Università degli Studi dell'Aquila

Non-Cooperative Networks: Mid-term Evaluation
Wednesday, November 17th, 2021 - Prof. Guido Proietti

EXERCISE 1: Multiple-choice questions (20 points)

Remark: Only one choice is correct. Use the enclosed grid to select your choice. A correct answer scores 3 points, while a wrong answer receives a -1 penalization. You are allowed to omit an answer. If you wrongly select an answer, just make a circle around the wrong \times (i.e., in the following way \otimes) and select through a \times the newly selected answer. A question collecting more than one answer will be considered as omitted. The final score will be given by summing up all the obtained points (0 for a missing answer), and then normalizing to 20 .

1. Which of the following claim is false as far as the Dominant Strategy Equilibrium is concerned?:
a) if p_{i} is a cost, it is a strategy combination $s^{*}=\left(s_{1}^{*}, \ldots, s_{N}^{*}\right)$, such that for each player i and for any possible alternative strategy profile $s=\left(s_{1}, \ldots, s_{i}, \ldots, s_{N}\right), p_{i}\left(s_{1}, \ldots, s_{i}^{*}, \ldots, s_{N}\right) \leq p_{i}\left(s_{1}, \ldots, s_{i}, \ldots, s_{N}\right)$
b) if p_{i} is a utility, it is a strategy combination $s^{*}=\left(s_{1}^{*}, \ldots, s_{N}^{*}\right)$, such that for each player i and for any possible alternative strategy profile $s=\left(s_{1}, \ldots, s_{i}, \ldots, s_{N}\right), p_{i}\left(s_{1}, \ldots, s_{i}^{*}, \ldots, s_{N}\right) \geq p_{i}\left(s_{1}, \ldots, s_{i}, \ldots, s_{N}\right)$
${ }^{*} \mathrm{c}$) if p_{i} is a cost, it is a strategy combination $s^{*}=\left(s_{1}^{*}, \ldots, s_{N}^{*}\right)$, such that for each player i and for any possible alternative strategy profile $s=\left(s_{1}, \ldots, s_{i}, \ldots, s_{N}\right), p_{i}\left(s_{1}^{*}, \ldots, s_{i}^{*}, \ldots, s_{N}^{*}\right) \leq p_{i}\left(s_{1}, \ldots, s_{i}, \ldots, s_{N}\right)$
d) Dominant Strategy is the best possible response to any strategy of other players
2. Which of the following claim is true as far as the Nash Equilibrium (NE) is concerned?
a) It can be shown that there exist games for which finding a NE in mixed strategies is NP-hard
b) Any game with a finite set of players and a finite set of strategies has a NE of pure strategies
c) In the Head and Tail game, it does not exist a NE in mixed startegies
*d) Finding a NE in pure strategies is NP-hard for many games
3. Which of the following claim is false for the Prisoner's Dilemma game:
a) It does admit a Nash equilibrium b) It does admit a dominant strategy equlibrium
c) It has a Price of Anarchy equal to $5 \quad *_{\text {d }}$) It has a Price of Stability equal to $4 / 3$
4. How the Price of Anarchy is defined for a game in which the social choice function C has to be minimized (S is the set of Nash equilibria)?
a) $\mathrm{PoA}=\inf _{s \in S} \frac{C(s)}{C(\text { OPT })}$
b) $\operatorname{PoA}=\sup _{s \in S} \frac{C(\mathrm{OPT})}{C(s)} \quad *_{\mathrm{c})} \mathrm{PoA}=\sup _{s \in S} \frac{C(s)}{C(\mathrm{OPT})}$
d) $\mathrm{PoA}=\inf _{s \in S} \frac{C(\mathrm{OPT})}{C(s)}$
5. Which of the following claim is false in the Pigou's game:
a) It does admit a Nash equilibrium $\quad{ }^{*}$ b) It does not admit a dominant strategy equlibrium
c) The cost of the optimal flow is 0.75 d) The cost of the Nash flow is 1 .
6. Which of the following claim is false as far as the Global Connection Game (GCG) is concerned?
a) A GCG is a potential game $\left.{ }^{*} \mathrm{~b}\right)$ The PoA of a GCG with k players is at most H_{k}
c) Finding a best possible NE in a GCG is NP-hard d) A best response for a player in a GCG can be found in polynomial time
7. In a Local Connection Game with k players and building cost $\alpha \geq 0$, which of the following claim is true?

> a) A LCG is a potential game b) for $\alpha \leq 2$, the complete graph is a stable solution c) for $\alpha \geq 1$, the star is an optimal solution $*^{\prime}$ d) Finding a best response for a player in a LCG is NP-hard
8. Which of the following claim is false as far as the Vickrey's Auction is concerned?
a) It satisfies voluntary participation ${ }^{*}$ b) It does not make use of a Clarke payment scheme
c) It is a VCG-mechanism d) It is associated with a single-parameter problem
9. Which of the following corresponds to the definition of the Ackermann function?
a) $A(1, j)=2^{j}$ for $j \geq 1, A(i, 1)=A(i-1,2)$ for $i \geq 2, A(i, j)=A(i-1, A(i-1, j-1)$ for $i, j \geq 2$
${ }^{*}$ b) $A(1, j)=2^{j}$ for $j \geq 1, A(i, 1)=A(i-1,2)$ for $i \geq 2, A(i, j)=A(i-1, A(i, j-1)$ for $i, j \geq 2$
c) $A(1, j)=2^{j}$ for $j \geq 1, A(i, 1)=A(i-1,2)$ for $i \geq 2, A(i, j)=A(i, A(i, j-1)$ for $i, j \geq 2$
d) $A(1, j)=2^{j}$ for $j \geq 1, A(i, 1)=A(i-1,2)$ for $i \geq 2, A(i, j)=A(1, A(i, j-1)$ for $i, j \geq 2$
10. In the one-parameter mechanism for the single-source shortest path tree problem, which payment will receive an edge e belonging to the solution?
$\begin{array}{ll}\text { a) } p_{e}=r_{e} w_{e}(r)+\int_{0}^{\infty} w_{e}\left(r_{-e}, z\right) d z & \text { *b) } p_{e}=r_{e} w_{e}(r)+\int_{r_{e}}^{\infty} w_{e}\left(r_{-e}, z\right) d z \\ \text { c) } p_{e}=-r_{e} w_{e}(r)+\int_{r_{e}}^{\infty} w_{e}\left(r_{-e}, z\right) d z & \text { d) } p_{e}=r_{e} w_{e}(r)+\int_{0}^{r_{e}} w_{e}\left(r_{-e}, z\right) d z\end{array}$
Answer Grid

	Question																
Choice	1	2	3	4	5	6	7	8	9	10							
a																	
b																	
c																	
d																	

EXERCISE 2: Open question (10 points)

Remark: Select at your choice one out of the following two questions, and address it exhaustively.

1. Describe and analyze the global connection game.
2. Describe and analyze the one-parameter mechanism for the private-edge shortest path tree problem.
