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Overview 

1. Find out why software engineering is important 

■ see some software engineering failures 

2. Get acquainted with – 

■ the Chair of Software Engineering 

■ the research 

■ the people 

■ the teaching 

Towards Multi-level  

Aware Model  

Transformations 

Colin Atkinson, Ralph Gerbig and Christian Tunjic 
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Agenda 

■ Motivation & Target 

■ Differences between Multi-level and OMG/UML Infrastructure (2-level 

Modeling) based modeling 

■ Multi-level Aware Transformations 

■ Case Study 
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■ Model transformations are a central topic in model-driven 

development 

■ e.g. exchange of  models between tools, refactoring 

 

 

 

 

■ Interoperability between Multi-level modeling tools and OMG/UML 

infrastructure based tools 

Motivation 
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■ Support model transformations for multi-level modeling 

■ Gain interoperability with existing model-driven tools 

■ Do not reinvent the wheel 

■ Keep learning curve for new users low 

 

Extend an existing transformation technology with support 

for multi-level modeling 

Target 



5 

Software Engineering 

Prof. Dr. Colin Atkinson 5 

Agenda 

■ Motivation & Target 

■ Differences between Multi-level and OMG/UML Infrastructure (2-

level) based modeling 

■ Multi-level Aware Transformations 

■ Case Study 
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Multi-level Modeling 

■ Arbitrary number of classification levels 

■ Ontological and linguistic classification 

■ Traits and Attributes 

■ Clabject 

■ Potency 
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OMG/UML Infrastructure(2-level Modeling) 

■ Limited to two levels available at one time (thus here called 2-level 

models) 

 

 

 

 

 

■ One classification dimension 

Meta-Meta-Model 

Meta-Model 

M3 (fixed) 
M2 (soft) 

Meta-Model 

Model 

M2 (fixed) 
M1 (soft) 

Language Definition Model Creation 

EClass 
M3 

M2 

M1 

Breed 

Collie 

Linguistic Classification 

Ontological Classification 
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Impact of differences 

■ Ontological and linguistic classification vs. 1 classification dimension 

 Extend language to support navigation between 

ontological and linguistic classification  

 

 

 

■ Arbitrary number of levels vs. fixed number of levels 

Handle an arbitrary number of levels during definition and 

execution of a transformation 
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Agenda 

■ Motivation & Target 

■ Differences between Multi-level and OMG/UML Infrastructure (2-

level) based modeling 

■ Multi-level Aware Transformations 

■ Case Study 
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■ Definition of rules on linguistic and ontological dimension 

Handling Ont. and Ling. Classification 

rule Collie2Class { 
  from s : PLM!"O1::Collie" 
  to t : UML!Class  
    (name <- s._l_.name )  
} 

rule Clabject2Class { 
  from s : PLM!Clabject 
  to t : UML!Class  
    (name <- s._l_.name )  
} 
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■ Multi-level awareness 

■ What to transform when defining rule on Breed? 

 

 

 

 

■ Currently the instances at the deepest level are translated 

■ “Potency” for rules needed?  Further research 

Handling Multiple Model Levels 

rule ComponentClass2Class { 
  from s : PLM!"O1::Breed*" 
  to t : UML!Class  
    (name <- s._l_.name )  
} 
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Multi-level aware ATL 

■ Motivations for using ATL 

■ Good extensibility through adapter concept 

■ Widely spread thus low learning curve for new useres 

■ We have a tool making heavy use of ATL 

■ Target stepwise migration from 2-level to multi-level models 

■ Features of ATL Adapter implementation 

■ Syntax extension to support ontological and linguistic 

classification 

■ Support for all three modes of transformations 

■ 2-level to *-level, *-level to 2-level, *-level to *-level 

■ Limitation(?): Instances at the lowest ontological-level are 

translated at the moment only 

■ Available at http://eclipselabs.org/p/melanie  

 

http://eclipselabs.org/p/melanie
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Implementing Multi-level aware ATL  

■ ASMPLMModel, AtlPLMModelHandler and ASMPLMModelElement 

are extensions of the respective EMF-Adapter classes 

■ ASMPLMModel: Definition of rules on linguistic and ontological 

model elements 

■ ASMPLMModelElement: Access to linguistic and ontological 

attributes of model elements 

■ AtlPLMModelHandler: Loading of AMSPLMModels 
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Agenda 

■ Motivation & Target 

■ Differences between Multi-level and OMG/UML Infrastructure (2-

level) based modeling 

■ Multi-level Aware Transformations 

■ Case Study 
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■ Eclipse plug-in (Naomi) to support Orthographic Software Modeling 

with the KobrA approach 

■ Developed by Christian Tunjic (tunjic@informatik.uni-mannheim.de) 

■ Available at http://eclipselabs.org/p/naomi 

■ Licensed under Eclipse Public License (EPL) version 1.0  

■ Heavy use of “2-level to *-level” and “*-level to 2-level” 

transformations 

■ Transformations available at 

http://svn.codespot.com/a/eclipselabs.org/naomi  

Case Study: Making Naomi Multi-level 

http://eclipselabs.org/p/naomi
http://svn.codespot.com/a/eclipselabs.org/naomi
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A Simple View-Based "Modeling" Metaphor 

■ Other engineering disciplines have a long and successful 

tradition of technical drawing 

■ Orthographic projection 

 

 

 

 

 

 

 

 

 

 

 

 

■ So why don't we do this in software engineering? 
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Java source UML classes 

Behavior 

code 
RegEx 

test 
cases XMI 

AFD 

OpSpec 

system 

Traditional View-based Environment 
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Java source UML classes 

Behavior 

Single Underlying Model (SUM) 

On-Demand View Generation 
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Naomi 
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Naomi – Video Demo 

video/ICMT2012.mp4
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OSM – Example Transformation 

■ Transformation (excerpt) from View to Single Underlying Model (SUM): 
 

create OUT : UML from IN : PLM; 

helper context PLM!"O0::Acquires" def : createName:String = 
'From' + self._o_.source._l_.name + 'To' + 
self._o_.target._l_.name; 

 

rule ComponentClass2Class { 

  from s : PLM!"O0::ComponentClass" 

  to t : UML!Class (name <- s._l_.name )  

  do { 

      thisModule.umlModel.packagedElement <-            
thisModule.umlModel.packagedElement->append(t);  

   }    

} 
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Conclusions 

■ Multi-level transformations are an important part for making multi-level 

modeling more usable 

■ First steps.. 

■ Linguistic vs. Ontological classification 

■ Ontology aware naming scheme 

■ Running prototype 

■ Natural extensions are .. 

■ to specify Potency of rules 

■ Extension of ATL’s multi-level aware OCL part 

■ Extension to the ATL editor to support editing of mulit-level transformations 

■ Ultimate goal is a language that does.. 

■ Transformations, Rules, Enquiries, Actions, and Constraints  

■ TREACLE 
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Thank You! 

 


