UNIVERSITÀ DEGLI STUDI DELL'AQUILA Non-Cooperative Networks: Mid-term Evaluation

Wednesday, November 17th, 2021 – Prof. Guido Proietti

	Last name:	First name:	ID number:	Points
EXERCISE 1				
EXERCISE 2				
TOTAL				

EXERCISE 1: Multiple-choice questions (20 points)

Remark: Only one choice is correct. Use the enclosed grid to select your choice. A correct answer scores 3 points, while a wrong answer receives a -1 penalization. You are allowed to omit an answer. If you wrongly select an answer, just make a circle around the wrong \times (i.e., in the following way \otimes) and select through a \times the newly selected answer. A question collecting more than one answer will be considered as omitted. The final score will be given by summing up all the obtained points (0 for a missing answer), and then normalizing to 20.

- Which of the following claim is <u>false</u> as far as the *Dominant Strategy Equilibrium* is concerned?:

 a) if p_i is a cost, it is a strategy combination s^{*} = (s₁^{*},...,s_N^{*}), such that for each player i and for any possible alternative strategy profile s = (s₁,...,s_i,...,s_N), p_i(s₁,...,s_i^{*},...,s_N) ≤ p_i(s₁,...,s_i,...,s_N)
 b) if p_i is a utility, it is a strategy combination s^{*} = (s₁^{*},...,s_N^{*}), such that for each player i and for any possible alternative strategy profile s = (s₁,...,s_i,...,s_N), p_i(s₁,...,s_i^{*},...,s_N) ≥ p_i(s₁,...,s_i,...,s_N)
 c) if p_i is a cost, it is a strategy combination s^{*} = (s₁^{*},...,s_N^{*}), such that for each player i and for any possible alternative strategy profile s = (s₁,...,s_i,...,s_N), p_i(s₁,...,s_i^{*},...,s_N) ≥ p_i(s₁,...,s_i,...,s_N)
 c) if p_i is a cost, it is a strategy combination s^{*} = (s₁^{*},...,s_N^{*}), such that for each player i and for any possible alternative strategy profile s = (s₁,...,s_i,...,s_N), p_i(s₁^{*},...,s_N^{*}), such that for each player i and for any possible alternative strategy profile s = (s₁,...,s_i,...,s_N), p_i(s₁^{*},...,s_N^{*}) ≤ p_i(s₁,...,s_N, ...,s_N)
 d) Dominant Strategy is the best possible response to any strategy of other players
- Which of the following claim is <u>true</u> as far as the Nash Equilibrium (NE) is concerned?
 a) It can be shown that there exist games for which finding a NE in mixed strategies is NP-hard
 - b) Any game with a finite set of players and a finite set of strategies has a NE of pure strategies
 - c) In the Head and Tail game, it does not exist a NE in mixed startegies
 - *d) Finding a NE in pure strategies is $\mathsf{NP}\text{-hard}$ for many games
- 3. Which of the following claim is <u>false</u> for the Prisoner's Dilemma game:
 a) It does admit a Nash equilibrium
 b) It does admit a dominant strategy equilibrium
 c) It has a Price of Anarchy equal to 5 *d) It has a Price of Stability equal to 4/3
- 4. How the Price of Anarchy is defined for a game in which the social choice function C has to be minimized (S is the set of Nash equilibria)?

a)
$$\operatorname{PoA} = \inf_{s \in S} \frac{C(s)}{C(\operatorname{OPT})}$$
 b) $\operatorname{PoA} = \sup_{s \in S} \frac{C(\operatorname{OPT})}{C(s)}$ *c) $\operatorname{PoA} = \sup_{s \in S} \frac{C(s)}{C(\operatorname{OPT})}$ d) $\operatorname{PoA} = \inf_{s \in S} \frac{C(\operatorname{OPT})}{C(s)}$

- 5. Which of the following claim is <u>false</u> in the Pigou's game:
 a) It does admit a Nash equilibrium *b) It does not admit a dominant strategy equilibrium
 c) The cost of the optimal flow is 0.75 d) The cost of the Nash flow is 1.
- 6. Which of the following claim is <u>false</u> as far as the Global Connection Game (GCG) is concerned?
 a) A GCG is a potential game *b) The PoA of a GCG with k players is at most H_k
 c) Finding a best possible NE in a GCG is NP-hard d) A best response for a player in a GCG can be found in polynomial time
- 7. In a Local Connection Game with k players and building cost α ≥ 0, which of the following claim is true?
 a) A LCG is a potential game b) for α ≤ 2, the complete graph is a stable solution
 c) for α ≥ 1, the star is an optimal solution *d) Finding a best response for a player in a LCG is NP-hard
- 8. Which of the following claim is <u>false</u> as far as the Vickrey's Auction is concerned?
 a) It satisfies voluntary participation *b) It does not make use of a Clarke payment scheme
 c) It is a VCG-mechanism d) It is associated with a single-parameter problem
- 9. Which of the following corresponds to the definition of the Ackermann function? a) $A(1,j) = 2^j$ for $j \ge 1, A(i,1) = A(i-1,2)$ for $i \ge 2, A(i,j) = A(i-1,A(i-1,j-1))$ for $i,j \ge 2$ *b) $A(1,j) = 2^j$ for $j \ge 1, A(i,1) = A(i-1,2)$ for $i \ge 2, A(i,j) = A(i-1,A(i,j-1))$ for $i,j \ge 2$ c) $A(1,j) = 2^j$ for $j \ge 1, A(i,1) = A(i-1,2)$ for $i \ge 2, A(i,j) = A(i,A(i,j-1))$ for $i,j \ge 2$ d) $A(1,j) = 2^j$ for $j \ge 1, A(i,1) = A(i-1,2)$ for $i \ge 2, A(i,j) = A(i,A(i,j-1))$ for $i,j \ge 2$ d) $A(1,j) = 2^j$ for $j \ge 1, A(i,1) = A(i-1,2)$ for $i \ge 2, A(i,j) = A(1,A(i,j-1))$ for $i,j \ge 2$
- 10. In the one-parameter mechanism for the single-source shortest path tree problem, which payment will receive an edge e belonging to the solution?

a)
$$p_e = r_e w_e(r) + \int_0^\infty w_e(r_{-e}, z) \, dz$$
 *b) $p_e = r_e w_e(r) + \int_{r_e}^\infty w_e(r_{-e}, z) \, dz$

c)
$$p_e = -r_e w_e(r) + \int_{r_e}^{\infty} w_e(r_{-e}, z) dz$$
 d) $p_e = r_e w_e(r) + \int_0^{r_e} w_e(r_{-e}, z) dz$

Answer Grid

	Question									
Choice	1	2	3	4	5	6	7	8	9	10
a										
b										
с										
d										

EXERCISE 2: Open question (10 points)

Remark: Select at your choice one out of the following two questions, and address it exhaustively.

- 1. Describe and analyze the global connection game.
- 2. Describe and analyze the one-parameter mechanism for the private-edge shortest path tree problem.