Università degli Studi dell'Aquila

Distributed Systems: Mid-term Evaluation

Tuesday, November 9th, 2021 - Prof. Guido Proietti

	Last name:	First name:	ID number:	Points
EXERCISE 1				
EXERCISE 2				
TOTAL				

EXERCISE 1: Multiple-choice questions (20 points)

Remark: Only one choice is correct. Use the enclosed grid to select your choice. A correct answer scores 3 points, while a wrong answer receives a -1 penalization. You are allowed to omit an answer. If you wrongly select an answer, just make a circle around the wrong \times (i.e., in the following way \otimes) and select through a \times the newly selected answer. A question collecting more than one answer will be considered as omitted. The final score will be given by summing up all the obtained points (0 for a missing answer), and then normalizing to 20.

- 1. Let f(n) denote the message complexity in the average case of the *Chang & Roberts* algorithm, and let g(n) denote the message complexity in the worst case of the *Hirshberg & Sinclair* algorithm, respectively. Which of the following asymptotic relations is correct?
 - *a) $f(n) = \Theta(g(n))$ b) f(n) = o(g(n)) c) $f(n) = \omega(g(n))$ d) f(n) = g(n)
- 2. Let f(n) and g(n) denote the message complexity of the *Hirshberg & Sinclair* algorithm in the best and in the worst case, respectively. Which of the following asymptotic relations is wrong?
 - *a) $f(n) = \Theta(g(n))$ b) f(n) = o(g(n)) c) f(n) = O(g(n)) d) $g(n) = \Omega(f(n))$
- 3. In the first phase of the $Hirshberg\ \mathcal{C}$ Sinclair algorithm, how many messages are sent at most, assuming that all processors start simultaneously?
 - a) n/2 b) n c) 2n *d) 4n
- 4. The most efficient $leader\ election\ algorithm$ in a synchronous, non-anonymous, non-uniform n-nodes ring, has a number of rounds of:
 - a) $\Theta(n)$ b) $\Theta(n \cdot 2^L)$, where L is the lowest id in the ring
 - c) $\Theta(n \cdot 2^L)$, where L is the largest id in the ring *d) $O(n \cdot L)$, where L is the lowest id in the ring
- 5. Let us consider the asynchronous version of the Prim algorithm. Which of the following claim is true?
 - a) In each phase, each node sends more than a single Report message
 - *b) In each phase, each node having incident basic edges sends and then receives at most a single Test followed by an Accept
 - c) In each phase, each node sends a single Search_MOE message
 - d) In each phase, each node sends a single Connect message
- 6. Let f(n) and g(n) denote the message complexity of the asynchronous versions of the *Prim* and the *GHS* algorithm, respectively, when executed on a dense graph, i.e., with $m = \Theta(n^2)$. Which of the following asymptotic relations is correct?
 - a) $f(n) = \Theta(g(n) \cdot n)$ *b) $f(n) = \Theta(g(n))$ c) $f(n) = \Theta(g(n) \cdot \log n)$ d) $f(n) = \omega(g(n))$
- 7. Throghout the execution of the asyncronous GHS algorithm, the maximum number of absorptions is: a) n-1 b) O(1) *c) n-2 d) $\Theta(\log n)$
- 8. In the first randomized algorithm for finding a maximal independent set, which of the following is the definition of a good event for the input graph?
 - *a) Within $\Theta(\ln n)$ phases, all nodes disappear b) After $\Theta(1)$ phases, at least one node disappears
 - c) Within $\Theta(\ln n)$ phases, $\Theta(n)$ nodes disappear d) After $\Theta(\ln n)$ phases, $\Theta(\ln n)$ nodes disappear
- 9. The Luby algorithm for finding a maximal independent set running on a graph with n nodes and with maximum degree $\Theta(n)$, with high probability has a number of phases in the order of:
 - a) $O(\log n)$ b) O(1) c) $\Theta(n \log n)$ *d) $O(\log^2 n)$
- 10. Let us assume that the size of the *minimum dominating set* of a graph G with n vertices is k, and let k' be the size of a dominating set returned by the greedy algorithm. Which of the following asymptotic relations is true?
 - *a) $k' = O(k \ln n)$ b) k' = O(k) c) $k' = \omega(k \ln n)$ d) $k' = \Theta(k)$

Answer Grid

	Question									
Choice	1	2	3	4	5	6	7	8	9	10
a										
b										
с										
d										

EXERCISE 2: Open question (10 points)

Remark: Select at your choice one out of the following two questions, and address it exhaustively.

- 1. Describe the Chang & Roberts algorithm for the *leader election* problem, by providing a complete analysis of the best, worst and average case
- 2. Describe the maximal independent set problem, by providing and analyzing at least one distributed algorithm to solve it