
1

Software Engineering

Prof. Dr. Colin Atkinson 1

Overview

1. Find out why software engineering is important

■ see some software engineering failures

2. Get acquainted with –

■ the Chair of Software Engineering

■ the research

■ the people

■ the teaching

Towards Multi-level

Aware Model

Transformations

Colin Atkinson, Ralph Gerbig and Christian Tunjic

2

Software Engineering

Prof. Dr. Colin Atkinson 2

Agenda

■ Motivation & Target

■ Differences between Multi-level and OMG/UML Infrastructure (2-level

Modeling) based modeling

■ Multi-level Aware Transformations

■ Case Study

3

Software Engineering

Prof. Dr. Colin Atkinson 3

■ Model transformations are a central topic in model-driven

development

■ e.g. exchange of models between tools, refactoring

■ Interoperability between Multi-level modeling tools and OMG/UML

infrastructure based tools

Motivation

4

Software Engineering

Prof. Dr. Colin Atkinson 4

■ Support model transformations for multi-level modeling

■ Gain interoperability with existing model-driven tools

■ Do not reinvent the wheel

■ Keep learning curve for new users low

Extend an existing transformation technology with support

for multi-level modeling

Target

5

Software Engineering

Prof. Dr. Colin Atkinson 5

Agenda

■ Motivation & Target

■ Differences between Multi-level and OMG/UML Infrastructure (2-

level) based modeling

■ Multi-level Aware Transformations

■ Case Study

6

Software Engineering

Prof. Dr. Colin Atkinson 6

Multi-level Modeling

■ Arbitrary number of classification levels

■ Ontological and linguistic classification

■ Traits and Attributes

■ Clabject

■ Potency

7

Software Engineering

Prof. Dr. Colin Atkinson 7

OMG/UML Infrastructure(2-level Modeling)

■ Limited to two levels available at one time (thus here called 2-level

models)

■ One classification dimension

Meta-Meta-Model

Meta-Model

M3 (fixed)
M2 (soft)

Meta-Model

Model

M2 (fixed)
M1 (soft)

Language Definition Model Creation

EClass
M3

M2

M1

Breed

Collie

Linguistic Classification

Ontological Classification

8

Software Engineering

Prof. Dr. Colin Atkinson 8

Impact of differences

■ Ontological and linguistic classification vs. 1 classification dimension

 Extend language to support navigation between

ontological and linguistic classification

■ Arbitrary number of levels vs. fixed number of levels

Handle an arbitrary number of levels during definition and

execution of a transformation

9

Software Engineering

Prof. Dr. Colin Atkinson 9

Agenda

■ Motivation & Target

■ Differences between Multi-level and OMG/UML Infrastructure (2-

level) based modeling

■ Multi-level Aware Transformations

■ Case Study

10

Software Engineering

Prof. Dr. Colin Atkinson 10

■ Definition of rules on linguistic and ontological dimension

Handling Ont. and Ling. Classification

rule Collie2Class {
 from s : PLM!"O1::Collie"
 to t : UML!Class
 (name <- s._l_.name)
}

rule Clabject2Class {
 from s : PLM!Clabject
 to t : UML!Class
 (name <- s._l_.name)
}

11

Software Engineering

Prof. Dr. Colin Atkinson 11

■ Multi-level awareness

■ What to transform when defining rule on Breed?

■ Currently the instances at the deepest level are translated

■ “Potency” for rules needed?  Further research

Handling Multiple Model Levels

rule ComponentClass2Class {
 from s : PLM!"O1::Breed*"
 to t : UML!Class
 (name <- s._l_.name)
}

12

Software Engineering

Prof. Dr. Colin Atkinson 12

Multi-level aware ATL

■ Motivations for using ATL

■ Good extensibility through adapter concept

■ Widely spread thus low learning curve for new useres

■ We have a tool making heavy use of ATL

■ Target stepwise migration from 2-level to multi-level models

■ Features of ATL Adapter implementation

■ Syntax extension to support ontological and linguistic

classification

■ Support for all three modes of transformations

■ 2-level to *-level, *-level to 2-level, *-level to *-level

■ Limitation(?): Instances at the lowest ontological-level are

translated at the moment only

■ Available at http://eclipselabs.org/p/melanie

http://eclipselabs.org/p/melanie

13

Software Engineering

Prof. Dr. Colin Atkinson 13

Implementing Multi-level aware ATL

■ ASMPLMModel, AtlPLMModelHandler and ASMPLMModelElement

are extensions of the respective EMF-Adapter classes

■ ASMPLMModel: Definition of rules on linguistic and ontological

model elements

■ ASMPLMModelElement: Access to linguistic and ontological

attributes of model elements

■ AtlPLMModelHandler: Loading of AMSPLMModels

14

Software Engineering

Prof. Dr. Colin Atkinson 14

Agenda

■ Motivation & Target

■ Differences between Multi-level and OMG/UML Infrastructure (2-

level) based modeling

■ Multi-level Aware Transformations

■ Case Study

15

Software Engineering

Prof. Dr. Colin Atkinson 15

■ Eclipse plug-in (Naomi) to support Orthographic Software Modeling

with the KobrA approach

■ Developed by Christian Tunjic (tunjic@informatik.uni-mannheim.de)

■ Available at http://eclipselabs.org/p/naomi

■ Licensed under Eclipse Public License (EPL) version 1.0

■ Heavy use of “2-level to *-level” and “*-level to 2-level”

transformations

■ Transformations available at

http://svn.codespot.com/a/eclipselabs.org/naomi

Case Study: Making Naomi Multi-level

http://eclipselabs.org/p/naomi
http://svn.codespot.com/a/eclipselabs.org/naomi

16

Software Engineering

Prof. Dr. Colin Atkinson 16

A Simple View-Based "Modeling" Metaphor

■ Other engineering disciplines have a long and successful

tradition of technical drawing

■ Orthographic projection

■ So why don't we do this in software engineering?

17

Software Engineering

Prof. Dr. Colin Atkinson 17

Java source UML classes

Behavior

code
RegEx

test
cases XMI

AFD

OpSpec

system

Traditional View-based Environment

18

Software Engineering

Prof. Dr. Colin Atkinson 18

Java source UML classes

Behavior

Single Underlying Model (SUM)

On-Demand View Generation

19

Software Engineering

Prof. Dr. Colin Atkinson 19

Naomi

20

Software Engineering

Prof. Dr. Colin Atkinson 20

Naomi – Video Demo

video/ICMT2012.mp4

21

Software Engineering

Prof. Dr. Colin Atkinson 21

OSM – Example Transformation

■ Transformation (excerpt) from View to Single Underlying Model (SUM):

create OUT : UML from IN : PLM;

helper context PLM!"O0::Acquires" def : createName:String =
'From' + self._o_.source._l_.name + 'To' +
self._o_.target._l_.name;

rule ComponentClass2Class {

 from s : PLM!"O0::ComponentClass"

 to t : UML!Class (name <- s._l_.name)

 do {

 thisModule.umlModel.packagedElement <-
thisModule.umlModel.packagedElement->append(t);

 }

}

22

Software Engineering

Prof. Dr. Colin Atkinson 22

Conclusions

■ Multi-level transformations are an important part for making multi-level

modeling more usable

■ First steps..

■ Linguistic vs. Ontological classification

■ Ontology aware naming scheme

■ Running prototype

■ Natural extensions are ..

■ to specify Potency of rules

■ Extension of ATL’s multi-level aware OCL part

■ Extension to the ATL editor to support editing of mulit-level transformations

■ Ultimate goal is a language that does..

■ Transformations, Rules, Enquiries, Actions, and Constraints

■ TREACLE

23

Software Engineering

Prof. Dr. Colin Atkinson 23

Thank You!

