
Comparative Analysis of Data Persistence Technologies
for Large-Scale Models

Konstantinos Barmpis
Department of Computer Science

University of York
York, United Kingdom
kb@cs.york.ac.uk

Dimitrios S. Kolovos
Department of Computer Science

University of York
York, United Kingdom

dimitris.kolovos@york.ac.uk

ABSTRACT
Scalability in Model-Driven Engineering (MDE) is often a
bottleneck for industrial applications. Industrial scale mod-
els need to be persisted in a way that allows for their seam-
less and efficient manipulation, often by multiple stakehold-
ers simultaneously. This paper compares the conventional
and commonly used persistence mechanisms in MDE with
novel approaches such as the use of graph-based NoSQL
databases; Prototype integrations of Neo4J and OrientDB
with EMF are used to compare with relational database,
XMI and document-based NoSQL database persistence mech-
anisms. Benchmarking of these technologies is then per-
formed, to measure and compare their relative performance
in terms of memory usage and execution time.

Keywords
scalability, persistence, model-driven engineering.

1. INTRODUCTION
The popularity and adoption of MDE in industry has dra-

matically increased in the past decade as it provides several
benefits compared to traditional software engineering prac-
tices, such as improved productivity and reuse [1], which
allow for systems to be built faster and cheaper, two of
the important factors in industrial environments. Neverthe-
less, certain limitations of MDE such as scalability concerns
which prevent its wider use in industry [2, 3] will need to
be overcome. Scalability issues arise when large models (of
the order of millions of model elements) are used in MDE
processes.

When referring to scalability issues in MDE they can be
split into the following categories:

1. Model persistence: storage of large models; ability to
access and update such models with low memory foot-
print and fast execution time.

2. Model querying and transformation: ability to perform
intensive and complex queries and transformations on
large models with fast execution time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

3. Collaborative work: multiple developers checking out
a part of their model and querying or editing it, as well
as being able to commit their changes successfully.

Previous works have suggested using relational and docu-
ment NoSQL databases to improve performance and mem-
ory efficiency when working with large-scale models. This
paper contributes to the study of scalable techniques for
large-scale model persistence and querying by reporting on
the results obtained by exploring two graph-based NoSQL
databases (OrientDB and Neo4J), and by providing a di-
rect comparison with previously proposed persistence mech-
anisms. The remainder of the paper is organized as follows.
Section 2, introduces current persistence technologies used
in the Eclipse Modeling Framework (EMF) and Morsa, a
NoSQL prototype for scalable persistence of EMF models.
Section 3 presents the design and implementation of two
further prototypes for scalable model persistence based on
the OrientDB and Neo4J graph-based NoSQL databases. In
section 4 the produced prototypes are compared with exist-
ing solutions in terms of performance. Finally, section 5
discusses the application of these results and identifies in-
teresting directions for further work.

2. BACKGROUND
This section discusses the core concepts related to mod-

els, Model Driven Engineering and NoSQL databases that
will be used in the remainder of the paper and provides an
overview of the current state of practice in model persistence
and of proposed approaches for managing large-scale models
efficiently.

2.1 Model-Driven Engineering
In MDE models are first class artefacts of the software en-

gineering process. They are used to describe a system and
(partly) automate its implementation through automated
transformation to lower-level products. In order for mod-
els to be amenable to automated processing, they must be
defined in terms of rigorously specified modeling languages
(metamodels). EMF is a framework that facilitates the defi-
nition and instantiation of metamodels. In EMF, metamod-
els are defined using the Ecore metamodeling language, a
high level overview of which is illustrated in Figure 1.

Metamodel elements are created using EClasses. These
elements contain EReferences to other metamodel elements
and EAttributes, which are used to define the attributes any
model element of that class can contain. Model elements
are created from the EModelElement class. They can con-
tain EAttributes, which store information about the element

(such as the ISBN number of a book model element) and
can have EReferences to other model elements.

EClassifier

ENamedElement

ETypedElement

EStructuralFeature

EAttribute EReference

EDataType EClass

EModelElement

Figure 1: Simplified Diagram of the Ecore Meta-
modeling Language

By default, models in EMF are stored in a standard XML-
based representation called XML Metadata Interchange that
is an OMG-standardized format that was designed to en-
hance tool-interoperability. As XMI is an XML-based for-
mat, models stored in single XMI files cannot be partially
loaded and as such, loading an XMI-based model requires
reading this entire document using a SAX parser, and con-
verting it into an in-memory object graph that conforms to
the respective Ecore metamodel. As such, XMI scales poorly
for large models both in terms of time needed for upfront
parsing and resources needed to maintain the entire object
graph in memory. To address these limitations of XMI, per-
sisting models in relational databases has been proposed.

Examples of such approaches include the Connected Data
Objects (CDO)1 project and Teneo-Hibernate2. In this class
of approaches, an Ecore metamodel is used to derive a rela-
tional schema as well as an object-oriented API that hides
the underlying database and enables developers to interact
with models that conform to the Ecore metamodel at a high
level of abstraction. Such approaches eliminate the initial
overhead of loading the entire model in memory by provid-
ing support for partial and on-demand loading of subsets of
model elements. However, due to the nature of relational
databases, such approaches, while better than XMI, are still
inefficient. Due to the highly interconnected nature of most
models, complex queries require multiple expensive table
joins to be executed and hence do not scale well for large
models. Even though Teneo-Hibernate tries to minimize the
number of tables generated (all subclasses of an EClass are
in the same table as the EClass itself, resulting in a fraction
of the tables otherwise required if all EClasses made their
own table of EObjects) the fact that the database is made
up of sparsely populated data results in increased insertion
and query time as demonstrated in the sequel.

To overcome the limitations of relational databases for
scalable model persistence, recent work [4] has proposed us-
ing a NoSQL database instead. In the following paragraphs
we provide a discussion on NoSQL databases and their ap-
plication for scalable model persistence.

2.2 NoSQL Databases
1http://www.eclipse.org/cdo/
2http://wiki.eclipse.org/Teneo/Hibernate

The NoSQL movement is a contemporary approach to
data persistence using novel storage approaches. NoSQL
databases provide flexibility and performance as they are
not limited by the traditional relational approach to data
storage [5]. Each type of NoSQL database is tailored for
storing a different and specific type of data and the technol-
ogy does not force the data to be limited by the relational
model but attempts to make the database (as much as is fea-
sible) compatible with the data it wishes to store [6]. The
NoSQL movement itself has become popular due to large
widely known and successful companies creating database
storage implementations for their services, all of which are
not of the relational model. Such companies are for example
Amazon (Dynamo database [7]), Google (Bigtable database
[8]) and Facebook (Cassandra database [9]).

There are four widely accepted types of NoSQL databases,
which use distinct approaches in tackling data persistence,
three of which are described by [10] and a fourth, more con-
temporary one, that is of increasing popularity:

1. Key-value stores consist of keys and their correspond-
ing values, which allows for data to be stored in a
schema-less way. This allows for search of millions of
values in a fraction of the time needed by conventional
storage. Inspired by databases such as Amazon’s Dy-
namo, such stores are tailored for handling terabytes
of distributed key-value data.

2. Tabular stores (or Bigtable stores - named after the
Google database) consist of tables which can have a
different schema for each row. It can be seen as each
row having one huge extensible column containing the
data. Such stores aim at extending the classical rela-
tional database idea by allowing for sparsely populated
tables to be handled elegantly as opposed to needing
a large amount of null fields in a relational database,
which scales very poorly when the number of columns
becomes increasingly large. Widely used examples of
such stores are Bigtable [8] and Hbase [11].

3. Document databases consist of a set of documents (pos-
sibly nested), each of which contains fields of data in
a standard format like XML or Json. They allow for
data to be structured in a schema-less way as such
collections. Popular examples are MongoDB [12] and
OrientDB [13].

4. Graph Databases consist of a set of graph nodes linked
together by edges (hence providing index-free adja-
cency of nodes). Each node contains fields of data and
querying the store commonly uses efficient mathemati-
cal graph-traversal algorithms to achieve performance;
As such, these databases are optimized for traversal of
highly interconnected data. Examples of such stores
are Neo4J [14] and the graph layer (OGraphDatabase)
of OrientDB [13].

NoSQL databases have a loosely defined set of character-
istics and properties [15]:

• They scale horizontally by having the ability to dy-
namically adapt to the addition of new servers.

• Data replication and distribution over multiple servers
is used, for coping with failure and achieving eventual
consistency.

• Eventual consistency; a weaker form of concurrency
than ACID (Atomicity, Consistency, Isolation, Dura-
bility) transactions, which does not lock a piece of data
when it is being accessed for a write but uses data

replication over multiple servers to cope with conflicts.
Each database will implement this in a different way
and will allow the administrator to alter configurations
making it either closer to ACID or increasing the avail-
ability of the store.

• Simple interfaces for searching the data and calling
procedures.

• Use of distributed indexes to store key data values for
efficient searching.

• Ability to add new fields can be added to records dy-
namically in a lightweight fashion.

The CAP theorem defines this approach and states that a
(NoSQL) database can choose to strengthen only two of the
three principles: consistency availability and partition tol-
erance, and has to (necessarily) sacrifice the third. Popu-
lar NoSQL stores chose to sacrifice consistency; BASE (Ba-
sically Available, Soft-state, Eventually consistent) defines
this approach.

NoSQL stores are seen to have the following limitations
[16]:

1. Lack of a querying language (such as SQL) results
in the database administrator or the database creator
having to manually create a form of querying.

2. Lack of ACID transactions results in skepticism from
industry, where sensitive data may be stored.

3. Being a novel technology causes lack of trust by large
businesses which can fall back on reliable SQL data-
bases which offer widely used support, management
and other tools.

2.2.1 Morsa: NoSQL Back-end Prototype
Morsa [4] is a prototype that attempts to address the is-

sue of scalable model persistence by using a document store
NoSQL database (MongoDB) to store EMF models as col-
lections of documents. Morsa stores one model element per
document, with its attributes stored as a key-value pair,
alongside its persistence metadata (such as reference to its
metaclass). Metamodel elements are stored in a similar fash-
ion to model elements and are also represented as entries in
an index document that maps each model or metamodel URI
(the unique identifier of a model or metamodel element in
the store) to an array of references to the documents that
represent its root objects. A high level overview of the ar-
chitecture is displayed in Figure 2 by [4].

Figure 2: Persistence back-end structure excerpt for
Morsa

Morsa uses a load on demand mechanism which relies
on an object cache that holds loaded model objects. This
cache is managed by a configurable cache replacement pol-
icy that chooses which objects must be unloaded from the
client memory (should the cache be deemed full by the cur-
rent configuration). While this attempts to use an effective
storage technique and succeeds in improving upon the cur-
rent paradigms, due to using a Document Store database
the EReferences (which are serialized as document refer-
ences) are stored inefficiently, which hampers insertion and
query speed, as models tend to be densely interconnected
with numerous references between them. Nevertheless, the
discussions on the various caching techniques and cache re-
placement policies, as well as the different loading strategies
are very effective in conveying the large number of config-
urations possible in a single back-end persistence example,
and how optimizing the storage of different sizes and types
of models can be extremely complex. Hence any solution
aiming at tackling this challenge needs to be aware of these
issues and experiment on the optimal way to handle them
in its specific context.

3. DATA PERSISTENCE TECHNOLOGIES
FOR LARGE-SCALE MODELS

As discussed above, NoSQL databases have been shown to
be a promising alternative that overcomes some of the lim-
itations of relational databases for persistence of large-scale
models, briefly summarized in section 2.1. Therefore, in
this work prototype model stores based on Neo4J [14] and
OrientDB [13] have been created, and their efficiency has
been compared against the default EMF XMI text store, a
MySQL SQL database (using Teneo-Hibernate to integrate
with EMF), and Morsa. This section discusses the design
and implementation of the two model stores and briefly dis-
cusses the Grabats 2009 case study, a subset of which is used
for the evaluation of these stores.

Due to the nature of the data being stored, key-value
stores as well as tabular NoSQL data-stores were not con-
sidered, as they are tailored for handling a different problem
(as explained above in Section 2.2). Hence the decision was
made to experiment with a document based (and hybrid-
graph) database (OrientDB) and a pure graph one (Neo4J).
After initial trials, the document layer of OrientDB lagged
behind the graph layer (as can be expected with the nature
of the data being stored) so the focus became comparing
two graph databases. The reasoning behind choosing these
technologies was that Neo4J is an extremely popular, sta-
ble and widespread graph database while OrientDB not only
provides a document layer and a graph layer, but also has
a flexible license, which Neo4J does not, as detailed in their
respective subsections 3.1 and 3.2 below.

The Neo4J and OrientDB stores attempt to solve the
aforementioned scalability issues using graph databases to
store large model models. As such stores have index-free
adjacency of nodes, we anticipate that retrieving subgraphs
or querying a model will scale well. The main differences
between the two prototypes lie in the fact that OrientDB’s
core storage is in documents (and uses a graph layer to han-
dle the data as a graph) while Neo4J’s core storage is as a
graph.

3.1 Neo4J, Graph Database

MethodDeclaration

‘constructor’ : Boolean

‘Id’= ‘org.amma.dsl.jdt.dom

/TypeDeclaration’

‘Id’= ‘org.amma.dsl.jdt.dom

/MethodDeclaration’

‘name’ = ‘AptPlugin’

‘localTypeDeclaration’ = ‘true’

‘memberTypeDeclaration’=
‘false’

‘name’ = ‘getPlugin’

‘constructor’ = ‘false’

ofType ofType ofType ofType

bodyDeclarations

bodyDeclarations bodyDeclarations

 ECore Neo4J

Metamodel

 Model

TypeDeclaration

‘name’ : String

‘localTypeDeclaration’ : Boolean

‘memberTypeDeclaration’ :
 Boolean

AptPlugin : TypeDeclaration

‘localTypeDeclaration’ = ‘true’

‘memberTypeDeclaration’ =
‘false’

getPlugin : MethodDeclaration

‘constructor’ = ‘false’

Figure 3: Example mapping from Ecore to Neo4J

Neo4J is a popular, commercial Graph Database released
under the GNU Public License (GPL) and the Affero GNU
Public License (AGPL) licenses. It is written in the Java
programming language and provides a programmatic way
to insert and query embedded graph databases. Its core
constructs are Nodes (which contains an arbitrary number
of properties, which can be dynamically added and removed
at will) and Relationships, whereby Node represents a math-
ematical graph node and Relationship an edge between two
nodes. A Neo4J-based model store consists of the following:

• Nodes representing model elements in the model stored.
These nodes contain as properties all of the attributes
of that element (as defined by both its class and its
superclasses) that are set.

• Relationships from model element nodes to other model
element nodes. These represent the references of the
model element to other model elements.

• Nodes representing EClasses of the metamodel(s) the
models stored are instances of. These nodes only have
an id property denoting the unique identifier of the
metamodel they belong to, followed by their name,
for example: org.amma.dsl.jdt.core/IJavaElement

is the id of the EClass IJavaElement in the org.amma.

dsl.jdt.core Ecore metamodel. These lightweight
metaclass nodes are used to speed up query time by
providing references to model elements that have this
EClass as their class (ofType reference) or superclass
(ofKind reference). This is the only metamodel infor-
mation actually stored in the database, as explained
below.

• An index containing the ids of the EClasses and their
appropriate location in the database. This allows a
typical query (such as the Grabats query described be-
low) to have this as a starting point, in order to find
all model elements of a specific type, and will then
navigate the graph to return the appropriate results.

The above data contains all of the information required to
load a model and evaluate any EMF query, provided that the
metamodel(s) of the model is registered to the EMF registry
before any actions can be performed, as detailed metamodel
information is not saved in the database (only the model
information is stored in full) due to the fact that metamod-
els are typically small and sufficiently fast to navigate using
the default EMF API. Thus any action that may require use
of such metamodel data, like querying whether this element
can have a certain property (as it may be unset, and there-
fore not stored in the database) or whether a reference is a
containment one for example (as the database only stores

the reference’s name) will go to the EMF registry, retrieve
the EClass in question and get this information from there.
Note that the database supports querying of a model, in-
sertion of a new model (from an Ecore - XMI document) as
well as updating a model (adding or removing elements or
properties) and keeping it consistent with its metamodel.

Figure 3 shows how a simple Ecore metamodel and model
are stored in Neo4J. As seen above, metamodel EClasses
are only stored as lightweight nodes containing only their
NsURI as a property.

3.2 OrientDB, Hybrid Document Store, Graph
Database

OrientDB is a novel document-store database released un-
der the Apache 2 License. It is also written in the Java
programming language and provides a programmatic way
to insert and query from a document database in Java. Ori-
entDB also has a graph layer which allows for documents to
have edges between them, emulating the property of index-
free adjacency of documents. Its core constructs are ODocu-
ments (which can contain an arbitrary number of properties,
which can be dynamically added and removed).

An OrientDB-based model store consists of the following:
• ODocuments representing (the nodes of the) model el-

ements in the model stored. These nodes contain as
fields all of the attributes of that element (as defined
by both its class and its superclasses) that are set.

• ODocuments representing (the references (edges)) from
model element nodes to other model element nodes.
These represent the references of the model element to
other model elements.

• ODocuments representing metamodel EClasses of the
metamodel the model stored adheres to. These nodes
have an ’id’ field denoting the NsUri of their pack-
age followed by their Name, for example: org.amma.

dsl.jdt.core/IJavaElement is the id of the EClass
IJavaElement in the EPackage: org.amma.dsl.jdt.

core. They also have a ’class’ and a ’superclass’ field
which contain lists of the database ids of their ofType
and ofKind elements (the ones they are a class or a
superclass of).These lightweight metaclass nodes are
used to speed up query time by providing direct links
(in the form of lists) to model elements that have this
EClass as their class (ofType reference) or superclass
(ofKind reference). This is the only metamodel infor-
mation actually stored in the database, as explained
below. The reason references are not used (like in
Neo4J) is that they are too heavyweight (in a similar

MethodDeclaration

‘constructor’ : Boolean

‘identity’ = #1:1

‘Id’= ‘org.amma.dsl.jdt.dom
/TypeDeclaration’

‘class’ = {#1:3}

‘superclass’ = {}

‘identity’ = #1:2

‘Id’= ‘org.amma.dsl.jdt.dom
/MethodDeclaration’

‘class’ = {#1:4}

‘superclass’ = {}

‘identity’ = #1:3
‘name’ = ‘AptPlugin’
‘localTypeDeclaration’ = ‘true’
‘memberTypeDeclaration’=

‘false’
‘ofType’ = #1:1
‘ofKind’ = {}

‘identity’ = #1:4

‘name’ = ‘getPlugin’

‘constructor’ = ‘false’

‘ofType’ = #1:2

‘ofKind’ = {}

ofType ofType

bodyDeclarations

bodyDeclarations bodyDeclarations

 ECore OrientDB

Metamodel

 Model

TypeDeclaration

‘name’ : String

‘localTypeDeclaration’ : Boolean

‘memberTypeDeclaration’ :
 Boolean

AptPlugin : TypeDeclaration

‘localTypeDeclaration’ = ‘true’

‘memberTypeDeclaration’ =
‘false’

getPlugin : MethodDeclaration

‘constructor’ = ‘false’

Figure 4: Example mapping from Ecore to OrientDB

manner to how the ones in Morsa are) so are avoided,
and empirical evidence shows that execution time us-
ing references instead of lists is much slower.

• An index containing the ids of the metaclasses and
their appropriate location in the database. This allows
a typical query to have this as starting point, in order
to find all of the model elements of a specific type, and
will then navigate the graph to return the appropriate
results.

Figure 4 shows how a simple Ecore metamodel and model
are stored in OrientDB.

3.3 The Grabats 2009 Case Study and Query
The 5th International Workshop on Graph-Based Tools

ran the Grabats 2009 contest [17]. The contest comprised
several tasks, including the case study used in this paper for
benchmarking the different technologies. More specifically,
task 1 of this case study is performed, using all of the case
studies’ models, set0 - set4 (which represent progressively
larger models, from one with 70447 model elements (set0) to
one with 4961779 model elements (set4)). These models all
conform to the JDTAST metamodel, which is a metamodel
used to model Java source code.

These models are injected into the persistence technolo-
gies used in the benchmark (insertion benchmark) and then
queried using the Grabats 2009 task 1 query (query bench-
mark) [18]. This query requests all instances of TypeDeclara-
tion elements which declare at least one MethodDeclaration
that has static and public modifiers and the declared type
being its returning type.

4. EVALUATION
In this section, XMI, Teneo/Hibernate (using a MySQL

database), Morsa and the two prototypes implemented in
this work are compared to assess their performance and ef-
ficiency in terms of memory use. Performance figures that
have been measured on a PC with Intel(R) Core(TM) i5-
2300 CPU @ 2.80GHz, with 8GB of physical memory, and
running the Windows 7 (64 bits) operating system are pre-
sented. The Java Virtual Machine (JVM) version 1.6.0 25-
b06 has been restarted for each measure as well as for each
repetition of each measure. Results are in seconds and Mega-
bytes, where appropriate. Note that all results for the Morsa
test cases were not performed under these conditions as the
released prototype could not be run successfully. Hence
the results are taken from the published benchmarks per-
formed by Pagan, Cuadrado, and Molina [4], who used a

Intel CoreI5 760 PC at 2.80GHz with 8GB of physical RAM
running 64-bit Linux 2.6.35. This setup mostly coincides
with the one used for this paper’s benchmarks but the re-
sults cannot be directly related due to this discrepancy and
are included only for reference.

Table 1 shows the configurations that have been used for
the JVM and for the relevant databases to optimize execu-
tion time and have all been obtained empirically. As the
Morsa prototype was not ran, the exact configurations used
by [4] are not known.

Table 1: Configuration Options for Benchmarks

Configuration
Persistence Mechanism

XMI Teneo/Hibernate Morsa Neo4J OrientDB

JVM -Xmx6G -Xmx6G - -Xmx6G -Xmx5G

Database n/a default - 2.2G MMIO 1.5G MMIO

Table 2 shows the results for the insertion of an XMI
model into the database. We assume availability of XMI
model files so tests of models written to an XMI file are
omitted. Teneo/Hibernate did not successfully insert set2
- set4 so values are omitted. The Morsa publication does
not report on insertion time so is also omitted. Neo4J is
the fastest to complete a successful full insert for all model
sizes, OrientDB is closely second with comparable execution
time and success for all model sizes and Teneo/Hibernate is
considerably slower as well as failing to insert past set1. It
is worth noting that for set3 - set4, due to the sizes of the
files, the computer’s RAM is exhausted hence the operation
is greatly bottlenecked by I/O from the hard disk. This
results in a greater variance in the results and hence the av-
erages presented here are influenced by multiple factors such
as the physical location of each database on the hard disk.

Table 2: Model Insertion (Persistent to Database)
Results

Model Size
Persistence Mechanism (Time taken)

XMI Teneo/Hibernate Morsa Neo4J OrientDB

Set0 8.75 n/a 58.67 - 12.43 19.58

Set1 26.59 n/a 218.20 - 32.52 57.10

Set2 270.12 n/a - - 499.09 589.80

Set3 597.67 n/a - - 2210.17 2245.45

Set4 645.53 n/a - - 2432.16 2396.88

Table 3 shows the results for performing the first Gra-

bats 2009 [17, 18] query on the databases. As previously
mentioned, the Grabats query finds all occurrences of Type-
Declaration elements that declare at least one public static
method with the declared type as its returning type.

As Teneo/Hibernate did not insert set2 - set4 query values
are omitted for these test cases. As the Morsa publication
included only one memory footprint value, this is taken as
an average memory use and a max memory use is omitted.

Table 3: Grabats Query Results

Model Metric
Persistence Mechanism

XMI Teneo/Hibernate Morsa Neo4J OrientDB

Set0
Time 1.20 4.53 0.71 0.11 0.43

Mem (Max) 42 248 - 15 10
Mem (Avg) 19 117 5 11 10

Set1
Time 2.28 7.34 0.99 0.62 1.18

Mem (Max) 111 323 - 18 27
Mem (Avg) 48 176 8 13 17

Set2
Time 16.51 - 9.72 3.10 9.83

Mem (Max) 813 - - 401 742
Mem (Avg) 432 - 168 195 255

Set3
Time 84.91 - 26.76 6.71 24.41

Mem (Max) 1750 - - 960 2229
Mem (Avg) 844 - 205 620 881

Set4
Time 145.67 - 29.34 7.16 29.65

Mem (Max) 1850 - - 1070 2463
Mem (Avg) 939 - 254 866 1314

As can be observed, Neo4J demonstrates the best perfor-
mance in terms of execution time, Morsa is the most mem-
ory efficient (as it is optimized for memory consumption)
and OrientDB is faster than XMI but also uses a compa-
rable memory footprint. Teneo/Hibernate not only has the
highest memory consumption for the queries it can run but
is also considerably slower to execute.

Using this empirical data we can deduce that even though
OrientDB’s Graph layer is competitive and can be an im-
provement to XMI even for the largest model sizes in this
benchmark, due to the fact that it is built atop a document
store causes its performance to be lower than that of Neo4J,
which is a pure graph-based database.

5. CONCLUSIONS
This paper has explored the use of graph-based NoSQL

databases to support scalable persistence of large models
by exploiting the index-free adjacency of nodes provided by
these stores. Prototypes for integrations of both Neo4J and
OrientDB with EMF have been implemented and demon-
strate performance results which surpass XMI text file based
stores as well the Teneo/Hibernate solution. These results
can promote further research and development of large-scale
model persistence solutions based on graph-based NoSQL
databases. Further work in this area would also include in-
tegration of these prototypes with model management (e.g.
validation, model-to-text and model-to-model transforma-
tion) languages, as well as implementation of features allow-
ing for more memory-efficient client access to the reposito-
ries, for scenarios where execution time can be traded for a
lower memory footprint.

6. REFERENCES
[1] Mohagheghi, P., Fernandez, M., Martell, J., Fritzsche,

M., Gilani, W.: MDE Adoption in Industry:

Challenges and Success Criteria. In: Models in
Software Engineering. Volume 5421 of Lecture Notes
in Computer Science. Springer (2009) 54–59

[2] Kolovos, D.S., Paige, R.F., Polack, F.A.: Scalability:
The Holy Grail of Model Driven Engineering. In:
Proc. Workshop on Challenges in MDE, collocated
with MoDELS ’08, Toulouse, France. (2008)

[3] Mougenot, A., Darrasse, A., Blanc, X., Soria, M.:
Uniform Random Generation of Huge Metamodel
Instances. In: Proceedings of ECMDA-FA ’09, Berlin,
Heidelberg, Springer-Verlag (2009) 130–145

[4] Pagán, J.E., Cuadrado, J.S., Molina, J.G.: Morsa: a
scalable approach for persisting and accessing large
models. In: Proceedings of MODELS’11, Berlin,
Heidelberg, Springer-Verlag (2011) 77–92

[5] Stonebraker, M.: SQL Databases vs NoSQL
Databases. Commun. ACM 53(4) (2010)

[6] Orend, K.: Analysis and Classification of NoSQL
Databases and Evaluation of their Ability to Replace
an Object-relational Persistence Layer. Architecture,
p. 100 (April 2010) http://weblogs.in.tum.de/file/
Publications/2010/Or10/Or10.pdf.

[7] DeCandia, G., Hastorun, D., Jampani, M.,
Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels, W.:
Dynamo: amazon’s highly available key-value store.
In: Proc. 21st ACM SIGOPS symposium on Operating
systems principles. SOSP ’07 (2007) 205–220

[8] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C.,
Wallach, D.A., Burrows, M., Chandra, T., Fikes, A.,
Gruber, R.E.: Bigtable: A Distributed Storage System
for Structured Data. ACM Trans. Comp. Syst. (2008)

[9] Lakshman, A., Malik, P.: Cassandra: a decentralized
structured storage system. SIGOPS Oper. Syst. Rev.
44(2) (April 2010) 35–40

[10] Padhy, R.P., Patra, M.R., Satapathy, S.C.: RDBMS
to NoSQL: Reviewing Some Next-Generation
Non-Relational Database’s. IJAEST Vol.11(1) (2011)

[11] Hbase Developers: Hbase, Tabular NoSQL Database
[online] (2012) [Accessed 1 June 2012] Available at:
http://hbase.apache.org/.

[12] MongoDB Developers: MongoDB, Document-Store
NoSQL Database [online] (2012) [Accessed 1 June
2012] Available at: www.mongodb.org/.

[13] OrientDB Developers: OrientDB, Hybrid
Document-Store and Graph NoSQL Database [online]
(2012) [Accessed 1 June 2012] Available at:
http://www.orientechnologies.com/.

[14] Neo4J Developers: Neo4J, Graph NoSQL Database
[online] (2012) [Accessed 1 June 2012] Available at:
http://neo4j.org/.

[15] Cattell, R.: Scalable SQL and NoSQL data stores.
SIGMOD Rec. 39(4) (May 2011) 12–27

[16] Leavitt, N.: Will NoSQL Databases Live Up to Their
Promise? Computer 43(2) (February 2010) 12 –14

[17] Grabats2009: 5th International Workshop on
Graph-Based Tools [online] (2012) [Accessed 1 June
2012] Available at: http://is.tm.tue.nl/staff/

pvgorp/events/grabats2009/.

[18] Sottet, J.S., Jouault, F.: Program comprehension. In:
Proc. 5th Int. Workshop on Graph-Based Tools. (2009)

