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Algorithms for COOPERATIVE DS: 
Leader Election in the MPS model 
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Leader Election (LE) problem 

• In a DS, it is often needed to designate a single 
processor (i.e., a leader) as the coordinator of 
some forthcoming task (e.g., finding a spanning 
tree of a graph using the leader as the root) 

• In a LE computation, each processor must decide 
between two internal states: either elected 
(won), or not-elected (lost, default initial state). 

• Once an elected state is entered, processor will 
remain forever in an elected state:  i.e., 
irreversible decision 

• Correctness: In every admissible execution, 
exactly one processor (the leader) must 
eventually enter in the elected state, while all the 
remaining processors must remain in the not-
elected state  
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Leader Election in Ring Networks 

Initial state  

(all not-elected) 
Final state 

leader 
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Why Studying Rings? 

• Simple starting point, easy to analyze 

• Abstraction of a classic LAN topology 

• Lower bounds and impossibility results for 
ring topology also apply to arbitrary 
topologies 
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Sense-of-direction in Rings 

In an oriented ring, processors have a 
consistent notion of left and right: notice 
that this is assumption is concerned with the 
knowledge of a processor 
 
 
 
 
 
 
For example, if messages are always 
forwarded on channel 1, they will cycle 
clockwise around the ring 
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LE algorithms in rings depend on: 

Anonymous Ring 

Non-anonymous Ring 

Size of the network n is known (non-unif.) 

Size of the network n is not known (unif.) 

Synchronous Algorithm 

Asynchronous Algorithm 
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LE in Anonymous Rings 

Every processor runs exactly the same 
algorithm 

Every processor does exactly the same 

execution 
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Impossibility for Anonymous Rings 
Theorem: There is no leader election algorithm for 

anonymous rings, even if 
– the algorithm knows the ring size (non-uniform) 
– the algorithm is synchronous 

Proof Sketch (for non-unif and sync rings, i.e., 
the strongest model): It suffices to show an 
execution in which a hypothetical algorithm will fail: 
Round 1: Assume all processors wake-up simultaneously (notice this is a 

worst-case assumption). Of course, there is no message to read in 
inbuf. So, every processor begins in the same state (not-elected), 
perform the same internal computations, and sends the same outgoing 
msgs, since it is anonymous!  

Round 2: Every processor receives same msgs in the inbuf, so it will do 
the same internal computations, and it will send the same msgs. 

… and so on and so forth for Rounds 3, 4, …, k-1 
Round k: Eventually some processor is supposed to enter an elected 

state.  But then they all would do  uncorrecteness! 
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Initial state 
(all not-elected) 

Final state 

leader 

If one node is elected leader, 

then every node is elected leader 
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Impossibility for Anonymous Rings 
Since the theorem was proven for non-uniform and 

synchronous rings, the same result holds for 
weaker models: 
uniform 
asynchronous 
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Rings with Identifiers, i.e., non-anonymous 

Assume each processor has a unique id. 

Don't confuse indices and ids: 
indices are 0 to n-1; used only for analysis, 

not available to the processors 

ids are arbitrary nonnegative integers; are 
available to the processors through local 
variable id. 
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Overview of LE in Rings with Ids 
There exist algorithms when nodes have unique ids. 
We will evaluate them according to their message 

(and time) complexity. Best results follow: 
 
• asynchronous rings:  

– O(n log n) messages  

• synchronous rings: 
– Θ(n) messages, time complexity depending on n and on 

the magnitude of the smaller identifier in the ring  

 
Above bounds are asymptotically tight (though we 

will not show lower bounds) and hold for uniform 
rings. 
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Asynchronous Non-anonymous Rings 

1 
2 

3 
4 

5 

6 

7 

8 

W.l.o.g: design an algorithm s.t. the maximum 
id node is elected leader 
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An O(n2) messages asynchronous algorithm:  
the Chang-Roberts algorithm (1979) 

• Every processor which wakes-up (either spontaneously or 
by a message arrival, no synchronized start is required) 
sends a message with its own id to the left 

• Every processor forwards to the left any message with an 
id greater than its own id 

• If a processor receives its own id it elects itself as the 
leader, and announces this to the others 

• Remark: it is uniform (number of processors does not need 
to be known by the algorithm) 

• We will show the algorithm requires O(n2) messages; we 
use O notation because not all the executions of the 
algorithm costs n2, in an asymptotic sense, but only some 
of them, as we will see 
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CR algorithm: pseudo-code for a generic 
processor 
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8 
End of 
Round 1: 
Each node 
sends a 
message 
with its id 

to the left 
neighbor 
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Chang-Roberts algorithm: an execution  

(all the nodes start together) 
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Beginning of Round 2: at each processor 

If:     received id > my own id  

8 

6 

7 

5 

Then: forward message 

End of 
Round 2: 
Only ids 5, 
6, 7 and 8 
will survive 
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Beginning of Round 3: at each processor 

If:     received id > my own id  
Then: forward message 

End of 
Round 3: 
Only ids 7 
and 8 will 
survive 
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Beginning of Round 4: at each processor 

If:     received id > my own id  
Then: forward message 

End of 
Round 4: 
Ids 7 and 8 
will survive 



20 

1 
2 

3 
4 

5 

6 

7 

8 

8 

Beginning of Round 5: at each processor 

If:     received id > my own id  
Then: forward message 

End of 
Round 5: 
Only id 8 
will survive 
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Beginning of Round 8: at each processor 

If:     received id > my own id  
Then: forward message 

End of 
Round 8: 
Id 8 will 
survive 
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Beginning of Round 9: at each processor 

If:      a node receives its own message 

Then:   it elects itself a leader 

leader 
Beginning 
of Round 
17: All the 
nodes will 
be notified 
that 8 is 
the leader 

Leader announcement: 
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Analysis of Chang-Roberts algorithm 

Correctness: Elects processor with largest id. 
Indeed, the message containing the largest id 
passes through every processor, while all other 
messages will be stopped somewhere 

Message complexity: Depends on how the ids 
are arranged. 
largest id travels all around the ring (n messages) 

2nd largest id travels until reaching largest 

3rd largest id travels until reaching either largest 
or second largest 

etc. 
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1 
n-1 

n-3 

2 

n-2 

n 

Worst case: Θ(n2) messages 

Worst way to 
arrange the ids is in 
decreasing order: 

2nd largest 
causes n - 1 
messages  

3rd largest 
causes n - 2 
messages 

etc. 
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1 
n-1 

n-3 

2 

n-2 

n 

Worst case: Θ(n2) messages 

n messages 
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1 
n-1 

n-3 

2 

n-2 

n n-1 messages 

Worst case: Θ(n2) messages 
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1 
n-1 

n-3 

2 

n-2 

n 
n-2 messages 

Worst case: Θ(n2) messages 
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1 
n-1 

n-3 

2 

n-2 

n 

1n

Total messages: 

n

 2n

1 )( 2n

2

… 

Worst case: Θ(n2) messages 
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n-1 

1 

3 

n-2 

2 

n 

1

Total messages: 

n

1 )(n

… 

Best case: Θ(n) messages 

1

1
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Average case analysis CR-algorithm 
Theorem: The average message complexity of the CR-algorithm is Θ(n 
log n). 

Sketch of proof: Assume all n! rings (all possible permutations) are 
equiprobable, and assume that all processors wake-up simultaneously: 

• Probability that a generic id makes exactly 1 step is equal to the 
probability it makes at least 1 step minus the probability it makes at 
least 2 steps: Prob(to make exactly 1 step) = 1 – 1/2 = 1/2 

• Probability that a generic id makes exactly 2 steps is equal to the 
probability it makes at least 2 steps minus the probability it makes at 
least 3 steps: Prob(to make exactly 2 steps) = 1/2 – 1/3 = 1/6 

• … 

• Probability that a generic id makes exactly k steps is equal to the 
probability it makes at least k steps minus the probability it makes at 
least k+1 steps: Prob(to make exactly k steps) = 1/k – 1/(k+1) = 1/k(k+1) 

• … 

• Probability that a generic id makes exactly n steps is just 1/n 
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Average case analysis CR-algorithm (2) 

 Expected number of steps (i.e., of messages) for each id is  

    E(# messages) = Σi=1,…,n i · Prob(to make exactly i steps)= 

 = 1·1/2 + 2·1/6 + 3·1/12 + . . . + (n-1)·1/[n(n-1)] + n·1/n = 

 = 1/2+1/3+1/4+…+1/n+1 = 1+Σi=2,..,n 1/i ≤  

  ≤  1+
n

 1/i di = 1+ln n - ln 1 = 1+ln n = Θ(log n) 

 

 Average message complexity is: 

Θ(n log n) (i.e., Θ(log n) for each of the n ids – remember that we 
assumed all were waking up at the same time) + n (for the leader 
announcement)  

= Θ(n log n). 
                   

1 
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Can We Use Fewer Messages? 
The O(n2) algorithm is simple and works in 

both synchronous and asynchronous model. 
But can we solve the problem with fewer 

messages? 
Idea: 

Try to have msgs containing larger ids travel 
smaller distance in the ring 
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An O(n log n) messages asyncronous algorithm: 
 the Hirschberg-Sinclair algorithm (1980) 

1 
2 

3 
4 

5 

6 

7 

8 

Again, the maximum id node is elected leader 
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Hirschberg-Sinclair algorithm (1) 

• Assume ring is bidirectional 

• Carry out elections on increasingly larger sets 

• Algorithm works in (asynchronous) phases k=0,1,2,…  

• No synchronized start is required: Every processor which 
wakes-up (either spontaneously or by a message arrival), 
tries to elect itself as a temporary leader of the current 
phase to access to the next phase 

• pi becomes a temporary leader in phase k=0,1,2,… iff it has 
the largest id of its 2k–neighborood, namely of all nodes 
that are at a distance 2k or less from it; to establish that, it 
sends probing messages on both sides 

• Probing in phase k requires at most 4·2k messages for each 
processor trying to become leader 
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Message types 

1. Probing (or election) message: it travels 
from the temporary leader towards the 
periphery of the actual neighborhood and 
will contain the fields (id, current phase, 
step counter); as for the CR-algorithm, a 
probing message will be stopped if it 
reaches a processor with a larger id 

2. Reply message: it travels from the 
periphery of the actual neighborhood 
towards the temporary leader and will 
contain the fields (id (of the temporary 
leader), current phase)  
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odneighborhok2

2k nodes 
2k nodes 
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Hirschberg-Sinclair algorithm (2) 

• Only processors that win the election in 
phase k can proceed to phase k+1  

• If a processor receives a probe message 
with its own id, it elects itself as leader 

• Remark: it is uniform (number of 
processors does not need to be known by 
the algorithm) 
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HS algorithm: pseudo-code for a generic 
processor 
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Phase 0: each node sends a probing message 
(id, 0, 1) to its 20=1-neighborhood, i.e., to its 

left and its right 
1 

8 

2 

6 

4 7 
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5 8 

1 
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Phase 0: each node receives a probing message (id, 0, 1) from 
its left and its right, and so it realizes it is the last node of 
the neighborhood (since 20=1); if the received id is greater 
than its own id, it sends back a reply message  

8 
8 

6 

6 

7 7 

5 

5 
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If:      a node receives both replies 

Then:  it becomes a temporary leader  

 and proceeds to the next phase 

1 
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Phase 1: send a probing message (id,1,1) to left 
and right nodes in the 21-neighborhood 

8 

8 
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If:      received id       my own id 

Then: forward the probing message (id,1,2) 





44 

If:      received id > my own id 

Then:  send a reply message 

1 
2 

3 
4 

5 

6 

7 

8 

At second step: since step counter=2, if a node receive a 
probing message, it realizes it is on the boundary of the 2-
neighborood  

8 

8 

7 

7 



45 

1 
2 

3 
4 

5 

6 

7 

8 

If: a node receives a reply message with another id  

Then:  forward it  

If:      a node receives both replies 

Then:  it proceed to the next phase 

8 
8 

7 7 
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Phase 2:    send id to the 22=4-neighborhood 

7 
7 

8 

8 
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If:      received id       current id 

Then:  send a reply 



At the 22 step: 

8 

8 
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If:      a node receives both replies 

Then:  it becomes temporary leader 

8 

8 
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1 
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8 
leader 

Phase 3: send id to 23=8-neighborhood 

 The node with id 8 will receive its own 
probe message, and then becomes the 
leader! 

8 
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1 
2 

5 

6 

8 
leader 

       n  nodes Θ(log n) phases 

In general: 
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Analysis of HS algorithm 

Correctness:  Similar to CR algorithm. 
Message Complexity: 

Each msg belongs to a particular phase and is 
initiated by a particular proc. 

Probe distance in phase i is 2i 
Number of msgs initiated by a processor in 

phase i is at most 4·2i (probes and replies in 
both directions) 
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Phase 0:  4 

Phase 1: 8 

… 

Phase i: 

… 

Phase log n:  

Message complexity 

Max # messages per each 
node trying to become 
temporary leader 

 

22 i

2log2 n

Max # nodes trying to 
become temporary leader 

n

2/n

in 2/

nn log2/
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Phase 0:  4 

Phase 1: 8 

… 

Phase i: 

… 

Phase log n:  

Total messages: 









n4

)log( nnO 

22 i

2log2 n

n

2/n

in 2/

nn log2/

n4

n4

n4

Max # current leaders Max # messages per leader 

Message complexity 
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Can we do better? 
• The O(n log n) algorithm is more complicated 

than the O(n2) algorithm but uses fewer 
messages in the worst case.   

• It works in both the synchronous and the 
asynchronous case (and no synchronized start is 
required) 

• Can we reduce the number of messages even 
more? Not in the asynchronous model:  

Thr: Any asynchronous uniform LE algorithm 
on a ring requires Ω(n log n) messages. 
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Homework:  

1. What about a best case for HS? 

2. Can you see an instance of HS which will use Θ(n log n) 
messages? 

3. What about a variant of HS in which probing messages 
are sent only along one direction (for instance, on the 
left side)? 

4. Do we need the left/right notion in a processor when 
running HS? 
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Solution of the homework 
1. What about a best case for HS? Imagine a situation in 

which ids are given in increasing order… 

2. Can you see an instance of HS which will use Θ(n log n) 
messages? Yes, the one we gave in our example! 

3. What about a variant of HS in which probing messages 
are sent only along one direction (for instance, on the 
left side)? No problem, but nodes passing a phase may be 
more now… 

4. Do we need the left/right notion in a processor when 
running HS? No, definitively! 
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A Θ(n)-messages Synchronous Algorithm 

Rounds are grouped in phases: each phase consists 
of n rounds: 

If in phase k=0,1,,… there is a node with id k      

• it elects itself as the leader; 

• it notifies all the other nodes it became the leader;  

• the algorithm terminates. 

Remark: The node with smallest id is elected leader 

Requirements: n must be known (i.e., it is non-uniform), and 
all the processors must start together at the very 
beginning (this assumption could be easily relaxed) 

Reminder: At each round each processor, in order:  
•Reads the incoming messages buffer; 

•Makes some internal computations; 

•Sends messages which will be read in the next round. 
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Phase 0 (rounds 1, 2, …, n=8): no message sent 

9 
22 

33 

24 

15 

16 

57 

48 

n nodes 
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9 
22 

33 

24 

15 

16 

57 

48 

n nodes 

Phase 1 (rounds n+1=9,…, 2n=16): no message 
sent 
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22 

33 

24 

15 

16 

57 

48 

n nodes 

… Phase k=9: at the beginning of round 73 (which is equal to 
k*n+1), node with id=9 realizes phase 9 has started, so it 
elect itself as the leader, by announcing it with a clock-wise 
message (that will take the next n-1=7 rounds to reach all 
the nodes in the ring)  

9 

new leader 
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48 

n nodes 

Phase 9 (n rounds): n messages sent 

9 

new leader 
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22 

33 

24 

15 

16 
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48 

n nodes 

9 

new leader 

Algorithm Terminates 

Phase 9 (n rounds): n messages sent 
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22 

33 

24 

15 

16 

57 

48 

n nodes 

9 

new leader 

Total number of messages: n

Phase 9 (n rounds): n messages sent 
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Algorithm analysis 

Correctness:  Easy to see 

Message complexity: Θ(n), which can be shown 
to be optimal 

Time complexity (# rounds): Θ(n·L), where L 
is the leader (i.e., smallest) id in the ring  
not bounded by any function of n  it is not 
strongly polynomial in n. Notice however that 
it is commonly assumed that L=O(nk), k=O(1) 

Other disadvantages:  
– Requires synchronous start (not really!) 

– Requires knowing n (non-uniform) 
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Homework 

Show that the algorithm can be modified in order to be 
correct also if not all the processors wake up at round 1. 

 Solution 

It suffices to notice that since the system is uniform, then 
if a processor with id x wakes up at rounk k>1, then it will 
simply compute (k-1)/n, and the following cases are possible: 

1. (k-1)/n returns a reminder equal to 0, and k/n=x: in 
this case, the processor immediately elects itself as 
the leader; 

2. (k-1)/n returns a reminder other than 0, and k/n<x: in 
this case, the processor starts participating to the 
election process; 

3. (k-1)/n returns a reminder other than 0, and k/nx: in 
this case, the processor does not participate to the 
election process. 

 



66 

Works in a weaker model than the previous 
synchronous algorithm: 
– uniform (does not rely on knowing n) 

– processors need not start at the same round; a processor 
either wakes up spontaneously or when it first gets a 
message 

– IDEA: messages travel at different “speeds” (the 
leader’s one is the fastest) 

Reminder: At each round each processor, in order:  
• Reads the incoming messages buffer; 

• Makes some internal computations; 

• Sends messages which will be read in the next round. 

 

Another Θ(n)-messages Synchronous Algorithm: 
the slow-fast algorithm 



67 

Another Θ(n)-messages Synchronous Algorithm: 
the slow-fast algorithm 

• A processor that wakes up spontaneously is active; 
sends its id in a fast message (one edge per round) 
in a clockwise direction 

• A processor that wakes up when receiving a msg is 
relay; it does not enter ever in the competition to 
become leader 

• A processor only forwards a message whose id is 
smaller than any other competing id it has seen so 
far, including its own one in case it is active (notice 
this is different from CR algorithm) 

• A fast message carrying id m that reaches an active 
processor becomes slow: it starts traveling at one 
edge every 2m rounds (i.e., a processor that receives 
it at round r, will forward it at round r+2m) 

• If a processor gets its own id back, it elects itself 
as leader 



68 

Algorithm analysis 

Correctness:  convince yourself that the 
active processor with smallest id is elected. 

Message complexity: Winner's msg is the 
fastest.  While it traverses the ring, other 
messages are slower, so they are overtaken 
and stopped before too many messages are 
sent. 
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Message Complexity 

A message will contain 2 fields: (id, 0/1 
(slow/fast))  

Divide msgs into four types: 
1. fast msgs 
2. slow msgs sent while the leader's msg is fast 
3. slow msgs sent while the leader's msg is slow 
4. slow msgs sent while the leader is sleeping 

 
 
Next, count the number of each type of msg. 
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Show that no processor forwards more than 
one fast msg (by contradiction): 

 
 
 

Suppose pi forwards pj’s fast msg and pk's fast 
msg.  But when pk's fast msg arrives at pj: 

1. either pj has already sent its fast msg, so pk's 

msg becomes slow (contradiction) 

2. pj has not already sent its fast msg, so it never 
will (contradiction) since it is a relay 

Number of type 1 msgs is O(n). 

Number of Type 1 Messages 
(fast messages) 

pk pj pi 
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Number of Type 2 Messages 
(slow msgs sent while leader's msg is fast) 

 
Leader's msg is fast for at most n rounds 

by then it would have returned to leader 

Slow msg i is forwarded n/2i times in n rounds 
Max. number of msgs is when ids are as small as 

possible (0 to n-1 and leader is 0) 
Number of type 2 msgs is at most 
    

    ∑n/2i  ≤ n 
 

i=1 

n-1 
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Number of Type 3 Messages 
(slow msgs sent while leader's msg is slow) 

 Maximum number of rounds during which leader's 
msg is slow is n·2L (L is leader's id). 

No msgs are sent once leader's msg has returned to 
leader 

Slow msg i is forwarded n·2L/2i times during n·2L 
rounds. 

Worst case is when ids are L to L+n-1 (independently 
of L, and so in particular, when L=0) 

Number of type 3 msgs is at most  

                ∑n·2L/2i  ≤ 2n 
i=L 

L+n-1 
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Number of Type 4 Messages 
(slow messages sent while leader is sleeping) 

 
Claim: Leader sleeps for less than n rounds.  
Proof: Indeed, it can be shown that the leader will 
awake after at most k<n rounds, where k is the 
distance in the ring between the leader and the 
closest counter-clockwise active processor which 
woke-up at round 1 (prove by yourself by using 
induction) 
• Slow message i is forwarded n/2i times in n rounds 
• Max. number of messages is when ids are as small as 

possible (0 to n-1 and leader is 0) 
• Number of type 4 messages is at most 

 

     ∑n/2i  ≤ n 
i=1 

n-1 
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Total Number of Messages 

We showed that: 
number of type 1 msgs is at most n 

number of type 2 msgs is at most n 

number of type 3 msgs is at most 2n 

number of type 4 msgs is at most n 

 

 total number of msgs is at most 5n=O(n), 
and of course is at least n, and so the 
message complexity is Θ(n) 
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Time Complexity 

Running time is O(n·2L), where L is the leader 
(i.e., smallest) id. Even worse than previous 
algorithm, which was O(n·L). This algorithm is 
polynomial in n only if we assume that the 
smallest identifier is O(log n) (which is 
realistic, though) 

 
 The advantage of having a linear number of 

messages is paid by both the synchronous 
algorithms with a number of rounds which 
depends on the minimum id 
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Summary of LE algorithms on rings 

 

• Anonymous rings: no any algorithm 

• Non-anonymous asynchronous rings:  
– O(n2) algorithm (unidirectional rings) 

– O(n log n) messages (optimal, bidirectional 
rings) 

• Non-anonymous synchronous rings: 
– Θ(n) messages (optimal), O(n·L) rounds (non-

uniform) 

– Θ(n) messages (optimal), O(n·2L) rounds 
(uniform) 
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LE algorithms on general topologies 

INPUT: a MPS G=(V,E) with |V|=n and |E|=m 

• Anonymous: no any algorithm (of course…) 

• Non-anonymous asynchronous systems:  
– O(m+n log n) messages 

• Non-anonymous synchronous systems: 
– O(m+n log n) messages, O(n log n) rounds 

(notice that this could be used on a ring by 
returning an O(n log n) messages and rounds algo; 
can you guess whether we have already given –at 
least implicitly- such a result?) 

• Homework: think to complete graphs… 
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Proof of the Claim that the leader sleeps for less than n 
rounds.  

Proof: Let p* denote the leader, and let p1, p2, …, pk be the 
processors which are active when p* wakes up, in counter-
clockwise order w.r.t. p*.  

pk 

pk-1 

p2 

p1 

p* 

Let r(p)1 be the round at which 
an active processor p wakes up. 
We show by induction that  

r(p*) < r(pi)+|pip
*|, for i=1,…,k, 

where |pip
*|<n is the clockwise 

distance (i.e., number of edges) 
separating pi and p* in clockwise 
order in the ring. 
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Proof of the Claim (follows) 
pk 

pk-1 

p2 

p1 

p* 

• i=1: trivially, r(p*)<r(p1)+|p1p
*|, 

since otherwise p* cannot be 
active; 

• Assume that r(p*)<r(pi-1)+|pi-1p
*|; 

we have to show that 
r(p*)<r(pi)+|pip

*|; but trivially  

r(pi-1)<r(pi)+| pi pi-1 | 

since otherwise pi-1 cannot be 
active; then, by the inductive 
hypothesis  

 r(p*)<r(pi-1)+|pi-1p
*|<r(pi)+| pi pi-1 |+|pi-1p

*|= r(pi)+|pip
*|. 

  Thus, since there is at least an active processor in 
p1, p2, …, pk that woke up at round 1, say pj, and since 
|pjp

*|≤n-1, it follows that r(p*)<r(pj)+|pjp
*| ≤n.  
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1 
5 

11 
8 

7 

2 

6 

3 

Homework: Write the pseudo-code and execute the slow-
fast algorithm on the following ring, assuming that p1, p5, p8 
will awake at round 1, and p3 will awake at round 2.  

p1 

p2 

p3 

p4 

p5 

p6 

p7 

p8 



Pseudocode 
TYPE MSG{ 

 int ID 

 boolean SPEED // 0=SLOW; 1=FAST} 

  

PROGRAM MAIN{//Start at any round 
either spontaneously or after 
receiving a message 

    STATE:=Non_Leader 

    SMALLER_ID:=+∞ 

    R:= current round //taken from the 
universal clock 

    IF(IN_BUFFER=Empty){ 

   SMALLER_ID:=MY_ID 

   MSG.ID:=MY_ID 

   MSG.SPEED:=1 

   SEND(MSG) 

   REPEAT(ACTIVE_CASE) 

     } ELSE REPEAT(RELAY_CASE) 

} 
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PROCEDURE RELAY_CASE{//This is repeated in any round 
since the waking-up round  

    R:= current round  

    IF(IN_BUFFER=Non-Empty){  

 RECEIVE(MSG) //This makes the IN_BUFFER empty 

        IF(MSG.ID < SMALLER_ID){ 

 SMALLER_ID:=MSG.ID 

 OUT_BUFFER:=MSG 

  IF(MSG.SPEED=1) TIMEOUT:=R 

 ELSE TIMEOUT:=R+(2^MSG.ID)-1}} 

    IF(R=TIMEOUT) SEND(OUT_BUFFER) 

} 

PROCEDURE ACTIVE_CASE{//This is repeated in any round following 
the waking-up round 

     R:= current round  

     IF(IN_BUFFER=Non-Empty){ 

           RECEIVE(MSG)   //This makes the IN_BUFFER empty 

           IF(MSG.ID=MY_ID){ 

 STATE:=Leader 

 EXIT} 

           IF(MSG.ID < SMALLER_ID){ 

 SMALLER_ID:=MSG.ID 

 TIMEOUT:=R+(2^MSG.ID)-1 

 MSG.SPEED:=0; 

 OUT_BUFFER:=MSG //The buffer may be overwritten 

 }} 

      IF(R=TIMEOUT) SEND(OUT_BUFFER) 

} 


