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ABSTRACT
During early phases of complex systems engineering typi-
cally many structural and behavioral aspects are unclear.
In particular, when it comes to constraints on the result
of interactions between distributed components (emergent
properties) current software engineering approaches provide
limited support. Therefore, we propose an extension to cur-
rent software models for describing the goals of interaction
rather than the underlying decision logic. Further, we pro-
pose a generic algorithm for obtaining goal-oriented behav-
ior. Finally, the concepts are evaluated in a case study.

Categories and Subject Descriptors
D.2.2 [Software Eng.]: Design Tools and Techniques

General Terms
Model-based software engineering, behavior space exploration,
emergent property design

1. INTRODUCTION
Software engineering is a difficult task, especially when it
comes to the control of large scale and distributed cyber
physical systems. During early phases of development typ-
ically many aspects of system structure and behavior are
uncertain. For example, in the case of smart grids [16] most
of the physical correlations as well as constraints on physical
properties are well-understood. However, it is an unsolved
question how the smartness in terms of sensors, actuators
and respective software components could look like inside
the different system parts.

One central and critical challenge is the systematic, targeted
and efficient engineering of emergent properties. Hereby
emergent properties refer to the result of primitive inter-
actions between components in a complex system [20]. The
balance between energy generation and consumption at all
times is such an emergent property for the smart grid do-
main. The primitive interactions are the control decisions

taken by local (software) components, which might be de-
ployed to household devices or in an office environment.

In case of the smart grid, evidence exists that formal meth-
ods are suitable to tackle the problem of engineering a de-
pendable control system [11]. However, due to the recency
of this application domain current approaches only provide
limited understanding of the structure and behavior of the
respective software landscape. The problem of structure has
already been addressed by specialized approaches for defin-
ing, implementing and testing according architectures [12].
The problem of behavior is more difficult to solve due to the
emergent nature of primitive interactions.

Formally speaking, emergent property engineering deals with
finding suitable component behavior efficiently. Today, most
commonly used model-based engineering frameworks pro-
vide some form of mathematical logic to express component
behavior [18]. The purpose of the logic is to determine the
behavior with respect to relevant environmental conditions.
Consequently, to determine the behavior the relevant envi-
ronmental conditions have to be identified and their rela-
tionship has to be formalized.

Problem statement. Due to the complexity of the system
as well as due to the distributed nature of primitive decisions
it is difficult to really determine the behavior with respect
to the emergent properties. On the other hand, if the be-
havior of system components is underspecified it is difficult
to provide relevant insights into property-driven behavior.
Therefore, the challenge is to enrich today’s models with as
little information as possible to enable behavioral analysis
already at early stages of development. Secondly, suitable
analysis methods have to be found to utilize this information
for generating meaningful analysis results.

Contribution. In this work we propose an extension to cur-
rent model-based software engineering methods [3] to en-
code primitive interactions and their goals. In particular,
the goals of primitive interactions are modeled in terms of
(possibly) non-linear minimization problems with respect to
non-deterministic control decisions over time. Further, an
algorithm is proposed, which can be used to generate traces
of optimal control decisions with respect to scenario-like in-
put. The algorithm is analyzed in terms of the validity of
the result as well as the performance of execution.



2. RELATED WORK
As argued in the introduction (Section 1) model-based soft-
ware engineering provides key quality characteristics with
respect to a number of engineering problems related to com-
plex system development. Probably the most widely used
approach is the UML [18] providing a wide range of views
onto the system under development. Regarding critical be-
havioral properties, more formal approaches [3] are used to
ensure a high level of system dependability. However, a
strong link between current approaches and emergent prop-
erty engineering is missing.

Considering the evaluation of non-deterministic models –
in particular at early stages of development projects – a
number of analysis techniques exist. Key examples are non-
deterministic [10], bounded [6], and probabilistic [14] model
checkers. Typically, their focus is on proving properties
about the reachable state space of a system under prede-
fined environmental conditions. Though delivering useful
results, their prover characteristics might, however, be too
strong when considering a high degree of uncertainty at early
stages of system development.

An alternative to proof-oriented model checking is the idea
of behavior space exploration limiting model analysis to heur-
sitic and/or random results. A number of approaches exist
varying in details of the exploration algorithm [5, 1, 17] as
well as the underlying system model [7, 8]. The character-
istics of the approaches are well suited to early problem un-
derstanding with respect to the modeling effort as well as the
analysis performance. For operationalization one key prob-
lem with behavior space exploration is to define a tight in-
tegration with established software models and model-based
software engineering methods.

Assuming a mature problem understanding (typically found
at later stages of development projects) the solution to achiev-
ing emergent property through primitive interactions can,
for example, be seen in the domain of robot planning. The
approaches typically employ techniques like dynamic pro-
gramming [19] or distributed search [9] using among other
things probabilistic Markov models [21, 22]. The respective
results provide a good understanding of how respective ar-
chitectures and behaviors might look like, but their transfer
to other problem domains remains a challenge. This in par-
ticular holds when considering that robot planning is typi-
cally concerned with achieving global motion characteristics.

Finally, some approaches applicable to our problem domain
are, in particular, dedicated to the issue of distributed con-
trol [2, 4]. One important contribution from this field of
research is the concept of model predictive control, where
models of the system are used at runtime to derive control
decisions for each time step. Again, these ideas already pro-
vide a solution-oriented view onto the engineering of com-
plex systems with emergent properties. Overall, it remains
a challenge to define the link between early problem under-
standing as promoted by model-based software engineering
and concrete solution strategies found in many domains.

In this work we target the challenge by integrating the ideas
of behavior space exploration and software models.

3. FRAMEWORK
The proposed framework is derived from the FOCUS the-
ory [3] through simplification. The following concepts are re-
moved: Interfaces, ports, channels, and automata. Instead,
observations and typed expressions are used as explained in
the following section.

3.1 System Theory
A system is defined by a set of components C and a set of
observations O. Components are defined in Equation 1.

C = (O,C),O ⊆ O,C ⊆ C (1)

Observations are defined as a mapping from the time do-
main T to some data domain D ∈ D (see in Equation 2). Our
prototypical implementation currently supports the data do-
mains R (java.lang.Double), B (java.lang.Boolean) and S
(java.lang.String) as well as the discrete time domain N
(java.lang.Integer).

O : T → D (2)

If an observation O is (a) deterministic, a mapping rule is
provided. A mapping rule is a typed expression with argu-
ment t ∈ T as shown in Equation 3.

O(t) = ExpressionD(t), D ∈ D (3)

If an observation O is (b) non-deterministic no mapping rule
is supplied. Instead, the framework explores the behavior
space to find good solutions according to some optimization
criteria. The optimization criteria are specified by means of
annotating respective observations. Therefore an annotation
mapping is defined from the set of observations O to the
powerset of annotations A as shown in Equation 4.

A : O→ P(A) (4)

The set of currently supported annotations A is defined in
Equation 5. The meaning of the annotations is explained in
Section 3.2.

A = {require, equals,minimize,maximize, cost} (5)

3.2 Exploration Algorithm
The exploration algorithm serves to find good choices for
non-deterministic observations according to the annotations.
For each consecutive time point t ∈ T the following sequence
of steps is executed:

1. Generate all variants for non-deterministic observa-
tions O without O(t).



2. Calculate the respective values for the remaining ob-
servations O with O(t).

3. Verify the required boolean observations (i.e. con-
straints) O(t) = true where require ∈ A(O).

4. Prune the dominated variants according to equals,
minimize and maximize annotations (see below).

5. Sort the variants according to the single observation
O with cost ∈ A(O).

In step 4 (pruning) the verified variants are compared to
each other with the goal to limit the following algorithm
iterations to those variants that are guaranteed to lead to
better results than the ones pruned. Therefore a dominance
relationship between variants is introduced by means of the
annotations equals, minimize and maximize. According
to this relationship variant V1 is dominated by variant V 2 if
∀O ∈ O the following equation holds:

equals ∈ A(O) ⇒ OV1(t) = OV2(t)
minimize ∈ A(O) ⇒ OV1(t) ≥ OV2(t)
maximize ∈ A(O) ⇒ OV1(t) ≤ OV2(t)

(6)

The equation states that some observations have to be equal
for variants to be comparable. Then, for some observations
it is better to follow variants with lower values, and for some
observations it is better to follow variants with higher value.
Typically, the minimize annotation is used on the cost ob-
servation to indicate, that less cost is preferable. Overall,
the pruning strategy allows to reduce the search space dras-
tically depending on the system model and the dynamic pro-
gramming annotations.

4. CASE STUDY
To evaluate the approach we investigate the behavior of a
refrigerator and an energy storage with respect to available
sun power. As emergent property we define minimum cu-
mulated difference between produced and consumed energy
(i.e. minimum load on the connection point to the grid) as
an indicator for operational autonomy of the sub-system un-
der investigation. In [11] we motivated the use of formal
model-based engineering in the energy system domain due
to its criticality. Here we extend the existing model with
exploration constraints to obtain cost-oriented component
behavior using our dynamic programming algorithm.

4.1 System Model
With respect to performance analysis two variants of the
model are compared: (M1) A single refrigerator and (M2)
a combination of refrigerator and storage.

The refrigerator model (M1) is depicted in Figure 1. Seven
observations are provided: Sun power, refrigerator temper-
ature, refrigerator power, refrigerator input (from the con-
troller), refrigerator constraint, balance and cost (for mini-
mization). The sun power OSun provides scenario-like input
for the exploration. The values are read from a CSV file.

The refrigerator input OIR represents a primitive interaction
and, therefore, is modeled non-deterministically.

Model

Step Cost

Balance

Sun

Refrigerator

1

minimize cost

0

Power

0

Power

0

run/data/sun.csv

1,1

Command

0

Temperature

Constraint

0

1

equals

0/0

require

Figure 1: Refrigerator model

OIR : T → {0, 1} (7)

The refrigerator power OPR depends on the refrigerator in-
put OIR, i.e. whether the cooler is activated or not.

OPR(t) = 200W ∗OIR(t) (8)

The refrigerator temperature OTR is calculated from the
temperature of the previous time point, a heat-up function
fheat, a cool-down function fcool and the non-deterministic
controller input OIR. For simplicity, in this work the func-
tions fheat and fcool are constant. For more precise physical
behavior, however, the theory also supports more complex
equations.

OTR(t) = OTR(t− 1) + fheat(t)− fcool(t) ∗OIR(t) (9)

A typical refrigerator constraint OCR then tests whether the
temperature OTR lies inside a predefined temperature band
between Tmin and Tmax.

OCR(t) = Tmin ≤ OTR(t) ≤ Tmax (10)

The balance calculates the difference between produced and
consumed power at the current time point. Note that pro-
duced and consumed power vary in sign [11].

OBalance(t) = OSun(t) + OPR(t) (11)



Finally, the cost OCost is derived from the cost of the previ-
ous time point and the absolute value of the current balance
OBalance.

OCost(t) = OCost(t− 1) + |OBalance(t)| (12)

The combined model (M2) reuses the balance and cost ob-
servations from the refrigerator model. Additionally, obser-
vations for storage input (by the controller), storage power,
storage level and storage contraint are defined. Again, the
input OIS is modeled non-deterministically.

OIS : T → {−1,±0,+1} (13)

Further, the storage power OPS depends the input OIS , i.e.
whether the storage is off, loads up the level, or unloads the
level.

OPS(t) = 200W ∗OIS(t) (14)

The storage level OLS is then calculated from the level of
the previous time point, a loss factor e and a load constant
which is depending on the input OIS .

OLS(t) = OLS(t− 1) ∗ e+

 −200 if OIS(t) = −1
±0 if OIS(t) = ±0
+100 if OIS(t) = +1

(15)

Finally, the storage constraint OCS is simply defined as the
level OLS being in the interval between 0 and Lmax.

OCS(t) = 0 ≤ OLS(t) ≤ Lmax (16)

The combined model (M2) then redefines the balance obser-
vation OBalance by using the sum of the powers OPS , OPR

and OPS .

OBalance(t) = OSun(t) + OPR(t) + OPS(t) (17)

To guide the exploration algorithm, first the cost observation
is defined. Additionally, a minimize constraint is added for
pruning.

A(OCost) = {minimize, cost} (18)

Further, the constraint observations are defined to be re-
quired, i.e. they have to evaluate to true to survive the verify
phase.

A(OCR/CS) = {require} (19)

Finally, to make sure the options are not pruned too ag-
gressively the refrigerator temperature and storage level are
required to be equal.

A(OTR/LS) = {equals} (20)

4.2 Exploration Results
The optimal behavior according to the optimization con-
straints is shown for both cases in Figure 2.

Figure 2: Cost-optimized behavior after 96 time
steps for all three cases.

The intuition behind the refrigerator (M1) control strategy
is to use energy during those periods when the sun energy
production is suitable. Minimizing costs according the func-
tion (12) is the optimization criteria. Temperature has the
equality dominance. This means, if two behavior traces have
equal temperature, but one of them has lower costs, the al-
gorithms, will prune the trace with higher costs and follow
the behavior with lower cost only. The desired tempera-
ture band between Tmin = 2 C and Tmax = 8 C acts as a
constraint, which must be fulfilled every time step.

As can be seen in Figure 2, the found behavior strategy of
(M1) is keeping the refrigerator at high temperature to save
costs and cool only to keep the required temperature band.
Only at time step 57 the refrigerator uses the energy pro-
vided by the sun to cool down to the lowest level possible
reducing the overall costs and having thermal buffer. After-
wards the refrigerator activates cooling 5 time steps more
and uses the thermal buffer to reach an optimal solution.
Please note that even if only one illustration of the behavior
is shown, also other behavior traces could potentially yield
the same final costs value.

The combined model (M2) includes an additional storage



component. The optimization criteria is not changed. The
storage possibility reduces the cost of the system by loading
the storage from time step 43 to 65 and unloading it dur-
ing the time steps, when cooling energy is required to keep
the temperature band. Storage behavior influences also the
refrigerator, shifting the cooling to other time steps, during
the sunny period. Consequently, storage reduces the cost
function by a factor of 2.

4.3 Exploration Performance

Figure 3: Explored behavior after 96 time steps for
all three cases.

The exploration performance is analyzed in terms of gener-
ated, valid and dominant (partial) behavior per time step as
illustrated in Figure 3. For the refrigerator model (M1) the
found complexity seems to be constant due to a maximum
of 8 generated alternatives per time step. Some generated
traces do not fulfill the constraints and, therefore, do not
pass the verify step (see Section 3.2). From the remaining
traces some are pruned according the dominance annota-
tions. Only few traces are kept for further exploration steps.

For the extended model (M2) initially a stronger increase of
the number of alternatives can be observed. The reason is
that the model defines an equals dominance on the storage
level. During the sunny period the number of traces reduces
significantly since the cost minimum dominance strongly
prunes alternatives. When no sun power is provided, the
number of traces increases again.

In all cases pruning discards at least 50% of alternatives in
each time step. This reduces the calculation effort greatly.
In contrast verification of required boolean properties has
less influence on search space reduction.

5. DISCUSSION
The case study shows that the combination of behavior space
exploration and traditional formal and model-based software
engineering has the potential to reduce modeling effort in
early project phases while providing useful insights on sys-
tem performance. In particular, the goals of primitive deci-
sions (and interaction between components) can be modeled
rather than the decision process underlying each component.
This allows the developer to obtain goal-oriented behavior
quickly providing fertile ground for discussion, understand-
ing and refinement in the following iterations of the project.
Therefore, the approach is well-suited for use in early phases
when problem understanding is limited and stakeholder re-
quirements are uncertain.

Currently, the model extensions are limited to numerical
goals only, i.e. minimization of a certain cost observation.
Further, behavior space exploration can only be guided by
means of a limited notion of dominance between variants
consisting of equals, minimize and maximize annotations.
For the problem investigated in section 4 these extensions
are already sufficient to obtain the desired exploration re-
sults. It is, however, unclear how well the current approach
fits to other problem domains and larger problem spaces.
One challenge will be the integration of qualitative observa-
tions as opposed to quantitative (i.e. numerical) observations
and their handling during pruning and sorting.

Regarding the exploration algorithm, optimal results can
be expected assuming unlimited memory and time. On the
downside, in particular larger problem spaces typically cause
the problem of state space explosion [15], therefore practi-
cally preventing an exhaustive exploration. To deal with this
problem, some optimization can be made to generate as few
variants a possible through verifying and pruning as early
as possible. However, with ever increasing problem spaces
the potential for algorithm optimization is rather limited
demanding heuristic approaches such as genetic program-
ming [13]. Essentially, a respective engineering tool would
support a range of different exploration strategies each pro-
viding varying performance on a given problem.

As the proposed approach also tries to provide first steps to-
wards a model-based emergent property engineering method,
the question has to be answered how the obtained explo-
ration results can be used to guide development decisions.
Typically, some sort of model refinement is used to assure
a systematic way from the initial problem understanding to
precise notions of requirements to solutions accepted by the
stakeholders. As such, the question has to be answered how
the combination of structural, behavioral, non-deterministic
and annotational model concepts can be tailored iteratively,
while ensuring high process efficiency. A current direction is
to go from completely non-deterministic models over prob-
abilistic models to entirely determinisic models.

Finally, the current approach is limited to a very specific no-
tion of the system including static structure, discrete time
and a limited observation type space (extensible through
custom enumeration types). It seems that discrete time is
sufficient for system models at early phases of the project,
where the main goals are problem understanding and re-
quirements specification. Deployable solutions, however, have
to cope with continuous physical effects requiring more pre-
cise and complex behavioral models of the system compo-
nents. In contrast, dynamic system structure is a real blocker
for some application domains such as systems with high com-
ponent mobility.

6. CONCLUSION
We took a first step towards engineering emergent proper-
ties through integrating behavior space exploration into tra-
ditional model-based software engineering. The approach
deliberates the developer from specifying the logic behind
the primitive interactions of components and rather focus-
ing on understanding and modeling the goal of interaction.
In a case study we showed how to use the approach for mod-
eling the problem of refrigerator and storage control in an



energy system with respect to a price curve.

Current limitations are due to the strong numerical focus
of the goals as well as the annotations for guiding the ex-
ploration algorithm. Also, the algorithm performance is lim-
ited due to the exhaustive exploration of arbitrary problems,
where there might not be enough potential for pruning the
search space. Finally, the work only focuses on the technical
realization of and experimentation with the combination of
exploration and today’s software models.

In future work we plan to scale the approach to larger prob-
lem spaces including hundreds of distributed, independent,
but collaborating households and work environments. Fur-
ther we target investigation of these models with respect to
engineering activities in particular at early stages of devel-
opment projects. The long-term goal of this research is to
provide the right models, tools and methods for systemati-
cally engineering large-scale distributed systems with critical
behavioral requirements.
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