTION

Last years witnessed an increasing intricacy of both software systems and technologies. A num-
ber of platforms (e.g. CORBA, J2EE, .NET) have been introduced which often came in bundle
with their own programming language (e.g. C++, Java, C#). Inorder to cope with these prob-
lems, model driven engineering (MDE) has been proposed aiming at preserving the investments
in building complex software systems against rapidly changing technology solutions. The main
difficulties with current modelling languages, including UML, is that they are usually not used to
provide in an integrated manner the specifications for a program in a provably correct collection
of documents. In this respect, MDE proposes to extend the formal use of modelling languages in
several interesting ways by leveraging the “everything is amodel” [12] principle. In particular, it
prescribes how the design should be implemented by decoupling the system functionalities from
the platform specific decisions upon which the implementation is developed. Beyond using this
information for code-generation, sites can employ it for maintenance, as well as for evolutionary
considerations such as porting to new platforms. In summation, MDE covers the full lifecycle of
the application.

The concept of model driven engineering emerged as a generalization of Model Driven Architec-
ture (MDA) proposed by the Object Management Group (OMG) in 2001 [95]. MDA is about using
modeling languages as programming languages rather than merely as design languages. The MDA
based development of a software system starts by building Platform Independent Models (PIM) of
that system which are refined and transformed into one or morePlatform Specific Models (PSMs).
Then, the PSMs are transformed to code. In this way, MDA allows to preserve the investments
in business logic since PIMs describe the system functionalities without caring about any specific
technology and developers can focus only on the design, the business logic, and the overarching
architecture of the system being developed.

In this scenario, model transformation plays a key role eventhough it presents intrinsic difficul-
ties. In fact, it requires“specialized support in several aspects in order to realizethe full potential,
for both the end-user and transformation developer”[119]. Many languages and tools have been
proposed to specify and execute transformation programs. In 2002 OMG issued the Query/View/-
Transformation Request For Proposal [93] to define a standard transformation language. Although
a final specification has been adopted at the end of 2005, the area of model transformation con-
tinues to be a subject of intense research. At the same time, anumber of model transformation
approaches have been proposed both from academia and industry. The paradigms, constructs,
modeling approaches, tool support distinguish the proposals each of them with a certain suitabil-
ity for a specific set of problems.

MDE approaches rely on complex model transformations and the problem of specifying them in

1

2 Chapter 1. Introduction

a precise way has to be sufficiently achieved since the automation introduced by transformations
gives place to additional requirements on assuring the quality of mapping; correct conceptual de-
signs may implant bugs into the applications if the automated transformations are erroneous [122].
For these reasons model transformations should be precisely and formally specified enabling some
form of reasoning, proof of properties and verification of their correctness with respect to some
criteria [120]. Moreover, one of the goals of applying formal techniques in model transformation
is to achieve the “correct-by-construction” property [71]in order to conceive that if the construc-
tions steps are formally specified, then the correctness of adesign can be verified based on the
correctness of the steps.

Another central operation in MDE ismodel weaving. In particular, the separation of concerns
in software system modeling demands to avoid the constructions of large and monolithic models
which are difficult to handle, maintain and reuse. At the sametime, having different models
(each one describing a certain concern or domain) requires their integration into a final model
representing the entire domain [101].Model weavingcan be used for this purpose. Although there
is no accepted definition of model weaving, [12] defines it as the operation for setting fine-grained
relationships between models or metamodels, whose associated execution semantics is specifically
given for the considered application domain.

This work proposes A4MT (ASMs forModel Transformation Specification), an approach based
on Abstract State Machines (ASMs) [22] to support the formaldesign and validation of model
transformation and weaving. In this respect, the design consists of an implementation indepen-
dent definition which directly reflects the intuitions and design decisions underlying the given
model transformation and which supports the programmer’s understanding of the transformation
programs being specified itself. A4MT aims at formally specifying the transformations in order to
produce a formal reference to convey the design decisions recorded by the designer to the trans-
formation implementors which have the possibility to checkthe outcome against an accurate and
executable high-level model of the transformation itself.

A4MT model transformations start from an algebra encoding the source models and return an
algebra encoding the target ones. This final representationcontains all the needed information
to translate the final algebra into the corresponding models. An A4MT transformation program
consists of a collection of multiple rules of the form

< Query> =⇒ < Transformation>

with Querydeclaratively defined as first–order logic predicates over finite universes containing
model element representatives, andTransformationprocedurally expressed as parallel updates of
the encoding algebra. The transformation branch may contain further transformation rules of the
same form. Rules are iteratively fired until they do not causeany further update depending whether
their queries have a non empty outcome or not. Thus, the matching algorithm is implicitly defined
by the queries which establish also their relative precedences.

The choice of ASMs is motivated by the extensive use of this formalism in the specification and
analysis of many software and hardware systems [1]. The formalism has a simple syntax that
permits to write specifications that can be seen as “pseudocode over abstract data”. On one hand
they are mathematically rigorous and represent a formal basis to analyze and verify transforma-
tions; on the other hand, they combine declarative and procedural features to harness the intrinsic
complexity of designing transformations. The ASMs have been linked to a multitude of anal-
ysis methods, in terms of both experimental validation of models and mathematical verification

1.1 Outline of the Thesis 3

of their properties. The validation (testing) of ASM modelscan be obtained by their simula-
tion, which corresponds naturally to their execution whichis supported by numerous tools (ASM
Workbench [26], AsmGofer [106], an Asm2C++ compiler [107],XASM [8], .NET AsmL [48]).
The verification of model properties is possible due to the mathematical character of ASMs. Dif-
ferent techniques can be used, from proof sketches over traditional or formalized mathematical
proofs [114] to tool supported proof checking or interactive or automatic theorem proving, e.g. by
model checkers [125, 52].

A4MT has been validated in different applicative domains. Concerning the specification of model
transformations, it has been used to support the model driven development of Web applications
and the compositional verification of middleware-based systems (see Chapter 5). Moreover, the
approach has been used also for the dynamic semantics specification of DSLs in the AMMA
framework [16]. With respect to model weaving, A4MT has beenused to formally specify the
semantics of weaving operators and the approach has been validated to support two kind of appli-
cations: decoupling of concerns in model driven development of Web applications and for software
architecture modeling (see Chapter 6).

1.1 OUTLINE OF THE THESIS

The thesis is structured as follows:

Chapter 2 describes the basic concepts used in this work. It introduces Model Driven Engineering
(MDE), Model Driven Architecture (MDA), and gives a definition of models and metamodels
according to the literature. Moreover, the concepts of model transformation and model weaving
are discussed in detail since they motivate the approach proposed in Chapter 4.

Chapter 3 gives an overview of the Abstract State Machines formalism (ASMs) and motivates its
adoption as base of the approach proposed in Chapter 4. The XASM language is also presented
since all the proof of concepts presented in Chapter 4, 5, and6 have been developed by using this
particular ASMs implementation.

Chapter 4 describes A4MT, the proposed ASMs based approach to supportformal specification
of model transformations and weaving. The standardUML2RDBMStransformation is consid-
ered throughout the chapter in order to describe how the approach is able to deal with complex
model transformation situations. The chapter collocates A4MT in the context of MOF 2.0 QVT
RFP [93] and proposes also a comparison (based on the classification presented by Czarnecki et
al. in [34]) between A4MT and some of the today’s available transformation languages presented
in Chapter 2.

Chapter 5 describes the application of A4MT in different applicativedomains. The chapter dis-
cusses an attempt to support the model driven development ofWeb applications by means of
model transformation formally specified with A4MT. Then theapproach has been used also in the
development of middleware systems highlighting the importance of having a formal approach to
specify property preserving transformations. Finally, the chapter describes how it is possible to
use A4MT for specifying the dynamic semantics of Domain Specific Languages in the context of
the AMMA framework. A case study is discussed by formally specifying the dynamic semantics
of ATL.

4 Chapter 1. Introduction

Chapter 6 proposes the use of A4MT to define the semantics of weaving operators that are used
to generate target models with respect to given correspondences between source ones. A case
study is proposed aiming to decouple the different concernsin model driven development of Web
applications. The approach has been used also to specify metamodel extensions. In this respect,
a case study is proposed consisting of weaving operators devoted to the extension of a core UML
profile conceived for the specification of software architectures.

Chapter 7 gives conclusions by outlining the main contributions of this thesis and some perspec-
tive works.

1.2 LIST OF PUBLICATIONS

During the development of this thesis, the author has published various parts of his work in the
following papers (listed in reverse chronological order):

International Journals

1. D. Di Ruscio, H. Muccini, A. Pierantonio,A Data Modeling Approach to Web Application
Synthesis. International Journal of Web Engineering and Technology,vol. 1, no. 3 (2004)
pp 320-337.

2. L. Balzerani, G. De Angelis, D. Di Ruscio, A. Pierantonio,Supporting Web Applications
Development with a Product Line Architecture, Journal of Web Engineering, vol.5, no.1
(2006) pp 025-042.

International Conferences and Workshops

3. A. Cicchetti, D. Di Ruscio, A. Di Salle,Software Customization in Model Driven Develop-
ment of Web Applications. Proc. Model Transformation track of the 22th ACM Symposium
on Applied Computing (SAC 2007), to appear.

4. A. Cicchetti, D. Di Ruscio, R. Eramo,Towards Propagation of Changes by Model Ap-
proximations, International Workshop on Models for Enterprise Computing, EDOC 2006
Workshop, Hong Kong, IEEE Computer Society.

5. A. Cicchetti, D. Di Ruscio, A. Pierantonio,Composition of Model Differences, In A. G.
Kleppe, editor, 1st European W. on Composition of Model Transformations - CMT 2006,
number TR-CTIT-06-34 in CTIT Technical Reports, June 2006.

6. D. Di Ruscio, H. Muccini, P. Pelliccione, A. Pierantonio,Towards Weaving Software Archi-
tecture Models, Proc. MBD/MOMPES Workhops within the IEEE ECBS 2006, pp. 103-
112, IEEE CS Press.

7. A. Cicchetti, D. Di Ruscio and A. Pierantonio,Weaving Concerns in Model Based Devel-
opment of data-intensive Web Applications, Proc. Model Transformation track of the 21th
ACM Symposium on Applied Computing (SAC 2006), pp. 1256–1261, ACM Press.Ex-
tended version submitted for journal publication

1.3 Funding Acknowledgements 5

8. D. Di Ruscio, A. Pierantonio,Model Transformations in the Development of data-intensive
Web Applications, Proc. 17th Conference on Advanced Information Systems Engineering
(CAiSE’05), O. Pastor and J. F. e Cunha (Eds.), Springer LNCS3520, 2005, pp. 475-490.

9. L. Balzerani, G. De Angelis, D. Di Ruscio, A. Pierantonio,A Product Line Architecture
for Web Applications, Proc. Web Technologies and Applications Special Track of the 20th
ACM Symposium on Applied Computing (SAC 2005), pp. 1689–1693, ACM Press.

10. M. Caporuscio, D. Di Ruscio, P. Inverardi, P. Pelliccione, and A. Pierantonio,Engineering
MDA into Compositional Reasoning for Analyzing Middleware-based Applications, Proc.
2nd European Workshop on Software Architecture (EWSA 2005), Ronald Morrison and
Flio Oquendo (Eds.), Springer LNCS 3527, 2005, pp. 130-145.

Technical Reports

11. D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, A. Pierantonio, Extending AMMA for Sup-
porting Dynamic Semantics Specifications of DSLs, Laboratoire d’Informatique de Nantes-
Atlantique (LINA) Research Report n.06.02.

12. D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, A. Pierantonio, A Practical Experiment
to Give Dynamic Semantics to a DSL for Telephony Services Development, Laboratoire
d’Informatique de Nantes-Atlantique (LINA) Research Report n.06.03.

13. A. Cicchetti, D. Di Ruscio, A. Pierantonio,A Domain-Specific Modeling Language for
Model Differences, Dipartimento di Informatica, Università di L’Aquila, TR005/2006,
2006.

1.3 FUNDING ACKNOWLEDGEMENTS

This research was funded by TecnoMarche S.c.a r.l. (Parco Scientifico e Tecnologico delle Marche).
Any opinions, findings, and conclusions or recommendationsexpressed in this material are those
of the author and do not necessarily reflect the views of TecnoMarche S.c.a r.l.

CHAPTER 2

BASIC CONCEPTS

This chapter gives an overview of the basic concepts used in this thesis. It introduces the notions of
Model Driven Engineering (MDE) and Model Driven Architecture (MDA), the concepts of model,
meta-model, model transformation, and model weaving.

The structure of the chapter is as follows: Section 2.1 describes the notions of Model Driven
Engineering and Model Driven Architecture. Section 2.2 discusses definitions of model and the
concept of meta-model. In Section 2.3 some of today’s model transformation approaches are de-
scribed taking into account the classification proposed by Czarnecki et al. in [34]. Section 2.4
describes the model weaving operation and the factors that distinguish it with the model transfor-
mation one. Section 2.5 concludes the chapter.

2.1 MODEL DRIVEN ENGINEERING

Model-Driven Engineering (MDE) refers to the systematic use of models as first class entities
throughout the software engineering life cycle. Model-driven approaches shift development focus
from third generation programming language codes to modelsexpressed in proper domain spe-
cific modeling languages. The objective is to increase productivity and reduce time to market by
enabling the development of complex systems by means of models defined with concepts that are
much less bound to the underlying implementation technology and are much closer to the prob-
lem domain. This makes the models easier to specify, understand, and maintain [110] helping the
understanding of complex problems and their potential solutions through abstractions.

The concept of Model Driven Engineering emerged as a generalization of the Model Driven Ar-
chitecture (MDA) proposed by OMG in 2001 [95]. Kent [73] defines MDE on the base of MDA
by adding the notion of software development process and modeling space for organizing models.
Favre [46] proposes a vision of MDE where MDA is just one possible instance of MDE imple-
mented in the set of technologies defined by OMG (MOF [96], UML[59], XMI [94], etc.) which
provided a conceptual framework and a set of standards to express models, model relationships,
and model-to-model transformations.

Embracing these visions about MDE and the relationship withMDA, the rest of the chapter pro-
vides with more details about the basic concepts ofmodel, meta-model, model transformationand
model weavingthat this work is manly focused on.

7

8 Chapter 2. Basic Concepts

2.2 MODELS AND META-MODELS

Even though MDA and MDE rely onmodelsthat are considered “first class citizens”, there is no
common agreement about what is a model. In [109] a model is defined as “a set of a statements
about a system under study”. Bézivin and Gerbé in [14] define a model as “a simplification of
a system built with an intended goal in mind. The model shouldbe able to answer questions in
place of the actual system”. According to Mellor et al. [85] amodel “is a coherent set of formal
elements describing something (e.g. a system, bank, phone,or train) built for some purpose that
is amenable to a particular form of analysis” such as communication of ideas between people and
machines, test case generation, transformation into an implementation etc. The MDA guide [95]
defines a model of a system as “a description or specification of that system and its environment
for some certain purpose. A model is often presented as a combination of drawings and text. The
text may be in a modeling language or in a natural language”.

MDA classifies models into three classes: Computation Independent Model (CIM), Platform In-
dependent Model (PIM) and Platform Specific Model (PSM). These models describe the system
being developed at different levels of abstraction. In particular, according to the MDA guide, a
CIM “is a view of a system from the computation independent viewpoint. A CIM does not show
details of the structure of systems. A CIM is sometimes called a domain model and a vocabulary
that is familiar to the practitioners of the domain in question is used in its specification”. A PIM
“is a view of a system from the platform independent viewpoint. A PIM exhibits a specified de-
gree of platform independence so as to be suitable for use with a number of different platforms
of similar type”. Finally a PSM “is a view of a system from the platform specific viewpoint. A
PSM combines the specifications in the PIM with the details that specify how that system uses
a particular type of platform”. The definitions of PIM and PSMrely on the concept of platform
defined in the MDA guide as “a set of subsystems and technologies that provide a coherent set of
functionality through interfaces and specified usage patterns, which any application supported by
that platform can use without concern for the details of how the functionality provided by the plat-
form is implemented”. One of the main motivations of this classification is to enable enterprises to
preserve investments in business logic by means of a clear separation of the system functionalities
from the specification of the implementation on a given technology platform.

In MDE models are not considered as merely documentation butprecise artifacts that can be

meta-metamodel

Metamodel

model

instance

conformsTo

Level

M2

M3

M1

M0

conformsTo

describedBy

MOF

conformsTo

UML
 SPEM
 CWM

conformsTo
 conformsTo

conformsTo

UML

Model

real

System

describedBy

conformsTo

EBNF

Pascal

grammar

Java

grammar

Java

Program P

conformsTo
 conformsTo

Execution

of P

describedBy

conformsTo
 conformsTo

conformsTo

XSD

XSD

Schema S1

XSD

Schema S2

XML

Document

conformsTo

conformsTo
 conformsTo

conformsTo

Data

describedBy

Figure 2.1: The four layer meta-modeling architecture

2.2 Models and Meta-models 9

Figure 2.2: MDA based development Process

understood by computers and can be automatically manipulated. In this scenariometa-modeling
play a key role. It is intended as a common technique for defining the abstract syntax of models and
the interrelationships between model elements. Meta-modeling can be seen as the construction of a
collection of “concepts” (things, terms, etc.) within a certain domain. A model is an abstraction of
phenomena in the real world, and a meta-model is yet another abstraction, highlighting properties
of the model itself. This model is said toconform toits meta-modellike a program conforms to
the grammar of the programming language in which it is written [12]. In this respect, OMG has
introduced the four-level architecture illustrated in Fig. 2.1. At the bottom level, theM0 layer is the
real system. A model represents this system at levelM1. This model conforms to its meta-model
defined at levelM2 and the meta-model itself conforms to the metametamodel at levelM3. The
metametamodel conforms to itself. OMG has proposed MOF [96]as a standard for specifying
meta-models. For example, the UML meta-model is defined in terms of MOF. A supporting
standard of MOF is XMI [94], which defines an XML-based exchange format for models on the
M3, M2, or M1 layer. This metamodeling architecture is common to other technological spaces as
discussed by Kurtev et al. in [6]. For example, the organization of programming languages and the
relationships between XML documents and XML schemas followthe same principles described
above (see Fig. 2.1).

In addition to metamodeling,model transformationis also a central operation in MDA as depicted
in Fig. 2.2. According to the figure, the development of a software system starts by building a PIM
of that system. Then the PIM is refined and transformed to one or more PSMs. Finally, the PSMs
are transformed to code. In this way, MDA allows to preserve the investments in business logic
since, being a PIM totally unrelated to any specific technology, it is possible to map it to different
platforms by means of (semi)automatic transformations which can be defined according specific
needs. Achieving this goal would enable analysts to focus only on the design, the business logic,
and the overarching architecture.

While technologies such as MOF [96] and UML [59] are well-established foundations on which to
build PIMs and PSMs, there is as yet no well-established foundation on which to rely in describing
how we take a PIM and transform it to produce a PSM. In the next section more insights about
model transformations are given and after a brief discussion about the general approaches, the
attention focuses on some of the today’s available languages.

10 Chapter 2. Basic Concepts

Figure 2.3: Basic Concepts of Model Transformation

2.3 MODEL TRANSFORMATIONS

The MDA guide [95] defines a model transformation as “the process of converting one model to
another model of the same system”. Kleppe et al. [74] defines atransformationas the automatic
generation of a target model from a source model, according to a transformation definition. A
transformation definitionis a set of transformation rules that together describe how amodel in the
source language can be transformed to a model in the target language. Atransformation ruleis
a description of how one or more constructs in the source language can be transformed to one or
more constructs in the target language.

Rephrasing these definitions by considering Fig. 2.3, a model transformation programs take as
input a model conforming to a given source meta-model and produces as output another model
conforming to a target meta-model. The transformation program, composed of a set of rules,
should itself considered as a model. As a consequence, it is based on a corresponding meta-model,
that is an abstract definition of the used transformation language.

Many languages and tools have been proposed to specify and execute transformation programs. In
2002 OMG issued the Query/View/Transformation request forproposal [93] to define a standard
transformation language. Even though a final specification has been adopted at the end of 2005,
the area of model transformation continues to be a subject ofintense research. Over the last years,
in parallel to the OMG process a number of model transformation approaches have been proposed
both from academia and industry. The paradigms, constructs, modeling approaches, tool support
distinguish the proposals each of them with a certain suitability for a certain set of problems.

In the following, a classification of the today’s model transformation approaches is briefly re-
ported, then some of the available model transformation languages are separately described. The
classification is mainly based upon [34] and [117].

2.3.1 CLASSIFICATION

At top level, model transformation approaches can be distinguished betweenmodel-to-codeand
model-to-model. The distinction is that, while a model-to-model transformation creates its target
as a model which conforms to the target meta-model, the target of a model-to-text transformation

2.3 Model Transformations 11

is essentially strings. In the following some classifications of model-to-model transformation
languages discussed in [34] are described.

Direct manipulation approach. It offers an internal model representation and some APIs to
manipulate it. It is usually implemented as an object oriented framework, which may also provide
some minimal infrastructure. Users have to implement transformation rules, scheduling, tracing
and other facilities, mostly from the beginning in a programming language.

Operational approach. It is similar to direct manipulation but offers more dedicated support for
model transformation. A typical solution in this category is to extend the utilized meta-modeling
formalism with facilities for expressing computations. Anexample would be to extend a query
language such as OCL with imperative constructs. Examples of systems in this category are QVT
Operational mappings [97], XMF [128], MTL [123] and Kermeta[88].

Relational approach. It groups declarative approaches in which the main concept is mathemat-
ical relations. In general, relational approaches can be seen as a form of constraint solving. The
basic idea is to specify the relations among source and target element type using constraints that
in general are nonexecutable. However, declarative constraints can be given executable semantics,
such as in logic programming where predicates can be used to describe the relations. All of the
relational approaches are side-effect free and, in contrast to the imperative direct manipulation
approaches, create target elements implicitly. Relational approaches can naturally support multi-
directional rules. They sometimes also provide backtracking. Most relational approaches require
strict separation between source and target models, that is, they do not allow in-place update. Ex-
ample of relational approaches are QVT Relations [97] and AMW [82]. Moreover, in [57] the
application of logic programming has been explored for the purpose. Finally, in [31] we have
investigated the application of the Answer Set Programming[56] for specifying relational and
bidirectional transformations.

Hybrid approach. It combines different techniques from the previous categories, like ATL [70]
that wraps imperative bodies inside declarative statements.

Graph-transformation based approaches.It draws on the theoretical work on graph tranforma-
tions. Describing a model transformation by graph transformation, the source and target models
have to be given as graphs. Performing model transformationby graph transformation means to
take the abstract syntax graph of a model, and to transform itaccording to certain transformation
rules. The result is the syntax graph of the target model.

Being more precise, graph transformation rules have anLHS and anRHSgraph pattern. The
LHSpattern is matched in the model being transformed and replaced by theRHSpattern in place.
In particular,LHR represents the pre-condition of the given rule, whileRHSdescribes the post-
conditions.LHR∩RHSdefines a part which has to exist to apply the rule, but which isnot changed.
LHS− LHS∩ RHSdefines the part which shall be deleted, andRHS− LHS∩ RHSdefines the
part to be created. The LHS often contains conditions in addition to the LHS pattern, for example,
negative conditions. Some additional logic is needed to compute target attribute values such as
element names. AGG [116] and AToM3 [36] are systems directlyimplementing the theoretical
approach to attributed graphs and transformations on such graphs. They have built-in fixpoint
scheduling with non-deterministic rule selection and concurrent application to all matching loca-
tions, and the rely on implicit scheduling by the user. The transformation rules are unidirectional
and in-place. Systems such as VIATRA2 [122] and GReAT [4] extend the basic functionality

12 Chapter 2. Basic Concepts

Figure 2.4: QVT Architecture

of AGG and AToM3 by adding explicit scheduling. VIATRA2 users can build state machines to
schedule transformation rules whereas GReAT relies on data-flow graph.

2.3.2 LANGUAGES

In this section some of the languages referred above are singularly described. The purpose of
the description is to provide the reader with the backgroundneeded to understand the comparison
between the approach provided in Chap. 4 with QVT, AGG, ATL, GReAT, and VIATRA2.

QVT In 2002 OMG issued the QVT RFP [93] describing the requirements of a standard lan-
guage for the specification of model queries, views, and transformations according to the following
definitions:

• A query is an expression that is evaluated over a model. The result ofa query is one or
more instances of types defined in the source model, or definedby the query language. For
example, a query over a UML model might be:Return all packages that do not contain any
child packages. The result would be a collection of instances of thePackage metaclass.
As it will be explained in the following, the Object Constraint Language (OCL 2.0) [98] is
the query language actually used in QVT;

• A view is a model which is completely derived from a base model. A view cannot be
modified separately from the model from which it is derived and changes to the base model
cause corresponding changes to the view. If changes are permitted to the view then they
modify the source model directly. The meta-model of the viewis typically not the same
as the meta-model of the source. A query is a restricted kind of view. Finally, views are
generated via transformations;

• A transformationgenerates a target model from a source one. If the source and target
meta-models are identical the transformation is calledendogeneous. If they are different the
transformation is calledexogeneous. A model transformation may also have several source
models and several target models. A view is a restricted kindof transformation in which the
target model cannot be modified independently of the source model. If a view is editable,
the corresponding transformation must be bidirectional inorder to reflect the changes back
to the source model.

Over the last three years a number of research groups have been involved in the definition of QVT
whose final specification has been reached at the end of November 2005 [97]. The abstract syntax
of QVT is defined in terms of MOF 2.0 metamodel. This metamodeldefines three sublanguages

2.3 Model Transformations 13

for transforming models. OCL 2.0 is used for querying models. Creation of views on models is
not addressed in the proposal.

The QVT specification has a hybrid declarative/imperative nature, with the declarative that forms
the framework for the execution semantics of the imperativepart. The layers of the declarative
part are the following:

• A user-friendlyRelationsmetamodel and language which supports complex object pattern
matching and object template creation. Traces between model elements involved in a trans-
formation are created implicitly;

• A Coremetamodel and language defined using minimal extensions to EMOF and OCL. All
trace classes are explicitly defined as MOF models, and traceinstance creation and deletion
is defined in the same way as the creation and deletion of any other object.

By referring to [97], a relation is a declarative specification of the relationships between MOF
models. TheRelationslanguage supports complex object pattern matching, and implicitly creates
trace classes and their instances to record what occurred during a transformation execution. Rela-
tions can assert that other relations also hold between particular model elements matched by their
patterns. Finally,Relationslanguage has a graphical syntax.

Concerning theCore it is a small model/language which only supports pattern matching over
a flat set of variables by evaluating conditions over those variables against a set of models. It
treats all of the model elements of source, target and trace models symmetrically. It is equally
powerful to theRelationslanguage, and because of its relative simplicity, its semantics can be
defined more simply, although transformation descriptionsdescribed using theCoreare therefore
more verbose. In addition, the trace models must be explicitly defined, and are not deduced from
the transformation description, as is the case withRelations. The core model may be implemented
directly, or simply used as a reference for the semantics ofRelations, which are mapped to the
Core, using the transformation language itself.

To better clarify the conceptual link betweenRelationsandCore languages, an analogy can be
drawn with the Java architecture, where the Core language islike Java Byte Code and the Core
semantics is like the behavior specification for the Java Virtual Machine. The Relations language
plays the role of the Java language, and the standard transformation from Relations to Core is like
the specification of a Java Compiler which produces Byte Code.

Sometimes it is difficult to provide a complete declarative solution to a given transformation prob-
lem. To address this issue QVT proposes two mechanisms for extending the declarative languages
RelationsandCore: a third language calledOperational Mappingsand a mechanism for invoking
transformation functionality implemented in an arbitrarylanguage (Black Box).

TheOperational Mappingslanguage is specified as a standard way of providing imperative imple-
mentations. It provides OCL extensions with side effects that allow a more procedural style, and a
concrete syntax that looks familiar to imperative programmers. A transformation entirely written
using Operation Mappings is called an “operational transformation”.

TheBlack Boxmechanism makes possible to “plug-in” and execute externalcode. This permits
to implement complex algorithms in any programming language, and reuse already available li-

14 Chapter 2. Basic Concepts

braries. However, this mechanism allows implementations of some parts of a transformation to be
opaque.

ATL ATL (ATLAS Transformation Language) [70] is a hybrid model transformation language
containing a mixture of declarative and imperative constructs. The former allows to deal with
simple model transformations, while the imperative part helps in coping with transformation of
higher complexity. ATL transformations are unidirectional, operating on read-only source models
and producing write-only target models. During the execution of a transformation source models
may be navigated but changes are not allowed. Target models cannot be navigated.

Transformation definitions in ATL formmodules. A module contains a mandatoryheadersection,
import section, and a number ofhelpersandtransformation rules. Header section gives the name
of a transformation module and declares the source and target models (lines1-2, Fig. 2.5). The
source and target models are typed by their meta-models. Thekeywordcreate indicates the
target model, whereas the keywordfrom indicates the source model. In the example of Fig. 2.5
the target model bound to the variableOUT is created from the source modelIN. The source and
target meta-models, to which the source and target model conform, arePetriNet andPNML [19]
respectively.

Helpers and transformation rules are the constructs used tospecify the transformation function-
ality. Declarative ATL rules are calledmatched rules. They specify relations betweensource

1 module PetriNet2PNML;
2 create OUT : PNML from IN : PetriNet;
3 ...
4 rule Place {
5 from
6 e : PetriNet!Place
7 --(guard)
8 to
9 n : PNML!Place

10 (
11 name <- e.name,
12 id <- e.name,
13 location <- e.location
14),
15 name : PNML!Name
16 (
17 labels <- label
18),
19 label : PNML!Label
20 (
21 text <- e.name
22)
23 }

Figure 2.5: Fragment of a declarative ATL transformation

patternsand target patterns. The name of a rule is given after the keywordrule. The source
pattern of a rule (lines5-7, Fig. 2.5) specifies a set ofsource typesand an optionalguardgiven as
a Boolean expression in OCL. A source pattern is evaluated toa set of matches in source models.
The target pattern (lines8-22, Fig. 2.5) is composed of a set ofelements. Each of these elements
(e.g. the one at lines9-14, Fig. 2.5) specifies atarget typefrom the target meta-model (e.g. the
type Place from thePNML meta-model) and a set ofbindings. A binding refers to a feature of

2.3 Model Transformations 15

the type (i.e. an attribute, a reference or an association end) and specifies an expression whose
value is used to initialize the feature. In some cases complex transformation algorithms may be
required and it may be difficult to specify them in a declarative way. For this issue ATL provides
two imperative constructs:called rules, andaction blocks. A called rule is a rule called by other
ones like a procedure. An action block is a sequence of imperative instructions that can be used in
either matched or called rules. The imperative statements in ATL are the well-known constructs
for specifying control flow such as conditions, loops, assignments, etc.

There is an associated ATL Development Toolkit available inopen source from the GMT Eclipse
Modeling Project [42]. A large library of transformations is available at [10].

GReAT GReAT [4] (Graph Rewriting and Transformation Language) isa meta-model based
graph-transformation language that supports the high-level specification of complex model trans-
formation programs. In this language, one describes the transformations as sequenced graph
rewriting rules that operate on the input models and construct an output model. The rules specify
complex rewriting operations in the form of a matching pattern and a subgraph to be created as the
result of the application of the rule. The rules (1) always operate in a context that is a specific sub-
graph of the input, and (2) are explicitly sequenced for efficient execution. The rules are specified
visually using a graphical model builder tool. GReAT can be divided into three distinct parts:

• Pattern specification language.This language is used to express complex patterns that are
matched to select elements in the current graph. The patternspecification language uses a
notion of cardinality on each pattern vertex and each edge.

• Graph transformation language.It is a rewriting language that uses the pattern language
described above. It treats the source model, destination model and temporary objects as a
single graph that conforms to a unified meta-model. Each pattern object’s type conforms to
this meta-model and only transformations that do not violate the meta-model are allowed.
At the end of the transformation, the temporary objects are removed and the two models
conform exactly to their respective meta-models. Guards tomanage the rule applications
can be specified as Boolean C++ expressions.

• Control flow language.It is a high-level control flow language that can control the applica-
tion of the productions and allow the user to manage the complexity of the transformations.
In particular the language supports a number of features:(i) Sequencing, rules can be se-
quenced to fire one after another,(ii) Non-Determinism, rules can be specified to be executed
“in parallel”, where the order of firing of the parallel rulesis non deterministic,(iii) Hier-
archy, compound rules can contain other compound rules or primitive rules,(iv) Recursion,
a high level rule can call itself,(v) Test/Case, a conditional branching construct that can be
use to choose between different control flow paths.

AGG AGG is a development environment for attributed graph transformation systems support-
ing an algebraic approach to graph transformation. It aims at specifying and rapid prototyping
applications with complex, graph structured data [116]. AGG supports typed graph transforma-
tions including type inheritance and multiplicities. It may be used (implicitly in “code”) as a
general purpose graph transformation engine in high-levelJAVA applications employing graph
transformation methods.

16 Chapter 2. Basic Concepts

The source, target, and common meta-models are representedby type graphs. Graphs may ad-
ditionally be attributed using Java code. Model transformations are specified by graph rewriting
rules that are applied non-deterministically until none ofthem can be applied anymore. If an ex-
plicit application order is required, rules can be grouped in ordered layers. AGG features rules
with negative application conditions to specify patterns that prevent rule executions.

Finally, AGG offers validation support that is consistencychecking of graphs and graph trans-
formation systems according to graph constraints, critical pair analysis to find conflicts between
rules (that could lead to a non-deterministic result) and checking of termination criteria for graph
transformation systems. An available tool support provides with graphical editors for graphs and
rules and an integrated textual editor for Java expressions. Moreover, visual interpretation and
validation is supported.

VIATRA2 VIATRA2 [122] is an Eclipse-based general-purpose model transformation engineer-
ing framework intended to support the entire life-cycle forthe specification, design, execution,
validation and maintenance of transformations within and between various modelling languages
and domains.

Its rule specification language is a unidirectional transformation language based mainly on graph
transformation techniques that combines the graph transformation and Abstract State Machines [22]
into a single paradigm. Being more precise, the basic concept in defining model transformations
within VIATRA2 is the (graph) pattern. A pattern is a collection of model elements arranged into
a certain structure fulfilling additional constraints (as defined by attribute conditions or other pat-
terns). Patterns can be matched on certain model instances,and upon successful pattern matching,
elementary model manipulation is specified by graph transformation rules. There is no prede-
fined order of execution of the transformation rules. Graph transformation rules are assembled
into complex model transformations by abstract state machine rules, which provide with a set of
commonly used imperative control structures with precise semantics. This permits to collocate
VIATRA2 as a hybrid language since the transformation rule language is declarative but the rules
cannot be executed without an execution strategy specified in an imperative manner.

Important specification features of VIATRA2 include recursive (graph) patterns, negative patterns
with arbitrary depth of negation, and generic and meta-transformations (type parameters, rules
manipulating other rules) for providing reuse of transformations [121].

2.4 MODEL WEAVING

The separation of concerns in software system modeling avoids the construction of large and
monolithic models which could be difficult to handle, maintain and reuse. At the same time,
having different models (each one describing a certain concern) requires their integration into
a final model representing the entire domain [101].Model weavingcan be used in this scenario.
Although there is no accepted definition of model weaving, in[12] it is considered as the operation
for setting fine-grained relationships between models or metamodels and executing operations on
them based on the semantics of the weaving associations specifically defined for the considered
application domain.

The concept of weaving is not new. Typical applications of model weaving are database metadata

2.4 Model Weaving 17

Figure 2.6: Weaving Operation

integration and evolution as in [86] which proposes Rondo, ageneric metamodel management ap-
proach which uses algebraic operators such asMatchandMergeto manage mappings and models.
In [63] a UML extension is introduced to express mappings between models using diagrams, and
illustrates how the extension can be used in metamodeling. The extension is inspired by mathe-
matical relations and is based upon ideas presented in [5] which proposes an approach for defining
transformation relationships between different components of a language definition rendered as a
metamodel.

The definition of model weaving that will be considered in this work is that provided by Didonet
Del Fabro et al. in [81]. They leverage the need of a generic way to establish model element corre-
spondences by proposing a solution aimed at reach a trade-off between genericity, expressiveness
and efficiency of mappings which are considered models that conform to a weaving meta-model.
The weaving meta-model is not fixed since it might be extendedby means of a proposed composi-
tion operation to reach dedicated weaving meta-models. Theoperational context of the proposed
model weaving operation is depicted in Fig. 2.6. A model weaving operation produces a weaving
modelWM representing the mapping between the metamodelsLeftMM andRightMM. Like other
models, this should conform to a specific weaving metamodelWMM. The produced weaving model
relates with the involved metamodels and thus will remain linked to these metamodels in a global
model registry. Weaving operations may be applied to modelsinstead of metamodels. The result-
ing weaving modelWMmay be used for many operations (with respect to the semantics of the used
weaving associations) for example to derive a model transformation.

Adhering to the “everything is a model” principle [12], model weaving offers a number of ad-
vantages. All the information, relationships and correspondences between the considered models,
could be described by specialized weaving models avoiding to have large metamodels for captur-
ing all the aspects of a system. Furthermore, metamodels focusing on their own domain can be
individually maintained, and at the same time interconnected into a “lattice of metamodels” [12].
In other words, each meta-model could represent a domain-specific language dealing with a par-
ticular view of a system, while weaving links permit describing the aspects both separately and
in combination. To summarize, the need of model weaving and the differences with the model
transformation are discussed in [82] by taking into accountthe following issues:

• “arity”: Usually a transformation takes one model as input and produces another model
as output, even if extensions to multiple inputs and outputsmay be considered. A model
weaving takes basically two models as input and one weaving metamodel.

• “automaticity”: A transformation is an automatic operation while a weaving may need the
additional help of heuristics or guidance to assist the userto perform the operation.

18 Chapter 2. Basic Concepts

• “variability”: A transformation conforms to a fixed metamodel (the metamodel of the trans-
formation language) while there is no canonical standard weaving metamodel, since for
every different application a new metamodel should be created.

These issues permit to conclude that transformation and weaving are different problems even
though in particular cases a weaving model may be itself transformed to a transformation model.

More information about model weaving are given in Chapter 6 where an approach to specify the
semantics of the links used to specify weaving models are provided and validated in two different
applicative domains.

2.5 CONCLUSIONS

In this chapter we introduced the basic concepts of Model Driven Engineering. The notions of
model, meta-model, model transformation, and model weaving were provided. Moreover, since
model transformation plays a key role in MDE, this operationwas described with more details. A
classification (based upon [34]) of today’s approaches and languages was reported and the peculiar
characteristics of some of them were given.

The paradigms, constructs, modeling approaches, tool support distinguish the transformation pro-
posals each of them with a certain suitability for a specific set of problems. Shifting the focus
on the problem of specifying the behaviour of model transformations in a precise way, we recog-
nize the need of having a high-level specification language capable to produce precise and formal
transformations enabling formal reasoning on them, proof of properties, and verification of their
correctness with respect to some criteria. These considerations give place to the main motiva-
tions of this work that provides with an approach completelybased on Abstract State Machines
(ASMs) for specifying model transformations and weaving. This approach is deeply presented in
Chapter 4.

CHAPTER 3

ABSTRACT STATE MACHINES (ASMS)

In this chapter, we elucidate the ASMs formalism which is used in this work for specifying and
executing model transformations and weaving. After a briefoverview, the mathematical definition
of ASMs is reported. This introduction is essentially basedupon [113] and the Ph.D. thesis of
Daniel Varró [120]. Then the XASM specification language ispresented. It is an implementation
of the ASM formalism designed and implemented by Anlauff as formal development tool for
Montage project [78]. In this work, XASM is used to implementall the proof of concepts presented
in the Chapters 4, 5, and 6. The XASM description is based upon[8, 78].

3.1 OVERVIEW

The Abstract State Machine (ASM) Project (formerly known asthe Evolving Algebras Project)
was started by Yuri Gurevich as an attempt to bridge the gap between formal models of compu-
tation and practical specification methods. The ASM thesis is thatany algorithm can be modeled
at its natural abstraction level by an appropriate (sequential) ASM [62]. Based upon this thesis,
members of the ASM community have sought to develop a methodology based upon mathematics
which would allow algorithms to be modeled naturally, that is described at their natural abstraction
levels. The result is a simple methodology for describing simple abstract machines which corre-
spond to algorithms. ASMs have been exploited in a number of applications covering high-level
design and analysis of real-life programming languages andtheir implementations on virtual or
real machines (e.g. Java/JVM, C), of protocols, embedded system control programs, architectures
(e.g. RISC processors), etc. The ASM methodology is intended to reach the following desirable
characteristics [1]:

Precision. One uses a specification methodology to describe a system by means of a particular
syntax and associated semantics. If the semantics of the specification methodology is unclear,
descriptions using the methodology may be no clearer than the original systems being described.
ASMs use classical mathematical structures to describe states of a computation;

Faithfulness.Since there is no method in principle to translate from the concrete world into an
abstract specification, one needs to be able to see the correspondence between specification and
reality directly, by inspection. ASMs allow for the use of the terms and concepts of the problem
domain immediately, with a minimum of notational coding;

Understandability.ASM programs use an extremely simple syntax, which can be read as a form
of pseudo-code;

19

20 Chapter 3. Abstract State Machines (ASMs)

Executability.Another way to determine the correctness of a specification is to execute the spec-
ification directly. A specification methodology which is executable allows one to test for errors
in the specification. Additionally, testing can help one to verify the correctness of a system by
experimenting with various safety or liveness properties.Methods such as VDM [68], Z [126], or
process algebras [11] are not directly executable;

Scalability. It is often useful to be able to describe a system at several different layers of abstrac-
tion. With multiple layers, one can examine particular features of a system while easily ignoring
others. Proving properties about systems also can be made easier, as the highest abstraction level
is often easily proved correct and each lower abstraction level need only be proven correct with
respect to the previous level;

Generality. ASM is useful in a wide variety of domains: sequential, parallel, and distributed
systems, abstract-time and real-time systems, finite-state and infinite-state domains;

The ASM method has been linked to a multitude of analysis methods, in terms of both experimen-
tal validation of models and mathematical verification of their properties. The validation (testing)
of ASM models can be obtained by their simulation, which corresponds to their execution which
is supported by numerous tools (ASM Workbench [26], AsmGofer [106], an Asm2C++ com-
piler [107], XASM [8], .NET AsmL [48]). The verification of model properties is possible due to
the mathematical character of ASMs. As a consequence different techniques can be used, from
proof sketches over traditional or formalized mathematical proofs [114] to tool supported proof
checking or interactive or automatic theorem proving (e.g.by model checkers [125, 52]).

For a further non-technical introduction explaining the ASM method, surveying its major applica-
tions, and comparing it to other major modelling approachesin the literature, the reader can refer
to [22]. In the following the mathematical definition of ASMsis provided.

3.2 MATHEMATICAL DEFINITION OF ASMS

In this section a detailed mathematical definition of the syntax and semantics of ASMs is provided.
The summary is essentially based upon [120, 113].

3.2.1 VOCABULARY AND STATES OFASMS

In an ASM state, data is represented as abstract elements of domains (also calleduniverses, one
for each category of data) which are equipped with basic operations asfunctions. Without loss
of generality we treatrelations as boolean valued functions and view domains as characteristic
functions, defined on the superuniverse which represents the union of all domains. Thus the states
of our modelspace are algebraic structures (called simply as algebras).

Definition 1 (Vocabulary). A vocabularyΣ is a finite collection of function names. Each function
namef has anarity, a non-negative integer, which is the number of arguments the function takes.
Function names can bestatic or dynamic. Nullary function names are often called constants;
however, this term is misleading as the interpretation of dynamic nullary functions can change in

3.2 Mathematical definition of ASMs 21

ASMs so that they correspond to variables of programming. Every ASM vocabulary is assumed to
contain the static constantsundef, trueand false.

For instance, the vocabularyΣ Bool of Boolean algebras contains two constants 0 and 1,a unary
function name ‘-’, and two binary function names ‘+’ and ‘*’.

Definition 2 (State). A stateA of the vocabularyΣ is a non-empty setX (thesuperuniverseof A,
denoted as|A|) together withinterpretationsof the function names ofΣ.

• If f is ann-ary function name ofΣ , then its interpretationfA is a function fromXn into
X;

• If c is a constant ofΣ then its interpretationcA is an element ofX.

For example, we may define a stateA for the vocabularyΣBool as follows. The superuniverse of
the stateA is the set 0,1. The functions are interpreted as follow, where a andb are 0 or 1.

0A := 0 (zero)
1A := 1 (one)
−Aa := 1 − a (logical complement)
a+A b := max(a, b) (logical OR)
a ∗A b := min(a, b) (logical AND)

Formally, function names are interpreted in states as totalfunctions. However, we may view them
as being partial and define thedomainof ann-ary function namef in A to be the set of alln-tuples
(a1, ..., an) ∈ |A|n such thatfA(a1, ..., an) 6= undef .

The constantundef represents an undetermined object, the default value of thesuperuniverse. It
is also used to model heterogeneous domains. In applications, the superuniverse of a stateA is
usually divided into smalleruniverses, modeled by their characteristic functions. The universe
represented byf is the set of all elementst for which f(t) 6= undef . If a unary functionf
represents a universe, then we simply writet 6∈ f as an abbreviation for the formulaf(t) 6=
undef .

3.2.2 TERMS, VARIABLE ASSIGNMENT AND FORMULAE

Definition 3 (Term). The terms ofΣ are syntactic expressions generated inductively was follows

1. Variablesv0, v1, v2, ... are terms.

2. Constantsc of Σ are terms.

3. If f is ann-ary function name ofΣ andt1, ..., tn are terms, thenf(t1, ..., tn) is a term.

22 Chapter 3. Abstract State Machines (ASMs)

Terms are denoted byr, s, t; variables are denoted byx, y, z. A term which does not contain
variables is calledclosed.

For example, the following are terms of the vocabularyΣBool: +(v0, v1), +(1, ∗(v7, 0)). They are
usually written asv0 + v1 and1 + (v7 ∗ 0).

Definition 4 (Variable assignment). LetA be a state. A variable assignment forA is a function
ζ which assigns to each variablevi an elementζ(vi) ∈ |A|. We writeζ{x → a} for the variable
assignment which coincides withζ except that it assigns the elementa to the variablex. So we
have

ζ{x→ a(vi)} =

{

a, if vi = x

ζ(vi), otherwise

Given a variable assignment, the semantics of a term can be defined as an interpretation with
respect to a state and a variable assignment in the traditional denotational way.

Definition 5 (Interpretation of terms) . LetA be a state ofΣ , ζ be a variable assignment forA
and t be a term ofΣ . By induction on the length oft, a value[|t|]Aζ (the interpretation of termt in
state(A)) is defined as follows:

1. [|vi|]
A
ζ := ζ(vi) (interpretation of variables);

2. [|vi|]
A

ζ := ζ(vi) (interpretation of constants);

3. [|f(t1, ..., tn|]
A

ζ := fA([|t1|]
A

ζ , ..., [|t1|]
A

ζ) (interpretation of functions).

Definition 6 (Formulae). LetΣ be a vocabulary. A formula ofΣ is a syntactic expression gener-
ated as follows:

1. If sand t are terms ofΣ thens = t is a formula.

2. If ϕ is a formula, then¬ϕ is a formula.

3. If ϕ andψ are formulae, the(ϕ ∧ ψ), (ϕ ∨ ψ) and(ϕ→ ψ) are formulae.

4. If ϕ is a formula andx a variable, then(∀ϕ) and(∃xϕ) are formulae.

A formula where all variable are quantified isclosed formula.

The logical connectives and quantifiers have the standard meaning. The expressions = t is called
anequation. The expressions 6= t is an abbreviation for the formula¬(s = t). In order to increase
the legibility of formulae, parentheses are often omitted (following the traditional left-to-right
priorities). The semantics of a formula is defined in the traditional way, i.e., by an interpretation
with respect to the state and a variable assignment. Formulae are either true or false in a state. The

3.2 Mathematical definition of ASMs 23

truth value of a formula in a state is computed recursively. The classical truth tables for the logical
connectives and the classical interpretation of quantifiers are used. The equality sign is interpreted
as identity.

Definition 7 LetA be a state ofΣ, ϕ be a formula ofΣ andζ be a variable assignment inA. By
induction on the length ofϕ, a truth value[|ϕ|]Aζ ∈ {true, false} (the interpretation of formula
ϕ in stateA) is defined as follows:

[|s = t|]Aζ :=

{

true, if [|s|]Aζ = [|t|]Aζ
false, otherwise

[|¬ϕ|]Aζ :=

{

true, if [|ϕ|]Aζ = false

false, otherwise

[|ϕ ∧ ψ|]Aζ :=

{

true, if [|ϕ|]Aζ = true and[|ψ|]Aζ = true

false, otherwise

[|ϕ→ ψ|]Aζ :=

{

true, if [|ϕ|]Aζ = false or [|ψ|]Aζ = true

false, otherwise

[|∀x ϕ|]Aζ :=

{

true, if [|ϕ|]Aζx→a = true for all a ∈ |A|

false, otherwise

[|∃x ϕ|]Aζ :=

{

true, if [|ϕ|]Aζx→a = true for somea ∈ |A|

false, otherwise

We say that a stateA is amodelof ϕ if [|ϕ|]Aζ = true for all variable assignmentsζ.

3.2.3 TRANSITION RULES, CONSISTENT UPDATES, FIRING OF UPDATES

In mathematics, states like Boolean algebras are static. They do not change over time. In computer
science, states are dynamic. They evolve by being updated during computations. Updating abstract
states means to change the interpretation of (some of) the dynamic functions in the underlying
signature. In case ofmonitored functions, the system cannot change the interpretation (only the
environment). In case ofcontrolled functions, the system is allowed to update the interpretation of
the function (and not the environment). The way ASMs update states is described by transitions
rules of the following form which define the syntax of ASM programs.

Definition 8 (Transition rules). Let Σ be a vocabulary. The (transition) rulesR, S of an ASM
are syntactic expressions generated as follows:

1. Skip Rule:

skip

Meaning: Do nothing.

24 Chapter 3. Abstract State Machines (ASMs)

2. Update Rule:

f(t1, ..., tn) := s

Syntactic conditions:

- f is ann-ary, dynamic function name ofΣ

- t1, ..., tn ands are terms ofΣ

Meaning: In the next state, the value of the functionf at the argumentst1, ..., tn is updated
to s. It is allowed thatf is a 0-ary function, i.e., a constant. In this case, the update has the
form c := s.

3. Block Rule:

R S

Meaning: R and S are executed in parallel.

4. Conditional Rule:

if ϕ then RelseS

Meaning: ifϕ is true, then executeR, otherwise executeS.

5. Let Rule:

let x = t in R

Meaning: Assign the value oft to x and executeR.

6. Forall Rule:

forall x with ϕ do R

Meaning: ExecuteR in parallel for eachx satisfyingϕ.

7. Call Rule:

r(t1, ..., tn)

Meaning: Callr with parameterst1, ..., tn.

A rule definitionfor a rule namer of arity n is an expression

r(x1, ..., xn) = R

whereR is a transition rule. In a rule callr(t1, ..., tn) the variablesxi in the bodyR of the rule
definition are replaced by the parametersti.

To extend a subuniverseU of the superuniverse by the new elements we use the followingnotation:

extendU with x

R

endextend

The meaning of this construct is:

3.2 Mathematical definition of ASMs 25

let x = fnew(...) in R

wherefnew(...) is a monitored function (possibly with parameters) which returns a new element
of the superuniverse which does not belong toU .

For monitored choice functions, the following notation is used:

choosex : ϕ

R

endchoose

It is an abbreviation for the rule

let x = fϕ(...) in R

wherefϕ is a monitored function updated by the environment which returns elements of the uni-
verseU satisfying the selection conditionϕ.

Definition 9 (ASM) An abstract state machineM consists of a vocabularyΣ, an initial stateA

for Σ, a rule definition for each rule name, and a distinguished rule name of arity zero called the
main rule nameof the machine

The semantics of transition rules is given by sets ofupdates. Since due to parallelism (in the
Block and theForall rules), a transition rule may prescribe to update the same function at the
same arguments several times, we require such updates to be consistent. The concept of consistent
update sets is made more precise by the following definitions.

Definition 10 (Update). An update forA is a triple (f, (a1, ..., an), b), wheref is an n-ary
dynamic function name, anda1, ..., an and b are elements ofA. An update setU is a set of
updates.

The meaning of the update is that the interpretation of the functionf in A has to be changed at the
argumentsa1, ..., an to the valueb. The pair of the first two components of an update is called a
location. An update specifies how the function table of a dynamic function has to be updated at
the corresponding location.

In a given state, a transition rule of an ASM produces for eachvariable assignment an update set.
Since the rule can contain recursive calls to other rules, itis possible that it has no semantics at all.
The semantics of a transition rule is therefore defined by a calculus in Table 3.2.3.

Definition 11 (Semantics of transition rules). The semantics of an elementary transitionR of a
given ASM in a stateA with respect to a variable assignmentζ is defined if and only there exists
an update setU that [|R|]Aζ ⊲ U can be derived by the semantic rules of Table 3.2.3. In that case

[|R|]Aζ is identified withU .

It can happen also that the update set[|R|]Aζ contains several updates for the same function name
f . In this case, the updates have to be consistent, otherwise the execution stops.

26 Chapter 3. Abstract State Machines (ASMs)

[|skip|]A
ζ

⊲ ∅

[|f(t):=s|]A
ζ

⊲ {(f,a,b)}
if a = [|t|]Aζ andb = [|s|]Aζ

[|R|]Aζ ⊲ U [|S|]Aζ ⊲ V

[|RS|]A
ζ

⊲ U∪V

[|R|]Aζ ⊲ U

[|if ϕ then R else S|]A
ζ

⊲ U
if [|ϕ|]Aζ = true

[|S|]Aζ ⊲ U

[|if ϕ then R else S|]A
ζ

⊲ U
if [|ϕ|]Aζ = false

[|R|]Aζ{x→a}
⊲ U

[|let x=t in R|]A
ζ

⊲ U
if a = [|t|]Aζ

[|R|]Aζ{x→a}
⊲ Ua foreacha∈I

[|forall x with ϕ do R|]A
ζ

⊲
S

a∈I
Ua

if I = {a ∈ |A| : [|ϕ|]Aζ{x→a}
= true}

[|R|]Aζ{x→a}
⊲ U

[|r(t)|]A
ζ

⊲ U
if r(x) = R is a rule definition anda = [|t|]Aζ

Table 3.1: Semantics of transition rules in ASMs

Definition 12 (Consistent update set). An update setU is called consistent, if it satisfies the
following property:

If (f, ā, b) ∈ U and(f, ā, c) ∈ U , thenb = c

This means that a consistent update set contains for each function and each argument tuple at
most one value. Otherwise, the update set is called inconsistent.

If an update setU is consistent, it can be fired in a given stateA resulting in a new stateB in which
the interpretations of dynamic function names are changed according toU . The interpretations of
static function names are the same as in the old state. The interpretation of monitored functions is
given by the environment and can therefore change in an arbitrary way.

Definition 13 (Firing of updates). The result of firing a consistent update setU in a stateA

is a new stateB (denoted asB = fireA(U)) with the same superuniverse asA satisfying the
following two conditions for the interpretations of function namesf of Σ:

1. If (f, (a1, ..., an), b) ∈ U , thenfB(a1, ..., an) = b

2. If there is nob with (f, (a1, ..., an), b) ∈ U andf is not a monitored function,
thenfB(a1, ..., an) = fA(a1, ..., an)

Firing an inconsistent update set is not allowed, i.e.,fireA(U) is not defined for inconsistent U.

3.3 The XASM Specification Language 27

Since U is consistent, for static and controlled functions the stateB is determined in a unique way.
Notice that only those locations can have a new value in stateB with respect to stateA for which
there is an update inU .

Definition 14 (Run of an ASM). LetM be an ASM with vocabularyΣ, initial stateA and main
rule namer. Letζ be a variable assignment. Arun ofM is a finite or infinite sequenceB0,B1, ...

of states forΣ such that the following conditions are satisfied:

1. B0 = A

2. if [|r]Bn

ζ is not defined or inconsistent, thenBn is the last state in the sequence

3. Otherwise,Bn+1 is the result of firing[|r|]Bn

ζ in Bn

if we assume that for each rule definitionr(x1, ..., xn) = R of the machineM the free variables
ofR are amongx1, ..., xn, then a run is independent of the variable assignmentζ

Finally, for structuring large ASMs the notion ofsubmachinehas been introduced in [21], i.e.
extensive named parameterized ASM rules which include alsorecursive ASMs. The notion of
calling submachines mimics the standard imperative calling mechanism and can be used for a
definition of recursion in terms of sequential (not distributed) ASMs. For a detailed discussion,
the reader can refer to the full paper.

3.3 THE XASM SPECIFICATION LANGUAGE

Since the ASM approach defines a notion of executing specifications, it provides a perfect basis
for a language, which can be used as a specification language as well as a high-level programming
language [20].A number of ASM execution environments are available implementing most of the
ASM constructs as defined in the Lipari-Guide [61]. In this work XASM (eXtensible ASM),
designed and implemented by Anlauff [8], will be used. The language combines the advantages of
using a formally defined method with the features of a full-scale, component-based programming
language and its support environment. In addition to the existing ASM constructs, a new feature
calledexternal functionsis introduced. External functions can be evaluated like normal functions,
but as a result, both a value, and an update set are returned. Furthermore, while external functions
make the calculation of rule sets, and thus the semantics of XASM rules extensible, a second new
construct calledenvironment functionsis provided. They are special dynamic functions whose
initial definition is given as a parameter to an ASM. After an ASM terminates, the aggregated
updates of the environment functions are returned as updatedenotation of the complete ASM run.
For intuition, environment functions can be considered as dynamic-functions passed to an ASM
as reference parameters, and about external functions as locally declared procedures. Having both
concepts we can plug the two mechanisms together by defining update and value denotation of
an external function by means of an ASM run. Thus the evaluation of such an external function
corresponds to running, or calling another ASM. The environment functions of the called ASM
are given as functions of the calling ASM. For more details about these new constructs and their
formalizations, the reader can refer to [78].

28 Chapter 3. Abstract State Machines (ASMs)

Figure 3.1: Subasm Call

XASM programs are structured usingasm...endasmconstructs each containing a list of local
function and universe declarations and a list of ASM rules representing a certain part of the overall
specification. The general structure of anasm in XASM is as follows:

1 asm A(a1 : T1, ..., an : Tn) → a0 : T0

2 <meta information>
3 is
4 <universe, function, and subasm declarations>
5 <initialization rules>
6

7 <asm rules>
8 endasm

The meta information part contains information concerningthe role of theasm as a reusable
component as better explained below. Even though in the Lipari-Guide types are not part of the
core ASM language, in XASM types can be supplied to the declaration of a function to detect
static semantics inconsistencies of the formalization.

An asmcan be accessed by other asms in either of the following two ways:

– If an asmA usesB as sub-asm, it means thatB (possibly together with arguments, if the arity
of B > 0) is used as a rule in the body ofA. If this rule fires, the rules of asmB fire, which
may result in updating locations of functions declared inA. The call as subasm is illustrated
in the Fig. 3.1. The subasmB and its parent asmA step simultaneously. Formally they can
be seen as one single asm;

– AsmA usesB as a function, ifB is defined as external function inA. In this case,B (possibly
together with arguments, if the arity ofB > 0) is used as a term in the body ofA. The call
as function is illustrated in Fig. 3.2. During the run of the function asmB, its parentA does
not make any step; fromA’s point of view,B’s run happens in zero time. As depicted in
Fig. 3.2,B behaves like a normal asm, the iterations shown here are caused by the steps of
theB-asm itself.

In each of the above cases, we callA the parent asm ofB, if A usesB as sub-asm or as function. In
any case, the asm must be declared in the parent asm. As part ofits meta information, an asm can
be marked as a function or as a sub-asm, so that it can only be used by other asms in the specified
way. For example, ifB andC are asms defined as follows

3.3 The XASM Specification Language 29

Figure 3.2: Function Call

1 asm B(x : Int) → Int
2 used as function
3 is
4 ...
5 endasm

1 asm C(x : Int)
2 used as subasm
3 is
4 ...
5 endasm

thenB can only be used as function andC as sub-asm in other asms. This is reflected by corre-
sponding declarations ofB andC:

1 asm A
2 is
3 subasm C(x : Int)
4 external function B(x : Int) ! Int
5 ...
6 endasm

The sub-asm facilities provided by XASM are useful when the specification can be split up natu-
rally into several sub-specifications each of which modeling a certain aspect of the overall specifi-
cation like in the following example borrowed from [8].

1 asm Robot is
2 universe ModeValue = {standing, moving}
3 subasms Robot_is_standing,
4 Robot_is_moving
5 function mode->ModeValue
6 ...
7

8 if mode = standing then
9 Robot is standing

10 elseif mode = moving then
11 Robot is moving
12 endif
13 ...
14 endasm

Where the asmsRobot is standing andRobot is standing are defined as follows:
1 asm Robot_is_standing
2 used as subasm
3 is

30 Chapter 3. Abstract State Machines (ASMs)

4 ...
5 mode := moving
6 ...
7 endasm

1 asm Robot_is_moving
2 used as subasm
3 is
4 ...
5 mode := standing
6 ...
7 endasm

The XASM language has further advanced features which are not used in this thesis and hence
they are not described here. For more information, the reader can refer to [8, 78] and to the XASM
project Web page [9] where the XASM compiler is available fordownload.

3.4 CONCLUSIONS

In this chapter we made an overview of the ASM formalism whoseuniversality has been demon-
strated in [62] where Gurevich claims that each algorithm can be formally captured by an ap-
propriate (sequential) abstract state machine. Considering this characteristic with the extensive
tool support for constructing, formally analyzing and simulating ASM specifications, it is possible
to advocate the use of ASMs for specifying model transformations and the semantics of specific
weaving operators.

The XASM language was introduced since it will be used in the rest of the work to implement
all the proof of concepts with respect to the approach proposed in the next chapter. However, any
execution environment could be used alternatively since the approach exploits the basic constructs
of ASMs.

CHAPTER 4

ASMS FORMODEL TRANSFORMATION SPECIFICATION (A4MT)

Despite the increasing relevance of model transformationsto software development and integra-
tion in Model Driven Engineering (MDE), there is no explicitconsensus yet as to which is the best
approach. The paradigms, constructs, modeling approaches, tool support distinguish the transfor-
mation proposals (some of them briefly described in Chapter 2) each with a certain suitability for
a specific set of problems.

Shifting the focus on the problem of specifying the behaviour of model transformations in a pre-
cise way, we recognize the need of having a high-level specification language capable to produce
precise and formal transformations enabling some form of formal reasoning, proof of properties,
and verification of their correctness with respect to some criteria. The language must also have
an execution framework, which can be used to execute the specifications in the language. It is
conceivable that if the constructions steps are formally specified, then the correctness of a design
can be verified based on the correctness of the steps [121]. A number of graph transformation ap-
proaches have been proposed to deal with this issue even though, some pragmatics qualities are not
always achieved [34]. In fact, although graph transformations are declarative and seem intuitive,
the usual fixpoint scheduling with concurrent application makes them rather difficult to use due to
the possible lack confluence and termination [34]. Existingtheories for detecting such problems
are not general enough to cover the wide range of transformations found in practice. As a result,
tools such as GReAT [4] and VIATRA2 [122] provide mechanismsfor explicit scheduling.

In this chapter, A4MT (ASMs forModel Transformation Specification) is proposed to support the
formal specification of model transformations. ASMs have been used extensively in a number of
applications and capture in a mathematically rigorous formthe fundamental operational intuitions
of computing. The provided notation has a simple syntax thatpermits to write specifications that
can be seen as “pseudocode over abstract data”. On one hand they are mathematically rigorous
and represent a formal basis to analyze and verify transformations; on the other hand, they com-
bine declarative and procedural features to harness the intrinsic complexity of this task. A4MT
aims at formally specifying the behaviour of transformations in order to produce aformal and im-
plementation independent referencefor what can and what can not happen during their execution.
The transformation developers can check their implementations (written in a specific language like
AGG, ATL, QVT, etc.) against an accurate and executable high-level model of the transformation
itself.

The chapter is organized as follows: Sec. 4.1 gives an overview of the approach which is deeply
described in Sec. 4.2 and Sec. 4.3. A running example is considered in the overall presentation. A
comparison between A4MT and other transformation approaches is given in Sec. 4.5.

31

32 Chapter 4. ASMs for Model Transformation Specification (A4MT)

Figure 4.1: Model Transformation through A4MT

4.1 OVERVIEW

A4MT is the proposed ASMs-based approach to specify model transformations that has been al-
ready used in a number of applicative domain as described in Chapter 5. As depicted in Fig. 4.1,
A4MT model transformations start from an algebra encoding the source model and return an al-
gebra encoding the target one. This final encoding contains all the needed information to translate
the final algebra into the corresponding model by means of a pretty printing operation.

An A4MT transformation program consists of a collection of multiple rules of the form

< Query> =⇒ < Transformation>

with Querydeclaratively defined as first–order logic predicates over finite universes containing
model element representatives andTransformationprocedurally expressed as parallel updates of
the encoding algebra. The transformation branch may contain further transformation rules of the
same form. Rules are iteratively fired until they do not causeany further update depending whether
their queries have a non empty outcome or not. Thus, the matching algorithm is implicitly defined
by the queries which establish also their relative precedences.

4.2 MODEL AND METAMODEL ENCODING

The signature of an algebra encoding a model is canonically induced by the corresponding meta-
model whose elements define sorts and functions as in the example of Fig. 4.2 where a simplified
UML metamodel is depicted. According to this metamodel classes have name, a set of attributes
and they can be declared as persistent (see the meta attribute isPersistent). An attribute has a name,
a type and can be defined as primary (seeisPrimary). Finally, classes can be related by means of
binary associations and can be hierarchically organized.

This metamodel induces the signatureΣ (on the right-hand side of the figure) composed of sorts
(S) and functions (OP). In particular, for each meta class of the metamodel a correspondent set in

4.3 Model Transformation Rules 33

Σ = (S, OP)

S := {Class, Classifier, Attribute,

Package, P rimitiveDataType,

Association}

OP :=

name : Classifier → String

name : Attribute → String

name : Package → String

name : Association → String

source : Association → Class

target : Association → Class

isPersistent : Class → Bool

isPrimary : Attribute → Bool

elems : (Package, Class) → Bool

attrs : (Class, Attribute) → Bool

belong : (Class, Attribute) → Bool

type : Attribute → Classifier

parent : Class → Class

Figure 4.2: Algebraic encoding of a sample UML metamodel

S is available. Functions are induced by meta attributes, meta associations, and roles. For example,
the attributenameof Classifier induces the definition of the functionname: Classifier→ String.
In order to specify thetypeof an Attribute, the functiontype: Attribute→ Classifier is defined
with respect to the roletype of the meta classClassifier in the meta association with the meta
classAttribute. Multiple meta associations are encoded by means of relations1. For example,
a given class can have a number of attributes as stated by the role attrs of the meta association
betweenClassandAttribute meta classes. In this case the relationattrs in OP will be provided
and it will be true if an attribute belongs to a given class, false otherwise. Meta associations
which are compositions induce the definition of the relationbelong. For instance, in the case
of the composition betweenClassandAttribute, the relationbelong: (Class, Attribute)→ Bool is
defined which istrue for each couple(c,a)such thatattrs(c,a)=true.

The approach permits the encoding of specializations in themetamodels by means of sub-sorting.
For instance, the inheritances betweenClassandClassifierand betweenPrimitiveDataTypeand
Classifier is encoded by means of the following sub-sorting relation:Class< Classifier and
PrimitiveDataType< Classifier.

The sets and the functions induced by a metamodel are used forencoding models that conform
to the given metamodel as in Fig. 4.3 where the encoding of a sample UML model is depicted.
In particular, on the lower-side of the figure the sets and thefunctions defined in Fig. 4.2 are
updated according to the UML model on the upper-side of the figure. The canonical encoding of
metamodels and models can be performed in an automatic way asdiscussed in [37].

4.3 MODEL TRANSFORMATION RULES

In this section, in order to better clarify the approach depicted in Fig. 4.1 and the overall struc-
ture of an A4MT transformation specification, the standard class diagram to relational data base

1Relations are special cases of functions whose value can betrue or false.

34 Chapter 4. ASMs for Model Transformation Specification (A4MT)

name(c1) = “Person”

name(c2) = “Address”

name(c3) = “Data”

. . .
name(p1) = “Int”

name(a1) = “name”

name(a2) = “birthday”

type(a2) = c3

name(a3) = “cust id”

type(a3) = p1

. . .
source(ass1) = c1

target(ass1) = c2

. . .
attributes(c1, a1) = true

attributes(c1, a2) = true

attributes(c1, a3) = true

. . .

Figure 4.3: Algebraic encoding fragment of a Sample UML model

(UML2RDBMS) case study described in [18] is specified. The involved source and target meta-
models are depicted in Fig. 4.2 and Fig. 4.4 respectively.

The main requirements of the transformation are recalled inthe following even if the reader can
refer to [18] for more details. Classes can be indicated as persistent or non-persistent. A persis-
tent class is mapped to a table and all its attributes or associations to columns in this table. If the
type of an attribute or association is another persistent class, a foreign key to the corresponding
table is established. In case of class hierarchies, only thetopmost classes are mapped to tables.
Additional attributes and associations of subclasses result in additional columns of the top-most
classes. Non-persistent classes are not mapped to tables. However, one of the main requirements
of the transformation is to preserve all the information of the source class diagram. That means
attributes and associations of non-persistent classes have to be distributed over those tables stem-
ming from persistent classes which access non-persistent classes. To summarize the requirements
of theUML2RDBMStransformation that will be specified are the following:

4.3 Model Transformation Rules 35

Figure 4.4: Sample RDBMS metamodel

1. Persistent classes that are roots of an inheritance hierarchy are transformed to tables. In par-
ticular, in inheritance hierarchies, only the top most parent class should be converted into a
table; the resultant table should however contain the merged columns from all its subclasses.
For example, from the classes in Fig. 4.5, only the tablesT Person andT Phone will be
generated (see Fig. 4.6). Furthermore, the transformed attributes of the classCustomerwill
be placed in the tableT Person;

2. Each attribute of a primitive type is transformed to a single column. If the attribute is
primary, a primary column in the corresponding table is generated like the attributesname
andnumber in Fig. 4.5 that give place to the primary keys of the generated tableT Person

andT Phone respectively (see Fig. 4.6);

3. Attributes whose type is a non-persistent class and associations that point to such a class
are transformed to a set of columns derived from the class itself. This is applied recursively
until a set of primitive attributes is obtained. Circularity in references to classes is not
allowed here. For example, the type of the attributebirthday of the classPerson will
give place to the columnsbirthday day, birthday month andbirthday year in the
tableT Person derived from the attributes of the source non-persistent classData;

4. Attribute whose type is a persistent class and associations that point to such a class are trans-
formed to a foreign key and a set of columns contained in that key. The foreign key refers
to the table derived from the persistent class. The columns are derived from the primary at-
tributes of the persistent class. For instance, theaddress association from thePerson class
will induce the generation of the columnsaddress addr andaddress phone number in
T Person. The latter is a foreign key that refers toT Phone;

In the following, these transformation requirements will be formally specified by means of the
A4MT. In order to better clarify the approach, the solution is presented in two steps. In the first
one only persistent classes will be taken into account. Thereafter, a complete solution will be
discussed by satisfying all the transformation requirements.

In developing model transformations, the designer specifies how to generate target models from
source ones. The generation is based on relationships between the involved metamodels and it can
be based on simple correspondences or it could require complex computations on the models. In
A4MT a model transformation specification consists of one ormore rules having the following
form:

36 Chapter 4. ASMs for Model Transformation Specification (A4MT)

1 --Query
2 do forall IN_PATTERN
3

4 --Transformation
5 OUT_PATTERN
6

7 enddo

where a query on the source model encoding is performed to findall the matches of the input
pattern (IN PATTERN). A pattern is a specification of source type coming from the source meta-
model and it can be decorated with conditions that drive the searching of matches on the source
models. In the proposed approach, a query is expressed by means offirst-order logic predicates
and for each of the matched pattern, the encoding of the target model is modified by changing the
population of universes and the point-wise definitions of functions, as procedurally specified by
theOUT PATTERN. This one could embed the specifications of further transformation rules which
will be executed until the query of the outermost one succeeds and no more changes on the algebra
occur.

Taking into account this general form of a transformation rule, aClass2Tablerule can be given
to specify how the classes in a source UML model have to be transformed to tables in the target
RDBMS model according to theUML2RDBMStransformation requirements given above. Essen-
tially, each persistent class in the source model induces a table in the target one. The name of
the generated table is the name of the source class prefixed with the string"T ". In this case, the
IN PATTERN consists of a persistent class description that is an element c belonging to the uni-
verseClass on which the functionisPersistent (induced by the source metamodel) istrue.
TheOUT PATTERN definition is based on the ASMextend construct used to specify the extension
of the universes and the update of the functions induced by the target metamodel (like for example
the universeTable and the functionname).

1 --Rule Class2Table
2 --IN_PATTERN
3 do forall c in Class : isPersistent(c)
4

5 --OUT_PATTERN
6 extend Table with t
7 name(t):="T_"+name(c)
8 transformed(c):=t
9 endextend

10

11 enddo

During the specification of transformation rules the designer could have the need to maintain trace-
ability information in order to relate representatives of target elements with source one. Specific
functions can be defined for this purpose liketransformed in the sample rule that for each class
that has been transformed, maintains the reference to the corresponding generated table. The use
of “trace link” functions like this is clarified in the following rule which specifies the transforma-
tion of class attributes into table columns. In particular,theIN PATTERN of theAttribute2Column
rule is more intricate of the previous one since it specifies attributes which are of primitive type,
non primary key, and which belong to already transformed classes. The specification of this pat-
tern exploits the ASMchoose construct used to select the attributes satisfying these requirements
and that belong to classes on which the functiontransformed is true (line4). If the choose
succeeds new columns are generated (see line6-11) and the proper function updates occur. The
generated columns are specified as belonging to the table corresponding to the persistent class
selected through thechoose rule. The relationcols induced by the target metamodel is used for

4.3 Model Transformation Rules 37

(a) Class Diagram

(b) Class Diargam as Metamodel-Instance

Figure 4.5: Sample Source UML Model

this purpose. In particular, given a tablet and a columnc, col(t,c) is true if c is a column of the
tablet (see the model in Fig 4.6.b).

1 --Rule Attribute2Column
2 --IN_PATTERN
3 do forall a in Attribute
4 choose c in Class : attrs(c,a) and transformed(c)!=undef and isPrimitiveDataType(type

(a)) and not(isPrimary(a))
5

6 --OUT_PATTERN
7 extend Columns with col
8 name(col):=name(a)
9 type(col):=type(a)

10 cols(transformed(c),col):=true
11 endextend
12

13 endchoose
14 enddo

38 Chapter 4. ASMs for Model Transformation Specification (A4MT)

(a) Data Model

(b) Data Model as Metamodel-Instance

Figure 4.6: Sample Target RDBMS Model

In case of attributes which are defined asprimary, the corresponding generated columns have to
be specified as part of the primary key of the table to which they will belong. The rulePrimary-
Attribute2PrimaryKeyColumnis devoted to perform this transformation. Even though thisrule is
logically distinct fromAttribute2Column, theOUT PATTERN descriptions differ for the update of
the functionpkey only (see line11 below).

1 --Rule PrimaryAttribute2PrimaryKeyColumn
2 --IN_PATTERN
3 do forall a in Attribute
4 choose c in Class : attrs(c,a) and transformed(c)!=undef and isPrimitiveDataType(type

(a)) and isPrimary(a)
5

6 --OUT_PATTERN
7 extend Columns with col
8 name(col):=name(a)
9 type(col):=type(a)

10 cols(transformed(c),col):=true
11 pkey(transformed(c),col):=true
12 endextend
13

14 endchoose
15 enddo

In cases like this the designer may adopt optimizations based on rule merging. For instance, in
the running example only theAttribute2Columnrule could be maintained by removing the term
not(isPrimary(a)) in the guard of thechoose rule and by adding the following condition in
theOUT PATTERN specification:

4.3 Model Transformation Rules 39

1 if isPrimary(a) then
2 pkey(transformed(c),c):=true
3 endif

However, even though this kind of optimizations could reduce the length of the specifications, we
believe that in general they should be avoided especially when the readability, reuse and mainte-
nance of rules could be compromised.

Generally, model transformation rules, given a matched input pattern, produce more than one
single target element contrarily to the rules provided until now. For instance, according to the
requirements of theUML2RDBMStransformation, each attribute with a persistent class as type,
gives place to asetof columns contained by the key of the pointed persistent class, and a foreign
key referring to the table derived from the persistent classwhere the source attribute belongs. The
specification of this more intricateOUT PATTERN is given in the followingAttribute2ForeignKey
rule. In particular, for each attributea having as type a persistent class and belonging to an already
transformed class (see lines3-4) the given output pattern has to be applied. For each primary
column (col) belonging to the table generated from the persistent classwhich is the type of the
attributea (see line6), a new column for the table pointed bytransformed(c) is created and
the corresponding foreign key is also updated (lines11-15).

1 --Rule Attribute2ForeignKey
2 --IN_PATTERN
3 do forall a in Attribute
4 choose c in Class: attrs(c,a) and transformed(c)!=undef and isPersistent(type(a)) and

not(isPrimitiveDataType(type(a)))
5

6 --OUT_PATTERN
7 do forall col in Column : cols(transformed(type(a)), col) and isPrimary(col)
8 extend Column with tc
9 name(tc):=name(a)+"_"+name(col)

10 cols(transformed(c),tc):=true
11 extend FKey with fk
12 references(fk):=transformed(type(a))
13 cols(fk,tc):=true
14 fkeys(transformed(c),fk):=true
15 endextend
16 endextend
17

18 enddo
19

20 endchoose
21 enddo

The transformation of source associations is very similar to the transformation specified in the
Attribute2ForeignKeyrule. In fact, an association between persistent classes istransformed in
the same way as an attribute with a persistent class as type. In the case of an associationass
new columns are added in the table pointed bytransformed(src(ass)) with respect to the
primary key of the tabletransformed(dest(ass)). Moreover, the new columns will be part
of the source table foreign key as specified in the lines11-15 below

1 --Rule Association2ForeignKey
2 --IN_PATTERN
3 do forall ass in Association
4 choose c in Class: src(ass)=c and transformed(c)!=undef and isPersistent(dest(ass)))
5

6 --OUT_PATTERN
7 do forall col in Column : cols(transformed(dest(ass)), col) and isPrimary(col)
8 extend Column with tc
9 name(tc):=name(ass)+"_"+name(col)

40 Chapter 4. ASMs for Model Transformation Specification (A4MT)

10 cols(transformed(c),tc):=true
11 extend FKey with fk
12 references(fk):=transformed(dest(ass))
13 cols(fk,tc):=true
14 fkeys(transformed(c),fk):=true
15 endextend
16 endextend
17

18 enddo
19

20 endchoose
21 enddo

The completeUML2RDBMSmodel transformation is an extension of the presented basicsolution
which takes into account also class inheritance and non-persistent classes. As required, in class
hierarchies only the top-most classes are mapped to tables.However, one of the main requirements
for the considered model transformation isthe preservation of all the information in the class
diagram. The specification of the transformation satisfying these further requirements is based on
the concept of transitive closures of the class inheritanceand association relations according to the
following definitions.

Definition 15 The transitive closureTCI of the inheritance relationinherit from a top classc is
defined as follows:

TCI(c) =
⋃

ci∈Class : inherit(c,ci)

ci

where the relationinherit(c, ci) is true if exists a path of inheritances that connectc with ci.

Definition 16 The transitive closureTCA of the association relationnpassocfrom a classc is
defined as follows:

TCA(c) =
⋃

assi∈Association : npassoc(c,ass)

assi

where the relationnpassoc(c, assi) is true if exists a path of associations that permits to reach the
associationassi from the classc.

A4MT transformations which need complex computations on the source model like the calculation
of transitive closures defined above, can exploit asynchronous and recursive ASMs sub-machines
devoted to perform such computations without side-effects. This is one of the characteristics that
mainly distinguish A4MT from graph transformation approaches. In fact, differently to them,
A4MT do not “paint” the models with information only needed for the calculation. Furthermore,
such approaches need to polish the source models once the transformation has been performed.
Nor this operation is required by A4MT as it will be clarified in the following.

In the running example, the computation of the transitive closure of the inheritance relation is per-
formed by the sub-machinecalculateTCIthat takes a top class as input and iteratively updates the

4.3 Model Transformation Rules 41

function inherit. As explained in Chapter 3 an ASM machine is executed until nomore changes
occur on the algebra. This explains the use of thechoose rule in calculateTCI; once the initial-
izationinherit(top,top):=true is performed, the rule in line9 below is executed until the
guard of thechoose becomefalse. In each iteration the rule searches for a new classc which is
not in the transitive closure of the top class yet but that hasto be added since exists a classsubC

in current transitive closure which is parent of the considered classc.

1 --Transitive closure computation of class inheritance
2 asm calculateTCI(top:Class)
3 ...
4 is
5 init
6 inherit(top,top):=true
7 endinit
8

9 choose c in Class:(inherit(top,c)=undef and
10 exists subC in Class: inherit(top,subC) and parent(c)=subC
11)
12 inherit(top,c):=true
13 endchoose
14 ...
15 endasm

The transitive closure of the association relation is calculated by means of thecalculateTCAsub-
machine which is very similar tocalculateTCI. In fact, apart from the initialization step, the im-
plemented logic is the same. In each iteration, an association ass in the setAssociation is
selected whether it is not in the current transitive closuremaintained by the relationnpassoc
and if exists another associationnearAss for which npassoc(top,nearAss) is true and the
destination class ofnearAss is the source of the associationass.

1 --Transitive closure computation of association relation
2 asm calculateTCA(top:Class)
3 ...
4 is
5

6 init
7 do forall ass in Association
8 if (src(ass)=top) then
9 npassoc(top,ass):=true

10 ...
11 endif
12 enddo
13 endinit
14

15

16 choose ass in Association :((npassoc(top,ass)=undef) and (existsnearAss in
Association : (npassoc(top,nearAss)) and (dest(nearAss)=src(ass))))

17 npassoc(top,ass):=true
18 ...
19 endchoose
20

21 endasm

Th commonalities between the two sub-machines permit the definition of a generic one able to
deal with the problem of the transitive closure in general, independently from the relation which
has to be considered.

1 --Generic transitive closure computation
2 asm calculateTC(se:_, set:String, relation:String, condition:String)
3 ...
4 is
5

42 Chapter 4. ASMs for Model Transformation Specification (A4MT)

6 choose element in set :(($relation$(se,element)=undef) and
7 (exists nearElement in set : (tc(se,nearElement)) and

($condition$))
8)
9 $relation$(se,element):=true

10 ...
11 endchoose
12

13 endasm

ThecalculateTC sub-machine is a tentative implementation of a generic transitive closure cal-
culation. The input parameters of the sub-machine are the following:

– se: it is the element on which the transitive closure is calculated. In the case ofTCI and
TCAdefined above,se corresponds to the elementc of the definitions;

– set: it is the name of the universe where the elements have to be selected in each itera-
tion. For thecalculateTCI andcalculateTCA sub-machine, theset string refer to the
universesClass andAssociation respectively;

– relation: it is the name of the relation in which respect the transitive closure is calcu-
lated;inherit andnpassoc are the relations on which the transitive closure computations
calculateTCI andcalculateTCA are based respectively;

– condition: it describes when a new element should be added in the transitive closure
being calculated. In the case of the inheritance relation, anew classc1 can be added if a
exists an other classc2, already in the transitive closure, such thatparent(c1) = c2. In the
case of the association relation, a new associationass1 can be added if exists an association
ass2 in the transitive closure such thatdest(ass2) = src(ass1).

This generic machine is inspired by the concept of generic transformation which has been pro-
posed by Varró and Pataricza in [121] where data types, including model element types, are pa-
rameters of transformations which result to be more reusable.

The described sub-machines devoted to the transitive closure computations enable the complete
specification of theUML2RDBMSmodel transformation by taking into account also class inher-
itance and non-persistent classes. As required, in class hierarchies, once the top-most classes are
mapped to tables, additional attributes and associations given by subclasses have to be merged in
the top-most one. Furthermore, attributes or associationspointing to non-persistent classes, give
place to columns of the table corresponding to the original persistent class.

The following specifications deals with the extended version of the attribute and association trans-
formation. TheIN PATTERN of the rules makes use of theinherit function updated by thecalcu-
lateTCI submachine. For instance, in theAttributeTransformationrule, for each persistent class
(c1) which is top of a class hierarchy, all the attributes belonging to the subclasses (i.e. classes
c2 such thatinherit(c1, c2) is true) will be transformed by means of the rules described until now
with some minor modifications. For example, concerning the primary attribute transformations,
instead of searching the class to which the attribute being transformed belongs, in thePrimaryAt-
tribute2PrimaryKeyColumn’rule (lines11-19) for each classc2 in the transitive closure ofc1,
all the attributes ofc2 give place to columns of the table corresponding to the top-most classc1.

4.3 Model Transformation Rules 43

1 --Rule AttributeTransformation
2

3 --IN_PATTERN
4 do forall c1 in Class : isTop(c1) and isPersistent(c1)))
5 do forall c2 in Class : inherit(c1,c2)
6

7 --OUT_PATTERN
8 --Attribute2Column’(c1,c2)
9 ...

10

11 --PrimaryAttribute2PrimaryKeyColumn’(c1,c2)
12 do forall a in Attribute : (attrs(c2,a)) and (isPrimitiveDataType(type(a))) and

isPrimary(a)
13 extend Column with col
14 name(col):=name(a)
15 type(col):=type(a)
16 cols(transformed(c1),col):=true
17 pkey(transformed(c1),col):=true
18 endextend;
19 enddo
20

21 --Attribute2ForeignKey’(c1,c2)
22 ...
23

24 --NonPersAttr2Column(c1,c2)
25 ...
26

27 enddo
28 enddo

The rulesAttribute2Column’andAttribute2ForeignKey’are based on the same principle and for
readability reasons their specifications are not provided here. However, the reader can refer to
their complete specification available for download at [35].

To better clarify how the transitive closure of the association relation is exploited in the trans-
formation phase, let us consider the example in Fig. 4.5 and Fig. 4.6. For instance, the associ-
ationaddress between the sourcePerson andAddress classes is translated into the columns
address addr andaddress phone number of the target tableT Person. The latter is also a
foreign key (referring to the tablePhone) which has been added in the tableT Person since the
classPhone is in the transitive closure of the association relation from the classPerson. The
AssociationTransformationrule performs such a transformation whoseNonPersAttr2Columnrule
used above is a slight adaptation. TheIN PATTERN of AssociationTransformationis the same of
theAttributeTransformationrule in order to take into account the associations of all thesubclasses
of a given top class. TheOUT PATTERN is made up in turn by two other transformation rules able
to transform both associations with non-persistent and persistent classes. For each classc2 in the
transitive closure ofc1, these two transformations are iteratively and independently applied until
no more matches of theirIN PATTERN are found. Concerning the associations in the transitive
closure of the given classc2 and targeting to non-persistent classes (line9), for each attribute of
these classes a new column in the table corresponding to the top classc1 has to be generated.

1 --Rule AssociationTransformation
2

3 --IN_PATTERN
4 do forall c1 in Class : isTop(c) and isPersistent(c1)))
5 do forall c2 in Class : inherit(c1,c2)
6

7 --OUT_PATTERN
8

9 --NonPersAssoc2Column
10 --IN_PATTERN

44 Chapter 4. ASMs for Model Transformation Specification (A4MT)

11 do forall ass in Association : (npassoc(c2,ass) and not(isPersistent(dest(ass))))
12

13 --OUT_PATTERN
14 do forall at in Attribute : (attrs(dest(ass), at))
15 extend Column with tc
16 name(tc):=npassocName(c2,ass)+"_"+name(at)
17 cols(transformed(c1),tc):=true
18 type(tc):=type(at)
19 endextend
20 enddo
21

22 enddo
23

24 --Association2ForeignKey’
25 --IN_PATTERN
26 do forall ass in Association : (npassoc(c2,ass) and isPersistent(des(ass2)))
27

28 --OUT_PATTERN
29 do forall col in Column : (cols(transformed(dest(ass2)),col)) and (isPrimary(

col)))
30 extend Column with tc
31 name(tc):=npassocName(c2,ass)+"_"+name(col)
32 type(tc):=type(col)
33 cols(transformed(c),tc):=true
34 extend FKey with fk
35 references(fk):=transformed(dest(ass))
36 cols(fk,tc):=true
37 fkeys(transformed(c1),fk):=true
38 endextend
39 endextend
40 enddo
41

42 enddo
43

44 enddo
45 enddo

The name of each new column is the name of the attribute prefixed with a string representing the
path from the classc2 to the attribute being transformed (available in the functionnpassocName
which have been updated during the transitive closure computation of the association relation).
For instance, the associationaddress in Fig. 4.5.a gives place to the attributeaddress addr in
the tableT Person in Fig. 4.6.a.

In case of persistent target classes theOUT PATTERN of theAssociation2ForeignKey’ trans-
formation is applied. In particular, each primary key of thetable corresponding to the target
classc2 gives place to a new column in the table obtained from the class c1 and to a new for-
eign key referring to the table corresponding to the classc2. For instance the associationphone
reachable from the classPerson through the associationaddress gives place to the column
address phone number in the tableT Person. The foreign key of this table is also updated
(see lines34-38) to obtain the final model in Fig. 4.6.

In the next section, A4MT is collocated in the context of the QVT RFP (Request For Proposal) [93]
issued by the OMG in 2002 in order to specify the requirementsthat a transformation language in
a MDA setting should address. Then a comparison between A4MTand the approaches presented
in Sec. 2.3.2 is provided.

4.4 A4MT in the context of MOF 2.0 QVT RFP 45

4.4 A4MT IN THE CONTEXT OFMOF 2.0 QVT RFP

QVT RFP addresses the need for a standard language for transformation definitions in MDA. It
states a set of mandatory and a set of optional requirements that QVT compliant languages should
address. In this section a summary of these requirements is provided and how A4MT satisfies with
them is also presented according to [77].

QVT Mandatory Requirements

• Query language:proposals should define a language for querying models;

• Transformation language:proposals should define a language for expressing transformation
definitions. Transformation definitions are executed over MOF models, i.e. models that are
instances of MOF meta-models;

• Abstract syntax definition:QVT languages should define their abstract syntax as a MOF
meta-model;

• View language:QVT languages should enable creation of views on models;

• Declarative language:proposals should define declarative transformation language;

QVT Optional Requirements

• Bidirectional transformation definitions:proposals may support transformation definitions
executable in two directions;

• Traceability: proposals may support generation of traceability information;

• Reuse mechanisms:QVT languages may support mechanisms for reuse and extension of
generic transformation definitions;

• Transactional transformations:proposals may support execution of parts of transformations
as a transaction;

• Update of existing models:proposals may support execution of transformations where the
source and the target model are the same;

It is possible to evaluate A4MT against the QVT requirementsgiving place to the Table 4.4. Con-
cerning the mandatory requirements, A4MT provides with a query language based on first-order
logic. In fact, as shown in theUML2RDBMSexample discussed above, first-order logic predi-
cates are used to express query. The transformations are expressed by using the ASMs constructs
whose MOF-based metamodel is available [102]. This permitsto satisfy the second and the third
mandatory requirements. A view language is not directly provided even though aview can be
obtained by means of queries and transformations (see QVT inSec. 2.3.2). Concerning the last
mandatory requirement, A4MT does not provide a pure declarative transformation language even
if the approach can be considered hybrid. In fact, models arequeried in a declarative way and
transformations are procedurally expressed.

Concerning the optional requirements, A4MT addresses mostof them. For example, a traceability
support is provided (as better described in the next section). Transformation rules can be embodied

46 Chapter 4. ASMs for Model Transformation Specification (A4MT)

QVT Requirement Support by A4MT

Query Language First-order logic predicates are used to query models

Transformation language working on MOF modelsThe approach is capable of expressing transformations
on MOF models even though it supports
transformation scenarios not addressed in QVT

Abstract syntax definition A MOF metamodel of ASMs is available [102]

View language Not available

Declarative transformation language The approach is hybrid in the sense that models are
queried in a declarative way and transformations
are procedurally expressed

Bidirectional transformations Only unidirectional transformations are supported

Traceability support Available

Reuse and extension mechanisms The approach provides with sub-machine facilities
enabling transformation libraries

Transactional transformations Not available

Update of models Available

Table 4.1: Support of the QVT requirements by A4MT

in sub-machines that other rules can invoke providing a modularity mechanism. However, the use
of sub-machines is suggested to perform complex computations or navigation on models without
side effects or to define libraries that can be reused in different transformations (the sub-machines
proposed above for the transitive closure computations arean example).

In place transformations are also supported by A4MT (this aspect will be better addressed in
the next section) whereas transactional transformations are not supported yet. Finally, A4MT
permits the specification of unidirectional transformation in contrast with the first optional QVT
requirement.

4.5 COMPARING A4MT WITH OTHER APPROACHES

In this section, A4MT is classified with respect to the major features provided by Czarnecki and
Helsen in [34] where they present a domain analysis of existing model transformation approaches.
In the following, some of the main features are described andconsidered for classifying A4MT
and comparing it with the transformation approaches presented in Sec. 2.3.2. The comparison is
presented also in Table 4.5.

4.5 Comparing A4MT with other Approaches 47

Paradigm. This feature refers to the programming paradigm used to define transformations. It
can be mainly distinguished betweenimperative, declarativeandhybrid. A4MT can be classified
as a hybrid approach since transformation rules have aquery which is declaratively defined as
first–order logic predicates over finite universes containing model element representatives, and a
transformationpart which is procedurally expressed as parallel updates ofthe encoding algebra. In
this sense, the approach is similar to ATL, VIATRA2 and GReAT. In fact, ATL wraps imperative
bodies inside declarative shells. VIATRA2 and GReAT have a declarative rule language based
on graphs and an imperative language for rule application order. In VIATRA2, Abstract State
Machines are used for this purpose. AGG is a pure declarativeapproach which does not permit
the specification of imperative transformation statements. Finally, QVT-Relations and QVT-Core,
even though at two different level of abstractions, are two declarative languages differently to
QVT-OM which is an imperative one.

Directionality. Transformations may beunidirectionalor multidirectional. Unidirectional trans-
formations map the source metamodel into the target metamodel but not the converse. Although
this may appear a limitation, in practical cases this is essentially unavoidable since a multidirec-
tional transformation, that can be executed in multiple directions, could implies the adoption of
declarative rule-based formalisms that pose severe questions about the termination of transfor-
mations [119]. Multidirectional transformations are particularly useful in the context of model
synchronization and can be achieved also by defining severalseparate complementary unidirec-
tional rules, one for each direction. A4MT permits the specification of unidirectional transfor-
mation like the other considered transformation languagesexcept QVT-Relations which supports
also multidirectional rules.

Cardinality. It indicates the number of input and output models involved in a transformation
definition. A4MT permits the definition of transformation rules able to query multiple source
models and eventually generate elements in different target one. This is feasible by means of
an encoding phase that permits to maintain the involved models separated. For such a purpose
name conventions or auxiliary functions can be used. If the encoding is properly performed, the
transformation rules can be normally expressed as described in the previous section. The unique
distinctive characteristic is the way the patterns are written. In particular, theIN PATTERN are
first-order predicates defined by means of terms coming from the signatures of different source
metamodels. In the same way, theOUT PATTERN extends universes and updates functions en-
coding different target models. Except AGG which supports 1-to-1 transformations, the other
considered approaches permit the specification of M-to-N transformations.

Traceability. Traceability links connect source and target elements which are essentially instances
of the mappings between the source and target domains. Traceability links can be established by
storing the transformation rule and the source elements that were involved in creating a given target
element. Traceability links can beautomaticor user-defined. In the former case, the execution
engine is encharged to create and update the data structuresdevoted to store traceability links. In
the latter the transformation designer is responsible to dothis.

The availability of traceability distinguishes a transformation between persistent and stateless.
The former enables change propagation, in the sense that performing the transformation when the
source model has changed does not always result in a newly creation model. In fact, persistence
implies version policies towards the target model that in combination with the trace information
allows not to rewrite completely the target model for different incarnations of the transformation.

48 Chapter 4. ASMs for Model Transformation Specification (A4MT)

In A4MT the traceability is user-defined. For example, in theUML2RDBMSexample discussed
above, the transformation designer uses the functiontransformed to maintain the information
from which source class a target table has been generated. More complex traceability structures
can be defined even though the transformation designer is encharged to use them in the transfor-
mation rule specifications. ATL, QVT-OM and QVT-Relation provide with dedicated support for
tracing, and traceability links are created automatically. Even without dedicated support, in the
case of AGG, GReAT, VIATRA2 and QVT-Core, tracing information can always be created just
as any other target element. Moreover, AGG and VIATRA2 rely on traceability links to prevent
multiple “firings” of a rule for the same input element.

Query Language.A transformation approach provides a mean to select elements from the source
models to be considered in the transformation phase. A4MT exploits the first-order logic to query
models in a declarative way. ATL and QVT-OM have a query language based on OCL. The other
approaches rely on the concept ofpattern intended as a collection of model elements arranged
into a certain structure fulfilling additional constraints(as defined by attribute conditions or other
patterns). VIATRA2, GReAT and AGG express queries by means of graph patterns whereas QVT-
Relation and QVT-Core supports object patterns.

Rule Application Strategy. It is the strategy for determining the model locations to which trans-
formation rules are applied. In particular, a rule needs to be applied to a specific location within
its source scope. As there may be more than one match for a rulewithin a given source scope,
a strategy for determining the application locations is needed. The strategy could bedetermin-
istic, nondeterministic, or interactive. Example of nondeterministic strategies includeone-point
application, where a rule is applied to one non-deterministically selected location, andconcurrent
location, where one rule is applied concurrently to all matching locations in the source. In A4MT
the way in which the application locations are determined isnondeterministic and concurrent.
Concurrent application is also supported in AGG and VIATRA2, whereas ATL, GReAT and QVT
adopt a nondeterministic one-point strategy.

Rule Scheduling.Scheduling mechanisms determine the order in which individual transformation
rules are applied. A scheduling can beimplicit or explicit. The former implies that the user has
no explicit control over the scheduling algorithm defined bythe tool. The only way a user can
influence the system-defined scheduling algorithm is by designing the patterns and logic of the
rules to ensure certain execution orders.Explicit scheduling has dedicated constructs to explicitly
control the execution order. Furthermore, explicit scheduling can beinternal or external. In
external scheduling, there is a clear separation between the rules and the scheduling logic. In
contrast, internal scheduling is a mechanism allowing a transformation rule to directly invoke
other rules. In general, A4MT provides with an implicit scheduling rule. In fact, according to
the specified queries, the rules are iteratively and implicitly applied until no more changes on
the algebra occur. Moreover, transformation rules can be embodied in sub-machines that other
rules can invoke (providing an internal explicit scheduling). However, the use of sub-machines
is suggested only to perform complex computations or navigation on models without side effects.
The internal scheduling is supported also by ATL (that provides the implicit one too) and QVT-
OM, whereas QVT-Relation and QVT-Core provide with an implicit rule scheduling.

VIATRA2 and GReAT have a dedicated language for specifying the application order of rules. For
example, in VIATRA2 graph transformation is the primary means for elementary model transfor-
mation steps which are invoked by using the control flow structures provided by ASMs.

4.6 Conclusions 49

In AGG the rule application order is specified by means of layers and each graph transformation
rule is assigned to a certain layer. Starting with layer 0, the rules of one layer are applied as
long as possible. Thereafter, the next layer is executed. Having executed the highest layer, the
transformation is finished.

Rule Organization. Rule organization is concerned with composing and structuring multiple
transformation rules. For example, the organization can exploit on modularityand reusemech-
anisms based on rule inheritance or packaging to mention a few. A4MT uses the ASMs sub-
machine facilities to specify computations that can be usedin different transformation rules. The
transitive closure computations discussed in theUML2RDBMScase study is an example. ATL,
QVT and VIATRA2 allow packaging rules into modules. A modulecan import another module
to access its content. Moreover, rule inheritance is allowed in ATL and QVT, whereas AGG bases
the organization of rules on the layer concept explained above. GReAT rely on rule blocks that
provide the means to organize rules into higher-level hierarchies. Within a rule block, rules are
chained (and thus sequenced) by passing previously matchedelements from rule to rule. Using
rule block constructs, a complex transformation can be decomposed into a sequence of simpler
rules. Moreover, rule blocks can be arranged into hierarchies of blocks.

Source-Target Relationship.This feature concerns the creation of a new target model which can
be separate from the source one or not. Some approaches, likeATL, mandate the creation of a new
target model that has to be generated from the source. In someother approaches, such as AGG,
GReAT and VIATRA2, source and target are always the same model, that is, they only support in-
place update. QVT allows creating a new model or updating an existing one even though in-place
updates are also supported.

Concerning A4MT, transformation rules change algebras which encode both source and target
models. However they are maintained separated by means of a proper encoding that permit to
apply transformation rules to update the target models, to modify the source ones or both. This
means that even though during the application of transformation rules, there is only one algebra,
source and target models are maintained distinct.

4.6 CONCLUSIONS

This chapter proposed A4MT, an Abstract State Machines based approach which makes possi-
ble formal and implementation independent specifications of model transformation behaviours.
A4MT aims at providing the transformation developers with the possibility to check their basic
design decisions against an accurate and executable high-level model of the transformation itself.

A canonical encoding of models and metamodels was introduced and theUML2RDBMSmodel
transformation case study (which is standard in the literature) was considered throughout the chap-
ter to highlight explicitly how ASMs can be used to design transformations in general. The chapter
shown also how A4MT permits to specify complex computationson models like the calculation
of transitive closures with respect to some relations. The chapter tried to give strategies, best
practices, design patterns for specifying transformationrules and discussed how models could be
navigated and queried by means of first order predicates instead of patterns which are lacking in
ASMs.

50 Chapter 4. ASMs for Model Transformation Specification (A4MT)

A4MT was collocated in the context of MOF 2.0 QVT RFP. Most of the mandatory and optional
requirements of the request for proposal can be addressed. Finally, the approach was compared
with some of today’s available transformation languages even though A4MT aims to be an high-
level specification approach that can be used to design and validate transformation before their
actual implementation. In this way the transformation developers can check their implementation
written in a specific language like AGG, ATL, QVT, etc. against an accurate and executable high-
level model of the transformation itself given by means of A4MT.

4.6
C

onclusions
51

Category A4MT ATL VIATRA2 GReAT AGG QVT-Relations QVT-OM QVT-Core

Paradigm
- Declarative No Yes No No Yes Yes No Yes
- Hybrid Yes Yes Yes Yes No No No No
- Imperative Yes Yes No No No No Yes No

Query Language First-order Logic OCL based Graph Graph Graph Object OCL based Object
Predicates Pattern Pattern Pattern Patter Pattern

Rule Scheduling Implicit, Implicit, External External External explicit, Implicit Internal Implicit
Internal Explicit Internal Explicit Explicit Explicit Implicit Explicit

Rule Organization Sub-machine Rule Inheritance, Rule Hierarchy Layering Rule and Rule and Rule and
Libraries Packaging of Rule Blocks Transformation Transformation Transformation

Inheritance Inheritance Inheritance

Rule Application Strategy Nondeterministic Nondeterministic Nondeterministic Nondeterministic Nondeterministic Nondeterministic Nondeterministic Nondeterministic
(concurrent) (one-point) (concurrent) (one-point) (concurrent) (one-point) (one-point) (one-point)

Directionality
- Unidirectional Yes Yes Yes Yes Yes No Yes No
- Multidirectional No No No No No Yes No Yes

Cardinality
- M-to-N Yes Yes Yes Yes No Yes Yes Yes
- 1-to-1 Yes Yes Yes Yes Yes Yes Yes Yes

Traceability
- Automatic No Yes No No No Yes Yes No
- User-specified Yes No Yes Yes Yes Yes Yes Yes

Source-Target Relationship
- New Model Yes Yes No No No Yes Yes Yes
- In-Place Yes Yes Yes Yes Yes Yes Yes Yes

Table
4.2:

T
ransform

ation
A

pproach
C

om
parison

CHAPTER 5

A4MT BENCHMARK

A4MT has been validated in different applicative domains and the results are reported in this chap-
ter. Sec. 5.1 discusses the use of A4MT to support the model driven development of data-intensive
Web applications [40]. Section 5.2 proposes the use of A4MT in the development of middle-
ware systems highlighting the importance of having a formalapproach for specifying property
preserving transformations [24]. Finally, Section 5.3 describes how it is possible to use the ap-
proach for specifying the dynamic semantics of Domain Specific Languages in the context of the
AMMA framework [16]. A case study is discussed by formally specifying the dynamic seman-
tics of ATL [70], the transformation language described in Sec 2.3.2 which is part of the AMMA
framework.

5.1 A4MT FOR MODEL DRIVEN DEVELOPMENT OF WEB

APPLICATIONS

Over the last few years, Web-based systems became commonplace and underwent frequent mod-
ifications due to technological and commercial urges. Web sites rapidly evolved from simple
collections of static pages to data-intensive applications which rely on dynamic contents usually
stored in databases enabling a much wider range of interaction.

In this chapter, we describe a systematic approach to model-driven development of data-intensive
Web applications meant as hybrid between hypermedia and information systems [50]. Starting
from a suitable UML profile, called Webile [39], conceptual descriptions of these systems are
given asplatform-independent models(PIMs), i.e. abstract descriptions that do not refer to the
technologies they assume to exist. The process of transforming a PIM to obtain concrete imple-
mentations on the target architecture described byplatform specific models(PSMs) is the ultimate
consequence of shifting the focus of software development from coding to modeling. Different
PSMs can be generated from a Webile model in order to describedifferent aspects of J2EE Web
applications designed according to the Model-View-Controller [55] architectural pattern. In this
setting A4MT is used for specifying and executing the transformations from the specified PIM to
the different PSMs.

The presentation of the this case study is organized as follows. The next subsection illustrates an
extended version of the Webile profile, which is used for the description of PIMs. Section 5.1.2
presents the founding elements for modeling J2EE Web applications designed according to the
MVC architectural pattern. Finally, the transformations of source Webile models are specified in
A4MT.

53

54 Chapter 5. A4MT Benchmark

Figure 5.1: A fragment of an academic site

5.1.1 WEBILE

Webile [39] is a UML profile for describing in a uniform and conceptual way the proper aspects
of data-intensive Web applications without referring to platform-specific assets. Leveraging the
recurrency of certain application patterns which typically compose Web applications permits to
raise the level of abstraction adopting amodel-centricdevelopment whose main artifacts are mod-
els. These models are supposed to span the entire life cycle of a software system and ease the
software production and maintenance tasks.

Descriptions encompass several concerns by capturing data, pages and navigation into extended
class diagrams. In particular, data are given similarly to E/R models exploiting stereotyped
classes and associations to model entities and relations, respectively. The profile prescribes the
≪DataEntity≫, ≪DataRelation≫, ≪DataStrongRelation≫ and≪DataAttribute≫ stereotypes
for modeling data. For instance, in Fig. 5.1 the elements contained in the dotted area, represent
a simplified1 conceptual data model of an academic site fragment, where professors (Professor)
can have different publications (Publication), each belonging to one or more research areas (Re-
searchArea). Pages and their fragments are denoted by means of≪StructuredContent≫ stereo-
typed classes that are eventually associated with data entities providing contents by means of
≪DataSource≫ stereotyped associations. These associations are qualified with a collection of
tagged values, amongst themCardinality describes the cardinality of the items to be included in
the content, i.e. whether the content consists of a single item or a list of them. In the figure, the
Professors structured content contains the list of all professors in the database, which are retrieved
through the associated entityProfessor, in contrast withHomePage which contains information
about one professor, respectively, because of the different specified cardinalities. Relevant aspects
of the data source association affect the way the data are retrieved to form structured contents. In
fact, different data source associations converging on thesame structured content and denoted by
the same tagged valueLabel define the same query operation (see Sect. 5.1.3). On the contrary, in

1For presentational purposes, we omitted attributes and other information which are not relevant at this stage of the
discussion.

5.1 A4MT for Model Driven Development of Web Applications 55

HomePage two different query operations are defined, because the labels on the associations with
Professor andResearchArea are different.

Hyperlinks are modeled by means of the≪CLink≫ and≪NCLink≫ stereotyped associations
which denote contextual and non-contextual links, respectively. The main difference among them
lies in the fact that the formers propagate parameters from the source structured content to the
target one. These parameters are used when data source associations have the tagged valueBound
set totrue to filter the data retrieved from the corresponding entities. For instance, in Fig. 5.1 the
contextual link going out fromProfessors allows the user to select a single professor in order to
access her/his personal profile inHomePage, which is collected by means of the≪DataSource≫
stereotyped associations with the entitiesProfessor andResearchArea. Analogously, the contex-
tual link outgoing fromHomePage provides with the access toPublications of the selected re-
search area. Non contextual links are much simpler since they connect structured contents which
are not semantically correlated.

The Webile profile was originally devised to generate code directly from models in anone-step
fashion without any human intervention. The approach has shown immediately problems not lim-
ited to poor consistency and traceability between models and code, as the formers start to diverge
from the latter as soon as changes are operated on the generated system. Thus, the approach has
been considerably extended introducing proper A4MT model transformations able to map Webile
models into model chains which, at different level of abstractions, are descriptions of the chosen
implementation.

5.1.2 DESCRIBING PSMS

MVC is an architectural pattern which aims at minimizing thedegree of coupling between el-
ements to relate the user interface to underlying data models in an effective way. Increasingly,
the MVC pattern is used in program development with object-oriented languages and in organiz-
ing the design of J2EE Web applications proposing a three-way factoring paradigm based on the
following

• the model holds all data relevant to domain entity or process, and performs behavioral pro-
cessing on that data;

• the view displays data contained in the model and maintains consistency in the presentation
when the model changes; and

• the controller is the glue between view and model reacting tosignificant events in the view,
which may result in manipulation of the model.

The description of PSMs referring to the J2EE platform may distinguish the model from the view
and the controller. This separation of concerns is motivated by the abundance of persistence frame-
works, such as EJB [45] and JDO [66] to mention a few, which suggests further refinements of
the model into more specific PSMs retaining the view-controller design (see Fig. 5.2). According
to the figure, a Webile specification is mapped into platform-specific descriptions of the view-
controller and the model, respectively. This mapping is automatic and mathematically defined
by executable ASM transition rules as described in Sect. 5.1.3. In the proposed approach, the

56 Chapter 5. A4MT Benchmark

Webile

Conallen’s WAE

View-Controller

XDW

Model

EJB JDO Hibernate

J2EE Web Application

Figure 5.2: Different Views of the MVC pattern

View-Controller package (see Fig. 5.2) is given by means of Conallen’s Web Applications Ex-
tension [33] (WAE) whereas the Model package is given by means of the data part of Webile
opportunely extended to some abstraction for realizing given business tier patterns [7].

V IEW-CONTROLLER: CONALLEN ’ S WAE The Web Application Extension (WAE) is an exten-
sion of UML for modeling Web applications proposed by J. Conallen. Web pages are modeled by
giving both server-side and client-side aspects by means of≪Server Page≫ and≪Client Page≫
stereotyped classes, respectively. A server page can be associated with other server-side objects,
i.e. database, middle-tier components and so on, although we are not going to model data aspects
here. The≪Client Page≫ stereotype represents a HTML page which is usually associated with
other client or server pages. In the last case the≪build≫ stereotyped association is used to state
that a server page builds a client one. An hyperlink between pages is modeled by a≪link≫ stereo-
typed association. If the hyperlink includes parameters, they are modelled as link attributes of the
association. A directional relationship between one server page and another server or client page
is modeled by the≪forward≫ stereotyped association. This association represents thedelegation
of processing client’s requests for a resource to another server-side page and it is a pivotal aspect
proper of the view-controller metaphor.

In fact, referring to Fig. 5.3 and according to the adopted pattern, client requests are processed by
the controller server pages which perform the data retrieval by invoking the proper operations on
the business delegate object (as explained in the next section). Each controller declares exactly
the operation which must be invoked according to the data source associations in the conceptual
model, e.g. the server page classHomePage Controller depends on the methodsgetProfData() and
getProfResArea() to retrieve the data. Once the data are available to the controller, the request
is forwarded to the corresponding view server page. In particular, the figure illustrates how to
implement the application logic of the system described in Fig. 5.1 by means of several views and
controllers; each structured content is mapped to a patternconsisting of linked client page, view
and controller server pages. Alternatively, the front controller pattern [7], i.e. a unique controller
which serves as a centralized access point for requests and link, could have been adopted. It is
a solution which is widely used by software developers, which encodes information about the
navigation in the url requests, thus is less convenient to illustrate how the navigation in Webile
is propagated during model transformation. Finally, the idea of adopting Conallen’s approach
for specifying PSMs in not novel, since it mainly representsthe implementation and is therefore
suitable for PSMs rather than PIMs [89, 90].

5.1 A4MT for Model Driven Development of Web Applications 57

Figure 5.3: Conallen’s View-Controller description

Figure 5.4: XDW Model description

MODEL: EXTENDED DATA WEBILE This section presents how to describe the Model compo-
nent of the MVC pattern by means of an extension of the data part of Webile, called eXtended
Data Webile (XDW). A better maintenance and flexibility in accessing business services requires
specific abstraction layers as the ones realized by means of the business delegate and the trans-
fer object design patterns [7]. In particular, the businessdelegate hides implementation details of
the business service and encapsulates access and lookup mechanisms; whereas the transfer object
serves to optimize data transfer across tiers. Instead of sending or receiving individual data ele-
ments, a transfer object contains all the data elements in a single structure required by the request
or response. To summarize, a controller can access businessservices by performing requests to
a business delegate which implements the services and returns the result as a transfer object. For
instance, Fig. 5.4 depicts a diagram which describes by means of XDW the Model components
of the application which has been modeled in Fig. 5.1. It comprehends only the data aspects of
the original model and additionally introduces the business delegate and a transfer object for each
different query operation defined within the business delegate. To understand how such elements
are defined, let us consider the data source association in Fig. 5.1 labeledProfData betweenHome-
Page andProfessor, this association defines the query operation in the business delegate called
getProfData() which returns a transfer object of typeProfDataTO. In order to keep a certain degree
of abstraction, the query operations in the business delegate are specified by means of relational
algebra expressions which are computed by A4MT rules presented and commented in Sec. 5.1.3.

58 Chapter 5. A4MT Benchmark

5.1.3 MODEL TRANSFORMATIONS

In the sequel, unidirectional stateless transformations are given to map Webile models into Conallen
and XDW ones. The transformations are specified by means of A4MT which, as described in
Chap. 4, starting from an algebra encoding the source model,return an algebra encoding the target
model. The signature of an algebra encoding a model is induced by the UML metamodel whose
elements define the sorts of the signature, for instance the class and association elements give place
to theClassandAssociationsorts, i.e. the algebra has two universes containing distinguished rep-
resentatives for all the classes and associations in the model. Stereotypes extending the model
elements define subsets in the universes induced by the extended elements itself. This is nicely
modeled since ASMs allow subsorting, for instance in the Webile profile the≪DataEntity≫ and
≪DataSource≫ stereotypes induces the following subsorting relations

DataEntity< Class and DataSource< Association

Additionally, the metamodels induce also functions which provide with support to model naviga-
tion, e.g. the associations have source and target functions

source, target: Association→ Class

which return the source and the target class of the association. Methods are represented by the sort
Methodand the class they belong to is computed by the function

belong: Method→ Class

further functions defined over methods arenameandbodywhich return the name and the body of
a method, respectively. Also tagged values are encoded by means of functions, for example the
tagged valueCardinality of the≪DataSource≫ stereotyped association defines

cardinality : DataSource→ {single,multiple}

Moreover, further functions and sorts are given by the basicdata types and by those functions
which are used in transition rules to accumulate information during the transformation. As an
example, the algebraic encoding of the model in Fig. 5.1 is illustrated in Fig. 5.5. In the next sec-
tions, the A4MT rules for generating the PSMs for the Model and for the View and the Controller
are presented, respectively, according to the Fig. 5.2.

MODEL TRANSFORMATION: V IEW-CONTROLLER The transformation introduced here consists
of a number of A4MT rules, in particular for each structured content the ruleStructuredContent
extends the algebra encoding the source model with three newclasses, two server pages mod-
eling the view and the controller and a client page which is generated by the view server page.
Furthermore, the rule introduces the following functions

controller, serverView: StructuredContent→ ServerPage
clientView: StructuredContent→ ClientPage

used to track the structured contents from which the client and server pages have been generated.
The rule is as follows

5.1 A4MT for Model Driven Development of Web Applications 59

DataEntity

StructuredContent

DataSource

CLink

Compose

DataRelation

Professor

Publication

ResearchArea

dr1
dr2

ds2

ds3
ds4

cp1

cp2
cl1

cl2

sc(ProfessorList)

sc(HomePage) sc(Publications)

sc(Header)

ds1

source

source

source

source

source

source

target

target

target target

target
target

Figure 5.5: A model encoded in an algebra

1 -- Rule StructuredContentTransformation
2 do forall x in StructuredContent
3

4 extend ServerPage with s1,s2 and ClientPage with c and Build with b
5 and Forward with r and Use with u
6 and Operation with op
7

8 source(b) := s1
9 target(b) := c

10 source(r) := s2
11 target(r) := s1
12

13 source(u) := s2, target(u) := bd
14

15 controller(x) := s2,
16 serverView(x) := s1,
17 clientView(x) := c
18

19 name(op) := "process_request"
20 body(op) := Invocations(x)
21 belong(op) := s2
22

23 endextend
24 enddo

Line 13 in the above rule contains a reference tobd, the representative of the business delegate
component which is incrementally assigned the query operations; line20 contains the invocations
to the Invocationssub-machine which computes and returns the list of method names which the
controllers have to invoke in their body.

The CLink rule for each≪CLink≫ stereotyped association in Webile extends the universeLink
with a new element whose source and target are the linkedClientPageandServerPage, respectively

1 -- Rule CLink2Link
2 do forall x in CLink
3

4 extend Link with l
5 source(l):=clientView(source(x))
6 target(l):=controller(target(x))
7 endextend
8

9 enddo

60 Chapter 5. A4MT Benchmark

The rules described up to now are not very complex, they couldeven be considered declarative,
since they make use only of the update rule (simpler than in attribute grammars, for instance,
which requires some resolution). Algebraically, they can be given as a set of positive conditional
equations which induce a (free) functorial transformationon the source algebras. Finally, the rules
for handling the composition of structured contents and non-contextual links are missing, since
their complexity is comparable to that of the rules above.

MODEL TRANSFORMATION: MODEL The most interesting rules are not just attributions as the
ones above. It is crucial, to be able to collect information while navigating the model, as when
computing the transitive closure of a relation for instance. The following ruleDataSourcehas
to generate the specification of the query operations in the business delegate as relational algebra
expressions starting from the data sources in the Webile model. Depending on the tagged value
Label of the≪DataSource≫ associations, the way the contents are retrieved is defined giving
place to different expressions. All the≪DataSource≫ stereotyped associations related to a spe-
cific ≪StructuredContent≫ can be grouped according to theirLabel tagged value and associated
to aLabel-indexed query operation. The rule has to navigate the source model to understand which
data entities are involved in the relational algebra expressions. TheDataSourcerule is defined as
follows

1 -- Rule DataSourceTransformation
2 DefineAllContents;
3 do forall x in StructuredContent and l in Label : cont(x,l)!=undef
4

5 extend Operation with op
6 belong(op) := bd
7 name(op) := "get"+name(l)
8 choose t in TransfObject : name(t)=name(l)+"TO"
9 type(op) :=t

10 endchoose
11 body(op) := Expr(x,l)
12 endextend
13

14 enddo

whereDefineAllContentssub-machine creates lists of data sources according to theLabel tagged
value partitioning explained above. The rule is given belowand makes use ofaddListElement
which adds elements to a list

1 -- Rule DefineAllContents
2 do forall x in StructuredContent
3 do forall y in DataSource : target(y)=x
4 do forall l in Label : label(y)=l
5

6 addListElement(cont(x,l),y)
7

8 enddo
9 enddo

10 enddo

The sub-machineExprof DataSourcegenerates the relational algebra expression whose evaluation
supplies the contentl for the structured contentx.

1 -- Rule Expr(x,l)
2 extend Body with y
3 join(y) := unify(findPath(cont(x,l)))
4 selectionKey(y) := findKey(cont(x,l))
5 return y
6 endextend

5.1 A4MT for Model Driven Development of Web Applications 61

To better understand this rule, let us consider Fig. 5.6 where an abstract representation of a Webile
model is presented. The structured contentSC is fed by three data sourcesds1, ds2 andds3 with
the samecont1label. In order to obtain a relational algebra expression

σF (T1 ⋊⋉c1 T2 ⋊⋉c2 T3... ⋊⋉cn−1
Tn)

two macro steps have to be executed:

– the definition of joins between the right relations and,

– the definition of the selection formulaF .

The former is obtained by means of theunify rule, the latter by means of thefindKeyone. Note
that the definition of the expression is not trivial and we present the solution by outlining the
description for thefindPath, unifyandfindKeyrules. Two data entities involved in the definition of
a content by means of two≪DataSource≫ associations, may give place to ambiguous scenarios.
In fact,E1 andE3 in Fig. 5.6, are related by means of two different paths. Thiscauses problem for
the definition of the joins involving them. Webile deals withthis problem by means of the tagged
valueRelationsof the≪DataSource≫ stereotype. This is used by thefindPathrule which, for
each pair of entities involved in the content definition, finds the right path of relations connecting
them.

For this rule, the setPath is defined asDataRelation∗ × Bool whose elements are terms
path(R,C), where the first parameterR is the list of relations defining the path in the source model,
the second parameterC is a boolean denoting whether the conditions of the joins involving the
entities in the relation chain are empty or equals to conjunctions of equations involving the corre-
sponding keys. For instance, in Fig. 5.6,findPathreturns the list containing the following elements:
{path(Rk, Rm, ..., Rn, true), path(R1, ..., Ri, false)}.

Theunify rule evaluates the paths and defines the joins between thelogical relations in the paths
recursively, whereasfindKeydefines the selection formula for the final expression. Accordingly, if
E1 contained the attributeatt1 in Fig. 5.6, the formulaF would be the equationE1.att1 = att1.
Otherwise, ifE2 contained the attributeatt1, then the key propagated by the contextual link has
no effect and the selection formula is empty. The relationalalgebra expression defined with this
process represents the body of a server-side operation partof the server page obtained by means
of the transformation of the structured contentSC.

Figure 5.6: An abstract representation of a Webile model

62 Chapter 5. A4MT Benchmark

The last rule handles the creation of the transfer objects, i.e. each query in the business delegate
returns a different transfer object type which needs to be defined, as follows

1 --Rule CreateTransfObj
2 do forall l in Label
3

4 extend TransfObject with t
5 name(t) := name(l)+"TO"
6 do forall d in DataSource : label(d)=l
7 do forall a in DataAttribute : belong(a)=source(d)
8 extend Attribute \awith a1
9 name(a1) := name(a)

10 type(a1) := type(a)
11 endextend
12 enddo
13 enddo
14 endextend
15 enddo

5.2 A4MT FOR M IDDLEWARE BASED SYSTEM DEVELOPMENT

Due to the widespread diffusion of network-based applications, middleware technologies [44]
increased in significance. They cover a wide range of software systems, including distributed
objects and components, message-oriented communication,and mobile application support. Thus,
methodologies and tools are in need to analyze and verify middleware-based applications since the
early stages of the software life-cycle.

Recently model checking has been proposed to verify an entire system [53, 67, 72], i.e. both the
middleware and the application, in a monolithic way. The approach turned out to have two major
drawbacks: (i) it may result in the well known “state-explosion” problem and, (ii) the middleware
needs to be verified every time. These considerations naturally have led us to investigate the
compositional verificationapproach [60, 80, 32] in order to validate the middleware once and for
all and reusing the results of the validation as base for verifying the applications built on top of such
middleware. The key idea of compositional verification is todecompose the system specification
into properties that describe the behavior of its subsystems. In general, checking local properties
over subsystems does not imply the correctness of the entiresystem. The problem is due to the
existence of mutual dependencies among components.

In [25] an architectural decomposabilitytheorem is presented that allows the decomposition of
software applications built on top of a middleware by exploiting the structure imposed on the sys-
tem by the Software Architecture (SA) [99]. This allows the verification of middleware-based
applications since the early phases of the software life-cycle. In fact, once the application spec-
ification (behavioral and structural) has been defined, the designer might want to validate it with
respect to some desired behaviors. Then, the communicationfacilities are provided to the appli-
cation by means of a middleware infrastructure. In essence,the high level SA is refined in order
to realize the desired communication policy by means of additional components. These are the
proxycomponents2 towards the middleware that allow the application to transparently access the
services offered by the middleware. The decision of using services offered by a middleware may
invalidate all behaviors stated at the previous phases. In fact, middlewares usually have a well

2While [25] refers to these components asinterfaces, here we make use of the termproxiesin order to distinguish
them from the well defined CORBA Interfaces.

5.2 A4MT for Middleware Based System Development 63

defined business-logic that could not be suitable for the application purposes. Consequently, the
system has to be re-verified by considering also a full-featured model of the middleware. In such
a context, thearchitectural decomposabilitytheorem helps the designer to choose the right mid-
dleware by (i) freeing him from the middleware model implementation and, (ii) hiding low-level
details. Actually, the designer must have a deep knowledge about the middleware and its internal
mechanisms needed to identify and properly model theProxyentities.

In this chapter, techniques and tools to engineer the architecture decomposability theorem based
on A4MT are presented. In particular, we propose an approachthat automatically generates the
proxy models that correctly use the middleware. In particular, the proposed approach starts from
the system SA and the components behaviours. Then by applying several transformation rules,
formally described by means of A4MT, the proxy models are obtained. By means of the proposed
transformations, the correctness of such models, w.r.t. the use of the middleware, is guaranteed
without the need of validation of the hypothesis required bythe theorem.

The remaining of the section is organized as follows. Section 5.2.1 briefly introduces the architec-
tural decomposability theorem. Section 5.2.2 presents theoverall approach and a running example,
consisting of an ATM distributed system implemented on top of the CORBA middleware [91], is
considered throughout the entire discussion.

5.2.1 COMPOSITIONAL VERIFICATION OF M IDDLEWARE-BASED SA

Given an architectural description of the system and a set ofproperties which presents the desired
behaviors, specified by means of message sequence charts [65] (MSC), the architectural decom-
posability theorem states that the verification of the entire system is guaranteed provided that the
components satisfy the hypothesis3. In this section, we illustrate the compositional verification
by means of an example which is going to be used throughout thediscussion. In particular, let
us consider the high-level SA description (depicted in Fig.5.7.a) of an ATM system that allows
users to: (i) buy a refill card for its mobile phone and, (ii) check its bank account. The system has
been designed as the composition of a set of distributed components whose behavior is described
as state machines (an example is shown in Fig. 5.8): theUser, thePhone Company, theBank
Account and theTransaction Manager that manages all the interactions between the user and
the other entities. In Fig. 5.7.b a property of the ATM systembehavior, represented as an MSC
(in the remainder referred to asZ), is satisfied by the high level SA. The property states that every
time a refill card is bought, the corresponding credit is withdrawn from the user’s bank account.

As already mentioned, the development of distributed applications often relies on a middleware in-
frastructure which provides the required communication services. In architectural terms this means
that the high-level SA will be refined in a more detailed SA that presents additional components,
i.e. the middleware and the proxies. In Fig. 5.9.a, the CORBAmiddleware communicates through
the proxies with the application componentsUser, Transaction Manager, Phone company

andBank Account. In this context, the designer’s challenge is to understandif Z is still valid
on the refined architecture. In fact, due to the introductionof CORBA that offers services to the
application, the propertyZ could be falsified by the new SA.

3The interested reader can find more details about the theoremon [25], although it is not required to follow the
approach presented here

64 Chapter 5. A4MT Benchmark

PC

User

BA
 TM

result_check(r)

phone_ok

phone_ko

login_ko

login_ok

CA_check(ID)

result_CA_check(r)

phone_req(cred,num)

phone_req_ok

phone_req_ko

login(ID,passwd)

check(ID)

phone(cred,num)

update(ID,cred)

update_ok

update_ko

phone_req(credit,num)

phone_req_ok

update(ID,credit)

update_ok

phone

update

Transaction

Manager

Phone

Company

Bank

Account

(a) (b)

Figure 5.7: a) ATM application; b)Z property

!login(ID,passwd)

?login_ko

?login_ok

!check(ID)

?result_check(r)

!phone(cred,num)

?phone_ok
 ?phone_ko

a1
 a2

a3

a4

a5

?login(ID,passwd)

!login_ko

!login_ok

?check(ID)

!result_check(r)

?phone(credit,num)

!phone_ok

!phone_ko

!update(ID,cred)

?update_ok

!CA_check(ID)

?result_CA_check(r)

?update_ko

!phone_ko

!phone_req(cred,num)

a1

a2

a3

a4

(a) User (b) Transaction Manager

Figure 5.8: Component Behavior Descriptions

In Fig. 5.9.b and Fig. 5.10 thearchitectural decomposabilitytheorem has been applied to the ATM
system andZ is split in a set of local properties that the sub-parts of thesystem must satisfy. In this
new context a relabelling function is applied to the components in order to let them to communicate
through the middleware (for example the components in Fig. 5.8 have been relabelled as shown in
Fig. 5.11).

The properties that have to be proved are graphically denoted in the upper left corner of each
component in Fig. 5.9. For verification purposes, CORBA is substituted with a set of propertiesP
that characterizes its behavior. In the following, we definethe set of propertiesV , defined in LTL,
that assess the correct usage of CORBA.

V properties

1. �(¬get IOR(ID) ∪ reg IOR(ID))
In order to retrieve the object reference (called IOR - Interoperable Object Reference), the
object has to be already registered.

5.2 A4MT for Middleware Based System Development 65

Phone

Company

PC

Proxy

User

User

Proxy

BA

Proxy

TM

Proxy

Corba

Transaction

Manager

Bank

Account

ATM Application

Phone

Company

PC

Proxy

User

User

Proxy

BA

Proxy

TM

proxy

Transaction

Manager

Bank

Account

P

Corba

Pd

Q
1

Q
2

Q
3

Q
4

V

V

V

V

H
1

H
4

H
3

H

2

(a) (b)

Figure 5.9: Architectural Refinement

2. �(¬ < METHOD > ∪ get IOR(ID))
In order to use the object methods4 the object reference must be obtained. It is obtained by
asking for it (get IOR(ID)).

The approach described in [25] assumes that the proxies models are explicitly given and then
verified with respect to the setV . In the following, we show how these two steps can be collapsed
by only assuming the component models and the constraintsV through A4MT transformations
which allow, byconstruction, the generation of correct proxies.

5.2.2 PROXY GENERATION

The generation of proxies is based on the transformation process depicted in Fig. 5.12. It starts
with an encoding step which takes the behaviour model of a component and returns an algebra
encoding it. The A4MT rules are applied to the source algebrato generate an algebraic represen-
tation of the state machine which specifies the behaviour of the corresponding proxy. For instance,
if we consider theTM component in the ATM application described in Sec. 5.2.1, inorder to let
it communicate with the other components via CORBA it requires a proxy component. The
state machines of the transaction manager and of the associated proxy are illustrated in Fig. 5.13,
respectively. For instance, when theTM component is in the statea1, it can receive the message
TM check sent by theUser component (see Fig. 5.7) in order to reach the statea2. As said above,
the components do not interact directly but they communicate through CORBA. This means that
in the example, aTM Proxy component should be able to receive the messagecheck from the
middleware (originally sent by theUser) and forward the correspondingTM check message to
the TM component. These message sequences are depicted in the dashed parts of the models in
Fig. 5.13. These models conform to the source and target metamodels in Fig. 5.14 and Fig. 5.15
respectively. They support the specification of state machines consisting of states and messages
that permit to move from one state to another. The messages can have parameters and are sent
and received by components. The concepts that distinguish the two metamodels are the type of
messages that can be specified. In fact, the metamodel in Fig.5.15 takes into account the message
types that are necessary in the interactions through the middleware. In particular, a component
need to register itself to send and receive messages. TheRegistration class in the metamodel

4In the formula,<METHOD> is just a placeholder that must be replaced by an actual method signature

66 Chapter 5. A4MT Benchmark

Phone

Company

PC

Proxy

User

User

Proxy

BA

Proxy

TM

Proxy

Transaction

Manager

Bank

Account

Middleware

User_login(ID,passwd)

User_check(ID)

User_phone(cred,num)

User_result_check(r)

User_phone_ok

User_phone_ko

User_login_ko

User_login_ok

login(ID,passwd)

check(ID)

phone(cred,num)

result_check(r)

phone_ok

phone_ko

login_ko

login_ok

CA_check(ID)

result_CA_check(r)

BA_CA_check(ID)

BA_result_CA_check(r)

phone_req(cred,num)

phone_req_ok

phone_req_ko

PC_phone_req(cred,num)

PC_phone_req_ok

PC_phone_req_ko

login(ID,passwd)

check(ID)

phone(cred,num)

result_check(r)

phone_ok

phone_ko

login_ko

login_ok

CA_check(ID)

phone_req(cred,num)

phone_req_ko

phone_req_ok

result_CA_check(r)

TM_login(ID,passwd)

TM_check(ID)

TM_phone(cred,num)

TM_phone_req_ko

TM_phone_req_ok

TM_CA_check(r)

TM_result_check(r)

TM_phone_ok

TM_phone_ko

TM_login_ko

TM_login_ok

TM_CA_check(ID)

TM_phone_req(cred,num)

TM_result_CA_check(r)

TM_update(ID,cred)

TM_update_ok

update_ok

TM_update_ko

update_ko

update(ID,cred)

update(ID,cred)

BA_update(ID,cred)

BA_update_ok

BA_update_ko

update_ok

update_ko

Figure 5.10: Detailing SA

is devoted to specify messages like the messagereg IOR in Fig. 5.13.b that theTM proxy com-
ponent send to the middleware to register itself. As said above, to send messages to a given
application component the corresponding object referenceis required. The messageget IOR per-
mits to perform this task and it is captured by the classObjectRefRetrieval of the metamodel.
The results of these kind of requests are modeled by means ofResult messages, like the message
result(ba) in Fig.5.13.b whereba represents the identifier of theBank Account component
previously requested by theTM proxy through the messageget IOR(‘‘ATM.BA’’). The class
Condition permits to specify different behaviours with respect to these results. To summarize,
the metamodel in Fig. 5.14 contains concepts for the beahaviour specification (justifying the prefix
“B ” of all the universe names in the encoding) of the application components. The metamodel in
Fig. 5.15 extends these concepts to capture specific CORBA interactions (this justifies the prefix
“CB ” in the metamodel encoding).

Taking into account the source and the target metamodels described above, the proxy generation
has to address the following requirements:

R1. the generated state machine has to contain the message sequences needed for the registration
CORBA dependent of the proxy component whose behaviour model is being generated;

R2. the generated state machine has to contain the message sequences for the resolutions CORBA
dependent to retrieve the identifiers of all the applicationcomponents involved in the com-
munications with the proxy;

R3. each sent message in the source model (e.g. the messageTM CA check between the state
a2 anda3 in Fig. 5.13.a) induces the generation of a sequence consisting of a received and
a sent message (e.g. the messagesTM CA check andCA check between the statesb3, b4
andb5 in Fig. 5.13.b);

5.2 A4MT for Middleware Based System Development 67

!User_login(ID,passwd)

?User_login_ko

?User_login_ok

!User_check(ID)

?User_result_check(r

)

!User_phone(cred,num)

?User_phone_ok

?User_phone_ko

a1
 a2

a3

a4

a5

?TM_login(ID,passwd)

!TM_login_ko

!TM_login_ok

?TM_check(ID)

!TM_result_check(r)

?TM_phone(credit,num)

!TM_phone_ok

!TM_phone_ko

!TM_update(ID,cred)

?TM_update_ok

!TM_CA_check(ID)

?TM_result_CA_check(r)

?TM_update_ko

!TM_phone_ko

!TM_phone_req(cred,num)

(a) Relabeled User (b) Relabeled Transaction Manager

Figure 5.11: Components Relabelling

Phone

Company

User

Transaction

Manager

Bank

Account

Source model:

ATM Application

Algebra encoding the

component state machines

ASMs

Algebra encoding the

proxy state machines

Target model:

Proxies

?TM_login

 _ko

?CA_info

 nfo

!Client_login(ID,passwd)

?Client_login_ko

?Client_login_ok

!Client_check(ID)

?Client_info

a1
 a2

a3

a4

Figure 5.12: The transformation process

R4. each received message in the source model (e.g. the messageTM check between the state
a1 anda2 in Fig. 5.13.a) induces the generation of a sequence consisting of a received and
a sent message (e.g. the messagescheck andTM check between the statesb1, b2 andb3
in Fig. 5.13.b);

R5. the generated models have to preserve the message sequences of the source model, assuming
that the communication via CORBA is synchronous.

In order to accomplishR5, the auxiliary functionborder will be used in the transformation rule
specifications. It keeps track of the states whose outgoing messages still have to be transformed.
At each application of the proper transformation rules, a state in theborder is taken into account
and all its outgoing messages are transformed. Additionally, a state is added in theborder if it is a
non-visited target state of the message under transformation. Moreover, to satisfy the requirements
R1andR2(preserving theV properties described in Sec. 5.2.1), the following ASM is defined.

1 asm MAIN is
2 ...
3 if (initial=undef) then
4 Registration; Resolution
5 border(sourceInitState):=true
6 initial:=true
7 endif
8

68 Chapter 5. A4MT Benchmark

?TM_login(ID,passwd)

!TM_login_ko

!TM_login_ok

?TM_check(ID)

!TM_result_check(r)

?TM_phone(credit,num)

!TM_phone_ok

!TM_phone_ko

!TM_update(ID,cred)

?TM_update_ok

!TM_CA_check(ID)

?TM_result_CA_check(r)

?TM_update_ko

!TM_phone_ko

!TM_phone_req(cred,num)

a1

a2

a3

a4

!get_IOR(“ATM.BA”)

[ba==null]

?check(ID)

?TM_update(ID,cred)

?TM_phone_ko

?result(ba)

[ba!=null]

!get_IOR(“ATM.PC”)

[pc==null]

?result(pc)

[pc!=null]

!TM_check(ID)
 ?TM_result_check(r)

!result_check(r)

?TM_CA_check(ID)

!CA_check(ID)

?result_CA_check(r)

!TM_resultCA_check(r)

?phone(cred,num)

!TM_phone(cred,num)

!phone_ko

!update(ID,cred)

?update_ko

?TM_phone_ko

!phone_ko

!TM_update_ko

?update_ok

?TM_phone_ok

!phone_ok

?login(ID,passwd)

!TM_login(ID,passwd)

?TM_login_ko

?TM_login_ok

!login_ko

!login_ok

!reg_IOR(“ATM.TM”,obj)

!TM_update_ok

?TM_phone_req(cred,num)

!phone_req(cred,num)

b1

b2

b3

b4

b5

b6

b7

b8

(a) TM component (b) TM proxy

Figure 5.13: TM State Machine models

9 choose x in B_State : border(x)=true
10 --Message2Messages(x)
11 endchoose
12

13 endasm

It is a main machine which triggers other sub-machines and transformation rules and has the
control over the states which has to bevisitedaccording to the information held by theborder
function. Moreover, the messages related to the registration of the proxy and to the retrieval of the
identifier objects of all the application components are generated before to transform the messages
of the source model. Then theborder function is updated on the termsourceInitStatewhich
refers to the start state of the source state machine. Once these steps are performed, all the source
messages are transformed by means of theMessage2Messagestransformation rule.

The generation of the registration messages is performed bymeans of the followingRegistration
sub-machine. For readability reason, in the specification some constants are used:component
refers to the algebraic representative of the component whose proxy is being generated and referred
by means of the constantproxy. Finally, middleware refers to the middleware component.

1 asm Registration
2 ...
3 is
4 extend CB_State with a,b and CB_Registration with m
5 source(m):=a
6 target(m):=b
7 anchorState:=b
8

9 extend CB_Parameter with p1,p2
10 name(p1):=name(component)
11 name(p2):=ior(component)

5.2 A4MT for Middleware Based System Development 69

Σ = (S, OP)

S := {B Component, B Message,B State,

B Parameter}

OP :=

name : B Component → String

name : B Message → String

name : B State → String

name : B Parameter → String

sender : B Message → B Component

receiver : B Message → B Component

sent : (B Message, B Component) → Bool

received : (B Message, B Component) → Bool

source : B Message → B State

target : B Message → B State

parameters : (B Message,B Parameter) → Bool

...

Figure 5.14: Source Metamodel

12 params(m,p1):=true
13 params(m,):=true
14 endextend
15

16 sender(m):=proxy
17 receiver(m):=middleware
18 ...
19 endextend
20 ...
21 endif

The functionanchorState is used in theResolutionsub-machine in order to have the last
state of the registration message as the first state of the resolution message sequence. In this
sub-machine,anchorState is updated at each iteration. In particular, the rule generates a
proper target sequence message for each component that has to be resolved. For example, the
sent messageCA check that theTM component send to theBank Account (see Fig. 5.13.a
and Fig. 5.7) gives place to the resolution of the bank account expressed through the message
get IOR(‘‘ATM.BA’’) in the target model depicted in Fig. 5.13.b. This message induce the
reception of the result that can benull or contain the requestedior. In particular, for each
component to which a message is sent (see line5), a corresponding sequence of messages for its
resolution is generated (see lines7-32): anObjectRefRetrievalmessage is generated and the
target state is the source one of a generatedResult message. Finally, aCondition message is
created in order to enable the check of the returned object identifier.

1 asm Resolution
2 ...
3 is
4

5 choose x in C_Message : (sender(x)=component) and (resolved(receiver(x))=undef)
6

7 extend CB_ObjectRefRetrieval with m1, CB_Result with m2 and
8 CB_Condition with m3 and CB_State with b,c,d
9

10 source(m1):=anchorState
11 target(m1):=b
12 extend CB_Parameter with p1
13 name(p1):=name(receiver(x)
14 params(m1,p1):=true

70 Chapter 5. A4MT Benchmark

Σ = (S, OP)

S := {CB Component, CB Message,CB Registration

CB Result, CB State, CB Condition,

CB Parameter}

OP :=

name : CB Component → String

ior : CB Component → Integer

name : CB Message → String

name : CB State → String

name : CB Parameter → String

sender : CB Message → CB Component

receiver : CB Message → CB Component

sent : (CB Message,CB Component) → Bool

received : (CB Message,CB Component) → Bool

source : CB Message → CB State

target : CB Message → CB State

parameters : (CB Message, CB Parameter) → Bool

...

Figure 5.15: Target Metamodel

15 endextend
16 sender(m1):=proxy
17 receiver(m1):=middleware
18

19 source(m2):=b
20 target(m2):=c
21 extend CB_Parameter with p2
22 name(p2):=ior(receiver(x))
23 params(m2,p2):=true
24 endextend
25 sender(m2):=middleware
26 receiver(m2):=proxy
27

28 target(m3):=d
29 targetIfNull(m3):=anchorState
30 anchorState:=d
31

32 endextend
33

34 endchoose
35

36 endasm

Once the messages devoted to the registration and resolution phases have been generated, the
messages in the source model can be transformed. This task isaccomplished by means of the
Message2Messagestransformation rule. Given a state of the source model it transforms all outgo-
ing messages and manages the functionborder explained above. The message transformation is
distinguished intoSentMessage2MessagesandReceivedMessage2Messagesin order to satisfy the
requirementsR3andR4respectively.

1 --Message2Messages(sourceCurrState: State)
2

3 do forall x in C_Message : (source(x)=sourceCurrState)
4

5 if (sender(x)=component) then
6 --SentMessage2Messages(x)
7 border(sourceCurrState):=undef
8 else if (receiver(x)=component)
9 --ReceivedMessage2Messages(x)

5.2 A4MT for Middleware Based System Development 71

10 border(sourceCurrState):=undef
11 endif
12

13 if (transformed(target(x))=undef) then
14 border(target(x)):=true
15 endif
16 ...
17 enddo
18

19 endasm

Since the logic besides the two transformation rules is the same, in the following onlySentMes-
sage2Messageswill be described. However, the reader can refer to [24] and can download the
complete implementation of the transformation rules at [35].

Given a sent messagem in the source model two messages and one state is generated inthe target
one (see line2). The functionssource, target for the new messages are properly updated. The
functiontransformed is used as it maintains the reference to the state in the target model that
has been generated from a state in the source one. The functionssender, receiver as well as
parameters of each of the generated message are updated.

1 --SentMessage2Messages(m : Message)
2 extend CB_State with b and CB_Message with m1, with m2
3

4 if (transformed(source(m)) = undef then
5 source(m1):=anchorState
6 else
7 source(m1):=transformed(source(m))
8 endif
9 target(m1):=b

10 do forall p in B_Parameter : parameters(m,p)
11 extend CB_Parameter with t
12 name(t):=name(p)
13 parameters(m1,t):=true
14 endextend
15 enddo
16 sender(m1):=component
17 receiver(m1):=proxy
18

19

20 source(m2):=b
21 if (transformed(target(m))=undef) then
22 extend CB_State with c
23 transformed(target(m)):=c
24 target(m2):=c
25 endextend
26 else
27 target(m2):=transformed(target(m))
28 endif
29 ...
30 do forall p in B_Parameter : parameters(m2,p)
31 extend CB_Parameter with t
32 name(t):=name(p)
33 parameters(m2,t):=true
34 endextend
35 enddo
36 sender(m2):=proxy
37 receiver(m2):=middleware
38 endextend

72 Chapter 5. A4MT Benchmark

5.2.3 PROPERTYPRESERVING TRANSFORMATIONS

As already discussed, by automating the application of the architectural decomposability theorem,
the correctness of the target models is granted without the need to validate each of them w.r.t. the
theorem hypothesis. In particular, we need to prove that thegenerated state machines are satisfying
theV properties listed in Sec. 5.2.1 by construction. The following sketches such a proof.

A generated state machine is obtained by means of precise transformation steps which consist
of an initialization step and subsequent message transformations. The first step generates a frag-
ment of the target model which includes the registration of the component whose proxy is being
generated and the identification of all the components with whom it communicates via CORBA.
The initialization step suffices to guarantee that the propertiesV 1 andV 2 are preserved. In fact,
the model fragments are generated by means of theRegistrationandResolutionrules described
in the previous section which are fired in the right order by means of theMAIN rule. The rule
Registrationassures the preservation of the registration propertyV 1 by generating a component
registration message (and the corresponding source and target states) as shown in Fig. 5.13.b.
Analogously, the propertyV 2 is guaranteed by the ruleResolutionsince such a rule generates the
resolve messages to the middleware to retrieve the component identifiers as stated byV 2.

5.3 GIVING DYNAMIC SEMANTICS TO DSLS THROUGHASMS

This section describes another application of ASMs in the context of MDE. In particular, over the
last years, MDE platforms evolved from tools based on fixed meta-models (e.g. a UML CASE
tool with ad-hoc Java code generation facilities) to complex systems with variable metamodels.
In MDE, metamodels are used to specify the conceptual structure of modeling languages. The
flexibility in coping with an open set of metamodels enables the handling of a variety of Domain
Specific Languages (DSLs), i.e. languages which are close toa given problem domain and distant
from the underlying technological assets. The current MDE platforms are increasingly adopted to
solve such problems as code generation [92], semantic tool interoperability [13], checking mod-
els [15], and data integration [82]. However, these platforms are often limited to specifying the
syntactical aspects of modeling languages such as abstractand concrete syntax. Definition of
precise models and performing various tasks on these modelssuch as reasoning, simulation, val-
idation, verification, and others require that precise semantics of models and modeling languages
are available. To achieve this, existing MDE platforms haveto be extended with capabilities for
defining language semantics.

In this section we use the ATLAS Model Management Architecture (AMMA) as a framework for
defining DSLs following MDE principles. AMMA treats a DSL as acollection of coordinated
models, which are defined using a set of core DSLs. The currentset of core DSLs allows to cope
with most syntactic and transformation definition issues inlanguage definition. Formal semantics
specifications are necessary to have a precise definition of the meaning of the models. In this
respect, AMMA should be extended to broaden the approach to semantics definition. This section
presents an extension of AMMA to specify the dynamic semantics of a wide range of DSLs by
means of ASMs, which are introduced in the framework as a further core DSL. Thus, DSLs can
be defined not only by their abstract and concrete syntax but also by their semantics in a uniform
and systematic way. Having the support for a precise semantics specification of DSLs permits

5.3 Giving Dynamic Semantics to DSLs through ASMs 73

to improve the design and the validation phases of the language being developed. Executable
ASMs descriptions will be a reference for what can and what can not happen in the execution of
models defined by means of the considered DSLs. Furthermore,the language developers have the
possibility to deeply understand the defined DSL exploitingaccurate and executable high-level
models of the language itself.

The proposed approach is validated by specifying the dynamic semantics of the ATL transfor-
mation language described in Chap. 2. ASMs specifications capturing the intentions of the ATL
language designer are formally defined. They permit the validation of model transformations that
can be applied by means of the available ATL implementation.All the discussion is organized as
follows. Section 5.3.1 provides the basic definitions and describes the interpretation of DSLs in
a MDE setting. Section 5.3.3 describes the current state of the AMMA framework. Section 5.3.4
presents the extension of AMMA with ASMs. In Section 5.3.5 a case study is proposed where the
dynamic semantics of ATL is proposed.

5.3.1 DOMAIN -SPECIFIC LANGUAGES AND MODELS

DSLs are languages able to raise the level of abstraction beyond coding by specifying programs
using domain concepts [118]. In particular, by means of DSLs, the development of systems can
be realized by considering only abstractions and knowledgefrom the domain of interest. This
contrasts with General Purpose Languages (GPLs), like C++ or Java, that are supposed to be
applied for much more generic tasks in multiple applicationdomains. By using a DSL the designer
does not have to be aware of implementation intricacies, which are distant from the concepts of
the system being implemented and the domain the system acts in. Furthermore, operations like
debugging or verification can be entirely performed within the domain boundaries.

Over the years, many DSLs have been introduced in different application domains (telecommu-
nications, multimedia, databases, software architectures, Web management, etc.), each proposing
constructs and concepts familiar to experts and professionals working in those domains. However,
the development of a DSL is often a complex and onerous task. Adeep understanding of the do-
main is required to perform the necessary analysis and to elicitate the requirements the language
has to meet.

As any other computer language (including GPLs), a DSL consists of concrete and abstract syntax
definition and possibly a semantics definition, which may be formulated at various degrees of
preciseness and formality. In the context of MDE we perceivea DSL as a collection of coordinated
models. We are in this way, leveraging the unification power of models [12]. Each of the models
composing a DSL specifies one of the following language aspects:

• Domain definition metamodel.As we discussed before, the basic distinction between DSLs
and GPLs is based on the relation to a given domain. DSLs have aclearly identified, con-
crete problem domain. Programs (sentences) in a DSL represent concrete states of affairs
in this domain. A conceptualization of the domain is an abstract entity that captures the
commonalities among the possible state of affairs. It introduces the basic abstractions of
the domain and their mutual relations. Once such an abstractentity is explicitly represented
as a model it becomes a metamodel for the models expressed in the DSL. We refer to this

74 Chapter 5. A4MT Benchmark

metamodel as a Domain Definition MetaModel (DDMM). It plays acentral role in the def-
inition of the DSL. For example, a DSL for directed graph manipulation will contain the
concepts of nodes and edges, and will state that an edge may connect a source node to a
target node. Similarly, a DSL for Petri nets will contain theconcepts of places, transitions
and arcs. Furthermore, the metamodel should state that arcsare only between places and
transitions;

• Concrete syntaxes.A DSL may have different concrete syntaxes, which are definedby
transformation models that maps the DDMM onto display surface metamodels. Examples
of display surface metamodels are SVG or DOT [51], but also XML. A possible concrete
syntax of a Petri net DSL may be defined by mapping from places to circles, from transitions
to rectangles, and from arcs to arrows. The display surface metamodel in this case has the
concepts of Circle, Rectangle, and Arrow;

• Dynamic semantics.Generally, DSLs have different types of semantics. For example,
OWL [127] is a DSL for defining ontologies. The semantics of OWL is defined in model
theoretic terms. The semantics is static, that is, the notion of changes in ontologies happen-
ing over time is not captured. Many DSLs have a dynamic semantics based on the notion
of transitions from state to state that happen in time. Dynamic semantics may be given in
multiple ways, for example, by mapping to another DSL havingitself a dynamic semantics
or even by means of a GPL. Here, we focus on DSLs with dynamic semantics;

• Additional operations over DSLs.In addition to canonical execution governed by the dy-
namic semantics, there are plenty of other possible operations manipulating programs writ-
ten in a given DSL. Each may be defined by a mapping representedby a model transfor-
mation. For example, if one wishes to query DSL programs, a standard mapping of the
DDMM onto Prolog may be useful. The study of these operationsover DSLs presents many
challenges and is currently an open research subject.

The semantics of a DSL captures the effect of “sentences” of the language. As previously said,
here we are interested indynamic semanticswhich deals with the behavior expressed by a language
term (what somethingdoes), contrarily to thestatic semanticswhich express the structural mean-
ing of a language term (what somethingis). Unfortunately, specifying the semantics of languages
is a difficult task and there is not a generally accepted formalism for it. Over the last decades sev-
eral semantics formalisms have been proposed but none emerged as universal and commonplace,
as for instance happened to the EBNF for context-free syntaxes. Depending on the application pur-
pose (formalization, simulation, verification, consistency checking, etc.) a number of formalisms
are available (Object-Z [112], ASMs [20], Structured Operational Semantics (SOS) [100], etc.)

Since we are interested in language design our attention is devoted towards those mathematical for-
malisms which present enough pragmatic qualities allowingthe designer to convey her/his design
decisions into documents being still able to backtrack, modularize, and enhance specifications. In
this respect, ASMs is the formalism which has been chosen forbroadening AMMA to the specifi-
cation of DSL semantics. The choice has several justifications. ASMs have been extensively used
in a number of applications and also for giving the semanticsto full scale languages, such as C,
C++, Java, Oberon, Prolog, SDL, VHDL, to mention a few [1]. ASMs captures in mathematically
rigorous form the fundamental operational intuitions of computing. The provided notation has a
simple syntax that permits to write specifications that can be seen as “pseudocode over abstract
data”. ASMs allows one to specify language interpreters that serve a number of purposes such

5.3 Giving Dynamic Semantics to DSLs through ASMs 75

asdesignandvalidation of languages [113]. Thedesigngoal is to provide an implementation
independent definition which directly reflects the intuitions and design decisions underlying the
language and which supports the programmer’s understanding of programs written with the lan-
guage being developed. Being more precise, ASMs will be usedto formally specify the behaviour
of the language sentences. ASMs descriptions will be definedby the language designers in order
to formally produce a reference for what can and what can not happen in the execution of models
defined by means of the language being developed. Thevalidation concern is to provide the lan-
guage implementors the possibility to check their basic design decisions against an accurate and
executable high-level model of the language itself.

5.3.2 DSL DYNAMIC SEMANTICS SPECIFICATION WITH ASMS

In general, giving dynamic semantics to a DSL with ASMs consists of the specification of an
abstract machine able to interpret programs defined by meansof the given DSL. The ASMs spec-
ification of such a machine is composed of the following parts:

• Abstract Data Model (ADM).It consists of universes and functions corresponding to the
constructs of the language and to all the additional elements, language dependent, that are
necessary for modeling dynamics (like environments, states, configurations, etc.);

• Initialization Rules.They encode the source program that has been defined with the given
DSL. The encoding is based on the abstract data model. It gives the initial state of the
abstract machine;

• Operational Rules.The meaning of the program is defined by means of operational rules
expressed in form of transition rules. They are conditionally fired starting from the given
instance of the ADM, modifying the dynamic elements like environment, state etc. The
evolution of such elements gives the dynamic semantics of the program and simulates its
behaviour.

The remaining of the section shows how ASMs can be used in a MDEsetting for specifying the
dynamic semantics of DSLs whose syntactical parts have beengiven by means of the AMMA
facilities briefly presented in the next section.

5.3.3 THE AMMA F RAMEWORK

AMMA (A TLAS Model Management Architecture) is an MDE framework for building DSLs. It
provides tools to specify different aspects of a DSL (see section 5.3.1). These tools are based on
specific languages. The domain of each of this tool corresponds to one of the aspects of a DSL.
AMMA is currently organized around a set of three core DSLs:

• KM3. The Domain Definition MetaModel (DDMM) of a DSL is captured asa KM3 [69]
metamodel. KM3 is based on the same core concepts used in OMG/MOF [96] and EM-
F/Ecore [41]: classes, attributes and references. Compared to MOF and Ecore, KM3 is

76 Chapter 5. A4MT Benchmark

DDMM

CS

KM32Ecore

KM3

DDMM

CS

ATL2VM

ATL

DDMM

CS

TCS2EBNF

TCS

DDMM

CS

Mapping

DSLx

Legend

<Name>

<Name>

Model

DSL

definedIn

Model <Name>:

 - DDMM: Domain

 Definition MetaModel

 - CS: Concrete Syntax

 -
<Name>
: transformation

AMMA

Figure 5.16: Present State of AMMA

focused on metamodeling concepts only. For instance, the Java code generation facilities
offered by Ecore are not supported by KM3. The default concrete syntax of KM3 is a simple
text-based notation.

• ATL.Transformations between DSLs are represented as ATL [70] (ATLAS Transformation
Language) model transformations. Such transformations can be used to implement the se-
mantics of a source DSL in terms of the semantics of a target DSL. Other potential uses of
ATL are: checking models [15], computing metrics on models,etc.

• TCS.Textual concrete syntaxes of DSLs are specified in TCS (Textual Concrete Syntax).
This DSL captures typical syntactical concepts like keywords, symbols, and sequencing
(i.e. the order in which elements appear in the text). With this information, models can
be serialized as text and text can be parsed into models. Textto model translation is, for
instance, achieved by combining the KM3 metamodel and TCS model of a DSL and gener-
ating a context-free grammar.

Figure 5.16 gives an overview of AMMA as a set of core DSLs. In particular, DSLx stands
for any DSL. The DDMM of each DSL is specified in KM3. TCS is usedto specify concrete
syntaxes. ATL transformationsKM32Ecore, ATL2VM, andTCS2EBNFare used to respecively
map the semantics of KM3 to EMF/Ecore, of ATL to the ATL Virtual Machine, and of TCS to
EBNF (Extended Backus-Naur Form).

Using AMMA does not necessarily mean using only these three core DSLs. For instance, MOF or
Ecore metamodels can also be used and transformed from and toKM3. Moreover, UML class dia-
grams specifying metamodels can be used too (i.e. with the UML2MOF.atl transformation). Other
AMMA DSLs are also currently the subject of active research,for example AMW [82] (ATLAS

Model Weaver) and AM3 [17] (ATLAS MegaModel Management). An overview of AMMA in-
cluding AMW and AM3 can also be found in [16].

5.3.4 EXTENDING AMMA WITH ASMS

There is currently no tool in AMMA to formally capture thedynamic semanticsof DSLs. The
main principle on which AMMA is built is to consider everything as a model [12]. Following this

5.3 Giving Dynamic Semantics to DSLs through ASMs 77

DDMM

CS

KM32Ecore

KM3

DDMM

CS

ATL.xasm

ATL

DDMM

CS

TCS2EBNF

TCS

DDMM

CS

ASM

Legend

<Name>

<Name>

Model

DSL

definedIn

Model <Name>:

 - DDMM: Domain

 Definition MetaModel

 - CS: Concrete Syntax

 -
<Name>
: transformation

AMMA

Figure 5.17: Extending AMMA with ASMs

unification idea, the dynamic semantics of a DSL should also be specified as a model. What is
required is a DSL in which to specify this semantic model.

We decided to integrate ASMs in AMMA instead of designing a new DSL from scratch. For this
purpose, we need to specify a KM3 metamodel and a TCS model forASMs. Figure 5.17 shows
how the ASMs DSL is defined on top of AMMA: its DDMM is specified in KM3 whereas its
concrete syntax is specified in TCS. The KM3 metamodel for ASMs is available on the Eclipse
GMT website [10]. ASMs may now be considered as an AMMA DSL. Note that there is no
semantics specification for ASMs. The reason is that we get this semantics by extracting ASMs
models into programs that we can compile with an ASMs compiler.

The next step is to use our newly created ASMs DSL. Next section gives details on how the ATL
dynamic semantics can be specified with ASMs giving place to the definedInarrow going from
ATL.xasmto the ASMs DSL depicted in Fig. 5.17.

5.3.5 DYNAMIC SEMANTICS OF ATL

The operational context of ATL is shown in the left hand side of Fig. 5.18. An ATL transformation
is a model (MATL) conforming to the ATL metamodel (MMATL) and it is applied to a source
model (Ma) in order to generate a target one (Mb). The source and the target models conform to
the source (MMa) and target (MMb) metamodels respectively. Parts of the abstract state machines
(in the right side of Fig. 5.18) able to interpret ATL transformations are automatically derived from
the components in the left hand side of the figure.

TheAbstract Data Model (ADM) consists of declarations of universes and functions used to for-
mally encode the given ATL transformation and the source andtarget models. These declarations
can be automatically obtained via model transformations from metamodels described in KM3.
For example, we transform the KM3 fragment of thePetriNet metamodel (Fig. 5.19) to the corre-
sponding ASMs code in Fig. 5.20. TheKM32ASMATL transformation performs this canonical
translation. For each class in the metamodel, a corresponding universe is specified. If the class
is an extension of other classes in the metamodel, the sub-setting facility of ASMs is used. For
example, the classTransition (Fig. 5.19) is transformed to the universePetriNet Transition declared

78 Chapter 5. A4MT Benchmark

Figure 5.18: Structure of the dynamic semantics specification of ATL

as a subset of the universePetriNet Element. The references of the classes are encoded as boolean
functions. For example, the incoming arcs of a transition will be encoded with the functionin-
comingArc whose value will be true for all the transitions and arcs (in this case place to transition
arcs) that are connected and false otherwise.

The ADM also includes the declaration of universes and functions used for the specification of
the dynamic part that evolves during the execution of an ATL transformation. This declaration
cannot be automatically generated as it depends on the operational rules that specify the dynamic
semantics of ATL. In particular, as explained in the following, the provided ATL dynamic seman-
tics is based on the execution of declarative transformation rules. Executing a rule on a match
(i.e. elements of the source model) creates a trace link thatrelates three components: the rule, the
match and the newly created elements in the target model. TheuniverseTraceLink (see Fig. 5.21)
contains the trace links that are generated during the execution of the transformations. The source
and target elements of the trace link are maintained in the universesSourceElement andTargetEle-
ment respectively. For each of them the functionselement andpatternElement are provided. The
function element returns the element of the source model that has matched withthe given rule.
When applied to an element inTargetElement universe, it returns the new element that has been
created in the target model. ThepatternElement function, when applied to a source element, re-
turns the source pattern definition of the corresponding ATLrule. The source pattern is a member
of universeATL SimpleInPatternElement. This universe is derived from the ATL metamodel. In a
similar way, when the function is applied to a target element, it returns the target pattern member
of the universeATL SimpleOutPatternElement (line 12).

1 class Transition extends Element {
2 reference incomingArc[1-*] : PlaceToTransition oppositeOf to;
3 reference outgoingArc[1-*] : TransitionToPlace oppositeOf from
4 }
5 ...

Figure 5.19: Part of the PetriNet Metamodel expressed in KM3

5.3 Giving Dynamic Semantics to DSLs through ASMs 79

1 universe PetriNet_Transition < PetriNet_Element
2 function incomingArc(a:PetriNet_Transition, b:PetriNet_PlaceToTransition)->Bool
3 function outgoingArc(a:PetriNet_Transition, b:PetriNet_TransitionToPlace)->Bool
4 ...

Figure 5.20: Part of the PetriNet Metamodel encoding

1 universe TraceLink
2 function rule(t:TraceLink, r: ATL_MatchedRule)->Bool
3 function sourcePattern(t:TraceLink, x:SourceElement)->Bool
4 function targetPattern(t:TraceLink, x:TargetElement)->Bool
5

6 universe SourceElement
7 function element(t:SourceElement)->_
8 function patternElement(t:SourceElement)->ATL_SimpleInPatternElement
9

10 universe TargetElement
11 function element(t:TargetElement)->_
12 function patternElement(t:TargetElement)->ATL_SimpleOutPatternElement

Figure 5.21: ASM specification for the trace links management

The Initialization Rules of the machine depicted in Fig. 5.18 encode in a formal way thesource
model and the ATL transformation that has to be interpreted.The encoding is based on the ADM
previously described and it gives the initial state of the abstract machine. This encoding can be au-
tomatically obtained by transforming the source model and the ATL program (see theModel2ASM
transformation in Fig. 5.18).

The Operational Rules of the machine in Fig. 5.18 play a key role in the specificationof the
dynamic semantics of ATL. In particular, theSemantic rulespart describes the dynamics related
to the execution of ATL transformation rules. These rules interpret the given ATL transformation
applied to the provided source model (Ma) and generate a formal representation of the target model
(Mb).

The execution of ATL transformation rules can be described by means of an algorithm [70] con-
sisting of two steps. In the first step all the source patternsof the rules are matched and the target
elements and trace links are created. In the second step the feature initializations of the newly
created elements are performed on the base of the previouslycreated trace links and following the
bindings specified in the rule target patterns. In the following the ASMs specification encoding
the matching and the application of declarative transformation rules are explained with details.

MATCHING RULES The formal specification of the first step of the algorithm is based on the sub-
machineMatchRule shown in Fig. 5.22. This machine is invoked for each matched rule contained
in the given ATL module. For example, for the module in Fig. 2.5, the machine is invoked just
once for the interpretation of thePlace rule. Given a matched rule, the machine searches in the
source model the elements that match the type of the source pattern. In the lines5-8 the machine
selects the elements that defines the source pattern of the matched rule in the universes induced
by the ATL metamodel. Such elements are used in the lines10-11 for the determination of the
universe identifier (of the source metamodel) containing the elements that match the source pattern
of the considered rule. For example, for the source pattern of the rule in Fig. 2.5, the lines10-11

80 Chapter 5. A4MT Benchmark

1 asm MatchRule(e:ATL_MatchedRule)
2 ...
3 is
4

5 choose ip in ATL_InPattern, ipe in ATL_SimpleInPatternElement,
6 ipet in ATL_OclModelElement, op in ATL_OutPattern
7 : inPattern(e,ip) and elements(ip, ipe)
8 and type(ipe,ipet) and outPattern(e,op)
9 do forall c in

10 $sValue(getValue("name",(getValue("model",ipet))))+"_"
11 +sValue(getValue("name",ipet))$
12 extend TraceLink with tl and SourceElement with se
13 sourcePattern(tl,se) := true
14 patternElement(se) := ipe
15 element(se) := c
16 rule(tl,e) := true
17 do forall ope in ATL_SimpleOutPatternElement
18 if (elements(op, ope)) then
19 extend TargetElement with te
20 do forall opet in ATL_OclModelElement
21 if (type(ope,opet)) then
22 extend
23 $sValue(getValue("name",getValue("model",opet)))+"_"
24 +sValue(getValue("name",opet)))$ with t
25 targetPattern(tl, te) := true
26 element(te) := t
27 patternElement(te) := ope
28 endextend
29 endif
30 enddo
31 endextend
32 endif
33 enddo
34 endextend
35 enddo
36 ...
37 endchoose
38

39 endasm

Figure 5.22: MatchRule sub-machine specification

return the universe identifierPetriNet Place of the sourcePetriNet metamodel. To obtain this the
external functionsgetValue andsValue are used to handle primitive values.

For each element of the source model contained in the obtained universe, the universesTraceLink
andSourceElement have to be extended and the corresponding functions have to be updated (lines
12-16). Furthermore, the universeTargetElement has to be extended for each new element that will
be created according to the target pattern of the matched rule (lines18-32). The identifier of the
universes belonging to the target metamodel that have to be extended are determined by means of
the code in the lines23-24. For example, for the transformation of Fig. 2.5, the universes that will
be extended by theMatchedRule machine will bePNML Place, PNML Name andPNML Label
belonging to the encoding of thePNML metamodel.

APPLYING RULES After the creation of the trace links induced by the matched rules, the feature
initializations of the newly created elements have to be performed. For example, during the ex-
ecution of theMatchedRule machine on the rulePlace in Fig. 2.5, thePNML Place universe is

5.4 Conclusions 81

1 do forall tl in TraceLink
2 do forall te : (targetPattern(tl,te))
3 choose pe : patternElement(te)=pe
4 do forall b in ATL_Binding
5 if(bindings(pe,b)) then
6 let vExp = getValue("value", b) in
7 let v = oclEval(tl, vExp) in
8 setValue(sValue(getValue("propertyName",b)), element(te), resolve(v))
9 endlet

10 endlet
11 endif
12 enddo
13 endchoose
14 enddo
15 enddo

Figure 5.23: Apply rule specification

extended with new elements for which the functionsname, id andlocationhave to be initialized.
The ASMs rules in Fig. 5.23 set these functions.

For all the trace links, all the bindings of each target pattern have to be evaluated. The bindings
are contained in theATL Binding universe corresponding to theBinding concept of the ATL meta-
model. The propertiesvalue andpropertyName are also part of the binding specification in the
metamodel. For example in the bindinglocation <- e.location (line 13, Fig. 2.5),proper-
tyName corresponds to the attributelocationwhereasvalue is the OCL expressione.location.
The lines6-10 play a key role for the feature initializations of the new elements added during the
first step of the algorithm. The external functionoclEval is called for the evaluation of the OCL ex-
pression of the binding. The value obtained by this evaluation (see line7), will be then used for the
initialization of the target element feature named with thevalue ofpropertyName (see line8). The
availableoclEval implementation is able to evaluate basic OCL expressions. The improvement of
this function for supporting the evaluation of complex OCL expressions could be done by using
an available work that describes the dynamic semantics of OCL 2.0 by using ASMs [47]. Due to
space limitation, the ASMs code of theoclEval function is not provided here. After the expression
of a binding has been evaluated, the resulting value is first resolved before being assigned to the
corresponding target element. For this resolution (line8, Fig. 5.23) the external functionresolve
is used. The resolution depends on the type of the value. If the type is primitive then the value is
simply returned. If the type is a metamodel type there are twopossibilities: when the value is a
target element (like line11 in Fig. 2.5), it is simply returned; when the value is a sourceelement
(line 12, Fig. 2.5), it is first resolved into a target element using trace links. The resolution results
in an element from the target model which is then returned (line15).

All the ASMs specifications and the ATL transformations described here are available for down-
load from [10]. Furthermore, the given semantics specification has been validated by formally
interpreting the already availablePetriNet2PNLM[10] ATL transformation.

5.4 CONCLUSIONS

This chapter reported three different applications of A4MT. In the first one, the approach was
used to support a model-driven methodology for the development of data-intensive Web applica-
tions. Starting from conceptual models that do not refer to any technological asset, formal model

82 Chapter 5. A4MT Benchmark

transformations are used to obtain several PSMs which describe the different aspects of an MVC
conformant J2EE application. Compared with techniques which allow one-stepmodel-to-code
generation, flexible and practical model transformations enhance traceability and consistency be-
tween models and code, since they tend to diverge as soon as changes are manually operated on
the generated applications. Complex transformation ruleswere developed to generated relational
algebra expressions with respect to the transitive closureof given relations in the source model.

Another case study illustrated how to engineer the architectural decomposability theorem to the
analysis of middleware-based applications by automatically generating the proxies needed by the
components in order to properly interact with each other viathe CORBA middleware. A4MT
model transformations, are used to generate the proxy models required by the middleware-based
SA. Such transformations are expressed formally and unambiguously enabling the automatic ap-
plication of the architectural decomposability theorem. In this way, the correctness of the target
models is granted without the need to validate each of them.

In the last application A4MT was used to specify the dynamic semantics of Domain Specific Lan-
guages in the context of Model Driven Engineering. Since we were interested in language design,
our attention was devoted towards those mathematical formalisms which present enough prag-
matic qualities allowing the designer to convey her/his design decisions into documents being still
able to backtrack, modularize, and enhance specifications.The chapter proposed A4MT as a good
candidate to cope with these issues and a case study consisting of the dynamic semantics speci-
fication of ATL was presented. The proposed approach is strictly related to [29] in which ASMs
are used as semantic framework to define the semantics of modeling languages. The proposal is
based on basic behavioral abstractions, calledsemantic units, that are tailored for the considered
problem domain. Semantic units are specified with ASMs and then anchored by means of model
transformations to the abstract syntax of the modeling language being specified. The major differ-
ence with the work described in this thesis is that the ASMs formalism is integrated in the AMMA
platform. In that way the semantic specifications are modelsand may be manipulated by opera-
tions over models (e.g. model transformations). In the semantic anchoring approach the semantics
specification is given outside the model engineering platform, in this case the Generic Modeling
Environment (GME) [79].

CHAPTER 6

A4MT-BASED MODEL WEAVING

The separation of concerns in software system modeling avoids the constructions of large and
monolithic models which are difficult to handle, maintain and reuse. At the same time, having
different models (each one describing a certain concern or domain) requires their integration into
a final model representing the entire domain [101]. As said inChapter 2,model weavingtypically
exploited for database metadata integration and evolution, can be used for setting fine-grained re-
lationships between different models or metamodels and executing operations on them based on
link semantics [12]. This chapter describes how A4MT can be used for specifying the seman-
tics of weaving operators used for defining weaving models conforming to appropriate weaving
metamodels obtained by extending a generic one (inspired by[82]). Section 6.1 proposes weaving
models to specify formal relations between the different views produced during the model driven
development of Web applications. Section 6.2 discusses theuse of weaving operators to extend
DUAL LY, a UML profile conceived to specify software architecture models.

6.1 WEAVING CONCERNS OFWEB APPLICATIONS

Today’s Web applications require instruments and techniques able to face their complexity which
noticeably increased at the expense of productivity and quality factors. To cope with the techni-
cal difficulties of these systems many design methodologieshave been proposed like Hera [49],
OO-H [58], OOHDM [108], UWE [75], W2000 [54], WebML [27] and Webile [39]. All of them
adopt a number of notations, even if as expected many concepts are similar and could constitute
a common metamodel for the Web domain [76]. In particular, these methodologies propose sev-
eral views comprising at least a conceptual, a navigation and a presentation model although with
different terminologies. While the constructs specifyingsuch aspects can be precisely unified,
consistency among them is guaranteed by less formal relations. Usually, models are kept related
through name conventions exploiting shared namespaces that occur on each of them or by means
of tools that use internal mechanisms hidden to the developer. The consequent lack of abstraction
in the separation between the concerns and their connections could hamper some quality factors,
like reuse of models which result intertwined and not autonomously maintainable. Furthermore,
having models that explicitly express relations amongst the source view specifications is a neces-
sary prerequisite to the use of general purpose theories andfor enabling tool chains [119].

This section proposes weaving models [12] to specify formalrelations between the different views
produced during the development of Web applications. The weaving models do not interfere with
the definition of the views on either side, achieving a clear separation of them and their connec-
tions. Furthermore, designers can gain a deeper understanding about the explicit dependencies

83

84 Chapter 6. A4MT-based Model Weaving

between the parts, and they are able to recognise the consequences of local changes to the whole
system. Finally, the weaving descriptions enable the automatic processing and manipulation of
the related models executing operations based on the link semantics.

In the proposed approach, the source views are woven together according to weaving models
whose semantics is given by means of automated model transformations that are mathematically
specified through A4MT. The proposed constructs for the viewspecifications are inspired to [76]
which represents a step towards a common reference metamodel for Web modeling languages.
The views and the weaving models conform to metamodels that are precisely defined in KM3 [69]
which is a text based language for the description of metamodels. A prototypical implementation
of the approach is available at [35] supporting the development of all the source artifacts by using
graphical editors which have been realized through the Eclipse Graphical Modeling Framework
(GMF) [43]. Furthermore, XASMs [8] based transformations are provided to define the semantics
of the given weaving operators and to generate equivalent woven models defined according to
target Web modeling languages.

The presentation of the approach is based on a running example aimed to develop a simple Web
application. Once the source views are defined, they are related and kept consistent with respect
to weaving descriptions that enable the generation of specifications written by means of two target
modeling languages that are Webile and WebML. The source concerns are produced by using
simple metamodels in order to give a flavor of the approach which mainly focuses on the weaving
operations, despite the limited expressiveness of the metamodels whose discussion is beyond the
scope of this work.

The structure of the section is as follows: next subsection states the problem we want to deal with
and introduces the proposed solution. Section 6.1.2 illustrates the metamodels used to describe
the source views that will be related through the weaving models discussed in Section 6.1.3. Then
A4MT will be used in Section 6.1.4 to specify the automated transformations for weaving together
the source concerns.

6.1.1 DEALING WITH WEB APPLICATION CONCERNS

Most of the current methodologies for Web application development propose a number of views
comprising at least aconceptual, a navigationand apresentationmodel. The first one consists
of the data specification the application being modeled is based on. Usually well-known object-
oriented modeling principles or Entity/Relationship (ER)diagrams [30] are used for this purpose.
The navigation model describes those objects the user can reach: by means of concepts likeNode,
Link and their specializations, the designer specifies the pathsand eventually the access primi-
tives which are usual in hypermedia applications. Finally,the presentation model specifies how
navigation nodes have to be graphically arranged in the presentation space by means of concepts
like Location and its specializations.

The constructs provided by the available methodologies aiming to specify the concerns of a Web
application can be precisely unified into a common metamodellike in [76]. On the contrary the
consistency among the views is guaranteed by less formal relations. In fact, the formalisms specify
under which conditions the views can be integrated or contradict each other through name con-
ventions and/or ad-hoc tool support. For instance, Fig. 6.1presents a small fragment of an OO-H

6.1 Weaving Concerns of Web Applications 85

Figure 6.1: A fragment of the OO-H Conference Review System Specification

specification where the upper and the lower sides correspond, respectively, to (portions of) the con-
ceptual and navigation models of a conference review systemgiven in [23]. The models are kept
connected by means of a common namespace which occurs on bothsides. In particular, theTrack
andConference entities in the conceptual model are referred by means of compound class names
whose form isnodeName:entityNamesuch asTrack:Track andConference:Conference
nodes in the navigation model (by coincidence the name of both the nodes and the entities are the
same).

A similar problem affects WebML as shown in Fig. 6.2 where a fragment of the conference review
system described in [28] is modeled. The consistencies between the data and hypertext views
are guaranteed by the WebRatio [124] tool support accordingto the references embedded in the
models. For example, in the navigation model presented in the right-hand side of the figure the
data unitConference, in the dashed part of the pageCreate subjects and tracks, refers
to the data entityConference of the data model in the left-hand side of the figure.

The consequent lack of abstraction in separating between the concerns and theirhard-codedcon-

86 Chapter 6. A4MT-based Model Weaving

Figure 6.2: A fragment of the WebML Conference Review SystemSpecification

nections could reduce some quality factors of models makingthem intertwined, not autonomously
maintainable and not fully reusable. For example, hypertext specifications with embedded refer-
ences to data structures could be not completely suitable todesign different systems sharing part
of the same navigation structure or page compositions.

To improve the separation of concerns in Web application development, the approach depicted
in Fig. 6.3 is proposed. The views are related by additional models, calledweaving models[12]
to explicitly describe the connections between the elements belonging to the different concern
specifications. Originally introduced for metadata integration and evolution in databases [86],
weaving models represent a useful technique also in software modeling. They can be used for
setting fine grained relationships between models or metamodels and executing operations on
them based on the link semantics. Adhering to the “everything is a model” principle [12], model
weaving offers a number of advantages. All the information,relationships and correspondences
between the concerns, could be described by specialized weaving models avoiding to have large
metamodels for capturing all the aspects of a system. Furthermore, metamodels focusing on their
own domain can be individually maintained, and at the same time interconnected into a “lattice of
metamodels” [12]. In other words, each metamodel could represent a domain-specific language
dealing with a particular view of a system, while weaving links permit describing the aspects both
separately and in combination.

Weaving models conform to precise metamodels defined and specialized for the given domain. A
weaving metamodel is proposed for specifying how to relate elements belonging to Web appli-
cation concerns pursuing a better separation of the views and their connections. Finally, model
transformations can be applied to the source concern specifications for generating woven descrip-
tions with respect to the semantics of the weaving operators. This operation is performed in a
formal way by means of model transformations mathematically expressed and executed as pro-
posed in Chapter 4.

Inspired by the Web development methodologies mentioned above and by the metamodel pre-
sented in [76], the approach proposes metamodels for expressing the data, navigation and page
composition perspectives without considering the presentation one. These metamodels could be
extended by taking into account a number of available contributions [76, 105], even if this work
mainly focuses on the weaving operations and their applications for the Web domain.

6.1 Weaving Concerns of Web Applications 87

Figure 6.3: Overall Approach

In order to have a precise and formal definition of the metamodels, the KM3 [69] language of the
AMMA framework is used. The use of KM3 is mainly justified by its simplicity and flexibility
to write metamodels and to produce domain-specific languages. A number of experimental KM3
metamodels have been specified both from academia and industry and are currently collected into
a library that can be found at [10]. Furthermore, the available tool support is able to generate Ecore
and MOF metamodels corresponding to the given KM3 specifications. This facility has been very
helpful for developing the prototypical implementation ofthe approach discussed here. In fact, the
GMF-based graphical editors of the source concerns and weaving descriptions are developed on
top of the corresponding metamodels that have to be necessarily expressed in Ecore. In this sense
the KM3 to Ecore facilities of the KM3 tool have been exploited.

In the sequel, each phase of the approach (see Fig. 6.3) is exploded starting from the next sub-
section where the meta-models devoted to the definition of the Web application perspectives are
illustrated.

6.1.2 CONCERN SPECIFICATIONS

This section illustrates the metamodels that will be used for describing the data (Sec. 6.1.2), navi-
gation (Sec. 6.1.2) and page composition (Sec. 6.1.2) viewsof Web applications according to the
left-most side of Fig. 6.3. The discussion is based on a running example consisting of a simple
academic Web site that will be considered in the presentation of the overall approach. The sample
application is intended to provide information about departments, affiliated professors and papers
which have been published. From the index of departments, the user may access the description
of a selected one, e.g. the list of all professors affiliated to that given department, who in turn can
be further selected to access the details in their homepage,including the publication list.

DATA MODELING The specification of data on which the system under study is based will be
given exploiting ER modeling principles giving place to themetamodel in Fig. 6.4 and the KM3
code in listing 6.1. In particular,Entities represent common features that can have typed
Attributes and can be associated with each others by means ofRelationships. For each
of the entities involved in a relationship, a correspondingRole description is given.

1 class DataModel {
2 reference entities[0-*] container : Entity;
3 reference relationships[0-*] container : Relationship;
4 }
5

6 class Entity {

88 Chapter 6. A4MT-based Model Weaving

DataModel

+name : string

Entity

+name : string

+contentType : string

Attribute

+name : string

Relationship

+minCard : string

+maxCard : string

Role

attributes

entities

entity

relationships

target
source

*

*

1
 1

1

*

Figure 6.4: Data Metamodel

7 attribute name : String;
8 reference attributes[0-*] container : Attribute ;
9 }

10

11 class Attribute {
12 attribute name : String;
13 attribute contentType : String;
14 }
15

16 class Relationship {
17 attribute name : String ;
18 reference source container : Role;
19 reference target container : Role;
20 }
21

22 class Role {
23 attribute minCard : String;
24 attribute maxCard : String;
25 reference entity : Entity ;
26 }

Listing 6.1: KM3 Specification of the Data Metamodel

The KM3 specification of the data metamodel is canonically obtained by taking into account the
following rules: each metaclass of the metamodel is defined by the keywordclass; the keyword
attribute is used for defining metattributes of the metaclass being specified. The relationships
between metaclasses are declared by using the keywordreference. If a given relationship is a
composition (like the one between the metaclassesEntity andRelationshipin Fig. 6.4) the attri-
butioncontainer is added to the reference definition. In the rest of the section, for presentation
purposes the metamodels will be graphically represented only, the interested reader can consider
the corresponding KM3 specifications available for download at [35].

Figure 6.5: Sample Data Model

6.1 Weaving Concerns of Web Applications 89

According to the sample application requirements, the proposed metamodel can be used for spec-
ifying the data model shown in Fig. 6.5. In particular, the conceptual structure consists of depart-
ments (modeled with the data entityDepartment) which have several professors (Professor)
and each of them has a number of publications (Publication). The direction of the relationships
specifies kind of subordination amongst the entities whose purpose will be clarified in the rest of
the section.

NAVIGATION MODELING The navigation view describes the paths a user can follow in terms
of reachable nodes connected through links. This view givesonly the navigation map of the
application without defining, for instance, the data that will be published or the link properties, i.e.
whether a link should propagate relevant information to retrieve data in the target node.

NavigationModel

+name : string

NavigationNode

+name : string

NavigationLink

nodes
 links

source

target

*
 *

1

1

Figure 6.6: Navigation Metamodel

Borrowing concepts from [76], a navigation metamodel is proposed in Fig. 6.6 consisting of di-
rected links (NavigationLink) and nodes (NavigationNode). This is used to define the navi-
gation model of the running example (see Fig. 6.7) which is made up of four nodes (Departments,
Professors, ProfessorHomePage, Publication) connected by links with respect to the ap-
plication requirements.

Figure 6.7: Sample Navigation Model

COMPOSITION MODELING The structure of pages is captured by a composition model abstract-
ing from data and navigation details. These information will be available once this model will be
related to the navigation and data descriptions (see Sec. 6.1.3). Initially, for each page the designer
defines the name and the available contents only and, in orderto distinguish whether the data that
will be published activate some link or not, the typesindex or data can be used, respectively
(see Fig. 6.8).

90 Chapter 6. A4MT-based Model Weaving

CompositionModel

+name : string

Page

-name : string

-type : ContentType

Content

+data

+index

«enumeration»

ContentType

pages

ownerPage
 contents

*

*

Figure 6.8: Composition Metamodel

The composition model of the running example is provided in Fig. 6.9: it specifies the page
ProfessorHome as consisting of two contents,ProfInfo andPubs, respectively, which will
be fed later on by the proper data according to the weaving models which will be introduced in the
sequel.

Figure 6.9: Sample Composition Model

6.1.3 WEAVING SPECIFICATION

Once the different concerns of a Web application are specified, they have to be related and kept
consistent with respect to the application requirements. For instance, Fig. 6.7 represents a naviga-
tion topology without taking into account information about which data have to be mined to fill the
pages. Furthermore, the structure of each page is specified regardless its location in the navigation
structure.

This section describes how relations among concerns can be separately specified by means of
weaving models which conform to a metamodel inspired by [82]. Basically, the proposed weav-
ing operation involves two models in order to define a set of links between elements occur-
ring in these models. By going into more details, a weaving model (WModel) consists of el-
ements (WElement) related through weaving links (WLink). According to the different kind
of elements involved in weaving operations, theWElement concept is further specialized into
DataWElement, CompositionWElement andNavigationWElement (see Fig. 6.10). More-
over, DataCompositionWLink and CompositionNavigationWLink specialize theWLink
concept because of the different kind of links that can be defined between data and composition
models, or between composition and navigation models, respectively.

Linked elements belonging to the composition and data models specify the correspondences be-
tween each page content defined in the composition model and the data entities from which the

6.1 Weaving Concerns of Web Applications 91

WModel

+name : string

WLink

+restricted : bool

DataCompositionWLink

CompositionNavigationWLink

+name : string

+modRef : string

WElement

+elementType : DataElementType

DataWElement

-elementType : NavigationWElement

NavigationWElement

+elementType : CompositionWElement

CompositionWElement

+Entity

«enumeration»

DataElementType

+Page

+Content

«enumeration»

CompositionElementType

+Page

+Content

«enumeration»

NavigationElementType

1
 1
source
 target
source
1
 target
1

Figure 6.10: Core Weaving Metamodel

information has to be retrieved. In this case the weaving links have the attributerestricted
to denote whether the data collection has to be filtered with respect to information local to the
page the content has to be delivered. For example, in the weaving model in Fig. 6.11 the con-
tent Profs is connected with theProfessor entity, moreover such an association has the at-
tribute restricted set totrue. This denotes that the information forwarded by the incoming
links of the ProfessorsList page will be used for filtering the data that will be retrieved
and then published to the user. This information forms the context of the page whose seman-
tics is defined by weaving together the composition and the navigation models by means of
CompositionNavigationWLink elements illustrated in Fig. 6.12 where for example the page
ProfessorHomePage of the navigation model is linked to the pageProfessorHome of the
composition model.

The weaving operation can be supported by heuristics raising its automation level. However,

Figure 6.11: Sample Data-Composition Weaving Model

92 Chapter 6. A4MT-based Model Weaving

Figure 6.12: Sample Composition-Navigation Weaving Model

sometimes complex computations have to be executed, for instance, to derive further information
that can be obtained only by performing some analysis over the related models. Hence, in the
remainder of the section, a discussion on how to deal with non-trivial situations by means of model
transformations specified in A4MT is presented. Subsequently, Webile and WebML models are
generated from the given source concerns and weaving specifications.

6.1.4 TARGET MODEL GENERATIONS

As already mentioned, the different Web application concerns that are described by different mod-
els can be connected by means of explicit weaving models. Then ASMs-based transformations,
defined in advance once for all, can be used to weave together the different concerns in order to
generate target specifications comprising all the aspects of the system.

The rest of the paper describes with more detail the transformation phase for the generation of We-
bile and WebML models describing the sample application whose concerns have been separately
described above and explicitly connected through the givenweaving models. The transformation
rules start from an algebra whose signature includes the universes and functions induced by the
involved metamodels that are theData, Navigation, CompositionandWeaving. The application
of ASM rules generates a target algebra whose signature is induced by the target metamodels,
that is Webile profile and WebML in our example. In the prototypical implementation of the pro-
posed approach, the signatures are specified in XASM and theyare automatically obtained from
the KM3 specification of the metamodels. For example, with respect to the canonical encoding
described in Sec. 4, theData metamodel specified in the listing 6.1 gives place to the following
XASM specification

1 universe DATA_DataModel
2 function entities(a : DATA_DataModel, b : DATA_Entity) -> Bool
3 function relationships(a : DATA_DataModel, b : DATA_Relationship) -> Bool
4

5 universe DATA_Entity
6 function name(a : DATA_Entity) -> String
7 function attributes(a : DATA_Entity, b : DATA_Attribute) -> Bool
8

9 universe DATA_Attribute
10 function name(a : DATA_Attribute) -> String
11 function contentType(a : DATA_Attribute) -> String
12

13 universe DATA_Relationship
14 function name(a : DATA_Relationship) -> String

6.1 Weaving Concerns of Web Applications 93

15 function source(a : DATA_Relationship) -> DATA_Role
16 function target(a : DATA_Relationship) -> DATA_Role
17

18 universe DATA_Role
19 function minCard(a : DATA_Role) -> String
20 function maxCard(a : DATA_Role) -> String
21 function entity(a : DATA_Role) -> DATA_Entity

For each class in the KM3 specification a corresponding sort is given by means of the keyword
universe. The name of the sort is obtained from the name of the KM3 classprefixed with the
name of the metamodel being encoded. The attributes and references in the KM3 specification
induce corresponding functions.

GENERATING WEBILE SPECIFICATIONS Before defining the transformations, a brief introduc-
tion to few Webile concepts is given through the model in Fig.6.13 which is the result of the
weaving operation obtained by applying the transformations given in the rest of the section. Such
model presents commonalities with the concern models defined in Sec. 6.1.2 since it merges them
opportunely. Data are modeled in an Entity/Relationship fashion using the≪DataEntity≫
and≪DataRelation≫ stereotypes. The application functionalities lie on a conceptual struc-
ture consisting of departments (Department) which have several professors (Professor) and
each of them has a number of publications (Publication). Pages are denoted by means of
≪StructuredContent≫ classes whose content is specified by means of≪DataSource≫
stereotyped associations which allow to define how and whichdata have to be retrieved from the
conceptual structure.

In the figure,ProfessorsList contains the index of the professors which belong to the selected
department in the pageDepartment; the pageProfessorHome contains information about the
selected professor and all her/his publications. This is described by annotating the corresponding
data source associations. In fact, the tagBound of a DataSource stereotype states whether the
data retrieval has to consider the context of the involved structured content, in other words declares
that the data have to be filtered. Moreover, different data source associations targeting the same
structured content and denoted by the same tagged valueLabel define a join operation. On the
contrary, inProfessorHome two different query operations are defined, because the labels on
the associations withProfessor andPublication are different. Hyperlinks are modeled by
means of the≪CLink≫ and≪NCLink≫ stereotyped associations which denote contextual and
non-contextual links, respectively. The main difference among them is based on the fact that the
former propagate parameters from the source to the target structured content, as in the case shown
in the figure where the unique identifier of a selected professor is propagated to her/his home page.

Figure 6.13: Sample Webile Specification

94 Chapter 6. A4MT-based Model Weaving

«metaclass»

Class

«stereotype»

StructuredContent

«stereotype»

DataEntity

«metaclass»

Association

«stereotype»

DataRelation

-label : bool

-bound : bool

-type : DataSourceType

«stereotype»

DataSource

«stereotype»

NCLink

«stereotype»

CLink

-data

-index

«enumeration»

DataSourceType

Figure 6.14: Core Webile Profile

A more detailed discussion about Webile can be found in [39, 40] while a fragment of its graphical
specification is given in Fig. 6.14.

The transformation process is logically decomposed into four main phases, each devoted to the
generation of specific fragment of the target model. In particular:

– The first phase generates Webile data entities and relations with respect to the sourceData
model, giving place to the data structure description of theapplication being developed;

– The second phase is devoted to the generation of target structured contents (that is pages)
according to the nodes defined in the sourceNavigationmodel;

– Then the transformation produces the Webile data source elements establishing relationships
between previously generated target data entities and structured contents. In this phase
the sourceData-Compositionweaving specification plays a key role as explained in the
following;

– Finally, navigation links between target pages are generated. During this phase all the five
source models are taken into account in order to distinguishtarget Webile contextual and
non-contextual links.

By going into more detail, in each of the previous specified steps, the first phase generates the
algebraic representatives of the Webile data structure description the application is based on. This
phase is performed by means of the following ASMs specification where for eachData Entity

in the sourceData model, a corresponding Webile data entity is generated (seelines1-2 in the
following ASM specification fragment). In this phase the auxiliary function

transformed: DATA Entity→ WEBILEDataEntity

is used form maintaining trace information that will be useful in the overall transformation process.

1 do forall de in DATA_Entity
2 extend WEBILE_DataEntity with wde
3 name(wde):=name(de)
4 transformed(de):=wde
5 ...
6 endextend
7 enddo;
8 do forall dr in DATA_Relationship

6.1 Weaving Concerns of Web Applications 95

9 extend WEBILE_DataRelation with wdr
10 extend WEBILE_AssociationEnd with waes
11 source(wdr):=waes
12 ...
13 endextend
14 extend WEBILE_AssociationEnd with waet
15 target(wdr):=waet
16 ...
17 endextend
18 endextend
19 enddo;

The derivation ofStructuredContent stereotyped classes is performed dependently on the
sourceNavigationmodel. For each navigation node a corresponding structuredcontent element
is generated (lines4-7 below) and the name of the new element is the same of the page (see
Fig. 6.12) which is woven with the considered navigation node (line2).

1 do forall nn in NAVIGATION_Node
2 choose wl in WEAVING_CompositionNavigationWLink:name(target(wl))=name(nn)
3

4 extend WEBILE_StructuredContent with wsc
5 name(wsc):=name(source(wl))
6 transformed(nn):=wsc
7 endextend
8

9 endchoose
10 enddo;

DataSource elements are generated by the following code fragment with respect to theData-
Compositionweaving specification. In particular, each weaving link between theData and the
Compositionmodels gives place to aDataSource stereotyped association (line8) in the target
model . The transformed of the woven data element will be the data counterpart of the created
DataSource association (lines9-11). The determination of theStructuredContent element
involved in this association is performed by considering the content which is woven in the source
Data-Compositionmodel. This content is used to find out the corresponding navigation element
by traversing theComposition-Navigationweaving model (lines2-6). Then the trace information
stored in the functiontransformed (line 10) is used to discover theStructuredContentthat has
to be involved in theDataSource stereotyped association being generated.

1 do forall wl in WEAVING_DataCompositionWLink
2 choose wsc in WEBILE_StructuredContent, c in COMPOSITION_Content,
3 cnl in WEAVING_CompositionNavigationWLink, p in COMPOSITION_Page,
4 nn in NAVIGATION_Node, d in DATA_Entity : isWoven(p,nn,cnl) and
5 isWoven(d,c,wl) and (ownerPage(c) = p) and
6 (transformed(nn)=wsc)
7

8 extend WEBILE_DataSource with wds
9 sc(wds):=wsc

10 data(wds):=transformed(d);
11 label(wds):=name(c)
12 ...
13 endextend
14 ...
15 endchoose
16 enddo;

The derivation of theCLink andNCLink stereotyped associations is more complex as a navi-
gation through the five source models is necessary to establish whether aLink specified in the
Navigationmodel has to propagate data. This information is evaluated by means of queries over

96 Chapter 6. A4MT-based Model Weaving

the involved elements. In particular, the navigation linksgiven in the sourceNavigationmodel in
Fig. 6.7 states the navigation map of the application. As previously said, a non-contextual link is a
simple connection between pages and does not affect the context of the target one, i.e. it does not
propagate any information to the destination page. Consequently, aNCLink stereotyped associa-
tion is created by the following rules in two cases: wheneverthe target of a navigation link is not
connected to data entities according to the weaving models (line 2-10), and when the contents of
the corresponding pages are not related (line31-34) through a data relationship path. Otherwise,
for each couple of contents that belong to linked navigationnodes and that are woven with data
entities related by a relationship path, aCLink stereotyped association is created as specified in
the lines13-29

1 do forall l in NAVIGATION_Link
2 if (not(exists c in COMPOSITION_Content, p in COMPOSITION_Page,
3 d in DATA_Entity, w1 in WEAVING_CompositionNavigationWLink,
4 w2 in WEAVING_DataCompositionWLink : ownerPage(c)=p and
5 isWoven(p,target(l),w1) and isWoven(d,c,w2)))
6 then
7 extend WEBILE_NCLink with x
8 source(x):=transformed(source(l))
9 target(x):=transformed(target(l))

10 endextend
11 else
12 do forall c1 in COMPOSITION_Content
13 if (exists p in COMPOSITION_Page,
14 w1 in WEAVING_CompositionNavigationWLink: ownerPage(c1)=p and
15 isWoven(p,source(l))
16 then
17 do forall c2 in COMPOSITION_Content
18 choose w1 in WEAVING_CompositionNavigationWLink,
19 p in COMPOSITION_Page, w2 in WEAVING_DataCompositionWLink,
20 d in DATA_Entity: ownerPage(c2)=p) and
21 isWoven(p,target(l),w1) and isWoven(d,c2,w2)
22 if ((related(c1,c2)) and (restricted(w2))) then
23 if (type(c1)="index") then
24 extend WEBILE_CLink with cl
25 source(cl):=transformed(source(l))
26 target(cl):=transformed(target(l))
27 ...
28 endextend
29 endif
30 else
31 extend WEBILE_NCLink with ncl
32 source(ncl):=transformed(source(l))
33 target(ncl):=transformed(target(l))
34 endextend
35 endif
36 ...
37 endif
38 enddo

Different auxiliary submachines are used in the above transformation rules, asisWoven(p, n,w)
that returnstrue if the pagep is woven with the navigation noden by means of the weaving
link w described in theComposition-Navigationweaving model. Another submachine, called
related(c1 , c2), returnstrue if there exists a relationship path amongst the data entities to whom
the contentsc1 andc2 are woven in theData-Compositionweaving model. These submachines
do not perform any change in the algebras and are used to collect information by navigating the
models as for instance to compute the transitive closure of arelation. The interested reader can
observe and execute the complete implementation of the described rules available for download
at [35].

6.1 Weaving Concerns of Web Applications 97

(a) Data Model

(b) Hypertext Model

Figure 6.15: Sample WebML Specification

GENERATING WEBML SPECIFICATIONS WebML is a modeling language that allows the con-
ceptual description of Web applications under two conceptual dimensions: adata modelspecifies
the schema of resources according to ER principles; ahypertext modeldescribes how resources
are assembled into information and pages, and how such unitsand pages interconnect to constitute
a hypertext [27]. The WebML specification of the running example can be seen in Fig. 6.15. In
particular, Fig. 6.15.a specifies the data organization in terms of the relevant entities and relation-
ships. Concerning the hypertext description, the languageprovides the designer with a number of
different content units that can be composed into pages. Content units can be related by means of
links that express Web site navigation as well as information transfers from one unit to another.

In the hypertext model in Fig. 6.15.b four pages are specified: theDepartmentList page con-
tains theDepartments index unit which will publish all the instances of theDepartment data
entity. This kind of unit enables the selection of one of the published instances and the outgoing
link will bring the identifier of the selected instance to thetarget content unit. The index unit
Profs in theProfessorList page will publish instances of the data entityProfessor selected
by the incoming identifier and filtered with respect to the relation between theDepartment and
Professor data entities. Links can be also expressed between units belonging to the same page
like in ProfessorHomewhere the data unitProfInfo is linked with the index unitPubs. In this
case, once theProfessorHome page is reached fromProfessorList, the information about
the selected professor is published and the index of publications is automatically updated with the
data coming from the data entityPublication according to theProfessor 2 Publication

relation.

The rest of the section describes the ASMs transformation rules able to generate the models shown
in Fig. 6.15 (and conforming to the metamodel in Fig. 6.16) according to the weaving specification
given in Sec. 6.1.3. There is no official metamodel of WebML even if a number of research groups
have been working on it [105, 87]. The one in the figure is a subset of the available metamodels
and contains only the concepts that will be considered in therest of the section.

The transformation process is decomposed into three phasesas explained below:

98 Chapter 6. A4MT-based Model Weaving

WebMLModel

+name : string

HypertextSpecification
DataSpecification

+name : string

ContentUnit

+name : string

Entity

+name : string

+type : string

Attribute

+name : string

+maxCard : string

+minCard : string

Relationship

attributes

superentity

relationships

to

0-1

entities

entity

+name : string

SiteView

+name : string

Page

*

sourcePage

Link

ContextualLink

NonContextualLink

+Page

+Content

DisplayUnit

DataUnit

IndexUnit

SelectorCondition

dataSpec
 hypertextSpec

siteView

1..*

0..*
 0..*

pages

0..*

0..*
links

targetPage

source

target

0..1

0..1

condition

0..1
relationship

0..1
attribute

Figure 6.16: Core WebML Metamodel

– a first phase generates the WebML data model the specified application is based on (like the
one in Fig. 6.15.a);

– the second phase produces the Web pages that will be connected by means of the following
step;

– the links connecting the units belonging to the same page and those amongst distinct pages
are created giving place to an hypertext like the one in Fig. 6.15.b;

Concerning the first phase of the transformation, for eachData Entity in the source data model,
a corresponding WebML data entity (lines1-4 of the following ASMs fragment) is obtained. Fur-
thermore, for eachDATA Relationship two corresponding WebML relations have to be gener-
ated, one for each direction (lines8-16).

1 do forall de in DATA_Entity
2 extend WebML_Entity with wmlde
3 name(wmlde):=name(de)
4 ...
5 enddo
6 endextend
7 enddo;
8 do forall dr in DATA_Relationship
9 extend WebML_Relationship with wmlr1

10 name(wmlr1):=name(entity(source(dr)))+"_2_"+name(entity(target(dr)));
11 ...
12 endextend
13 extend WebML_Relationship with wmlr2
14 name(wmlr2):=name(entity(target(dr)))+"_2_"+name(entity(source(dr)));
15 ...
16 endextend
17 enddo;

The hypertext generation needs to visit all the source models as specified in the following ASMs
rules. In particular, for each navigation node a corresponding target page is created (lines1-2). If
the type of the content expressed in the sourceCompositionmodel isdata, aDataUnit is defined
(lines 7-12) otherwise anIndexUnit (line 15-24) will be put in the page being generated.
The information that will be published in each content unit has to be specified by referring to
data or relationship belonging to the conceptual structure. For example, according to the model

6.1 Weaving Concerns of Web Applications 99

in Fig. 6.15 the data published in theProfInfo unit are retrieved from theProfessor data
entity, whereas thePubs index unit will contain data coming from thePublication data unit
selected by means of theProfessor 2 Publication relation. This generation is performed by
exploiting the submachinecalculateSelectorRelationship(cu)(lines7-21) devoted to calculate the
data relationship which has to be used to select the data of the content unitcu.

1 do forall nn in NAVIGATION_Node
2 choose cp in COMPOSITION_Page,cnl in WEAVING_CompositionNavigationWLink:
3 isWoven(cp,nn,cnl)
4

5 extend WebML_Page with wmlp
6

7 do forall cc in COMPOSITION_Content
8 if (ownerPage(cc)=cp) then
9 if (type(cc)="data") then

10 extend WebML_DataUnit with du
11 name(du):=name(cc)
12 ...
13 endextend
14 endif
15 if (type(cc)="index") then
16 extend WebML_IndexUnit with iu
17 name(iu):=name(cc)
18 extend WebML_SelectorCondition with wsc
19 selector(iu):=wsc
20 relationship(wsc):=calculateSelectorRelationship(cc)
21 endextend
22 ...
23 endextend
24 endif
25 ...
26

27 endchoose
28 enddo;

Finally, the links connecting the units belonging to the same page and those amongst distinct pages
are created as follows

1 do forall nl in NAVIGATION_Link
2 do forall ccs in COMPOSITION_Content
3 choose cps in COMPOSITION_Page,
4 cnl in WEAVING_CompositionNavigationWLink
5 wne in WEAVING_NavigationWElement:(ownerPage(ccs)=cps) and
6 isWoven(cps,source(nl),cnl)
7 do forall cct in COMPOSITION_Content
8 choose cpt in COMPOSITION_Page,cnlt in WEAVING_CompositionNavigationWLink
9 : (ownerPage(cct)=cpt) and isWoven(cpt,target(nl),cnlt)

10 if (type(ccs)="index") then
11 if (related(ccs,cct)) then
12 extend WebML_ContextualLink with wcl
13 source(wcl):=ccs
14 target(wcl):=cct
15 endextend
16 else
17 extend WebML_NonContextualLink with wcl
18 sourcePage(wcl):=transformed(source(nl))
19 targetPage(wcl):=transformed(target(nl))
20 endextend
21 endif
22 endif
23 endchoose
24 ...
25 enddo

Being more precise, a contextual link between an index and a data unit (belonging to different

100 Chapter 6. A4MT-based Model Weaving

pages) is obtained whether they are related (line11) and belong to pages that are connected ac-
cording to the sourceComposition-Navigationweaving andNavigationmodels respectively (lines
2-9). Otherwise a non-contextual link between the involved pages is generated (lines17-20).

6.2 WEAVING SOFTWARE ARCHITECTUREMODELS

Over the last years, traditional formal architecture description languages (ADLs) have been pro-
gressively complemented and replaced by model-based specifications. The increased interest in
designing dependable systems, meant as applications whosedescriptions include non-quantitative
terms of time-related aspects of quality, has favoured the proliferation of analysis techniques each
one based on a slightly different UML profiles or meta-models. As an immediate consequence,
each profile or metamodel provides with constructs that nicely support some specific analysis and
leave other techniques unexplored. The resulting fragmentation induces the need to embrace dif-
ferent notations and tools to perform different analysis atthe architecture level: for instance, sup-
posing an organization (using UML notations) is interestedin deadlock and performance analysis,
a comprehensive result is obtained only using two differentADLs. Additionally, whenever the
performance model needs to be modified, the deadlock model must be manually adjusted (based
on the performance results) and re-analyzed, causing frequent misalignments among models.

In this section, the coexistence and integration of different analysis techniques at the architectural
level is reduced to the problem of enriching multi-view descriptions with proper UML elements
through directed weaving operations (realized by means of model transformations). In particular,
this integration is obtained by firstly setting a formal ground where models and metamodels are
specified, then weaving operators are defined for the integration of the proposedDUAL LY [64]
UML profile with the constructs needed for performing specific analysis. The weaving operators
are mathematically specified through A4MT able to execute the integration.

The remaining of the section is structured as follows: the next subsection sketches languages
available for software architecture specification and gives the preliminaries for the definition of
DUAL LY. The proposed weaving operators are presented in Sec. 6.2.2together with the def-
inition of the DUAL LY profile. Sec. 6.2.4 describes a case study which illustratesthe use of
DUAL LY and how it can be integrated following the proposed approachwith constructs needed
for performing fault tolerance analysis.

6.2.1 MODELING SOFTWARE ARCHITECTURES

Two main classes of languages have been used so far to model software architectures: formal
architecture description languages (ADLs) and model-based specifications with UML. ADLs are
formal languages for SA modeling and analysis. Although several studies have shown the suit-
ability of such languages, they are difficult to be integrated in industrial life-cycles and only par-
tially tool supported. The introduction of UML as a modelinglanguage for software architectures
(e.g. [83]) has strongly reduced this limitation. However,different UML-based notations are still
needed for different analysis techniques, thus inducing the need to embrace different notations and
tools to perform different analysis at the architecture level.

6.2 Weaving Software Architecture Models 101

ADL FOR SOFTWARE ARCHITECTURE MODELING Formal architecture description languages
are well established and experienced, generally formal andsophisticated notations to specify soft-
ware architectures. An (ideal) ADL has to consider support for components and connectors spec-
ification, and their overall interconnection, composition, abstraction, reusability, configuration,
heterogeneity and analysis mechanisms [111].

Then, many ADLs have been proposed, with different requirements and notations, and permitting
different analysis at the SA level. New requirements emerged, such as hierarchical composition,
type system, ability to model dynamic architectures, ability to accommodate analysis tools, trace-
ability, refinement, and evolution. New ADLs have been proposed to deal with specific features,
such asconfiguration management, distributionand suitability forproduct line architecturemod-
eling. Structural specifications have been integrated withbehavioral ones with the introduction
of many formalisms such as pre- and post-conditions, process algebras, statecharts, POSets, CSP,
π-calculus and others [84].

Papers have been proposed to survey, classify and compare existing ADLs. In particular, Med-
vidovic and Taylor in [84] proposed a classification and comparison framework, describing what
an ADL must explicitly model, and what and ADL can (optionally) model. A similar study has
been performed for producing xArch [2], an XML schema to represent core architectural elements.
ACME [3], the architecture interchange language, also identifies a set of core elements for archi-
tecture modeling, with components, connectors, ports, roles, properties and constraints. Although
several studies have shown the suitability of such formal languages for SA modeling and analysis,
industries tend to prefer model-based notations.

UML FOR SOFTWARE ARCHITECTURE MODELING UML (with many extensions) has rapidly
become a specification language for modeling software architectures. The basic idea is to repre-
sent, via UML diagrams, architectural concepts such as components, connectors, channels, and
many others. However, since there is not a one-to-one mapping among architectural concepts and
modeling elements in UML, UML profiles have been presented toextend the UML to become
closer to architectural concepts.

Many proposals have been presented so far to adapt UML 1.x to model software architectures.
Since such initial works, many other papers have compared the architectural needs with UML
concepts, extended or adapted UML, or created new profiles tospecify domain specific needs
with UML. A good analysis of UML1.x extensions to model SAs can be found in [83]. With the
advent of UML 2.0, many new concepts have been added and modified to bridge the gap with
ADLs. How to use UML 2.0 (as is) for SA modeling has been analyzed in some books. The
UML 2.0 concepts of components, dependencies, collaborations and component and deployment
diagrams are used. In order to bridge the gap between UML 2.0 and ADLs, some aspects still
require adjustments. Therefore, much work has been proposed in order to adapt and use UML 2.0
as an ADL [103].

MODELING SOFTWARE ARCHITECTURES: A PRACTICAL PERSPECTIVE The introduction of
UML-based notations for SA modeling and analysis has improved the diffusion of software archi-
tecture practices in industrial contexts. However, many different UML-based notations have been
proposed for SA modeling and analysis, with a proliferationof slightly different notations for dif-
ferent analysis. Supposing an industry making use of UML notations is interested in combining
deadlock and performance analysis, a satisfactory result can be obtained only using two different

102 Chapter 6. A4MT-based Model Weaving

Figure 6.17: TheDUAL LY profile

notations: whenever the performance model needs to be modified, the deadlock model needs to
be manually adjusted (based on the performance results) andre-analyzed. This causes a very high
modeling cost, and creates a frequent misalignment among models.

The solution that we have proposed in [38] is a synergy between UML and ADLs proposing a new
ADL, called DUAL LY, which maintains the benefits of the ADLs formality and with the intu-
itive and fashioning notation of UML.DUAL LY differs from previous work on ADLs and UML
modeling for many reasons: while related work on ADLs mostlyfocus on identifying “what to”
model [84, 3, 2],DUAL LY identifies both “what to” model (i.e., the core architectural concepts)
and “how to” model (via theDUAL LY UML profile). Differently from related work which ex-
tend UML for modeling specific ADLs, theDUAL LY UML profile focuses on modeling just the
minimal set of architectural concepts. The definition of theDUAL LY UML profile allows for an
easier integration of software architecture modeling and analysis in industrial processes. However,
different notations are still needed for different analysis techniques. To overcome this problem we
outline an extendible framework that permits to add models and to extend existing ones in order to
support the introduction of analysis techniques. Weaving operations will be introduced and used
for the purpose of binding different elements of different models.

Next subsections proposes theDUAL LY profile and discuss the extensibility mechanism based
on weaving operations.

6.2.2 DUALLY PROFILE

Goal of theDUAL LY profile is extend UML 2.0 in order to model core architecturalconcepts:
components (with required and provided interfaces, types and ports), connectors (with required
and provided interfaces and types), channels, configuration (with hierarchical composition), tool
support, and behavioral modeling. This profile is not meant to create a perfect matching between
UML and architectural concepts. Instead, it wants to provide a practical way, for software engi-
neers in industry, to model their software architectures inUML, while minimizing effort and time
and reusing UML tools.

TheDUAL LY profile is depicted in Figure 6.17 and defined in a≪profile≫ stereotyped package.

6.2 Weaving Software Architecture Models 103

Figure 6.18: Weaving Models

Within this package the classes of the UML metamodel that areextended by a stereotype are
represented as a conventional class with the optional keyword metaclass. A stereotype is depicted
as a class with the keywordstereotype. The extensionrelationship between a stereotype and a
metaclass is depicted by an arrow with a solid black trianglepointing toward the metaclass. In
particular, the new concepts provided theDUAL LY profile are discussed in the following:

Architectural components: an SA component is mapped into UML components. “Structured
classifiers” permit the natural representation of architecture hierarchy and ports provide a natural
way to represent runtime points of interactions. As noticedin [103], SA components and UML
components are not exactly the same, but we believe they represent a right compromise.

Relations among SA components:the “Dependency” relationship between components in UML
2.0 may be used to identify relationships among components,when interface information or details
are missing or want to be hidden.

Connectors: while a connector is frequently used to capture single connecting lines (such as
channels), they may also serve as complex run-time interaction coordinators between components.
TheDUAL LY profile makes use of UML (stereotyped) components that, fromthe architectural
point of view, seems the cleanest choice.

Channels: a channel is usually considered as a simple binding mechanism between components,
without any specific logic. UML 2.0 provides the concept ofassembly connectors which is se-
mantically equivalent to the concept of architectural channel.

Behavioral viewpoint: depending on the kind of analysis required, state-based machines or sce-
narios notations are usually utilized to specify how components and connectors behave. As a
core element, we take UML 2.0 state machines and sequence diagrams as native notations for
behavioral modeling.

6.2.3 EXTENDING DUALLY

In the sequel, weaving operators for extending theDUAL LY profile are described and an example
of their application is also provided. Such operators are inspired by [101] and they aim at extending

104 Chapter 6. A4MT-based Model Weaving

the profile in a conservative way in the sense that deletions of constructs are denied, and only
specializations or refinements of them are allowed. In particular,

– theinherit operator used for connecting an element of a UML profile with one ofDUAL LY

is used in weaving models by means of≪inherit≫ stereotyped associations as the one in
Figure 6.18. The result of its application is the extension of DUAL LY with a new stereotype
(if it does not exist) having as base class the target elementof the stereotyped association
and the tags of the source one. The operator can be applied forextending theDUAL LY

elements and all the metaclasses of the UML metamodel.

– theintegrateoperator is used by means of≪integrate≫ stereotyped associations as for ex-
ample the one in Figure 6.18. The aim of such operator is to extend the availableDUAL LY

constructs with the characteristics of elements belongingto other UML profiles. For ex-
ample, the profile depicted in Figure 6.19 (described later in Section 6.2.4) and the one
in Figure 6.17 both extend the standard metaclassComponent. The former provides an
additional tag not provided in the latter. Connecting thesetwo elements by means of an
≪integrate≫ stereotyped association will result in the addition of the tags belonging to the
source element into the target one. In case of conflicts (e.g., tags with the same name but
with different types) the elements ofDUAL LY are predominant. Furthermore, the exten-
sions of the source elements are added to the target one.

The semantic and the execution of the discussed operators are defined by means of A4MT trans-
formation rules. This allows preserving the same formal ground for model specifications, their
transformations and weaving operations among them as well.The transformation phase which
has to extend theDUAL LY profile starts from an algebra whose signature includes the following
universes and functions which are the union of the signatures derived from the metamodels of the
involved source models, i.e. the profile specifications and the weaving model respectively.

1 universes MetaClass, Stereotype, Extension, Tag
2 universes Inherit, Integrate
3 ...
4 function name(_) → String
5 function source(_) → _
6 function target(_) → _
7 function belong(Tag) → Stereotype
8 function type(Tag)} → DataType
9 function dually() → Bool

10 function icProfile() → Bool
11 ...

Some auxiliary functions are used, in particular the function dually() and icProfile() are defined
in order to establish whether, given an element, it belongs to the algebra encoding theDUAL LY

profile or theIdeal Component one. Moreover, the functionsbelong()andtype(), given an element
of the setTag, return the stereotype to whom it belongs and its data type, respectively.

The weaving operation mainly consists of two transformation rules each devoted to the manage-
ment of the previously described weaving operators. Specifically, theInherit rule for each element
contained in the setInherit of the algebra encoding the weaving model, extends the algebra encod-
ing theDUAL LY profile. The updating of the algebra consists of the additionof new stereotypes
(see line3 below) which can have as base class a UML metaclass (see line8 below), as for the
associations depicted in Figure 6.18 where theInterfaceandPort metaclasses are involved, or an
existentDUAL LY stereotype (see line12 below).

6.2 Weaving Software Architecture Models 105

Figure 6.19: The Ideal Component UML profile

1 asm Inherit is
2 do forall x in Inherit
3 extend Stereotype with s
4 name(s):=name(source(x))
5 ...
6 dually(s):=true
7 extend Extension with e
8 choose c in MetaClass : name(c)=name(target(x))
9 source(e):=s

10 target(e):=c
11 endchoose
12 choose c in Stereotype : name(c)=name(target(x))
13 source(e):=s
14 target(e):=c
15 endchoose
16 dually(e):=true
17 endextend
18 propagateExtension(s,source(x))
19 endextend
20 enddo
21 endasm

The auxiliary submachinepropagateExtension(s1 ,s2) recursively updates the setsExtension and
Stereotype of the algebra encodingDUAL LY, in order to extend the stereotypes1 with the exten-
sions (if available) of the stereotypes2.

The Integraterule aims at weaving the source element of the≪Integrate≫ stereotyped associa-
tions with the target one. Firstly, all tags of the source stereotype are added to the target one if
there are not conflicts (see line6 of the rule) and in case of overlapping, the elements ofDUAL LY

are predominant. In line15 of the rule the submachinepropagateExtension(s1 ,s2) is called. For
instance, the application of theIntegrate rule, taking into account the weaving model of Fig-
ure 6.18, will modify theDUAL LY stereotype≪SAComponent≫ by adding the tagHasExcep-
tion and the stereotypes≪NormalComponent≫ and≪ExternalComponent≫ as extensions of
≪SAComponent≫.

1 asm Integrate is
2 do forall i in Integrate
3 do forall t1 in Tag
4 if (icProfile(t1) and belong(t1)=source(i))
5 then
6 if not (exists t2 in Tag: dually(t2) and
7 name(t2)=name(t1))
8 then

106 Chapter 6. A4MT-based Model Weaving

9 extend Tag with t3
10 name(t3):=name(t1)
11 type(t3):=type(t1)
12 belong(t3):=target(i)
13 dually(t3):=true
14 endextend
15 propagateExtension(target(i),source(i))
16 endif
17 endif
18 enddo
19 enddo
20 endasm

Once the weaving operation is performed, the obtained extended algebra contains all the informa-
tion required to translate it into the corresponding model.The next section describes a case study
showing firstly the use ofDUAL LY for describing a software architecture, then the extended ver-
sion of the profile, obtained by means of the previously described weaving operation according to
Figure 6.18, is used to design the same system with other constructs needed for performing some
fault-tolerant analysis.

6.2.4 USING DUALLY FOR DESIGNING FAULT-TOLERANT SYSTEMS

In this section we show howDUAL LY can be extended in order to integrate SA-based concepts
with fault tolerance information. We make use of the mining control system case study [104], a
simplified system for the mining environment. The mineral extraction from a mine produces water
and releases methane gas on the air. These activities must bemonitored. Figure 6.20 shows the
SA for the control system modeled by using the basic featuresof DUAL LY. It is composed of
two components, theOperator Interfacecomponent, which represents the operator user interface,
and theControl Station, which is divided in three subcomponent:Pump Control, Air Extractor
Control, andMineral Extractor Control. Pump Controlis responsible of monitoring the water
level, Air Extractor Control, switching on and off the subcomponentAir Extractor, controls the
methane level, and finally the mineral extraction is monitored byMineral Extractor Control.

However, the possible responses of a component when implemented and operating are normal
and exceptional. While normal responses are those situations where components provide normal

<<SA Component>>

Operator Interface

<<SA Component>>

Pump Control

<<SA Component>>

Mineral Extractor

Control

<<SA Component>>

Air Extractor

<<SA Component>>

Air Extractor Control

<<SA Component>>

Control Station

<<SA Channel>>

<

<

S

A

C

h

a

n

n
e

l
>

>

<
<
S

A

C

h
a
n
n
e
l
>
>

Figure 6.20: The mining control system SA

6.2 Weaving Software Architecture Models 107

<<SA Component>>

Air Extractor Control

<<Exceptional Component>>

Air Extractor Control

<<Normal Component>>

Air Extractor Control

<<SA Component>>

Air Extractor

<
<
S
A

C
h
a
n
n
e
l
>
>

I_AirExtractorFailure

<<delegate>>
 <<delegate>>

<<delegate>>

E_SwitchAirExtractorOn

E_SwitchAirExtractorOff
 E_AirExtractoFailure

I_SwitchAirExtractorOff

<<SA Component>>

Control Station

<<SA Component>>

Pump Control

<<SA Component>>

Mineral Extractor

Control

<<SA Component>>

Operator Interface

<<SA Channel>>

I_SwitchAirExtractorOn

{HasException=false}

{HasException=false}
 {HasException=false}

{HasException=false}

{HasException=true}

<<IC Port>>
<<IC Port>>
<<IC Port>>

{HasException=false}

<<Raiser Interface>>

<<Raiser Interface>>

<<Handler Interface>>

<<Handler Interface>>

<<Raiser Interface>>
 <<Handler Interface>>

<<Raiser Interface>>
 <<Raiser Interface>>

<<Raiser Interface>>

Figure 6.21: Air Extractor Control component with fault-tolerance information

services, exceptional responses correspond to errors detected into a component. Typically, ex-
ceptional responses are called exceptions. Therefore, it is natural to design not only the normal
behavior, but also the exceptional one. Similarly to the normal behavior, exceptional behaviors can
be elicited from requirements and modelled. In order to successfully model fault tolerant systems,
the basic features offered byDUAL LY are not enough.

Ideally components are composed of two different parts: normal and exceptional activities [104].
The normal part implements the component’s normal servicesand the exceptional part implements
the responses of the component to exceptional situations, by means of exception-handling tech-
niques. When the normal behavior of a component signals an exception, calledinternal exception,
its exception handling part is automatically invoked. If the exception is successfully handled the
component resumes its normal behavior, otherwise anexternal exceptionis signaled. External
exceptionsare signaled to the enclosing context when the component realizes that is not able to
provide the service.

Figure 6.19 shows the profile for the idealized components. TheSA componentis specialized in
the stereotype≪IC component≫ that contains the boolean tagHasExceptionthat is true if the
component have a description of the fault tolerant behaviour, false otherwise.IC Componentis
even specialized with the stereotypes≪NormalComponent≫ and≪ExceptionalComponent≫
describing the normal and the exceptional behavior respectively. Ports are specialized by the
stereotype≪IC Ports≫ in order to model communication ports for signaled exceptions. Finally
interfaces are used for the exceptions propagation from thenormal to the exceptional part special-
ized with the stereotypes≪HandlerInterface≫ and≪RaiserInterface≫ representing the handler
and the signaler respectively.

Figure 6.21 shows the result of the weaving, obtained applying the mega operators, inherit and
integrate, between theDUAL LY profile, depicted in Figure 6.17, and the idealized component
profile shown in Figure 6.19. As show in Figure 6.18 theIC Componentis “integrated” with the
SA component ofDUAL LY. Consequently the components in Figure 6.21 are SA components
extended with the tagHasExceptionand they can be specialized inNormalComponentandEx-
ceptionalComponent, as happens for theAir Extractor Controlcomponent. On the contrary the

108 Chapter 6. A4MT-based Model Weaving

inherit operator is used for interfaces and ports. In fact for exceptions propagation we want to
use ports and interfaces of the IC profile while for the classical communication between com-
ponents we want to use elements of theDUAL LY profile. Being more precise, the exceptions
I SwitchAirExtractorOff, I AirExtractorFailure, and I SwitchAirExtractorOnare internal excep-
tions signaled by the normal part (Raiser Interfaces). These exceptions are catched by the excep-
tional part (Handler Interfaces), which signals external exceptions in the case of the exceptional
component realizes that is not able to provide the service (Raiser Interfaces and IC Ports).

The subcomponentAir Extractor does not have exceptional behavior and then is modelled as
an extendedDUAL LY component, contained into the normal part of theAir Extractor Control
component.

6.3 CONCLUSIONS

The chapter proposed two applications of model weaving in combination with A4MT. The first
one experiments how the distinct concerns of a Web application can be better connected by means
of weaving models. The main idea consists of the specification of weaving operators to establish
relationships among the models that describe the various perspectives of the application being
developed. The execution of the operators is based on a semantics defined in term of model trans-
formations formally specified by means of A4MT. The operators could simply perform analysis
on the involved models or merge the distinct concerns, as pointed out above, according to the
defined relations. In this way, the different models are easily kept separated, enabling focused
changes to small portions of the specification, whereas exploiting name conventions even nar-
rowed modifications could require a wide inspection of the description in order to restore previous
links. Furthermore, expliciting relationships between concerns by means of models permits taking
advantages from current model–driven methods and technologies. For example, it is possible to
(re)use weaving models for validation and analysis purposes.

Weaving operations may be applied also at meta-model level.This is the case of the second appli-
cation shown in the chapter where two weaving operators wereproposed to support the extension
of a UML profile, calledDUAL LY, explicitly defined for software architecture modeling. In
particular, various communities require different information to be accommodated in a software
architecture model depending on the specific concern being observed. Over the years, either a
unique language for representing SAs, nor a unique fit between UML and ADLs is emerged. In
the chapterDUAL LY was proposed as an extendible UML-based ADL which permits bymeans
of model transformation techniques to widen existing UML notations to support different analysis
techniques.

CHAPTER 7

CONCLUSIONS

This work can be considered a contribution to the study of model transformation and weaving
operations that have constituted and continue to be an area of intense research. Both academia and
industry are putting their efforts giving place to a number of languages and approaches each with a
certain suitability for a specific set of problems. Chapter 2reports the main results that have been
achieved over the last years together with the basic definitions of model, meta-model, MDE, and
MDA.

Like for any software system, model transformations require a development process that permits
to manage their complexity. Nowadays, a number of model transformation languages can be used
to implement transformations that should be precisely specified in advance. Shifting the focus
from implementation to the problem of specifying the behaviour of model transformations in a
precise way, we recognize the need of having a high-level specification language capable to pro-
duce precise, formal and implementation independent transformations. The objective is provide
the transformation developers with the possibility to check their implementations (written in a
specific language like ATL, QVT, etc.) against an accurate and executable high-level model of
the transformation itself. A number of graph transformation approaches have been defined to deal
with these issues. Chapter 4 proposes A4MT, an alternative approach to the specification of model
transformations based on Abstract State Machines that havebeen used extensively in a number of
applications (as discussed in Chapter 3). Even though ASMs provide with a notation characterized
by a simple syntax that permits to write specifications that can be seen as “pseudocode over ab-
stract data”, the formalism is mathematically rigorous andrepresent a formal basis to analyze and
verify transformations. ASMs have been used also in VIATRA2for scheduling explicitly basic
graph transformation rules. This permitted to cope with thepossible lack of confluence and termi-
nation of transformations due to the usual fixpoint scheduling with concurrent application proper
of graph transformation approaches [34].

The suitability of A4MT for the specification of model transformations was presented throughout
the thesis. Chapter 4 shown how A4MT supports the specification of complex computations on
models like the calculation of transitive closures with respect to some relations. The chapter tried
to give strategies, best practices, design patterns for specifying transformation rules and discussed
how models could be navigated and queried by means of first order predicates instead of patterns
which are lacking in ASMs. Furthermore, A4MT was validated in different applicative domains.
It was used to support the model driven development of Web applications and the compositional
verification of middleware-based systems (see Chapter 5). With respect to the former application,
A4MT was able to specify complex transformations where there was the need to perform different
calculations on the models like for the generation of relational algebra expressions. In the latter,
property preserving transformations were implemented. Inthis case study, A4MT was used to

109

110 Chapter 7. Conclusions

specify transformations, in the context of middleware based software development, and to prove
that the target models which can be generated preserve some properties by construction.

A4MT was also used to specify the semantics of weaving operators. Taking into account the possi-
bility of using model weaving for setting fine-grained relationships between models or metamodels
and executing operations on them based on link semantics, inChapter 6 two different applications
were proposed. In a first one, the use of weaving models was introduced to support the model
driven development of Web applications. In particular, weaving models were used to specify for-
mal relations between different models produced during thedevelopment of Web applications. The
weaving models do not interfere with the definition of the views on either side, achieving a clear
separation of them and their connections. Furthermore, designers can gain a deeper understanding
about the explicit dependencies between the parts, and theyare able to recognise the consequences
of local changes to the whole system. In this context, A4MT was used to specify the semantics
of the used weaving operators enabling the automatic processing and manipulation of the related
models by means of the execution of operations based on the given link semantics. The proposed
weaving approach was used also at meta-model level. The coexistence and integration of different
analysis techniques at the architectural level is reduced to the problem of enriching multi-view
descriptions with proper UML elements. Weaving operators were defined for the integration of a
proposed UML profile (that captures core concepts for software architecture modeling) with the
constructs needed for performing specific analysis. The weaving operators were mathematically
specified through A4MT in order to perform the meta-model integration according to the seman-
tics of the proposed operators. All the applications of A4MTdiscussed in the thesis are completely
implemented and are available for download at [35].

Having set a foundation for the common use of Model Driven Engineering and Abstract State
Machines, this open several new paths of investigation. In particular, an ongoing activity aims at
developing a metamodeling and transformation tool based onthe proposed A4MT approach. The
objective is to provide with a metamodeling platform which mainly supports formal and imple-
mentation independent specifications of model transformations and weaving and the dynamic se-
mantics of a wide range of domain specific languages. Moreover, since we are going to have
a high number of such domain specific languages, another important research activity will in-
vestigate how to cope with the global organization between them. Having formal specifications
of models - like the one proposed in this work - could give the possibility to reason about how
various model-driven engineering artifacts interconnect, from models and metamodels to model
transformations and programs, to repository and modeling tools [115].

REFERENCES

[1] The ASM Michigan Webpage. http://www.eecs.umich.edu/gasm/.

[2] xArch. http://www.isr.uci.edu/architecture/xarch/. Proposed by the University of California,
Irvine.

[3] Acme. http://www-2.cs.cmu.edu/∼acme/, Since: 1998. Carnegie Mellon University.

[4] A. Agrawal, G. Karsai, Z. Kalmar, S. Neema, F. Shi, and A. Vizhanyo. The Design of a
Language for Model Transformations.Journal of Software and System Modeling, 2005.

[5] D. H. Akehurst and S. Kent. A Relational Approach to Defining Transformations in a
Metamodel. InProcs of the 5th Int. Conf. on The UML, pages 243–258. Springer-Verlag,
2002.

[6] M. Aksit, I. Kurtev, and J. Bézivin. Technological Spaces: an Initial Appraisal. Interna-
tional. Federated Conf. (DOA, ODBASE, CoopIS), IndustrialTrack, Los Angeles, 2002.

[7] D. Alur, J. Crupi, and D. Malks.Core J2EE Patterns. Sun Microsystems Press (Prentice
Hall), 2nd edition, 2003.

[8] M. Anlauff. XASM – An Extensible, Component-Based Abstract State Machines Lan-
guage. InAbstract State Machines: Theory and Applications, volume 1912 ofLNCS, pages
69–90. Springer-Verlag, 2000.

[9] M. Anlauff and P. Kutter. The XASM open source project, 2002. http://www.xasm.org.

[10] ATLAS Group. The Atlantic Zoo. http://www.eclipse.org/gmt/am3/ zoos/atlanticZoo/.

[11] J. A. Bergstra and C. A. Middelburg. Process algebra semantics of SDL. InProc. 2nd
Workshop on Algebra of Communicating Processes, 1995.

[12] J. Bézivin. On the Unification Power of Models.Jour. on Software and Systems Modeling
(SoSyM), 4(2):171–188, 2005.

[13] J. Bézivin, H. Brunelière, F. Jouault, and I. Kurtev.Model Engineering Support for Tool
Interoperability. InProcs of WiSME, Montego Bay, Jamaica, 2005.

[14] J. Bézivin and O. Gerbé. Towards a Precise Definition of the OMG/MDA Framework. In
Automated Software Engineering (ASE 2001), pages 273–282, Los Alamitos CA, 2001.
IEEE Computer Society.

[15] J. Bézivin and F. Jouault. Using ATL for Checking Models. InProceedings of the Interna-
tional Workshop on Graph and Model Transformation (GraMoT), Tallinn, Estonia, 2005.

[16] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Modeling in the Large and Modeling
in the Small. InModel Driven Architecture, European MDA Workshops: Foundations and
Applications, volume 3599 ofLNCS, pages 33–46. Springer, 2004.

112 REFERENCES

[17] J. Bézivin, F. Jouault, and P. Valduriez. On the Need for Megamodels. InProcs of the
OOPSLA/GPCE: Best Practices for Model-Driven Software Development workshop, 2004.

[18] J. Bézivin, B. Rumpe, S. Schürr, and L. Tratt. Model Transformation in Practice Workshop
Announcement, 2005. htt://sosym.dcs.kcl.ac.uk/events/mtip.

[19] J. Billington, S. Christensen, K. M. van Hee, E. Kindler, O. Kummer, L. Petrucci, R. Post,
C. Stehno, and M. Weber. The Petri Net Markup Language: Concepts, Technology, and
Tools. InICATPN, pages 483–505, 2003.

[20] E. Börger. The Origins and the Development of the ASM Method for High Level System
Design and Analysis.Jour. of Universal Computer Science, 8(1):2–74, 2002.

[21] E. Börger and J. Schmid. Composition and submachine concepts for sequential ASMs. In
P. Clote and H. Schwichtenberg, editors,Computer Science Logic, 14th Annual Conference
of the EACSL, Fischbachau, Germany, August 21-26, 2000, Proceedings, volume 1862 of
LNCS, pages 41–60. Springer, 2000.

[22] E. Börger and R. Stärk.Abstract State Machines - A Method for High-Level System Design
and Analysis. Springer-Verlag, 2003.

[23] C. Cachero, J. Gómez, A. Párraga, and O. Pastor. Conference Review System: A Case of
Study. InFirst Int. Workshop on Web-Oriented Software Technology, 2001.

[24] M. Caporuscio, D. Di Ruscio, P. Inverardi, P. Pelliccione, and A. Pierantonio. Engineering
MDA into Compositional Reasoning for Analyzing Middleware-Based Applications. In
EWSA 05, volume 3527 ofLNCS, pages 475–490. Springer-Verlag, 2005.

[25] M. Caporuscio, P. Inverardi, and P. Pelliccione. Compositional verification of middleware-
based software architecture descriptions. InProceedings of the International Conference
on Software Engineering (ICSE 2004), Edinburgh, 2004.

[26] G. D. Castillo.The ASM Workbench. A Tool Environment for Computer-Aided Analysis and
Validation of Abstract State Machine Models. PhD thesis, Universitat Paderborn, 2001.

[27] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Language (WebML): a Modeling
Language for Designing Web sites.Computer Networks, 33(1–6):137–157, 2000.

[28] S. Ceri, P. Fraternali, M. Matera, and A. Maurino. Designing Multi-Role, Collaborative
Web Sites with WebML: a Conference Management System Case Study. IWWOST, Valen-
cia, Spain, June 2001.

[29] K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson. Semantic Anchoring with Model
Transformations. InECMDA-FA, volume 3748 ofLNCS, pages 115–129. Springer-Verlag,
Oct 2005.

[30] P. Chen. The Entity-Relationship Model - Toward a Unified View of Data.ACM Transac-
tions on Database Systems, 1(1):9–36, 1976.

[31] A. Cicchetti, D. D. Ruscio, and R. Eramo. Towards Propagation of Changes by Model
Approximations. InIWMEC, EDOC 2006 Workshop, Hong Kong, 2006. to appear.

[32] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press, 2001.

REFERENCES 113

[33] J. Conallen. Modeling Web Application Architectures with UML. Comm. ACM, 42(10):63–
71, 1999.

[34] K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation Approaches.
IBM Systems J., 45(3), June 2006.

[35] D. Di Ruscio. A4MT-based Model Transformations, 2006.
http://www.di.univaq.it/diruscio/a4mt.php.

[36] J. de Lara and H. Vangheluwe. AToM3: A tool for multi-formalism and meta-modelling.
In R.-D. Kutsche and H. Weber, editors,FASE, volume 2306 ofLNCS, pages 174–188.
Springer, 2002.

[37] D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, and A. Pierantonio. Extending AMMA for
Supporting Dynamic Semantics Specifications of DSLs. Technical Report n. 06.02, Labora-
toire d’Informatique de Nantes-Atlantique (LINA), April 2006. Submitted for publication.

[38] D. Di Ruscio, H. Muccini, P. Pelliccione, and A. Pierantonio. Towards Weaving Soft-
ware Architecture Models. InMBD/MOMPES Workhops within the ECBS, pages 103–112.
IEEE, 2006.

[39] D. Di Ruscio, H. Muccini, and A. Pierantonio. A Data Modeling Approach to Web Appli-
cation Synthesis.Int. Jour. of Web Engineering and Technology, 1(3):320–337, 2004.

[40] D. Di Ruscio and A. Pierantonio. Model Transformationsin the Development of Data–
Intensive Web Applications. InCAISE ’05, volume 3520 ofLNCS, pages 475–490.
Springer-Verlag, 2005.

[41] Eclipse. Eclipse Modeling Framework (EMF), 2005. http://www.eclipse.org/emf.

[42] Eclipse. Generative Modeling Technologies (GMT) project, 2006.
http://www.eclipse.org/gmt/.

[43] Eclipse project. GMF - Graphical Modeling Framework. http:// www.eclipse.org/gmf/.

[44] W. Emmerich. Software engineering and middleware: a roadmap. InProceedings of the
conference on The future of Software engineering (ICSE 2000) - Future of SE Track, pages
117–129, Limerick, Ireland, 2000. ACM Press.

[45] Enterprise JavaBeans. http://java.sun.com/products/ejb/.

[46] J.-M. Favre. Towards a Basic Theory to Model Model Driven Engineering. WiSME 2004.

[47] S. Flake and W. Mueller. An ASM Definition of the Dynamic OCL 2.0 Semantics. In
T. Baar, A. Strohmeier, A. Moreira, and S. J. Mellor, editors, UML 2004, volume 3273 of
LNCS, pages 226–240. Springer-Verlag, 2004.

[48] M. R. Foundations of Software Engineering Group. AsmL.Web page, 2006.
http://research.microsoft.com/foundations/AsmL.

[49] F. Frasincar, G. Houben, and R. Vdovjak. Specification Framework for Engineering Adap-
tive Web Applications. WWW 2002.

[50] P. Fraternali. Tools and Approaches for Developing data-intensive Web Applications: A
Survey.ACM Computing Surveys, 31(3):227–263, 1999.

114 REFERENCES

[51] E. R. Gansner and S. C. North. An open graph visualization system and its applications to
software engineering.Software - Practice and Experience, 30(11):1203–1233, 2000.

[52] A. Gargantini and E. Riccobene. ASM-based testing: Coverage criteria and automatic test
sequence.Jour. of Universal Computer Science, 7(11):1050+, 2001.

[53] D. Garlan, S. Khersonsky, and J. S. Kim. Model Checking Publish/Subscribe Systems.
In Proceedings of The 10th International SPIN Workshop on Model Checking of Software
(SPIN 03), Portland, Oregon, May 2003.

[54] F. Garzotto, L. Baresi, and M. Maritati. W2000 as a MOF metamodel. InThe 6th World
Multiconf. on Systemics, Cybernetics and Informatics-WebEngineering track, 2002.

[55] S. P. G.E. Krasner. A cookbook for using the model-view controller user interface paradigm
in Smalltalk-80.Jour. of Object-Oriented Programming, 1(3):26–49, 1988.

[56] M. Gelfond and V. Lifschitz. The Stable Model Semanticsfor Logic Programming. In R. A.
Kowalski and K. Bowen, editors,Proceedings of the Fifth Int. Conf. on Logic Programming,
pages 1070–1080, Cambridge, Massachusetts, 1988. The MIT Press.

[57] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A.Wood. Transformation: The Missing
Link of MDA. In 1st International Conference on Graph Transformation.

[58] J. Gómez and C. Cachero. OO-H Method: extending UML to model web interfaces. pages
144–173, 2003. Idea Group Publishing.

[59] O. M. Group. OMG/Unified Modelling Language (UML) V1.4,2001.

[60] O. Grumberg and D. E. Long. Model Checking and Modular Verification.ACM Transaction
on Programming Languages and Systems, 16:846–872, 1994.

[61] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. pages 9–36, 1995.

[62] Y. Gurevich. The sequential ASM thesis.Bullettin of European Association for Theoretical
Computer Science, 67:93–124, 1999.

[63] J. H. Hausmann and S. Kent. Visualizing model mappings in UML. In Procs of the 2003
ACM Symposium on Software Visualization, pages 169–178. ACM Press, 2003.

[64] P. Inverardi, H. Muccini, and P. Pelliccione.DUAL LY: Putting in Synergy UML 2.0 and
ADLs. In 5th IEEE/IFIP Working Conference on Software Architecture(WICSA 2005).
Pittsburgh, PA, 6-9 November 2005.

[65] ITU-T Recommendation Z.120. Message Sequence Charts.ITU Telecommunication Stan-
dardisation Sector.

[66] Java Data Objects. http://java.sun.com/products/jdo/.

[67] J.Bradbury and J. Dingel. Evaluating and Improving theAutomatic Analysis of Implicit
Invocation Systems. InEuropean Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering. (ESEC/FSE 2003), Helsinki, Fin-
land, September 2003. ACM Press.

[68] C. B. Jones.Systematic Software Development Using VDM. International Series in Com-
puter Science. Prentice-Hall, Second edition, 1990.

REFERENCES 115

[69] F. Jouault and J. Bézivin. KM3: a DSL for Metamodel Specification. In FMOODS’06,
volume 4037 ofLNCS, pages 171–185. Springer-Verlag, 2006.

[70] F. Jouault and I. Kurtev. Transforming Models with ATL.In J.-M. Bruel, editor,MoDELS
Satellite Events, volume 3844 ofLNCS, pages 128–138. Springer-Verlag, 2005.

[71] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the Useof Graph Transformation
in the Formal Specification of Model Interpreters.Jour. of Universal Computer Science,
9(11):1296–1321, 2003.

[72] N. Kaveh and W. Emmerich. Validating distributed object and component designs. In
M. Bernardo and P. Inverardi, editors,Formal Methods for Software Architecture, volume
2804 ofLNCS, 2003.

[73] S. Kent. Model driven engineering. In M. J. Butler, L. Petre, and K. Sere, editors,Integrated
Formal Methods, Third International Conference, IFM, volume 2335 ofLNCS, pages 286–
298. Springer-Verlag, 2002.

[74] A. Kleppe and J. Warmer.MDA Explained. The Model Driven Architecture: Practice and
Promise. Addison-Wesley, 2003.

[75] N. Koch and A. Kraus. The expressive Power of UML-based Web Engineering. InIW-
WOST, volume 2548 ofLNCS, pages 105–119. Springer-Verlag, 2002.

[76] N. Koch and A. Kraus. Towards a Common Metamodel for the Development of Web Ap-
plications. InInternational Conference on Web Engineering (ICWE 2003), volume 2722 of
LNCS, pages 497–506. Springer-Verlag, 2003.

[77] I. Kurtev. Adaptability of Model Transformations. PhD thesis, University of Twente, 2005.
ISBN 90-365-2184-X.

[78] P. Kutter.Montages - Engineering of Computer Languages. PhD thesis, ETH-Zurich, 2004.

[79] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom,
J. Sprinkle, and P. Volgyesi. The Generic Modeling Environment. In Procs Workshop
on Intelligent Signal Processing, Budapest, Hungary, 17 May 2001. IEEE.

[80] D. Long.Model Checking, Abstraction and Compositional Reasoning. PhD thesis, Carnegie
Mellon University, 1993.

[81] M.Didonet Del Fabro, J. Bézivin, F. Jouault, and P. Valduriez. Applying Generic Model
Management to Data Mapping. In V. Benzaken, editor,Procs 21̀emes Jourńees Bases de
Donńees Avanćees, BDA 2005, Saint Malo, Actes, 2005.

[82] M.Didonet Del Fabro, J.Bezivin, F. Jouault, E. Breton,and G.Gueltas. AMW: A generic
Model Weaver. InInt. Conf. on Software Engineering Research and Practice (SERP05),
2005.

[83] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E.Robbins. Modeling Software
Architectures in the Unified Modeling Language.ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 11(1):2–57, January 2002.

116 REFERENCES

[84] N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework for Software
Architecture Description Languages.IEEE Transactions on Software Engineering, 26(1),
January 2000.

[85] S. J. Mellor, A. N. Clark, and T. Futagami. Guest Editors’ Introduction: Model-Driven
Development.IEEE Software, 20(5):14–18, 2003.

[86] S. Melnik, E. Rahm, and P. Bernstein. Rondo: a programming platform for generic model
management. InProcs Int. Conf. on Management of Data, pages 193–204. ACM Press,
2003.

[87] N. Moreno, P. Fraternalli, and A. Vallecillo. A UML 2.0 profile for WebML modeling. In
ICWE ’06: Workshop proceedings of the sixth International Conference on Web engineer-
ing, page 4, New York, NY, USA, 2006. ACM Press.

[88] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving Executability into Object-Oriented
Metalanguages. InACM/IEEE 8th International Conference on Model Driven Engineering
Languages and Systems, pages 264–278, Montego Bay, 2005.

[89] P.-A. Muller, P. Studer, and J. Bezivin. Platform independent web application modeling. In
UML 2003, volume 2863 ofLNCS, pages 220–233. Springer, 2003.

[90] A. V. N. Moreno. Using MDA for Designing and Implementing Web-based Applications.
In International Conference on Web Engineering (ICWE 2004), Munich, Germany, 2004.
Tutorial.

[91] OMG. Common Object Request Broker Architecture (CORBA/IIOP), v3.0.3. OMG docu-
ment formal/04-03-01.

[92] OMG. MOF Model to Text Transformation. OMG Document ad/05-05-04.pdf .

[93] OMG. MOF 2.0 Query/Views/Transformation RFP, 2002. OMG document ad/2002-04-10.

[94] OMG. XMI Specification, v1.2, 2002. OMG Document formal/02-01-01.

[95] OMG. MDA Guide version 1.0.1, 2003. OMG Document: omg/2003-06-01.

[96] OMG. Meta Object Facility (MOF) 2.0 Core Specification, OMG Document ptc/03-10-04.
http://www.omg.org/docs/ptc/03-10-04.pdf, 2003.

[97] OMG. MOF QVT Final Adopted Specification, 2005. OMG Adopted Specification ptc/05-
11-01.

[98] OMG. OCL 2.0 Specification, 2006. OMG Document formal/2006-05-01.

[99] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. InSIGSOFT
Software Engineering Notes, volume 17, pages 40–52, Oct. 1992.

[100] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, University of Aarhus, 1981.

[101] T. Reiter, E. Kapsammer, W. Retschitzegger, and W. Schwinger. Model Integration Through
Mega Operations. 2005. accepted for publication at the Workshop on Model-driven Web
Engineering (MDWE2005).

REFERENCES 117

[102] E. Riccobene and P. Scandurra. Towards an InterchangeLanguage for ASMs. In W. Zim-
mermann and B. Thalheim, editors,Abstract State Machines 2004. Advances in Theory and
Practice, 11th International Workshop, volume 3052 ofLNCS, pages 111–126. Springer,
2004.

[103] S. Roh, K. Kim, and T. Jeon. Architecture Modeling Language based on UML2.0. In
Proocedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04), 2004.

[104] C. M. F. Rubira, R. de Lemos, G. R. M. Ferreira, and F. C. Filho. Exception handling in
the development of dependable component-based systems.Softw. Pract. Exper., 35(3):195–
236, 2005.

[105] A. Schauerhuber, M. Wimmer, and E. Kapsammer. Bridging existing Web Modeling Lan-
guages to Model-Driven Engineering: A Metamodel for WebML.In 2nd International
Workshop on Model-Driven Web Engineering, Palo Alto, California, July 2006. to appear.

[106] J. Schmid. Executing ASM specifications with AsmGofer. http://www.tydo.de/AsmGofer.

[107] J. Schmid. Compiling Abstract State Machines to C++.Jour. of Universal Computer Sci-
ence, 7(11):1069–1088, 2001.

[108] D. Schwabe and G. Rossi. An object oriented approach toWeb-based applications design.
Theor. Pract. Object Syst., 4(4):207–225, 1998. John Wiley & Sons, Inc.

[109] E. Seidewitz. What Models Mean.IEEE Software, 20(5):26–32, Sept./Oct. 2003.

[110] B. Selic. The Pragmatics of Model-driven Development. IEEE Software, 20(5):19–25,
2003.

[111] M. Shaw and D. Garlan.Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Englewood Cliffs, 1996.

[112] G. Smith. The Object-Z specification language. Kluwer Academic Publishers, Norwell,
MA, USA, 2000.

[113] R. Stärk, J. Schmid, and E. Börger.Java and the Java Virtual Machine: Definition, Verifi-
cation, Validation. Springer-Verlag, 2001.

[114] R. F. Stärk and S. Nanchen. A logic for Abstract State Machines. Jour. of Universal
Computer Science, 7(11):981–1006, 2001.

[115] J. Steel and J.-M. Jézéquel. Model Typing for Improving Reuse in Model-Driven Engi-
neering. InModel Driven Engineering Languages and Systems (MoDELS), volume 3713
of LNCS, pages 84–96. Springer-Verlag, Oct. 2005.

[116] G. Taentzer. AGG: A graph transformation environmentfor modeling and validation of
software. In J. L. Pfaltz, M. Nagl, and B. Böhlen, editors,AGTIVE, volume 3062 ofLNCS,
pages 446–453. Springer, 2003.

[117] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U. Prange,
D. Varró, and S. Varró-Gyapay. Model Transformation by Graph Transformation: A Com-
parative Study. InACM/IEEE 8th International Conference on Model Driven Engineering
Languages and Systems, Montego Bay, Jamaica, Oct. 2005.

118 REFERENCES

[118] J.-P. Tolvanen and S. Kelly. Defining Domain-Specific Modeling Languages to Automate
Product Derivation: Collected Experiences. InSPLC, volume 3714 ofLNCS, pages 198–
209. Springer-Verlag, Oct. 2005.

[119] L. Tratt. Model transformations and tool integration. Jour. on Software and Systems Mod-
eling (SoSyM), 4(2):112–122, May 2005.

[120] D. Varró. Automated Model Transformations for the Analysis of IT Systems. PhD the-
sis, Budapest University of Technology and Economics, Department of Measurement and
Information Systems, 2004.

[121] D. Varró and A. Pataricza. Generic and Meta-Transformations for Model Transformation
Engineering. InInternational Conference on the Unified Modeling Language, pages 290–
304, 2004.

[122] D. Varró, G. Varró, and A. Pataricza. Designing the automatic transformation of visual
languages.Science of Computer Programming, 44(2):205–227, Aug. 2002.

[123] D. Vojtisek and J.-M. Jézéquel. MTL and Umlaut NG: Engine and Framework for Model
Transformation. http://www.ercim.org/publication/Ercim News/enw58/vojtisek.html.

[124] Web Models. WebRatio Tool. http://www.webratio.com.

[125] K. Winter. Model checking Abstract State Machines. PhD thesis, Technical Universisty
Berlin, 2001.

[126] J. Woodcock and J. Davies.Using Z. Specification, Refinement, and Proof. Prentice Hall,
London, 1995.

[127] World Wide Web Consortium (W3C). Web Ontology Language (OWL).
http://www.w3.org/2004/OWL.

[128] Xactium. Xmf-mosaic. http://xactium.com.

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Outline of the Thesis
	List of Publications
	Funding Acknowledgements

	Basic Concepts
	Model Driven Engineering
	Models and Meta-models
	Model Transformations
	Classification
	Languages

	Model Weaving
	Conclusions

	Abstract State Machines (ASMs)
	Overview
	Mathematical definition of ASMs
	Vocabulary and states of ASMs
	Terms, variable assignment and formulae
	Transition rules, consistent updates, firing of updates

	The XASM Specification Language
	Conclusions

	ASMs for Model Transformation Specification (A4MT)
	Overview
	Model and Metamodel encoding
	Model Transformation Rules
	A4MT in the context of MOF 2.0 QVT RFP
	Comparing A4MT with other Approaches
	Conclusions

	A4MT Benchmark
	A4MT for Model Driven Development of Web Applications
	Webile
	Describing PSMs
	Model Transformations

	A4MT for Middleware Based System Development
	Compositional Verification of Middleware-based SA
	Proxy Generation
	Property Preserving Transformations

	Giving Dynamic Semantics to DSLs through ASMs
	Domain-Specific Languages and Models
	DSL Dynamic Semantics Specification with ASMs
	The AMMA Framework
	Extending AMMA with ASMs
	Dynamic Semantics of ATL

	Conclusions

	A4MT-based Model Weaving
	Weaving Concerns of Web Applications
	Dealing with Web Application Concerns
	Concern Specifications
	Weaving Specification
	Target Model Generations

	Weaving Software Architecture Models
	Modeling Software Architectures
	Dually profile
	Extending Dually
	Using Dually for Designing Fault-tolerant systems

	Conclusions

	Conclusions
	References

