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ABSTRACT
The linguistic conformance and the ontological conformance
between models and metamodels are two different aspects
that are frequently mixed. Particularly, this situation oc-
curs in the EMF framework and it has resulted in some
well known problems. The most relevant to us is the inca-
pability to load metamodels at runtime, or even to modify
the metamodels already in use. In this paper we present a
strategy to solve this problem by separating the ontological
and the linguistic aspects of a metamodel and a metamod-
eling framework. The strategy has been implemented in a
graphical editor and is motivated in the context of Enter-
prise Architecture Projects.
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1. INTRODUCTION
Ideally, a modeling phase in a project follows a prior meta-
modeling phase.1 Thus, it is usually assumed that metamod-
els are available before the actual modeling process starts.
Unfortunately, this is not always the case, because meta-
models may be incomplete even after the modeling phase
has already started. It is also not the case that metamod-
els stay immutable after they have been defined. In the
context of Enterprise Architecture, rapidly evolving meta-

1In this paper we will refer with modeling to the activities
for creating models, and with metamodeling to the activities
for creating metamodels

models, and metamodels that change after the models have
been completed, are more the rule than the exception. Sec-
tion 2 will discuss this point briefly in order to motivate the
work presented in this paper.

It is thus necessary to have tools that are able to modify
the metamodels as a result of modeling actions. This is the
opposite situation of the normal first metamodel, then model
strategy. However, none of this is easy to achieve in current
tools. One reason is that they are based on a strong confor-
mance relation, which usually has to be permanently guar-
anteed. By strong conformance, we mean that each model
must conform in every moment, to the structure and restric-
tions imposed by the metamodel. This usually means that
elements in models must be instances of types defined in cor-
respondent metamodels; relationships between elements in
models must be instances of relationships between types in
correspondent metamodels, subject to the cardinality rules
described there; and that element’s attributes must be the
all and only those defined for the corresponding types in the
metamodels. Another reason is that metamodels and mod-
els are not handled in the same way, and sometimes this is
not even done with the same tools. Thus the manipulation
of metamodels cannot be done in a way as dynamic as the
way in which models are manipulated.

All of this happens, for example, in the case of the EMF
framework [1]. This case is particularly problematic because
of two main reasons. On the one side, it is the most promi-
nent framework in the modeling community and there is a
large and growing number of projects and tools that de-
pends on it. On the other side, EMF puts the strongest re-
quirements on the metamodels: they have to be completely
known before any modeling can be done; problems of non
conformity are labeled as errors, not as warnings, and re-
quire immediate resolution; and changing metamodels after
models have been created requires additional transforma-
tions and migrations. On top of that, after metamodeling is
completed there is usually a code generation phase, which
makes metamodels even more static.



The aforementioned problems are summarized in figure 1.
A model mi is initially conformant to a metamodel MMi.
Later on, some changes ∆′ are introduced in mi, converting
it into model m′

i and breaking the conformance to MMi.
Normally, tools require that changes are applied to m′

i in
order to recover the conformance. Instead, we would like to
have the possibility to easily create a metamodel MM ′

i .
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Figure 1: Problems with conformance

In this paper we present the strategy that we are applying
in order to build a tool set that handles dynamic metamod-
els in a powerful way. This strategy is based on making
a distinction between linguistic conformance and ontological
conformance, following the ideas of Kühne [7]. Furthermore,
the strategy makes use of a generic intermediate metamodel
called GIMM (Generic Intermediate Metamodel), which is
immutable and enables us to work around the limitations of
EMF. The strategy has already been applied to the creation
of a graphical GMF-based model editor which is indepen-
dent of the domain metamodel. This editor is capable of
identifying problems of conformance to the domain meta-
model, and of providing solutions that work at the model or
the metamodel level.

The rest of the paper is structured as follows. Section 2
presents a motivation for this work in the context of En-
terprise Architecture projects. Section 3 presents in detail
our solution strategy and the GIMM metamodel, and then
section 4 presents the graphical editor that we created. Sec-
tion 5 briefly presents some related, previous work. Finally,
section 6 presents the conclusions to the work and the work
that we are currently doing to improve the solution.

2. A MOTIVATING EXAMPLE
One of the goals of Enterprise Architecture (EA) projects is
to create models of an enterprise that can be used to ana-
lyze its structure, and especially the relations between busi-
ness, informational, and technological elements. Because of
the plurality of concerns of EA models, not only the models
tend to be large and complex, but also the metamodels. Un-
fortunately, these metamodels cannot be easily reused from
one project to the next because they need to be adjusted for
the enterprise under study, scope, interests, and resources
available for the project. This adjust often requires a lot of
time and effort, and it usually ends up in excessive costs for
the projects.

The first phases of several EA frameworks and methodolo-
gies (e.g., TOGAF[8]) involve activities directed at creating
the metamodel for the project. For example, some of these
activities analyze the scope of the project, identify the im-
portant elements to consider, and identify the relations be-

tween those elements. This constitutes the metamodel for
the project, since it will provide the underlying structure
to organize all the information that will be gathered and
produced during the run of the project.

On top of this, metamodels are not completely fixed from
the start of the projects. They are frequently adapted as the
project advances because new valuable information is found,
or because some elements initially included are now consid-
ered irrelevant to the project or to the enterprise, or because
the focus of the project changed. The forces that result in
these changes to the metamodels can thus come from two
directions. In the first one, there is a necessity to include
certain aspects in a model, which the metamodel does not
allow; therefore, the metamodel has to be adapted to sup-
port this new information. In the second one, the direction
or scope of the project has changed, and the corresponding
changes are introduced into the metamodel; as a result, the
models previously created have to be made conformant to
the new metamodel (this is called co-evolution as it is not
something that we address directly in this paper).

These two situations define what we call Co-Creation of EA
models and metamodels. Unfortunately, the tools available
to handle modeling and metamodeling for EA projects do
not properly support this co-creation, thus creating extra
difficulties to the modelers that participate in the project.
The solution frequently adopted is to use tools that handle
non-structured information, especially MS Word and Excel,
but this results in many other problems such as lack of con-
sistency and expensive maintenance.

In the rest of this paper we present a strategy to offer proper
support for model and metamodel co-creation. This strategy
has been already implemented in a graphical editor, but we
expect that it will be adopted by modeling tools in many
different context, and especially by modeling tools in the
context of EA projects.

3. DYNAMIC TYPING IN EMF MODELING
Using the Kühne’s terminology, a metamodel can provide
both an ontological and a linguistic framework for model cre-
ation. As an ontological framework, a metamodel describes
what elements of the reality are represented by model ele-
ments, and what are the valid ways to relate them. As a
linguistic framework, a metamodel defines the primitives to
describe the models, their elements, and their relationships.
In respect to the former perspective, model elements are on-
tological instances of the types described in the metamodels;
but in respect to the latter perspective, model elements are
linguistic instances of the types described in the metamod-
els. These two perspectives are complementary and they
are both necessary in order to have models with semantics
attached to them.

The problem with EMF is that it combines the ontological
and the linguistic aspects: ontological and linguistic confor-
mity are validated at the same time, using the same artifacts.
Thus, it is impossible to create a model that conforms to a
metamodel from one perspective and not from the other.
While this is not necessarily a bad thing, the technological
complexity associated to handling the linguistic perspective
in EMF has had consequences on its ontological perspective.



In particular, EMF uses a generation-based technique to cre-
ate the framework of classes to define and validate models.
This has benefits for the performance of EMF-based appli-
cations, but it is very static and it is responsible for the
impossibility of changing metamodels at runtime.

We now present the strategy that we have designed to over-
come these limitations and allow the construction of EMF
models using metamodels selected or created at runtime.
This strategy separates, as much as possible, the ontolog-
ical and the linguistic aspects of model construction and
validation. As a result, it is possible to work around the
restrictions imposed by EMF’s architecture, and maintain
basic compatibility with EMF-based tools.

The core of the solution presented is an intermediate meta-
model called GIMM, which provides a basic linguistic frame-
work for the definition of models. This metamodel (see
figure 2) includes only those elements that are necessary
to describe a basic model, and it was inspired on the sub-
set of UML that serves to describe object diagrams; there-
fore, it does not include types usually encountered in meta-
metamodels such as classifiers. We decided not to use the
Ecore Metamodel as intermediate metamodel for simplicity.

Figure 2: GIMM Metamodel

This metamodel should be straightforward to understand.
The root of GIMM is the type called Model, which serves
as the container for all the other elements. The types Ele-

ment and Relation serve to represent, respectively, the ele-
ment instances that appear in a model, and the relationships
between them. Each element in a model has an attribute
called typeName, that serves to relate the element to a type
in the domain metamodel. Likewise, relations have names
that serve for the same purpose. The type Attribute serves
to represent the actual values of attributes of the elements
contained in a model, each Attribute instance has a name,
datatype and value.

Furthermore, in the current version of GIMM, attribute
types may only be integers, doubles, strings, booleans, or
dates, which are treated through an enumeration. As a re-
sult, this decision permitted us to determine a list of at-
tribute types that can be potentially adjusted without im-
pacting dramatically the handling of these types in the tool.

GIMM is used by means of the traditional EMF mecha-
nisms. Thus, a framework of classes (EClass) based on this
metamodel is generated and is used for the construction and
validation of the models. This only covers linguistic confor-
mance, since GIMM is generic and it does not have any
information about the domain.

The second element of our solution strategy is a dynamic
validation engine. This engine is capable of verifying the
ontological conformance of any GIMM model with respect
to any dynamically loaded domain metamodel. In order to
do this, the engine performs several types of checks, among
which compares the typeName of the model elements against
the types defined in the domain metamodel. The engine also
checks that the attributes associated to each valid element
have the names and types defined in the corresponding type
in the domain metamodel. The relations are also checked to
see that they are valid instances of the relations defined in
the domain metamodel.

By means of these two elements of the solution, we are ca-
pable of having static linguistic conformance validation, and
dynamic ontological conformance validation. The only lim-
itation is that, from a technical point of view, the model
constructed is an instance of the GIMM metamodel. Never-
theless, as we show in the next section, this model contains
all the information necessary to transform it into a model
that conforms to the domain metamodel.

4. A DYNAMIC EMF EDITOR
The strategy described in the previous section has been im-
plemented in a graphical editor based on EMF and GMF
[3]. On the one hand, this editor serves to create mod-
els that conform to GIMM. On the other hand, this editor
is also capable of validating the ontological conformity of
the model with respect to a domain metamodel. On top
of all this, the editor provides assistance to the user based
on the domain metamodel (e.g., by indicating which are the
valid types and valid attributes), and is capable of gener-
ating models that conform to that metamodel. Finally, an
important characteristic of the editor is being also capable of
modifying the domain metamodel, or dynamically adapting
to changes introduced from outside the editor.

Figure 3 shows a screenshot of the editor. The left hand side,
shows the canvas to create models conformant to GIMM.
The appearance of this graphical editor was tweaked in or-
der to make the diagram resemble an object diagram from
UML [4]. For example, each element displays the class it be-
longs to (from the domain metamodel), and the slots with
the values of attributes. Note that the attributes that ap-
pear in these elements are those specified in the domain
metamodel, and not those specified in GIMM. On the right
side of the image, an unmodified GMF graphical editor dis-
plays the domain metamodel that the model of the left is
related to. On the bottom side of the image, the tool has
the properties view that presents information related with
the selected instance, and the problems view that presents
details of the problems found in the model.

Another important characteristic of the editor is the way it
handles problems. Normally, EMF marks any conformance
problem as an error, and usually it is not possible to perform



Figure 3: Screenshot of the editor

certain operations on models with errors. In our editor, we
still handle linguistic conformance problems as errors, but
ontological conformance problems are marked as warnings.
This is possible because the former are discovered by EMF’s
validation elements, while the latter are discovered by our
own validation engine. This subtle difference between errors
and warnings facilitates the manipulation of the models and
makes it possible to work with them even when they do not
conform to the domain metamodel.

The canvas is the most visible component of the solution,
but it is complemented by a number of other components
and features. The first one is the validation engine that
we already mentioned, which is responsible for verifying the
conformity of a model to the domain metamodel selected.
This validation is currently verified each time that a change
is made to a model. When a problem is detected, it is re-
ported as a warning and some alternative solutions are pre-
sented.

For practical reasons, the implementation of the validation
engine is based on an engine for checking EVL rules [2].
The rules to check, are dynamically generated based on the
structure of the domain metamodel. For example, one rule
is generated to verify that the attribute typeName of each
element in the model has a value that matches the name
of a type in the domain metamodel. Similarly, other rules
are generated to check the types and names of attributes,
the cardinalities of relations, and all the other aspects that
ensure conformity.

The validation engine also considers the inexistency of manda-
tory information in the model because sometimes it is neces-
sary to evaluate certain information that the domain meta-

model determines. For example, if the domain metamodel
determines that one attribute is mandatory, then there must
be a rule that validates whether the instance of that at-
tribute exists when the associated class instance also exists
in the model. Therefore, in case of inconsistency, the prob-
lem should be showed and associated with the class instance
where the attribute instance should be set.

Each rule can have associated pre-conditions that determine
it’s evaluation; consequently, the validation engine will not
evaluate certain conformity aspects until others aspects are
not guaranteed. For example, the attributes of a class in-
stance are not checked whether the class does not exist in
the domain metamodel.

The EVL rules that the validation engine is based on are dy-
namically generated based on scripts loaded into the editor.
This means that additional validation rules can be added by
adding the corresponding scripts into the tool, but this is not
something that is expected to be done at runtime. On the
other hand, it also means that new domain metamodels can
be loaded at any time and the validation engine can imme-
diately start validating the conformance of a model against
that new metamodel. This also serves to handle updates to
a domain metamodel, and for this the editor has a daemon
monitoring the loaded metamodel files; when one of those
files is modified, the conformance rules are automatically re-
generated and the validation is done using those new rules.

Another important aspect of the editor has to do with the
transformations that can be applied to the various models.
On the one hand, there are transformations to import any
model and make it conform to the GIMM metamodel. In
order to do this, both the model and the domain metamodel
have to be loaded into the tool. On the other hand, there
are the transformations to export a GIMM model and make
it conform to the domain metamodel in the linguistic and
ontological sense. This transformation is automatically ap-
plied and it is not complex. In summary, for each element in
the model a corresponding element is created in the output
metamodel but instead of being of the GIMM’s type Ele-

ment, it is of the type specified in the typeName attribute.
Corresponding transformations are applied to attributes and
relations. Figure 4 shows how the exported model looks like
when opened with the tree model editor of EMF.

Figure 4: The ecore exported model



Finally, another feature of the editor is a set of wizards that
support different modeling operations. Some of these oper-
ations are rather typical and straightforward, such as im-
porting or exporting a model. Some others are much more
complicated and are tightly related to the co-creation prob-
lem. Figure 5 shows a very representative example of this.
The wizard shown in the figure is used to ask the user about
the proper way to handle the addition of an attribute that
is not present in the domain metamodel. Three alternatives
are presented to the user: 1) select another name for the
attribute from the set of attributes that are present in the
metamodel; 2) add the new attribute to the corresponding
type in the domain metamodel; or 3) ignore the warning
and keep the model in a non conforming state. If the second
alternative is selected, there is a further step on the wiz-
ard that asks for the right type in the hierarchy where the
attribute should be added.

Figure 5: The wizard for an invalid attribute name

Similar to the wizards described, the editor includes other
wizards which serve for two main purposes. First, they serve
to steer the way in which domain metamodels are modified.
Also, thanks to the monitoring services described before,
changes to the metamodels are automatically discovered and
rules are regenerated accordingly. The second purpose of
these wizards is to ease the work of the modelers that use
the tool. Instead of having to apply in a completely manual
way the changes to the models and metamodels that solve
the warnings, using the wizards it is possible to solve the
problems in perfectly valid ways just with a few clicks. For
instance, Figure 6 shows another screenshot where the model
and domain metamodel shown in Figure 3 have changed
after several problems and warnings have been solved.

5. RELATED WORK
In this section we briefly present some previous works that
are somehow related to our own. In the first place, there is

Figure 6: Screenshot of the editor with several prob-
lems and warnings in the model solved

Dynamic EMF, the part of the EMF framework that serves
to create models using a programmatic interface. Although
it is very powerful, it can only handle strong conformance
and thus makes it complicated to change or replace meta-
models at runtime. While a solution entirely based on Dy-
namic EMF is possible, it would require the constant ap-
plication of transformations to the models under construc-
tion. Furthermore, the impact on the performance of the
tool could be considerable, although we have not done the
necessary experiments to compare it against our own imple-
mentation.

In [6], Gabrysiak et al. discuss how metamodels can be
used in a flexible way, and they present a classification of
approaches based on how dynamic are metamodels in the
tools. Typically, modeling tools fall into only one of the cat-
egories they propose. However, our tool belongs simultane-
ously to several categories. With respect to the definition of
metamodels before modeling (this is the first category of the
classification), our tool supports user-generated metamodels,
that is metamodels designed by the users of the tools and
not by the developers of the tools. An example of this is a
domain metamodel created for a particular EA project. Our
tool also supports using stencils as metamodels, which means
that some base metamodels are provided and are adapted to
the particular needs of each user. An example of this is an
archetypical metamodel extracted from an EA framework,
which is adapted to particular projects. With respect to
modeling captured insights (this is the second category of the
classification), our tool provides support for the co-creation
of models and metamodels, and also for the co-evolution of
these two aspects. The third category in the classification
groups those tools where the metamodel is extracted from



the model after the latter has been completed. This is not
something that we are currently interested in supporting in
our tool.

In [9], Ubayashi et al. present a reflective editor for the
construction of models and, in particular, the construction
of aspect-based models. The strategy that they present,
has similar goals to the one we presented because in the end
they are able to co-create models and metamodels. However,
there are some fundamental differences in the approaches.
Firstly, their approach is specifically targeted to aspect ori-
ented modeling, and the only changes that can be intro-
duced in the metamodels are extensions to model additional
aspects. Secondly, their approach regenerates the editors
when metamodels change. As we have seen, in our approach
only the validation rules are regenerated.

The Reflective Ecore Model Diagram Editor[5] was a graph-
ical editor based on GMF to manipulate EMF models in-
dependently of the metamodel. Therefore, the goals of this
editor were very similar to those of our own one. This editor
was capable of dynamically loading a metamodel, and creat-
ing models that conformed to it, but it had some restrictions
related to the way it handled relations and attributes from
the metamodel. On the other hand, it offered a dynamically
generated tool palette with the element types obtained from
the metamodel. Unfortunately the project has been aban-
doned since 2009 and was compatible with the Eclipse, EMF
and GMF versions of the day. Because of this, and because
of the difficulties to continue the work that had already been
done in that editor, we developed our own solution to the
problem.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have discussed some problems related to the
lack of dinamicity in model editors and the impossibility
to load new metamodels at runtime. In particular, these
problems occurs in EMF, which is one of the best known
frameworks for the construction of model-based tools. In the
paper we presented a strategy to solve this problem and we
discussed how it was successfully implemented in a graphical
editor based on GMF.

Although the editor is now fully functional, there are some
aspects of it that are worth developing more. One aspect is
to improve the appearance of the tool, and in particular of
the palettes that are available to create models in the can-
vas. Currently, those palettes are fixed and based on the
GIMM metamodel. However, we would like to be able to
make those toolbars dynamic, in order to be able to con-
figure them based on the currently loaded metamodel. An-
other aspect worth of being further developed is separating
the two components that are currently part of the editor.
The first one of those components is the graphical editor
itself; the second one is the core elements that allow the dy-
namic manipulation and conformance validation of models.
If those two components are separated, it will be a lot easier
to include this tool into other tools.

Finally, there are two big ideas that we intent to pursue in
order to make the editor a lot more powerful. The first one
is to be able to evaluate constraints specified for the do-
main metamodels. Currently, this is possible if the model is

exported, then the EVL validation rules are updated accord-
ingly, then the generated model is checked, and the warning
messages (if any) are mapped back into the GIMM conform-
ing model. This strategy involves many steps frequently per-
formed, and thus it is a candidate to be automatized. Then
we state as first line of future work the creation of the mech-
anisms to evaluate EVL rules directly on top of the GIMM
model. The second idea for future work is to evaluate the
performance of the editor and optimize it.
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can metamodels be used flexibly? In Proceedings of
FlexiTools Workshop at ICSE 2011, page 5. ACM, 2011.

[7] T. Kühne. Matters of (meta-) modeling. Software and
Systems Modeling, 5(4):369–385, 2006.

[8] The Open Group. TOGAF Version 9. Van Haren Pub,
2009.

[9] N. Ubayashi, S. Sano, and G. Otsubo. A reflective
aspect-oriented model editor based on metamodel
extension. In Proceedings of the International Workshop
on Modeling in Software Engineering, page 12. IEEE
Computer Society, 2007.


