
Agile Requirements Traceability
Using Domain-Specific Modelling Languages

Masoumeh Taromirad
Department of Computer Science

University of York
York, UK

mtaromi@cs.york.ac.uk

Richard F. Paige
Department of Computer Science

University of York
York, UK

richard.paige@york.ac.uk

ABSTRACT
Requirements traceability is an important mechanism for
managing verification, validation and change impact anal-
ysis challenges in system engineering. Numerous model-
based approaches have been proposed to support require-
ments traceability, but significant challenges remain, includ-
ing finding the appropriate level of granularity for modelling
traceability and coping with the lack of uniformity in re-
quirements management tools. This paper argues for an ag-
ile modelling approach to managing requirements traceabil-
ity and, in this context, proposes a domain/project-specific
requirements traceability modelling approach. The prelim-
inary approach is illustrated briefly in the context of the
safety-critical systems engineering domain, where agile trace-
ability from functional and safety requirements is necessary
to underpin certification.

1. INTRODUCTION
Requirements traceability (or traceability for short) is an
important mechanism for managing and auditing the entire
software development process [14]; arguably this is because
all artefacts of software development need to be driven by,
and linked to, requirements. Traceability is utilised for var-
ious purposes, including requirements management, change
management and impact analysis, verification and valida-
tion, certification (in the critical systems domain) and audit.
Traceability in Model-Driven Engineering (MDE) is widely
studied, particularly because the automated support avail-
able with MDE (e.g., model transformations) allows trace
information (generally called trace models) to be automati-
cally generated and managed. However, there are substan-
tial challenges associated with traceability in MDE, which
make it a challenge to select or define an effective traceability
framework – consisting of traceability models, metamodels
and analysis tools – for a specific project.

Since a fully encompassing fine-grained traceability scheme
in MDE is (in practical terms) unmanageable, we propose
an agile approach to requirements traceability in MDE.

Through agility, we aim for a simple and light enough
traceability scheme. In particular, we propose to use a
domain-specific requirements traceability approach to pro-
vide just enough traceability, while addressing other require-
ments traceability challenges as well. As discussed in [6], do-
main characteristics are critical in finding the right amount
of required information to support in an MDE traceabil-
ity scheme. Domain characteristics can be elucidated and
captured in domain-specific traceability models and meta-
models. However, the information that we need to gather is
likely to change over the course of a project. As such, these
models and metamodels will need to evolve incrementally
through iterations. This is both a challenge and a bene-
fit: it will help to ensure that the traceability models and
metamodels capture the most useful information at the cur-
rent time, but will also require model/metamodel evolution
mechanisms to be used.

This paper contributes a Domain-Specific Modelling Lan-
guage (DSML) approach to building a traceability scheme
for a specific domain or project incrementally. The idea is
that we use a DSML to describe a domain-specific traceabil-
ity metamodel and represent the structures, behaviours and
features of the target domain with respect to project trace-
ability goals. MDE tooling is thereafter used to both create
traceability models and to help evolve models and meta-
models as project-specific traceability requirements change.
This approach allows engineers to focus on essential domain-
specific traceability information to get the most value out
of traceability, especially in comparison to general-purpose
traceability frameworks and tools.

We are applying the proposed approach in the context of the
safety-critical system engineering domain, in which manag-
ing requirements is a critical issue and traceability is both
necessary and helpful in addressing challenges in this do-
main. These challenges include ensuring that evidence is
available to demonstrate that safety requirements have been
met [16], dealing with changing requirements and the cor-
responding effects on certification arguments [19], and sup-
porting evidence-based safety assurance [9]. However, evo-
lution of artefacts (including DSMLs and trace models) in
domains like safety is problematic, because safety is not com-
positional – that is, if a system has been shown to be ac-
ceptably safe to operate (i.e., safety requirements are met),
and an engineering artefact evolves, then the safety process
has to be fully re-executed.



This paper presents our preliminary work on this topic, fo-
cusing on the DSML and how it is connected to other system
engineering artefacts in the context of building safety-critical
systems. We also identify challenges for manipulating trace
models and metamodels in this context, particularly for sup-
porting incremental development of the DSML.

The paper is structured as follows: in Section 2, we talk
about the background and related work in requirements
traceability area. Section 3 introduces the proposed ap-
proach: domain-specific requirements traceability. In sec-
tion 4, an example of applying the proposed approach in
safety-critical system domain is explained. Section 5 dis-
cusses the future work and Section 6 gives the conclusion.

2. BACKGROUND
In the requirements engineering field, traceability is defined
as“the ability to describe and follow the life of a requirement
in both a forwards and backwards direction” from inception
throughout the entire system’s lifecycle [8]. In requirements
engineering, traces are valuable for numerous purposes, in-
cluding validation and verification, where they help to iden-
tify pairs of relating artefacts which can then be validated
and verified against each other. A recent thorough study
on traceability [25] has identified different usage scenarios
of traceability, which include diverse tasks such as require-
ments management, change management and impact analy-
sis, verification and validation, testing, reuse, system under-
standing, audit, and software project management.

A traceability scheme or metamodel provides a realization
of the abstract definitions of traceability. It determines de-
tails required to support traceability, such as which artefacts
should be traced, the level of details for the traces, and how
traceability links should be classified. According to Ramesh
and Jarke [20], there are six core questions about artefacts
that should be answered by traces: What, Who, Where,
When, Why, and What. Additionally, Espinoza et al. [7]
provide a formal specification and state that a traceability
scheme has to include a traceability type set, traceability role
set, minimal links set - links have to exist for correctness
and completeness - and a metrics set.

Ramesh and Jarke [20] have also introduced a conceptual
model for traceability which includes three essential ele-
ments in traceability and shows their relationships (Figure
1). Their model has been the source of many later stud-
ies which largely focus on the TRACES-TO relationship or
traceability links.

The trace can in part be documented as a set of metadata
of an artefact (such as creation and modification dates), and
in part as relationships describing the influence of a set of
stakeholders and artefacts on a different artefact. These
relationships are a vital concept of traceability, and they are
often referred to as traceability links. Accordingly, there are
many studies on identifying and classifying traceability links,
such as [20, 7, 22, 4]. These proposed classifications have
been introduced based on the characteristics and context of
each study and so they are difficult to compare.

Supporting traceability requires spending more effort to cre-
ate and update the trace links [17]. Theoretically, ’ideal’

Figure 1: The traceability conceptual model accord-
ing to Ramesh and Jarke [20]

traceability would be achieved by recording all possible traces.
But in real situations, economic constraints must be fulfilled.
Existing traceability solutions suffer from the challenge of
how much effort and information is enough for requirements
traceability. Thus, it is critical to find the right amount of
required information [6]. Project/domain-specific require-
ments traceability can be helpful in this regard. This is be-
cause project/domain-specific traceability goals drive trace-
ability activities such as the type of captured information
[1].

On the other hand, Egyed et al. [6] state that a traceabil-
ity strategy should provide trace links more quickly, refine
trace links according to user-defined value considerations,
and support the later refinement of trace links, and accord-
ingly introduce value-based requirements traceability to bal-
ance cost and benefits. [3] introduces dynamic requirements
traceability to minimize the need for creating and maintain-
ing explicit links and reduce the effort required to perform
manual trace. [15] provide a tool-based approach for trace-
ability in agile development processes.

Although traceability is essential for successful software de-
velopment as it helps in different ways and has diverse ad-
vantages, there are still difficulties and challenges, such as
lack of a commonly accepted traceability definition [20], find-
ing the “right” level of granularity for traceability [6], and
lack of uniformity in requirements tools [12]. Consequently,
traceability is usually considered extra effort.

This paper proposes a domain/project-specific requirements
traceability approach to support agile requirements trace-
ability, while addressing mentioned requirements traceabil-
ity challenges. The next section explains the proposed ap-
proach.

3. DOMAIN-SPECIFIC REQUIREMENTS
TRACEABILITY

This section introduces the proposed DSML-based approach
for requirements traceability: Domain-Specific Requirements
Traceability and discusses how this approach addresses the
requirements traceability challenges while supporting agility.



Figure 2: The conceptual process model for defining
traceability scheme

As mentioned in Section 2, one of the most important con-
cerns in traceability is finding a suitable traceability scheme.
A proper scheme should support traceability goals and, at
the same time, be effective, for example regarding econom-
ical issues. To address this challenge, we suggest defining
the traceability scheme specifically for the current project,
target domain and traceability goals - that is, using a
DSML. Additionally, we suggest to define the traceability
metamodel incrementally through iterations which allows its
users to capture the most appropriate type of captured in-
formation based on their current needs.

3.1 The Traceability Scheme
As mentioned earlier, the traceability scheme is defined in-
crementally through iterations. Generally, in each iteration
the traceability information is identified regarding the cur-
rent needs, the traceability scheme is extended according to
the new requirements, and then the scheme is used for trace-
ability. Traceability information (mainly includes artefacts)
is usually defined according to stakeholders needs, the devel-
opment lifecycle for the project or the general development
process for the specific domain, and usage scenarios (trace-
ability goals). Extending the existing scheme might need
to provide evolution and change strategies for maintaining
existing trace models properly. Each iteration finishes when
a change is identified either because of a missing or a new
requirement and, consequently, a new iteration begins. This
cycle is repeated over the project and the traceability scheme
will be extended whenever needed. Figure 2 shows the con-
ceptual process model for defining traceability scheme.

The extension is performed as necessary to identify the es-
sential concepts and the link types in the domain/project
based on the traceability goals (i.e. change impact analy-
sis or validation and verification); extensions are performed
until the scheme is sufficient to start modelling traceability.

We suggest to use the conceptual model for requirements

traceability introduced by Ramesh and Jarke [20] as the base
traceability scheme and extend it incrementally. Each of the
elements and link types is extended as indicated by trace-
ability requirements.

The most challenging part of the conceptual model is identi-
fying subclasses of OBJECT. OBJECTs constitute the core
of the traceability metamodel and usually represent differ-
ent types of artefacts in the project. Incremental traceabil-
ity DSML allows us to elaborate this essential part (OB-
JECTs) and identify new OBJECTs and expand the meta-
model whenever it is required (i.e. new traceability goal or
missing concepts).

In addition to the concepts, the conceptual model also shows
the relationships which exist between these concepts. The
relationships highlight the traces which are important to
support traceability goals. Moreover, there are two types
of links between concepts: direct and transitive link (dashed
line). Direct links are those that directly link two concepts
with no other intermediate concept, while transitive links
are those that can be derived from other direct links. The
transitive links enhance can be used to provide automation
in cases where the traces can be derived automatically.

In this regard, the traceability scheme is always subject to
change and evolution along the time. So, evolution and
change in the scheme are the two main concerns in this ap-
proach; how does the scheme change? how is the change
applied in the already exist traceability information? Trace-
ability information is recorded according to what the scheme
dictates. So, when the scheme changes, the change would
impact existing traceability information, such as requiring
new information to be recorded or change in the exiting
links between elements, which should be managed properly.
Therefore, it is important to consider change and its impact
in both traceability scheme and the traceability model.

3.2 Representation
Currently, requirements traceability is generally supported
by requirements management tools such as DOORS and
RequisitePro or through small and simple research-based
tools to support traceability, such as [15]. All of these tools
provide a common traceability scheme and are mostly inter-
ested in the links between requirements and design models
to determine rationale and decision making traces. None of
the existing tools support the introduced approach in this
paper. They do not allow to have a user-defined traceabil-
ity scheme. This paper applies a different approach for the
tool. It suggests to use the model-driven engineering (MDE)
facilities to represent the traceability scheme and support
traceability.

We suggest to develop a domain-specific modelling language
for the traceability scheme, which has been defined regarding
the domain/project and traceability goals. We propose to
use Ecore metamodel [23], to describe the traceability meta-
model as a modelling language, and Epsilon as the model
management tool. Epsilon (Extensible Platform for Spec-
ification of Integrated Languages for mOdel maNagement)
[13] is a suite of tools and comprises a number of integrated
model management languages, for performing tasks such as
model merging, model transformation and intermodel con-



sistency checking. EMF and Epsilon have been developed
for MDE tasks and provide specialised powerful facilities
to work with models. For example, the Ecore model can
be annotated to use EuGENia to automatically generate an
editor to provide an easier way to generate models based on
a user-defined metamodel.

3.3 Application
The developed DSML (the traceability metamodel) can be
used for different purposes which are identified as the us-
age scenarios for requirements traceability. Usage scenar-
ios can be general scenarios or can be defined according
to the domain or project. Regarding the context of this
paper and the proposed solution, Epsilon model manage-
ment languages can be used to deal with models to sup-
port these scenarios. For example Eclipse Object Language
(EOL) is used to enrich the traceability models based on
the derived information from other models, Eclipse Genera-
tion Language (EGL) can be used to generate Requirements
Document (RD) in the desired format, and Epsilon Valida-
tion Language (EVL) is helpful in validation and verification
or change impact analysis.

3.4 Discussion
Project/domain-specific traceability goals allow to focus on
the main concerns in the domain/project and prevent to
spend resources on recording information which are not re-
lated, essential, and helpful for traceability. Moreover, defin-
ing the traceability metamodel incrementally leads to find
the most appropriate type of captured information based on
the current needs. Therefore, the traceability metamodel,
at any time, is as simple as possible and contains the mini-
mum required information. This is because it identifies the
essential elements regarding the current needs. This also
complies with agility: providing a simple and light enough
traceability scheme which is achieved through an iterative
and incremental approach in defining the scheme.

On the other hand, using DSMLs for traceability requires
us to consider change and evolution issues in the context
of MDE. Evolution in MDE is an open research topic. [5]
highlights multiple dimensions for evolution in MDE. One of
these dimension is called artefact co-evolution and focuses
on changes made to MDE development artefacts which may
require that related artefacts (models, code, documentation)
be updated to remain synchronised. Traceability in MDE
and change impact analysis are the two potential research
solutions in this case. In MDE, traceability is an active
topic and focuses on traces recorded automatically as a by-
product of model transformations. Traces recorded that way
can be used to keep the models consistent and to support
change propagation between models which are derived from
each other. There is much research in this field, for example
[18, 1, 4].

Additionally, model co-evolution is one of the important di-
mensions regarding the scope of this paper. In this case,
when a metamodel evolves, any instance models may require
migration to remain conformant. Automated migration and
appropriate notation for describing model co-evolution are
examples of the challenges. [24, 2] are the two approaches
addressing these problems. There is also a recent study
which aims to introduce structures and processes for manag-

ing model-metamodel co-evolution to increase productivity
[21].

The next section discusses some preliminary results from ap-
plying the proposed approach in the safety-critical software
system domain.

4. EXAMPLE
This section provides a brief description of a preliminary
example of using the proposed approach in the safety-critical
software systems domain, in which traceability is both a
mandatory requirements of standards (i.e. DO-178B) and
helpful in addressing engineering challenges, such as dealing
with changes in requirements and their consequent effects
[19], and supporting evidence-based safety assurance [9].

Following the introduced approach, the traceability meta-
model was gradually developed, taking into account the char-
acteristics of the target domain which was identified through
investigating the domain, the general development process,
case studies, and the traceability goals.

In addition to the general software system development ac-
tivities, to develop a safe system (1) the system hazards are
identified and the safety requirements are defined, (2) it is
determined how the various components in the system can
contribute to these hazards, (3) derived safety requirements
for the components are defined, and then (4) components
are developed to meet these safety requirements [10]. The
system is also certified before entering the operational envi-
ronment

Furthermore, in this example, we focus on change manage-
ment and certification challenges, as the general and domain-
specific traceability goals. In the context of safety-critical
software, change management is more challenging in com-
parison to general software development. This is because
safety is not compositional and any change generally re-
quires having to perform the safety process again. Addi-
tionally, the system should be certified before entering the
operational environment to show that it is acceptably safe,
which normally requires creating a safety case. A safety case
is a comprehensive document which refers to many and vari-
ous pieces of information, such as safety analysis, acceptance
test, compliance with standards [11].

Accordingly, the resulting traceability metamodel for safety-
critical domain is depicted in Figure 3.

As mentioned earlier, there are several general and domain-
specific usage scenarios for the traceability model. In our
example, EGL was used to generate the Requirements Doc-
ument which is updated automatically regarding changes
in the model. Additionally, regarding the importance of
safety case in safety-critical software system development,
the traceability model is used to support safety case (evi-
dence and arguments). In this example, a new DSML devel-
oped for safety case development based on GSN [11]. The
new DSML is linked to the traceability DSML, in the meta-
model level. Therefore, the safety case model is linked to
the traceability model which helps in providing valid evi-
dence and arguments in the safety case. This is because
the evidence and arguments are provided according to the



Figure 3: The traceability scheme for safety-critical domain

traceability model and updated automatically if there is any
change in the model. In this case, EOL, EVL, and ETL were
used to support this domain-specific usage scenario.

5. FUTURE WORK
This paper proposed to use DSMLs to incrementally define
requirements traceability schemes according to a specified
domain and, at the same time, benefit from MDE technol-
ogy to automate the scheme and, potentially, evolve it over
time. As discussed in Section 3, this approach leads to con-
sider the evolution and change concerns in the context of
MDE, too. Then it was suggested to study the existing
work in this domain and apply them for evolution and ex-
tension mechanisms. This is an acceptable approach because
by using DSMLs, the requirements traceability problem is
transformed to ta problem in the MDE domain. Neverthe-
less, the requirements engineering issues are still important
and should be considered.

By the way, evolution and extension mechanisms need more
investigation and work. This is because they are still an
active and challenging research areas in MDE, and it would
be good to work on domain-specific (requirements traceabil-
ity) model evolution and extension mechanisms to provide
specialised mechanisms for agile requirements traceability.
Additionally, the research needs more case studies, in dif-
ferent domains, to show the applications and benefits of the

proposed solution. Case studies are also useful for evalua-
tion, though other evaluation means, such as peer review,
should be considered.

Improved tool support is also one of the future work for this
research. Currently, the traceability tool is produced with
Epsilon. Although this tool is simple and easy to use, a more
user friendly tool is better which provides graphical inter-
faces or wizards for dealing with models instead of working
with Epsilon model management languages directly.

6. CONCLUSION
Requirements traceability is studied as an effective mecha-
nism to deal with various software development challenges,
such as verification and validation and change impact anal-
ysis. However, traceability still faces difficulties and chal-
lenges, such as finding the “right” level of granularity for
traceability and lack of uniformity in requirements tools.

We proposed an agile approach to requirements traceability
in MDE through a domain-specific requirements traceability
approach to provide just enough traceability, while address-
ing requirements traceability challenges. We suggested to
use a DSML to describe a domain-specific traceability meta-
model and represent the structures, behaviours and features
of the target domain with respect to project traceability
goals. Then, MDE tooling is used to both create traceabil-



ity models and to help evolve models and metamodels as
project-specific traceability requirements change. This ap-
proach allows engineers to focus on essential domain-specific
traceability information to get the most value out of trace-
ability, especially in comparison to general-purpose trace-
ability frameworks and tools. We also identified challenges
for manipulating trace models and metamodels in this con-
text, particularly for supporting incremental development of
the DSML.

Finally, the paper presented the preliminary work on this
topic, focusing on the DSML and how it contributes to
other system engineering activities in the context of building
safety-critical systems.

7. REFERENCES
[1] N. Aizenbud-Reshef, R. F. Paige, J. Rubin,

Y. Shaham-Gafni, and D. S. Kolovos. Operational
Semantics for Traceability. In Proceedings of ECMDA
Traceability Workshop, ECMDA-TW ’05, pages 8–14.
Sintef, 2005.

[2] A. Cicchetti, D. D. Ruscio, R. Eramo, and
A. Pierantonio. Automating Co-evolution in
Model-Driven Engineering. In Proceedings of the 2008
12th International IEEE Enterprise Distributed Object
Computing Conference, EDOC ’08, pages 222–231,
Washington, DC, USA, 2008. IEEE Computer Society.

[3] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou.
Utilizing Supporting Evidence to Improve Dynamic
Requirements Traceability. In Proceedings of the 13th
IEEE International Conference on Requirements
Engineering, RE ’05, pages 135–144, Washington, DC,
USA, 2005. IEEE Computer Society.

[4] A. Dahlstedt and A. Persson. Requirements
Interdependencies: State of the Art and Future
Challenges. In A. Aurum and C. Wohlin, editors,
Engineering and Managing Software Requirements,
pages 95–116. Springer-Verlag, 2005.

[5] A. V. Deursen, E. Visser, and J. Warmer.
Model-Driven Software Evolution: A Research
Agenda. In Proceedings of International Workshops on
Model-Driven Software Evolution held with the
ECSMR ’07, 2007.

[6] A. Egyed, P. Grunbacher, M. Heindl, and S. Biffl.
Value-Based Requirements Traceability: Lessons
Learned. In Proceedings of the 15th IEEE
International Conference on Requirements
Engineering, RE ’07, pages 115 –118, oct. 2007.

[7] A. Espinoza, P. Alarcon, and J. Garbajosa. Analyzing
and Systematizing Current Traceability Schemas. In
Proc. 30th Software Engineering Workshop, april 2006.

[8] O. C. Z. Gotel and C. W. Finkelstein. An Analysis Of
The Requirements Traceability Problem. In
Proceedings of the 1st International Conference on
Requirements Engineering, RE ’94, pages 94 –101, apr
1994.

[9] I. Habli and T. Kelly. Process and product
certification arguments: getting the balance right.
SIGBED Rev., 3(4):1–8, Oct. 2006.

[10] M. P. E. Heimdahl. Safety and software intensive
systems: Challenges old and new. In 2007 Future of
Software Engineering, FOSE ’07, pages 137–152,

Washington, DC, USA, 2007. IEEE Computer Society.

[11] T. Kelly and R. Weaver. The Goal Structuring
Notation - A Safety Argument Notation. Elements,
2004.

[12] V. Kirova, N. Kirby, D. Kothari, and G. Childress.
Effective Requirements Traceability: Models, Tools,
and Practices. Bell Labs Technical Journal,
12:143–157, February 2008.

[13] D. Kolovos, L. Rose, and R. Paige. The Epsilon Book.
Dec. 2010.

[14] P. Lago, H. Muccini, and H. van Vliet. A Scoped
Approach To Traceability Management. Journal of
Systems and Software, 82(1):168 – 182, 2009. Special
Issue: Software Performance - Modeling and Analysis.

[15] C. Lee and L. Guadagno. FLUID:Echo Agile
Requirements Authoring and Traceability. In
Proceedings of the Midwest Software Engineering
Conference, pages 50–61, 2003.

[16] R. R. Lutz. Software Engineering For Safety: A
Roadmap. In Proceedings of the Conference on The
Future of Software Engineering, ICSE ’00, pages
213–226, New York, NY, USA, 2000. ACM.

[17] P. Mäder, O. Gotel, and I. Philippow. Getting back to
basics: Promoting the use of a traceability information
model in practice. In Proceedings of the 2009 ICSE
Workshop on Traceability in Emerging Forms of
Software Engineering, TEFSE ’09, pages 21–25,
Washington, DC, USA, 2009. IEEE Computer Society.

[18] R. Paige, G. Olsen, D. Kolovos, S. Zschaler, and
C. Power. Building Model-Driven Engineering
Traceability Classifications. In Proceedings of ECMDA
Traceability Workshop, ECMDA-TW ’08, pages 49–58.
Sintef, 2008.

[19] R. F. Paige, A. Galloway, R. Charalambous, X. Ge,
and P. J. Brooke. High-integrity Agile Processes For
The Development Of Safety Critical Software.
International Journal of Critical Computer-Based
Systems, 2:181–216, July 2011.

[20] B. Ramesh and M. Jarke. Toward Reference Models
for Requirements Traceability. IEEE Transactions on
Software Engineering, 27:58–93, 2001.

[21] L. M. Rose. Structures and Processes for Managing
Model-Metamodel Co-evolution. PhD thesis, University
of York, 2011.

[22] G. Spanoudakis and A. Zisman. Software Traceability:
A Roadmap. In Handbook of Software Engineering and
Knowledge Engineering, pages 395–428. World
Scientific Publishing, 2004.

[23] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework.
Addison-Wesley, Boston, MA, 2. edition, 2009.

[24] G. Wachsmuth. Metamodel Adaptation And Model
Co-adaptation. In ECOOP ’07, LNCS 4609. Springer,
2007.

[25] S. Winkler and J. Pilgrim. A Survey Of Traceability
In Requirements Engineering And Model-Driven
Development. Software and Systems Modeling
(SoSyM), 9:529–565, September 2010.


