
Towards Tool Support For Agile Modeling: Sketching
Equals Modeling

Thomas Buchmann
Chair of Applied Computer Science I, University of Bayreuth

Bayreuth, Germany
thomas.buchmann@uni-bayreuth.de

ABSTRACT
Model-driven development is a well-known practice in modern soft-
ware engineering. A wide variety of different tools exist, which
support model-driven development. Usually, these tools do not pro-
vide dedicated support for agile modeling, as they can be used with
any development process. In this paper, we present an extension
to our UML-based modeling tool Valkyrie which allows free-hand
diagram sketching. Thus, it addresses agile modeling as white-
boards and papers can now be replaced with tablet computers or
other touch-enabled (hand-held) devices.

Categories and Subject Descriptors
D.2.8 [Software]: Software Engineering—model-driven develop-
ment, agile modeling, eclipse, android, sketching

General Terms
Model-driven software engineering

1. INTRODUCTION
Model-driven software engineering is a discipline which evolved
during the last decade. A wide variety of different tools exist, which
support the modeler during the development process. Since model-
driven software development is not tied to a special software de-
velopment methodology, these tools usually can be used with any
development process.

Agile model driven development (AMDD) [1] applies commonly
known principles and practices from traditional source code based
agile software development to model-driven development. In his
book [2], Scott W. Ambler states, that agile modeling (AM) asks
to use the simplest tools possible (e.g. papers and whiteboards).
Complex modeling tools should only be used, when they provide
the best value possible.

However, sketches drawn on papers or whiteboards have to be dis-
tributed to all involved team members, e.g. by scanning or pho-
tographing the result. This raises several problems. While in source
code based approaches, where diagrams are only used for docu-

mentation purposes, a photograph of a whiteboard sketch might be
enough, model-driven approaches demand for models as first class
entities. Thus, every diagram that has been sketched on a white-
board or on a piece of paper has to be redone in the respective
modeling tool, which results in an additional overhead. Further-
more, sketches on whiteboards or papers are often missing some
essential details like role names or cardinalities of associations for
example. Usually these errors are fixed at a later time, when the
sketch is redone with the respective modeling tool.

On the other hand, we observe an increasing popularity of touch-
enabled devices. Smartphones nowadays have even more process-
ing power than desktop computers had a few years ago. Modern
devices are also equipped with HDMI video output and can there-
fore be easily attached to big TV screens or beamers. This moti-
vated us to add sketching capabilities to our UML-based modeling
environment called Valkyrie [5]. This approach provides several
advantages: (1) a device running our tool might replace papers or
whiteboards in agile modeling processes as sketches directly result
in corresponding model instances. No manual redrawing of white-
board sketches in a modeling tool is required. (2) Since the tool
follows common UML standards, inconsistencies like missing role
names or cardinalities are immediately reported to the user and thus
can be fixed right away.

The paper is structured as follows: Section 2 gives a detailed over-
view about our Valkyrie environment and also addresses the free-
hand drawing support as well as our work on porting the approach
to Android devices. Related work is discussed in section 3 while
section 4 concludes the paper.

2. TOOL SUPPORT
2.1 Overview
In this section, we give a brief conceptual overview about our UML
modeling tool Valkyrie and how it is designed. Furthermore, we de-
scribe the model-driven tools and frameworks that were used dur-
ing the development process.

Figure 1 shows an overview about the diagrams currently supported
by Valkyrie and their usage in the different phases of the software
engineering process. Use case diagrams and activity diagrams are
used during requirements engineering. In that case, activity dia-
grams serve as a formalism to further detail single use cases. Anal-
ysis and design is supported through package diagrams, class dia-
grams, object diagrams, activity diagrams and statecharts respec-
tively. Furthermore, we are currently working on a support for
UML Action Language Foundation (ALF) [14]. ALF will be used
in Valkyrie to specify the behavior of operations defined in the class



Requirements 
Elicitation

Analysis & Design

Source Code

Use Case 
Diagrams

Activity Diagrams

Package Diagram

Class Diagrams

Activity 
Diagrams

State
Charts

Application CodeTest Cases

ALF

Refinement

Update

Code Generation

already supported

planned

Reverse Engineering

Refactoring

Object 
Diagrams

Figure 1: Valkyrie’s diagrams and relations.

diagram. Furthermore, classes may be refined by statecharts defin-
ing a protocol state machine. In that case, the statechart defines
valid states of a class. The transitions defined in the statechart can
be called from operation implementations.

Valkyrie itself has been developed in a highly model-driven way.
Figure 2 depicts the architecture of Valkyrie. Using the Eclipse
UML2 metamodel [10] (which is based on EMF [17]) offers the
following advantages:

Integration A tight integration into the Eclipse platform

Data exchange The semantic model can be exchanged easily be-
tween different UML diagram editors (e.g. Topcased, UML
Lab, Valkyrie, etc.)

Focus on concrete syntax Tool developers can focus on concrete
syntax development since abstract syntax and model valida-
tion is provided by the Eclipse UML2 project.

Model-driven The Eclipse community offers a broad spectrum of
model-driven tools which are based on the Ecore metamodel.
These tools were used heavily when developing Valkyrie.

During the development of Valkyrie, model-driven frameworks were
used for the following tasks:

Concrete syntax development The diagram editors were imple-
mented with the help of GMF [11]. Manual extension of the
generated code was required in some places.

Model-to-model transformations We use ATL [12] model-to-model
transformations for several purposes: (1) refactoring of class
diagrams, (2) deriving the platform-specific model which is
the basis for the code generation and (3) in our reverse engi-
neering mechanism.

Model-to-text transformations To generate code out of UML class
diagrams and statecharts, we use Acceleo. The Eclipse M2T
(model-to-text) project offers three different frameworks for
this purpose. JET, XPand and Acceleo. We chose Acceleo,
because it is based on an official standard: MOFM2T [13].

Text-to-model transformations To support software moderniza-
tion projects for legacy systems, we added reverse engineer-
ing capabilities to Valkyrie. We use MoDisco [4] and its ca-
pabilities to discover a Java model from existing Java source

code. Using an ATL transformation, the discovered Java
model is transformed into an UML model for further edit-
ing with Valkyrie.

Valkyrie provides extensive support for modeling-in-the large as
described in our previous work [6]. To the best of our knowledge,
there is no other tool, which supports modeling-in-the-large to that
extent. Due to space restrictions, the reader is referred to our article
[6] for a detailed explanation of how we realized modeling-in-the-
large with Valkyrie. Furthermore, Valkyrie’s code generation puts
special emphasis on handling associations. Associations, as spec-
ified in the UML superstructure [15], require at least two member
ends. In case of navigable ends, these ends may be either owned by
the opposite classifiers or the association. Navigability and own-
ership affect the generated code. Thus, our code generator does
not only create properties with the respective type and cardinality,
it also provides a set of accessor methods to allow easy access to
associations. In case of bi-directional navigability, the source code
contains mechanisms to ensure the referential integrity of model
instances at runtime. If the association ends are owned by the in-
volved classifiers, the code mentioned above is generated into the
respective Java classes. Otherwise, a separate Java class for the
association is created.

2.2 Sketching support
Sketch1 is an Eclipse project, which addresses the integration of
freehand drawing capabilities into GEF (Graphical Editing Frame-
work)2 based editors. In their paper [16] Sangiorgi and Barbosa de-
pict their approach realized in that framework. They implemented
a sketch recognition algorithm based on Levenshtein’s distance al-
gorithm for string comparison [9]. Point lists storing directions are
used as a basis for sketch recognition in this approach.

A training interface allows end users to add sketches to shapes
based on a 1:1 mapping. In its current state, Sketch is able to inter-
pret different shapes and map it to pre-assigned model elements.

As stated in section 2.1, Valkyrie’s diagram editors have been gen-
erated with the help of GMF (Graphical Modeling Framework). In-
ternally, GMF is based upon GEF (Graphical Editing Framework).
As a consequence, the Sketch library can also be used with GMF-
based editors. Nevertheless, in order to make Sketch work together
with our Valkyrie environment, several adoptions and extensions to
the Sketch library were required.

An issue of the Sketch library is the handling of connections. In
contrast to the handling of shapes which is supported by the li-
brary, it is only possible to detect a connection between two edit
parts (in case the first and the last point of the resulting point list
lies upon an edit part). A notification is sent to the diagram editor,
that a connection between two edit parts has been created. Since
commonly not only one type of connection exists between nodes
in a diagram (just think of associations and inheritance relation-
ships between classifiers in a class diagram), we had to extend the
library to support different types of connections and especially, to
recognize them and send notifications to associated diagram editors
accordingly.

Furthermore, we added a mechanism which allows the 1:n mapping
of shapes to diagram elements which is fully configurable by the
1http://www.eclipse.org/sketch/
2http://www.eclipse.org/gef



Eclipse Modeling Framework (EMF)

Graphical 
Modeling 

Framework (GMF)
Acceleo (M2T) ATL (M2M)

Eclipse 
UML2 
Meta-
model

Valkyrie

Diagram Editors Code Generation
Refactoring, 
PIM -> PSM

instance of

works 
on

based on based on based on

based on based on based on

MoDisco

Reverse 
Engineering

based on

based on

Figure 2: Architecture and used frameworks.

1 2

3

Figure 3: Valkyrie with sketching capabilities.

user. For example, a square can be mapped to classes or interfaces
in the class diagram editor as well as to packages in the package di-
agram editor or states in the state machine editor. Sketch’s training
interface can be used to add new shapes and our mapping support
allows the user to map these shapes to different diagram elements
in the respective editors. E.g. in terms of connections between
shapes, the user could assign solid connections to associations and
dashed connections to generalizations and interface realizations re-
spectively. In its current state, the sketch extension has been inte-
grated into the class diagram editor of Valkyrie. We are currently
working on the integration into the other diagram editors.

Figure 3 shows screenshots of our Valkyrie class diagram editor
in sketching mode. It runs on a Samsung XE700T tablet pc run-

ning Windows 7. The tablet pc allows pen input. Entering a new
class with the corresponding class sketch is shown in (1). After the
sketch has been recognized, the corresponding diagram element is
automatically inserted at the corresponding location in the diagram.
(2) depicts how an association between two classes is established
by drawing a solid line. Again, after the sketch has been recognized
and source and target of the connection has been determined, the
appropriate editor command is issued to add an association between
the respective classes to the diagram. The final result is shown in
(3). Furthermore, our tool is also able to recognize sketches to
delete model elements and to add child elements to their contain-
ers, e.g. adding properties and operations to classes (not shown in
Figure 3).



1 2

3

Figure 4: Android app.

2.3 Support for Android devices
We tried to port our successful approach described in section 2.2 to
the Android world, as those devices become more and more popu-
lar. Usually they are also equipped with powerful multi-core CPUs
which promises enough power to run complex applications. Un-
fortunately, there is no Eclipse distribution for Android systems at
the moment. Therefore, we decided to write an application from
scratch which provides sketching support for UML diagrams and
which is able to persist the sketched models in an XMI file that can
be used with our Valkyrie environment for further editing. At the
moment, our app is restricted to class diagrams only.

For a seamless integration into the Valkyrie environment, we de-
cided to use EMF and the Eclipse UML2 metamodel also in our
Android app. As stated above, there is no Eclipse distribution for
Android and also there is no port of EMF to this platform. After
some efforts, we managed to get both the Eclipse Modeling Frame-
work (EMF) and the Eclipse UML2 metamodel running within our
app. Thus, when sketching a class diagram, corresponding model
instances are created accordingly and they are persisted in XMI au-
tomatically.

In terms of gesture recognition, the Android platform offers broad
support. It provides an app called “Gesture Builder” which allows
to record new gestures. The file produced by this app can be im-
ported and reused by own apps. Furthermore, Android provides a
GestureOverlayView which can be used in own activities and allows
for automatic gesture recognition. After a gesture was performed
on a GestureOverlayView, events are fired indicating the name of
the gesture that has been recognized. Enriching an app with gesture
support is relatively straightforward. The Android SDK documen-
tation recommends to use the GesturePerformedListener which is
invoked as soon as the gesture is completed. Unfortunately, only
one direction (horizontally or vertically) can be used for gestures

when using this listener, as it always assumes the other direction
for scrolling purposes. Furthermore, selecting diagram elements
was not possible with this listener, as it gets invoked only after a
gesture is completed and recognized correctly. Selecting an ele-
ment is a touch event only which is not reported. Thus, we decided
to use OnGestureListener which provides dedicated callback meth-
ods for events that may occur during a gesture.

In its current state, our app allows the developer to add and re-
move classifiers to a class diagram and to interconnect them with
generalization and interface realizations as well as associations re-
spectively. Furthermore, it enables the modeler to add and remove
attributes and operations to classifiers. All elements can be selected
and moved within the diagram. To specify the respective names of
model elements, we exploited Android’s voice recognition capa-
bilities enabling the user to assign names to classifiers, attributes,
operations, associations and association ends.

The screenshots in Figure 4 demonstrate the use of our Android app
supporting freehand drawing of class diagrams. It is run on a Asus
EEE Pad Transformer. Entering a new class with the correspond-
ing gesture is shown in (1). Once the gesture has been recognized,
the corresponding diagram element is created and inserted at the
proper location in the diagram. (2) depicts how an association be-
tween two classes is established by a solid line. The final result
is shown in (3). Our app also provides special gestures to delete
model elements or to add properties and operations to classes and
interfaces respectively (not shown in Figure 4).

3. RELATED WORK
Since any UML-based modeling tool also supports agile model-
ing as the UML is not bound to a specific development process,
we focus our comparison in this section to tools that explicitly ad-
dress agile modeling in their tool description. For a comparison of



Valkyrie and other UML modeling tools, the reader is referred to
[5].

3.1 Agilian
Agilian3 is an industry-standard tool which promises to support
agile software development with UML, BPMN, ERD, DFD and
mind map. It provides mouse gestures to draw new or connect ex-
isting diagram elements. However, gesture support is limited to
fixed gestures only and no support to add new gestures or to map
the existing ones to specific diagram elements is provided. Fur-
thermore, Agilian comprises team collaboration capabilities with
connectors to common version control systems like Subversion,
ClearCase or CVS, which is not yet supported by Valkyrie. Like
Valkyrie it provides capabilities for model refactoring. Besides the
support for creating UML models, it also supports the creation of
SysML, BMM, BPMN or ERD models. To provide support for
legacy projects, import mechanisms for various file formats (in-
cluding, Rational Rose, MS Excel or MS Visio) exist. However, as
Agilian lacks support for code generation or reverse engineering of
existing source code, it is a drawing tool only. Hence it does not
provide support for model-driven development but only for model-
based development.

3.2 Altova UModel
Altova promises to provide support for agile modeling with the tool
UModel4. It provides support for all diagrams supported by UML
and is compliant with version 2.3 of the UML specification. How-
ever, the diagram editors themselves do not provide support for ag-
ile modeling as proposed in our paper. Instead, the user is forced
to use mouse and keyboard to enter information to the respective
diagrams. Entering additional information like name or type of
attributes for example requires special dialogs. Besides sketching
support, our tool Valkyrie tries to avoid dialogs as much as possible
as it allows the user to add such additional information in a textual
way directly within the diagram. Like Valkyrie, UModel provides
code generation from class diagrams and statecharts. Furthermore,
UModel also supports code generation from sequence diagrams. It
supports Java, C# and VB.Net languages. UModel also supports re-
verse engineering of Java, C# or VB.Net code into UML diagrams.
While Valkyrie in its current state is only able to reverse engineer
the static structure of a software system, UModel is also able to
reverse engineer behavior into sequence diagrams.

3.3 UML Lab
UML Lab5 aims to provide support for agile modeling, custom
code generation and Roundtrip−EngineeringNG, which allows
the user to change model and code simultaneously and changes are
automatically propagated from code to model and vice versa. It
puts strong emphasis on class diagrams, code generation and the
user interface. The user interface comprises classic tools like the
palette as well as gesture recognition, context sensitive hints and
model autocompletion. Like Agilian, UML Lab only provides ba-
sic support for mouse gestures and lacks support to add new shapes
or to map them to specific model elements. Currently UML Lab
also supports class diagrams only, while Valkyrie provides ded-
icated support for modeling-in-the-large using package diagrams
[6]. Furthermore Valkyrie provides editors for use case diagrams,
activity diagrams, state machine diagrams (including code genera-
tion support) and object diagrams. While Valkyrie uses the MoDisco
3http://www.visual-paradigm.com/product/?favor=ag
4http://www.altova.com/agile_umodel.html
5http://www.uml-lab.com/en/uml-lab/

framework to realize reverse engineering, UML Lab follows an ap-
proach which is based on parsing the code generation templates [3].
While this approach provides benefits in the roundtrip-engineering
process, it can not be used if the code which is subject to the reverse
engineering does not conform to the standards specified in the code
generation templates.

3.4 Sparxsystems Enterprise Architect
Enterprise Architect6 is another industry standard CASE tool. It is
based upon UML 2.4.1 and provides code generation support for
10 different programming languages. It provides a so called white-
board mode, which unfortunately does not allow freehand drawing.
Instead, tools for graphical primitives are supported which allow to
create new elements on the canvas. Furthermore, all UML elements
can be placed on the canvas, too. In our oppinion, this approach is
not very helpful in agile modeling, as the modeler spends a lot of
time in selecting the appropriate tools from the diagram palette in
order to add new diagram elements. Contrastingly, our approach
allows the interpretation of user sketches and the automatic cre-
ation of corresponding diagram elements which enables the user to
sketch diagrams just like on a piece of paper or on a real white-
board.

3.5 Android apps
To the best of our knowledge there is no Android app which pro-
vides support for drawing UML class diagrams using gestures and
voice input similar to our app described in this paper. There are a
few drawing tools like UML Factory7 and AndyUML8. UML Fac-
tory uses a tool palette to add model elements to diagrams. Dialogs
are required for further refinement. Constrastingly, our app only
uses gestures and voice input. As a consequence, our app directly
replaces paper and whiteboards, as the users can just "draw" their
diagrams on the canvas, which results in a better support for agile
development processes. AndyUML is just a frontend to yUML9.
yUML uses a special textual syntax to create diagrams. Therefore,
it can not be used as an adequate replacement for papers or white-
boards, since diagrams are specified by the user via a textual syntax
rather than by sketching.

3.6 E-whiteboard based approaches
In the past there have been some approaches described in [20] or
[8] that are based on electronic whiteboards. These approaches re-
quire special software that recognizes the hand drawn sketches and
which afterwards exports these sketches into the respective model-
ing tool. Contrastingly, in our approach the user can sketch directly
within the modeling environment. Additional recognition software
or transformation steps are avoided in our approach. Furthermore,
since we provide support for mobile devices, the user is not re-
stricted to a fixed and large whiteboard.

4. CONCLUSION AND FUTURE WORK
In this paper we presented an extension to our UML-based model-
ing tool Valkyrie which allows for freehand sketching support for
diagrams. Using this tool, whiteboards or papers might become ob-
solete in agile development processes. Instead of manually convert-
ing diagrams sketched on a whiteboard during a meeting to a mod-
eling environment (which can be a cumbersome and error prone
6http://www.sparxsystems.com/products/ea/index.html
7http://www.umlfactory.com/
8https://play.google.com/store/apps/details?id=com.yeradis.android.yuml
9http://yuml.me/



process), our tool supports sketching directly within the modeling
tool. The resulting model can be refined further without any addi-
tional steps.

In the future, we plan to further extend our tool by investigating
other algorithms to detect freehand drawing. Furthermore, we want
to integrate model differencing [18] and model versioning [19],
which both are further research topics at our lab into Valkyrie. Fu-
ture work on the Valkyrie core also comprises test case generation
from use case diagrams and activity diagrams. Furthermore, we
plan to integrate support for the Action Language Foundation (in-
cluding code generation from ALF specifications) [14]. Addition-
ally, we are working on a mechanism to support round-trip engi-
neering to allow the seamless editing of source code and diagrams.
In [7] we describe our approach to add modeling with graph trans-
formations to Ecore models. We plan to adopt this approach to our
Valkyrie environment, empowering the user to specify the behavior
of methods defined in the class diagram using a powerful declara-
tive and graphical notation.

Future work on the Android App comprises support for all dia-
grams currently supported by Valkyrie. Furthermore, we plan to
also implement a configurator, which allows the user to map ges-
tures on specific model elements. Additionally we will add support
for wireless data exchange via bluetooth and/or WLAN, to easily
exchange models between Android devices and or desktop comput-
ers. There are lots of apps that promise to recognize handwriting.
A useful extension to our app would be integrating one of them
in order to allow the modeler to specify names not only by voice
recognition, but also by handwriting.

To test our approach, we are planing to use our Valkyrie environ-
ment with the sketching clients in upcoming student projects which
use agile development processes.

Acknowledgements
The author wants to thank Anke Giebler-Schubert for adopting the
GEF Sketch library during a master project and Patrick Pezoldt for
working on the Android App during his master project. Further-
more, I want to thank Bernhard Westfechtel for the valuable inputs
on the draft of this paper.

5. REFERENCES
[1] S. W. Ambler. Agile modeling: A brief overview. In

A. Evans, R. B. France, A. M. D. Moreira, and B. Rumpe,
editors, pUML, volume 7 of LNI, pages 7–11. GI, 2001.

[2] S. W. Ambler. Agile modeling: Effective Practices for
Extreme Programming and the Unified Process. John Wiley
& Sons, Inc., New York, 2002.

[3] M. Bork, L. Geiger, C. Schneider, and A. Zündorf. Towards
roundtrip engineering - a template-based reverse engineering
approach. In I. Schieferdecker and A. Hartman, editors,
ECMDA-FA, volume 5095 of Lecture Notes in Computer
Science, pages 33–47. Springer, 2008.

[4] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot. MoDisco:
a generic and extensible framework for model driven reverse
engineering. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, ASE ’10,
pages 173–174, New York, NY, USA, 2010. ACM.

[5] T. Buchmann. Valkyrie: A UML-Based Model-Driven
Environment for Model-Driven Software Engineering. In
Proceedings of the 7th International Conference on Software

Paradigm Trends (ICSOFT 2012). INSTICC, July 2012.
[6] T. Buchmann, A. Dotor, and B. Westfechtel. Model-driven

software engineering: concepts and tools for
modeling-in-the-large with package diagrams. Computer
Science - Research and Development, pages 1–21, 2012.
Online first.

[7] T. Buchmann, B. Westfechtel, and S. Winetzhammer.
MODGRAPH - A Transformation Engine for EMF Model
Transformations. In Proceedings of the 6th International
Conference on Software and Data Technologies, pages 212 –
219, 2011.

[8] Q. Chen, J. Grundy, and J. Hosking. Sumlow: early
design-stage sketching of uml diagrams on an e-whiteboard.
Softw. Pract. Exper., 38(9):961–994, July 2008.

[9] A. Coyette, S. Schimke, J. Vanderdonckt, and C. Vielhauer.
Trainable sketch recognizer for graphical user interface
design. In C. Baranauskas, P. Palanque, J. Abascal, and
S. Barbosa, editors, Human-Computer Interaction Ű
INTERACT 2007, volume 4662 of Lecture Notes in
Computer Science, pages 124–135. Springer Berlin /
Heidelberg, 2007.

[10] Eclipse Foundation. Model development tools (mdt).
http://www.eclipse.org/modeling/mdt/?project=uml2, Feb.
2012. last visited: 2012/02/27.

[11] R. C. Gronback. Eclipse Modeling Project: A
Domain-Specific Language (DSL) Toolkit. The Eclipse
Series. Boston, MA, 1st edition, 2009.

[12] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. Atl: A
model transformation tool. Science of Computer
Programming, 72:31 – 39, 2008. Special Issue on Second
issue of experimental software and toolkits (EST).

[13] OMG. MOF Model to Text Transformation Language,
Version 1.0. OMG, Needham, MA, formal/2008-01 edition,
Jan. 2008.

[14] OMG. Action Language for Foundational UML (Alf). Object
Management Group, Needham, MA, ptc/2010-10-05 edition,
Oct. 2010.

[15] OMG. UML Superstructure. Object Management Group,
Needham, MA, formal/2011-08-06 edition, Aug. 2011.

[16] U. B. Sangiorgi and S. D. Barbosa. SKETCH: Modeling
Using Freehand Drawing in Eclipse Graphical Editors. In
FlexiTools2010: ICSE 2010 Workshop on Flexible Modeling
Tools, Cape Town, South Africa, May 2010.

[17] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
EMF Eclipse Modeling Framework. The Eclipse Series.
Boston, MA, 2nd edition, 2009.

[18] S. Uhrig. Matching class diagrams: With estimated costs
towards the exact solution? In Proceedings of the 2008
International Workshop on Comparison and Versioning of
Software Models (CVSM 2008), pages 7–12, Leipzig,
Germany, 2008. ACM, New York, NY.

[19] B. Westfechtel. A formal approach to three-way merging of
emf models. In D. D. Ruscio and D. S. Kolovos, editors,
Proceedings of the 1st International Workshop on Model
Comparison in Practice (IWMCP 2010), pages 31–41,
Malaga, Spain, July 2010. ACM. Copyright ACM.

[20] J. Wu and T. C. N. Graham. The software design board: a
tool supporting workstyle transitions in collaborative
software design. In Proceedings of the 2004 international
conference on Engineering Human Computer Interaction
and Interactive Systems, EHCI-DSVIS’04, pages 363–382,
Berlin, Heidelberg, 2005. Springer-Verlag.


