

Università degli Studi dell'Aquila

Prova di recupero di **Algoritmi e Strutture Dati**

Giovedì 16 Luglio 2009 - Prof. Guido Proietti

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1 (25 punti): Domande a risposta multipla

Premessa: Questa parte è costituita da 20 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 25. Se tale somma è negativa, verrà assegnato 0.

- 1. Quale delle seguenti relazioni di ricorrenza descrive la complessità dell'algoritmo più efficiente per il calcolo della sequenza di Fibonacci basato sul prodotto di matrici?
 - a) T(n) = 2T(n/2) + O(1) se $n \ge 2$, T(1) = O(1) se n = 1b) T(n) = 2T(n/4) + O(1) se $n \ge 2$, T(1) = O(1) se n = 1c) T(n) = T(n/2) + O(1) se $n \ge 2$, T(1) = O(1) se n = 1d) T(n) = 2T(n/2) + O(1) se $n \ge 2$, T(1) = O(n) se n = 1
- 2. Se $f(n) = \omega(g(n))$ e $g(n) = \Omega(h(n))$, allora: a) $h(n) = \Omega(f(n))$ *b) $f(n) = \omega(h(n))$ c) $f(n) = \Theta(h(n))$ d) f(n) = O(h(n))
- 3. Quale delle seguenti relazioni asintotiche è falsa: a) $2^n = o(3^n)$ b) $n \log n^2 = \Omega(n \log n)$ c) $n \log^2 n = \omega(n \log \log n)$ *d) $n \log_2 n = \omega(n \log_3 n)$ 4. L'algoritmo di ricerca binaria in un array ordinato di n elementi nel caso migliore ha complessità:
- a) Θ(n) *b) O(1) c) Ω(log n) d) Θ(log n)
 5. L'algoritmo di ordinamento crescente INSERTION SORT applicato ad una sequenza di input ordinata in modo decrescente esegue un numero di confronti tra elementi pari a:
 a) n-1
 b) n(n+1)/2
 c) n+1
 *d) n(n-1)/2
- 6. Siano f(n) e g(n) i costi dell'algoritmo Selection Sort nel caso migliore e in quello peggiore, rispettivamente. Quale delle seguenti relazioni asintotiche è falsa:
- *a) f(n) = o(g(n)) b) $f(n) = \Omega(g(n))$ c) g(n) = O(f(n)) d) $f(n) = \Theta(g(n))$ 7. Siano f(n) e g(n) i costi degli algoritmi HEAPSORT e QUICKSORT nel caso peggiore, rispettivamente. Quale delle seguenti relazioni asintotiche è vera: a) g(n) = o(f(n)) b) $f(n) = \Theta(g(n))$ c) $f(n) = \omega(g(n))$ *d) $g(n) = \omega(f(n))$
- 8. Sia dato un array A di n elementi in cui l'elemento massimo è pari a N. Affinché l'algoritmo Radix Sort applicato ad A abbia complessità lineare, deve essere:
 a) $N = \Theta(k^n)$, k costante ≥ 0 b) $N = \Theta(2^n)$ *c) $N = O(n^k)$, k costante ≥ 0 d) N = n
- 9. Sia H_1 un heap binomiale costituito dagli alberi binomiali $\{B_0, B_1, B_2\}$, e sia H_2 un heap binomiale costituito dagli alberi binomiali $\{B_0, B_1, B_3\}$. Da quali alberi binomiali è formato l'heap binomiale ottenuto dalla fusione di H_1 e H_2 ?

 *a) $\{B_1, B_4\}$ b) $\{B_0, B_1, B_2, B_3, B_4\}$ c) $\{B_0, B_1, B_1, B_2, B_3\}$ d) $\{B_0, B_1, B_2, B_3\}$
- 10. In un albero AVL di n elementi, la cancellazione di un elemento comporta un numero di rotazioni di ribilanciamento pari a:

 *a) $O(\log n)$ b) $\Omega(n)$ c) $\Theta(\log n)$ d) $\Theta(1)$
- 11. Una tabella ad accesso diretto utilizzata per rappresentare n elementi con valori interi compresi nell'intervallo $[1..n^2]$ supporta la ricerca di un elemento in tempo: a) $\Theta(n^2)$ b) $\Theta(n)$ c) $\Theta(\log n)$ *d) O(1)
- a) $\Theta(n^2)$ b) $\Theta(n)$ c) $\Theta(\log n)$ *d) O(1)12. Qual è la distanza tra le stringhe zero e uno?
- a) 0 b) 1 c) 2 *d) 3

 13. Qual è il grado del grafo:
 a) 5 *b) 4 c) 9 d) 2
- 14. Quanti archi possiede il sottografo indotto dai vertici di grado dispari del grafo di cui alla domanda (13)?

 *a) 0 b) 1 c) 2 d) 3
- 15. La visita in profondità del grafo di cui alla domanda (13) eseguita partendo dal nodo c può restituire un albero DFS di altezza massima pari a: a) 1 b) 2 c) 3 *d) 4
- 16. Si consideri il grafo di cui alla domanda (13) e si orientino gli archi dal nodo con lettera minore al nodo con lettera maggiore secondo l'ordine alfabetico. Quanti rilassamenti esegue in totale l'algoritmo di Bellman e Ford con sorgente c e con l'ipotesi che gli archi vengano considerati in ordine lessicografico?

 *a) 0 b) 1 c) 2 d) 3
- 17. Dato un grafo pesato con n vertici ed $m = \Theta(n \log n)$ archi, l'algoritmo di Dijkstra realizzato con heap binomiali costa: a) $\Theta(n^2)$ b) $\Theta(n+m)$ c) O(m) *d) $O(n \log^2 n)$
- 18. Si consideri il grafo di cui alla domanda (13), si orientino gli archi dal nodo con lettera minore al nodo con lettera maggiore secondo l'ordine alfabetico, e si enumerino i vertici secondo l'ordine alfabetico. Il cammino minimo 2-vincolato tra a ed e ha lunghezza: a) $+\infty$ b) 11 *c) 2 d) 1
- 19. L'operazione Union(A,B) di 2 insiemi disgiunti A,B con alberi QuickFind con l'euristica dell'unione pesata costa: *a) $\Theta(\min(|A|,|B|))$ b) $\Theta(\max(|A|,|B|))$ c) $\Theta(|A|)$ d) $\Theta(|B|)$
- 20. Dato un grafo connesso con n vertici ed m archi, l'algoritmo di Prim esegue un numero di operazioni di decremento delle chiavi pari a: *a) O(m) b) $\Theta(m)$ c) O(n) d) $\Theta(n)$

Griglia Risposte

		Domanda																		
Risposta	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a																				
b																				
С																				
d																				

ESERCIZIO 2 (5 punti) (Da svolgere sul retro della pagina!)

Sia A un heap binario. Realizzare ed analizzare un algoritmo che, preso in input A ed un elemento x di A, restituisce l'elemento immediatamente più grande di x e quello immediatamente più piccolo.