
EuGENia Live: A Flexible Graphical Modelling Tool

Louis M. Rose
University of York

Deramore Lane, Heslington
York, YO10 5GH
United Kingdom

louis@cs.york.ac.uk

Dimitrios S. Kolovos
University of York

Deramore Lane, Heslington
York, YO10 5GH
United Kingdom

dkolovos@cs.york.ac.uk

Richard F. Paige
University of York

Deramore Lane, Heslington
York, YO10 5GH
United Kingdom

paige@cs.york.ac.uk

ABSTRACT
Designing a domain-specific language (DSL) is a collabo-
rative, iterative and incremental process between domain
experts and software engineers. Existing tools for imple-
menting DSLs produce powerful and interoperable domain-
specific editors, but are resistant to language change and
require considerable technical expertise to use. We present
EuGENia Live, a tool for designing (graphical) DSLs. Eu-
GENia Live runs in a web browser, supports on-the-fly meta-
model editing, and produces DSLs that can be exported and
used with the Eclipse Modeling Framework. As well as pre-
senting the design and implementation of EuGENia Live, we
discuss potential benefits to our underlying approach, and
challenges for future work on flexible modelling tools.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements

Keywords
Domain-specific languages, flexible modelling, model-driven
engineering

1. INTRODUCTION
Domain-specific languages (DSLs) play an important role

in model-driven engineering (MDE). In a recent survey of
MDE practitioners, “almost 40%” of participants had used
custom DSLs, 25% had used off-the-shelf DSLs, and only
UML (used by 85% of participants) had been used more
widely than DSLs [8]. Despite the significant adoption of
custom DSLs for MDE, we believe that existing MDE tools
for implementing DSLs and supporting tools are unsuitable
for designing and developing a new DSL.

Like Fowler [5, pg.34] and Cho [1], we have observed that
constructing a new DSL is a collaborative, iterative and
incremental process. Domain experts and software engi-
neers must work together to design the DSL. Changes to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

DSL are frequent during the initial stages of DSL develop-
ment. Implementing a DSL and supporting tools, however,
requires considerable technical expertise (e.g., to construct
a metamodel). Moreover, the process of constructing a DSL
with MDE tools is somewhat resistant to change: meta-
models and models are kept separate, models must always
conform to their metamodel, and consequently managing
model-metamodel co-evolution is a challenging task (see, for
example, Cicchetti et al. [3], Herrmannsdörfer et al. [7], or
our earlier work [11]).

Flexible modelling tools (e.g., [1, 4, 6, 12]) seek to combine
free-form modelling (e.g., sketching on a whiteboard) and
more formal modelling (e.g., modelling with a MDE tool).
Flexible modelling tools sacrifice some formality to facilitate
experimental and exploratory modelling of the domain, but
consequently cannot provide the powerful domain-specific
editors generated by MDE tools. We believe that flexible
modelling is particularly valuable for the design of DSLs,
but as the design of a DSL solidifies there is increasing value
in implementing the DSL with a MDE tool.

In this paper, we introduce EuGENia Live, a flexible mod-
elling tool that aims to reduce the effort required to con-
struct DSLs, and that exports models and metamodels for
continuing the implementation of a DSL with the MDE tools
available in the Eclipse Modeling Project. The remainder of
this paper is structured as follows. Section 2 reviews ex-
isting work on modelling tools, categorising them into rigid
and flexible tools. Section 3 introduces EuGENia Live, a
flexible modelling tool that we have developed which seeks
to facilitate collaborative, iterative and incremental develop-
ment of DSLs. Using an example, section 4 demonstrates the
key features of EuGENia Live. Section 5 considers the ben-
efits, drawbacks and challenges of the modelling approach
underpinning EuGENia Live, and section 6 concludes and
explores possible directions for future work.

2. RIGID AND FLEXIBLE MODELLING
We now review and compare rigid and flexible modelling

tools, with a focus on their use for specifying graphical DSLs.
Rigid modelling tools – which include MDE modelling tools
and language workbenches – require that models conform to
a language specification (e.g., a metamodel or a grammar),
and constructing a domain-specific model with a rigid mod-
elling tool involves first constructing a language specification
for the domain. Flexible modelling tools seek to combine
free-form modelling with rigid modelling, and normally al-
low domain-specific models to be initially constructed using
a general-purpose modelling language.

2.1 Rigid Modelling Tools
MDE and language-oriented programming are two com-

munities in which rigid modelling tools are prevalent. In
both communities, domain-specific programs conform to a
DSL specification, which is used to generate DSL editors
and other domain-specific tooling (e.g., by specifying model
transformations and code generators).

2.1.1 MDE Modelling Tools
In the MDE community, a DSL is often defined using

models, transformations and other model management op-
erations. The Eclipse Modeling Project, arguably the most
widely-used MDE environment today, provides the Eclipse
Modeling Framework (EMF) and several related tools for
specifying DSLs. EMF is used to specify abstract syntax.

Graphical concrete syntax for a language defined with
an EMF model can be specified using frameworks such as
Graphiti1 and the Graphical Modeling Framework (GMF).
Users of GMF create four interrelated models that specify
different parts of the graphical concrete syntax, and GMF
from the four models generates Java code for the correspond-
ing graphical editor. Graphiti is a Java API for creating
graphical tools. Users of Graphiti write Java code that uses
the API to specify a graphical editor that stores data ac-
cording to the structure specified by an EMF model. GMF
and Graphiti are large and powerful frameworks, and con-
sequently their use requires considerable technical expertise
(as evidenced for GMF by Wienands and Golm [14]). Eu-
GENia [9] and Spray2 seek to reduce the amount of technical
expertise required to specify a DSL with GMF and Graphiti
respectively, by providing higher-level languages that map
onto a subset of the underlying framework.

2.1.2 Language-Oriented Tools
Language-oriented programming [13] involves construct-

ing, extending, combining and using different languages to-
gether to construct a system. Language workbenches are
programming environments that seek to address the require-
ments of language-oriented programming. Although more
than a dozen language workbenches were presented at the
2011 and 2012 Language Workbench Competitions3, there
are very few publications on these tools.

There are relatively few graphical language workbenches.
MetaEdit+ and Obeo Designer are commercial graphical
language workbench tools. MetaEdit+ provides mechanisms
for specifying a language by defining abstract syntax, vi-
sual concrete syntax and semantics (via code generators).
MetaEdit+ uses a proprietary persistence format and hence
models and languages constructed with MetaEdit+ cannot
be used with other modelling tools or language workbenches.
Obeo Designer is a graphical language workbench tool that
combines many MDE tools. Visual concrete syntax is spec-
ified using GMF, which was described in Section 2.1.1.

2.2 Flexible Modelling Tools
Flexible modelling tools seek to combine some of the char-

acteristics of free-form modelling (e.g., sketching using a
whiteboard or an office tool) with some of the characteristics
of rigid modelling tools (e.g., structured data). A range of

1http://www.eclipse.org/graphiti/
2http://code.google.com/a/eclipselabs.org/p/spray/
3http://www.languageworkbenches.net

approaches to flexible modelling are being explored, and ini-
tial work has been published at, for example, Flexible Mod-
eling Tools workshops4. Unlike rigorous modelling tools,
flexible modelling tools do not necessarily require a meta-
model to be specified prior to the construction of models.

Cho [1] and Desmond et al. [4] describe approaches that
infer a metamodel after models have been constructed. In-
ference approaches require a set of example models, which
are constructed by the user with a generic concrete syntax
(comprising, for example, shapes and lines). The modelling
tool then infers language-specific syntax from the example
models, and the language-specific syntax can be used in fu-
ture modelling sessions. Inferring a metamodel from ex-
ample models is challenging, and it is not yet clear whether
inference can be fully automated: Cho [1] explores a fully au-
tomated inference process that uses metamodel design pat-
terns to improve the structure of inferred languages; while
Desmond et al. [4] explores a semi-automated inference pro-
cess that is guided by the user.

As an alternative to inferring a metamodel, Gabrysiak et
al. [6] proposes the co-design of models and metamodels via
incremental refinement of an initial metamodel. The initial
metamodel is based on a well-understood domain (e.g., Petri
nets), and is changed to better suit the domain that is being
modelled.

2.3 Flexible versus Rigid Modelling Tools
Rigid and flexible modelling tools are now compared with

respect to three distinguishing characteristics.

2.3.1 Model Representation
In rigid modelling tools, all models are structured: they

conform to a metamodel. The environments in which rigid
modelling tools are integrated exploit structured models to
provide other functionality (e.g., language-specific model edit-
ing capabilities). MDE environments are particularly reliant
on structured models, as model transformations are typical
specified with respect to a metamodel (e.g. “transform all
of the instances of the Net metaclass”). By contrast, flexi-
ble modelling tools focus more on designing the appearance
(concrete syntax) than the structure (abstract syntax) of a
DSL, and consequently the languages designed with flexible
modelling tools might not be amenable to model transfor-
mation. This drawback is discussed further in section 5.

2.3.2 Technical Expertise
Rigid modelling tools assume technical expertise, and hence

are normally used by software engineers. For example, meta-
modelling languages might assume understanding of object-
orientation (for specifying abstract syntax) or BNF for (spec-
ifying textual concrete syntax). Flexible modelling tools
seek to reduce the technical expertise required to specify
a modelling language via automation or refinement.

2.3.3 Change Management
Designing a DSL in collaboration with domain experts

typically involves discussing example models rather than by
discussing metamodels [10]. Similarly, designing or modify-
ing a DSL with a flexible modelling tool starts by changing
example models, and a metamodel is constructed or inferred
from the example models. By contrast, modifying a DSL

4http://www.ics.uci.edu/~nlopezgi/
flexitoolsICSE2011/

http://www.eclipse.org/graphiti/
http://code.google.com/a/eclipselabs.org/p/spray/
http://www.languageworkbenches.net
http://www.ics.uci.edu/~nlopezgi/flexitoolsICSE2011/
http://www.ics.uci.edu/~nlopezgi/flexitoolsICSE2011/

Goal Requirement Approach taken by EuGENia Live
1 Allow DSL specifications to be exported to a plat-

form for implementing DSLs.
Option to export a user-defined DSL as an Ecore model for
use with EMF, and GMF via EuGENia [9].

2 Minimise the time and technical expertise re-
quired for installation.

Implemented as a web application, and runs in any modern
web browser.

2 Provide structures that reduce the time required
to start developing a new DSL.

Built-in metamodels (for Petri nets and state machines) that
can be re-used and customised when designing a new DSL.

2 Support both MDE experts and domain experts
in specifying a DSL.

Users can choose between two metamodelling notations:
JSON (a human-readable form of XML) and EuGENia [9].

3 Allow users to quickly switch between editing and
testing a DSL.

A drawing editor whose palette (i.e. metamodel) can be
changed on-the-fly by the user.

Table 1: Requirements for and approaches taken in EuGENia Live.

with a rigid modelling tool typically involves first changing
the metamodel, possibly re-generating code for the support-
ing tools for the DSL, and then testing the modified DSL.
Consequently, it is arguably easier to change DSLs imple-
mented with flexible modelling tools than to change DSLs
implemented with rigid modelling tools.

3. EuGENia Live
This section presents the design and implementation of

EuGENia Live, a graphical modelling tool that seeks to com-
bine the benefits of flexible and rigid modelling tools with
the aim of facilitating collaborative, iterative and incremen-
tal specification of DSLs. To this end, EuGENia Live has
the following goals:

1. Interoperate with existing model management
tools (inspired by rigid modelling tools, such as EMF
and GMF).

2. Reduce the technical expertise required to spec-
ify a DSL (inspired by inference-based flexible mod-
elling tools [1, 4]).

3. Minimise the time taken to change a DSL (in-
spired by flexible modelling tools).

Table 2.3.2 identifies the way in which the above goals
have been translated into user requirements, and summarises
the approach taken in EuGENia Live to address each re-
quirement. The remainder of this section describes the ap-
proaches in more detail. First, the user interface of Eu-
GENia Live is summarised, and then the domain model –
which is key to addressing many of the requirements – is
discussed. An alpha version of EuGENia Live is available at
http://eugenialive.herokuapp.com

3.1 User Interface
The user interface of EuGENia Live comprises three views,

and allows DSLs to be designed by creating drawings (mod-
els) and palettes (metamodels). Each view is now discussed.

The DrawingNavigator (not shown) is the primary view,
and allows drawings to be created, deleted and opened. When
creating a new drawing, the user can select either an empty
or a built-in palette.

The DrawingEditor, figure 1(a), provides a canvas, tool-
box and property sheet editor that allows users to test a
palette by creating a drawing that uses the palette. The
toolbox on the left hand-side of the DrawingEditor allows
the user to construct a drawing. New drawing elements

are created by first selecting an item in the toolbox, and
then clicking on the canvas (on the right-hand side of the
DrawingEditor).

The PaletteEditor, figure 1(b), is accessed by double-clicking
on the items in the toolbox of the DrawingEditor, and al-
lows node types and edge types to be modified. To modify
a node type or edge type, the user changes a serialisation of
the node type or an edge type using either JSON (an XML-
like notation) or EuGENia [9] concrete syntax. The abstract
syntax for the node types and edge types of EuGENia Live
is now discussed.

3.2 Domain Model
The domain model (figure 2) comprises the concepts nec-

essary to create and use a graphical DSL. In EuGENia Live,
a model is an instance of Drawing and can contain any num-
ber of Nodes and Edges. Each instance of Node and Edge
can contain a number of Slots which are used to store prop-
erty values, such as the name of the Node or Edge.

Every instance of Drawing references a Palette, which de-
fines the metamodel for that Drawing. A Palette comprises
NodeTypes and EdgeTypes. Each NodeType and EdgeType
has a name and contain any number of Properties. Each
NodeType and EdgeType may optionally specify a Label,
which provides one piece of concrete syntax for a Node. The
remaining concrete syntax is specified using one or more
Shapes for a NodeType and a Line for EdgeTypes. In fu-
ture work, we anticipate supporting additional syntax (e.g.,
arrowheads for Lines).

Two key characteristics of the domain model are that
model and metamodel elements are specified together and
that the relationship between model and metamodel ele-
ments are realised using an association rather than with in-
stantiation (e.g., see the relationships between Edge and Ed-
geType in figure 2). Consequently, a palette can be changed
on-the-fly, whilst a drawing is created.

3.3 Implementation Notes
We have implemented EuGENia Live using HTML5 and

Coffeescript5. Drawings are rendered using the HTML5 can-
vas element and the Paper.js6 vector graphics framework.
The domain model and UI are implemented with Spine7

and Twitter Bootstrap8, respectively.

5A language that is similar to Ruby and that compiles to
cross-browser Javascript, http://coffeescript.org
6http://paperjs.org
7http://spinejs.com/
8http://twitter.github.com/bootstrap/

http://eugenialive.herokuapp.com
http://coffeescript.org
http://paperjs.org
http://spinejs.com/
http://twitter.github.com/bootstrap/

(a) The DrawingEditor view. (b) The PaletteEditor view.

Figure 1: Using the views of EuGENia Live to define a seating plan diagram and its language definition.

Figure 2: UML class diagram of the domain model of EuGENia Live.

4. EXAMPLE
We now consider an example of designing a graphical DSL.

The purpose of the example is to contextualise a discus-
sion of the preliminary version of EuGENia Live; further
development and application to many more examples will
be necessary for a rigorous evaluation. The DSL we now
consider is used for specifying seating plans. The seating
plan DSL captures concepts such as tables and guests. The
purpose of the seating plan DSL is to create allocations of
guests to tables, and then to check properties of the alloca-
tion such as “every table must have male and female guests”
and“partners should be seated on the same table”. The seat-
ing plan DSL was developed collaboratively by a technical
and a non-technical stakeholder. The remainder of this sec-
tion discusses how EuGENia Live was used during the three
iterations of the design of the seating plan DSL (figure 3).

4.1 Iteration (a): Re-using State Machines
The first iteration of the seating plan DSL focused on sup-

porting two key concepts: tables and guests. Development
of the language began by creating a new drawing. To boot-
strap development of the seating plan DSL, the built-in state
machine palette was chosen for the new drawing. Initially,
some nodes from the state machine palette were created (by
clicking on their name in the toolbox, and then clicking on
the canvas). One of the NodeTypes from the built-in state
machine palette, state, was then customised to to make it
larger and to change its name to table. Customisation of
a NodeType is achieved by by double-clicking on its name
in the palette, and then updating its definition using the
palette editor, as shown in figure 1(b). Similar customisa-
tion was carried out to adapt the start state NodeType to
form a guest NodeType. The new NodeTypes were tested by
constructing the drawing in figure 3(a).

4.2 Iteration (b): Adding Labels & Genders
The second iteration involved adding labels to the table

and guest NodeTypes. Using the palette editor, number and
name properties were added to the table NodeType, along
with a label that displays the values of the number and
name properties. Also in this iteration, conversation be-
tween the stakeholders revealed that it was important to
model the gender of guests in order to specify an intra-model
constraint: each table must seat male and female guests. To
this end, the original guest type was renamed to female guest
and copied to produce a male guest type. This change is dis-
cussed further in section 5. After making these changes and
adding numbers and names to the nodes, the drawing used
to test the DSL was as shown in figure 3(b).

4.3 Iteration (c): Adding Seats & Partners
The final iteration involved adding two further concepts to

support the definition of additional intra-model consistency
constraints. Firstly, the partners EdgeType was added for
representing that two guests are attending the event together
(and hence must be seated on the same table). New Ed-
geTypes or NodeTypes are created by clicking on the “new”
hyperlink in the drawing editor, as shown in figure 1(a).

Secondly, the table type was extended to include a con-
tainment relationship for guests (and hence tables can be
checked to ensure that they are full). This could have been
implemented by adding a seat type. Instead, the table type
was changed by adding an extra (circle) shape for each seat

at the table. Note that this extension exploits the one-to-
many relationship between NodeTypes and Shapes in fig-
ure 2. This change to the DSL identified a new requirement
for EuGENia Live that relates to native support for contain-
ment relationships, which we plan to investigate soon.

After creating new edges with the partners EdgeType and
aligning the guest nodes with the “seats” (small circles) in
the table node, the drawing used to test the DSL was as
shown in figure 3(c).

5. DISCUSSION
Through our preliminary work on EuGENia Live we have

identified and now discuss some potential benefits of and
challenges for combining rigid and flexible modelling.

5.1 Benefit: Incremental Model Migration
Model migration is the process of re-establishing the con-

formance of model following changes to its metamodel. Ex-
isting approaches to model migration [3, 7, 11] assume that
several metamodel changes occur together before model mi-
gration. In EuGENia Live, a model and its metamodel are
designed together, and model migration can be incremen-
tal: conformance problems can be reported and potentially
resolved as the metamodel is changed. For example, in sec-
tion 4) the guest template was split into a male guest and a
female guest template. Model migration was immediately
realised by deleting and re-creating some of the existing
guest nodes. To assist in incremental model migration, Eu-
GENia Live could provide migration tools, such as a mech-
anism for changing the type of existing nodes.

5.2 Benefit: Multiple Syntaxes
The concrete syntax of a model might need to vary for dif-

ferent stakeholders or different use cases. For example, the
seating plan DSL is used to generate a tabular seating plan,
which is shared with a further set of stakeholders (event
organisers). The tabular seating plan is currently created
using a model-to-text transformation. Instead, EuGENia
Live might support multiple concrete syntaxes for each di-
agram. To support multiple concrete syntaxes, the domain
model (figure 2) would be changed to allow each Drawing to
have more than one Palette, and the view layer would need
to provide a means for switching between concrete syntaxes.

5.3 Challenge: Language Quality
Although we have only produced a few small DSLs with

EuGENia Live to date, the abstract syntax always contains
some duplicated properties, probably because is no inher-
itance relationship between templates. Due to the way in
which templates are presented to the user in EuGENia Live,
it is not yet clear how we might represent language concepts
that have no concrete syntax and exist only to reduce dupli-
cated from the abstract syntax. Cho and Gray [2] propose
applying metamodel design patterns to metamodels to re-
duce duplication and to fix other metamodel design issues,
and a similar approach might be applied to the metamodels
produced by EuGENia Live before they are exported.

5.4 Challenge: When to Model Rigidly
Rigid modelling tools can produce DSL editors that have

functionality comparable to editors for general-purpose lan-
guages, such as code completion and syntax highlighting (for
textual languages) and automated layout algorithms (for

(a) Initial implementation. (b) Adding labels & genders. (c) Adding seats & partners.

Figure 3: The iterative and incremental development of the seating plan DSL with EuGENia Live.

graphical languages). Similar functionality might be diffi-
cult to produce with flexible modelling tools due to the lack
of an explicit language specification. EuGENia Live focuses
on rapid prototyping of a DSL, and provides the ability to
export diagrams and palettes to GMF (via its EuGENia no-
tation). A key question for future research will therefore be
to indicate at what point it is most cost effective to switch
from a rapid prototyping tool, such as EuGENia Live, to a
more powerful tool, such as GMF.

5.5 Challenge: Closer Collaboration
Designing a DSL is a collaborative process between do-

main experts and software engineers. In the current version
of EuGENia Live, we have sought to increase collaboration
between domain experts and software engineers by aiming
to reduce the time between language iterations and by re-
ducing the technical expertise required to specify DSLs. We
believe that, as a consequence, domain experts will be more
involved in the design process. It is not yet clear whether
this is the case. We believe that additional features will be
needed to encourage closer collaboration, such as support
for real-time collaboration (à la Google Docs).

6. CONCLUSIONS
Rigid and flexible modelling tools provide different bene-

fits. By seeking to combine these benefits of rigid and flexible
modelling, EuGENia Live aims to facilitate collaborative, in-
cremental and iterative design of graphical DSLs. EuGENia
Live encourages the co-design of models and metamodels to
support iterative and incremental development, and focuses
on reducing the technical expertise required to specify DSLs
in order to encourage collaboration. EuGENia Live does not
provide the advanced language-specific features of DSL edi-
tors generated with rigid modelling tools, but instead boot-
straps implementation of DSLs by exporting metamodels for
use with EMF and GMF.

In future work, we will explore the feasibility of our pro-
posed modelling approach by releasing EuGENia Live as
part of the Epsilon9 project. In the short-term, we anticipate
extending EuGENia Live to support type and cardinality
constraints for properties and edges and additional concrete
syntax for containment relationships. In the long-term, we
plan to contribute flexible modelling tools to Eclipse.

9http://www.eclipse.org/epsilon

7. REFERENCES
[1] H. Cho. A demonstration-based approach for

designing domain-specific modeling languages. In
OOPSLA Companion, pages 51–54. ACM, 2011.

[2] H. Cho and J. Gray. Design patterns for metamodels.
In Proc. SPLASH Workshops, pages 25–32. ACM,
2011.

[3] A. Cicchetti, D. Di Ruscio, R. Eramo, and
A. Pierantonio. Automating co-evolution in
model-driven engineering. In Proc. EDOC, pages
222–231. IEEE Computer Society, 2008.

[4] M. Desmond, H. Ossher, I. Simmonds, D. Amid,
A. Anaby-Tavor, M. Callery, and S. Krasikov. Towards
smart office tools. In Proc. FlexiTools Workshop, 2010.

[5] M. Fowler and R. Parsons. Domain-Specific
Languages. Addison-Wesley Professional, 2010.

[6] G. Gabrysiak, H. Giese, A. Luders, and A. Seibel.
How can metamodels be used flexibly? In Proc.
FlexiTools Workshop, 2011.

[7] M. Herrmannsdoerfer, S. Benz, and E. Juergens.
COPE - automating coupled evolution of metamodels
and models. In Proc. ECOOP, volume 5653 of LNCS,
pages 52–76. Springer, 2009.

[8] J. Hutchinson, J. Whittle, M. Rouncefield, and
S. Kristoffersen. Empirical assessment of MDE in
industry. In Proc. ICSE, pages 471–480. ACM, 2011.

[9] D. Kolovos, L. Rose, S. Abid, R. Paige, F. Polack, and
G. Botterweck. Taming EMF and GMF using model
transformation. In MoDELS (1), volume 6394 of
LNCS, pages 211–225. Springer, 2010.

[10] M. Kuhrmann. User assistance during domain-specific
language design. In Proc. FlexiTools Workshop, 2011.

[11] L. Rose, D. Kolovos, R. Paige, and F. Polack. Model
migration with Epsilon Flock. In Proc. ICMT, volume
6142 of LNCS, pages 184–198. Springer, 2010.

[12] B. Volz, M. Zeising, and S. Jablonski. The Open Meta
Modeling Environment. In Proc. FlexiTools Workshop,
2011.

[13] M. Ward. Language-oriented programming. Software
— Concepts and Tools, 15(4):147–161, 1994.

[14] C. Wienands and M. Golm. Anatomy of a visual
domain-specific language project in an industrial
context. In Proc. MoDELS, volume 5795 of LNCS,
pages 453–467. Springer, 2009.

http://www.eclipse.org/epsilon

	Introduction
	Rigid and Flexible Modelling
	Rigid Modelling Tools
	MDE Modelling Tools
	Language-Oriented Tools

	Flexible Modelling Tools
	Flexible versus Rigid Modelling Tools
	Model Representation
	Technical Expertise
	Change Management

	EuGENia Live
	User Interface
	Domain Model
	Implementation Notes

	Example
	Iteration (a): Re-using State Machines
	Iteration (b): Adding Labels & Genders
	Iteration (c): Adding Seats & Partners

	Discussion
	Benefit: Incremental Model Migration
	Benefit: Multiple Syntaxes
	Challenge: Language Quality
	Challenge: When to Model Rigidly
	Challenge: Closer Collaboration

	Conclusions
	References

