
1

Algorithms for COOPERATIVE DS:
Leader Election in the MPS model

2

Leader Election (LE) problem

• In a DS, it is often needed to designate a single
processor (i.e., a leader) as the coordinator of
some forthcoming task (e.g., finding a spanning
tree of a graph using the leader as the root)

• In a LE computation, each processor must decide
between two internal states: either elected
(won), or not-elected (lost, default initial state).

• Once an elected state is entered, processor will
remain forever in an elected state: i.e.,
irreversible decision

• Correctness: In every admissible execution,
exactly one processor (the leader) must
eventually enter in the elected state, while all the
remaining processors must remain in the not-
elected state

3

Leader Election in Ring Networks

Initial state

(all not-elected)
Final state

leader

4

Why Studying Rings?

• Simple starting point, easy to analyze

• Abstraction of a classic LAN topology

• Lower bounds and impossibility results for
ring topology also apply to arbitrary
topologies

5

Sense-of-direction in Rings

In an oriented ring, processors have a
consistent notion of left and right: notice
that this is assumption is concerned with the
knowledge of a processor

For example, if messages are always
forwarded on channel 1, they will cycle
clockwise around the ring

6

LE algorithms in rings depend on:

Anonymous Ring

Non-anonymous Ring

Size of the network n is known (non-unif.)

Size of the network n is not known (unif.)

Synchronous Algorithm

Asynchronous Algorithm

7

LE in Anonymous Rings

Every processor runs exactly the same
algorithm

Every processor does exactly the same

execution

8

Impossibility for Anonymous Rings
Theorem: There is no leader election algorithm for

anonymous rings, even if
– the algorithm knows the ring size (non-uniform)
– the algorithm is synchronous

Proof Sketch (for non-unif and sync rings, i.e.,
the strongest model): It suffices to show an
execution in which a hypothetical algorithm will fail:
Round 1: Assume all processors wake-up simultaneously (notice this is a

worst-case assumption). Of course, there is no message to read in
inbuf. So, every processor begins in the same state (not-elected),
perform the same internal computations, and sends the same outgoing
msgs, since it is anonymous!

Round 2: Every processor receives same msgs in the inbuf, so it will do
the same internal computations, and it will send the same msgs.

… and so on and so forth for Rounds 3, 4, …, k-1
Round k: Eventually some processor is supposed to enter an elected

state. But then they all would do  uncorrecteness!

9

Initial state
(all not-elected)

Final state

leader

If one node is elected leader,

then every node is elected leader

10

Impossibility for Anonymous Rings
Since the theorem was proven for non-uniform and

synchronous rings, the same result holds for
weaker models:
uniform
asynchronous

11

Rings with Identifiers, i.e., non-anonymous

Assume each processor has a unique id.

Don't confuse indices and ids:
indices are 0 to n-1; used only for analysis,

not available to the processors

ids are arbitrary nonnegative integers; are
available to the processors through local
variable id.

12

Overview of LE in Rings with Ids
There exist algorithms when nodes have unique ids.
We will evaluate them according to their message

(and time) complexity. Best results follow:

• asynchronous rings:

– O(n log n) messages

• synchronous rings:
– Θ(n) messages, time complexity depending on n and on

the magnitude of the smaller identifier in the ring

Above bounds are asymptotically tight (though we

will not show lower bounds) and hold for uniform
rings.

13

Asynchronous Non-anonymous Rings

1
2

3
4

5

6

7

8

W.l.o.g: design an algorithm s.t. the maximum
id node is elected leader

14

An O(n2) messages asynchronous algorithm:
the Chang-Roberts algorithm (1979)

• Every processor which wakes-up (either spontaneously or
by a message arrival, no synchronized start is required)
sends a message with its own id to the left

• Every processor forwards to the left any message with an
id greater than its own id

• If a processor receives its own id it elects itself as the
leader, and announces this to the others

• Remark: it is uniform (number of processors does not need
to be known by the algorithm)

• We will show the algorithm requires O(n2) messages; we
use O notation because not all the executions of the
algorithm costs n2, in an asymptotic sense, but only some
of them, as we will see

15

CR algorithm: pseudo-code for a generic
processor

16

1
2

3
4

5

6

7

8
End of
Round 1:
Each node
sends a
message
with its id

to the left
neighbor

1
8

2

6

4
7

3

5

Chang-Roberts algorithm: an execution

(all the nodes start together)

17

1
2

3
4

5

6

7

8

Beginning of Round 2: at each processor

If: received id > my own id

8

6

7

5

Then: forward message

End of
Round 2:
Only ids 5,
6, 7 and 8
will survive

18

1
2

3
4

5

6

7

8

8

7

Beginning of Round 3: at each processor

If: received id > my own id
Then: forward message

End of
Round 3:
Only ids 7
and 8 will
survive

19

1
2

3
4

5

6

7

8

8

7

Beginning of Round 4: at each processor

If: received id > my own id
Then: forward message

End of
Round 4:
Ids 7 and 8
will survive

20

1
2

3
4

5

6

7

8

8

Beginning of Round 5: at each processor

If: received id > my own id
Then: forward message

End of
Round 5:
Only id 8
will survive

21

1
2

3
4

5

6

7

8
8

Beginning of Round 8: at each processor

If: received id > my own id
Then: forward message

End of
Round 8:
Id 8 will
survive

22

1
2

3
4

5

6

7

8

Beginning of Round 9: at each processor

If: a node receives its own message

Then: it elects itself a leader

leader
Beginning
of Round
17: All the
nodes will
be notified
that 8 is
the leader

Leader announcement:

23

Analysis of Chang-Roberts algorithm

Correctness: Elects processor with largest id.
Indeed, the message containing the largest id
passes through every processor, while all other
messages will be stopped somewhere

Message complexity: Depends on how the ids
are arranged.
largest id travels all around the ring (n messages)

2nd largest id travels until reaching largest

3rd largest id travels until reaching either largest
or second largest

etc.

24

1
n-1

n-3

2

n-2

n

Worst case: Θ(n2) messages

Worst way to
arrange the ids is in
decreasing order:

2nd largest
causes n - 1
messages

3rd largest
causes n - 2
messages

etc.

25

1
n-1

n-3

2

n-2

n

Worst case: Θ(n2) messages

n messages

26

1
n-1

n-3

2

n-2

n n-1 messages

Worst case: Θ(n2) messages

27

1
n-1

n-3

2

n-2

n
n-2 messages

Worst case: Θ(n2) messages

28

1
n-1

n-3

2

n-2

n

1n

Total messages:

n

 2n

1)(2n

2

…

Worst case: Θ(n2) messages

29

n-1

1

3

n-2

2

n

1

Total messages:

n

1)(n

…

Best case: Θ(n) messages

1

1

30

Average case analysis CR-algorithm
Theorem: The average message complexity of the CR-algorithm is Θ(n
log n).

Sketch of proof: Assume all n! rings (all possible permutations) are
equiprobable, and assume that all processors wake-up simultaneously:

• Probability that a generic id makes exactly 1 step is equal to the
probability it makes at least 1 step minus the probability it makes at
least 2 steps: Prob(to make exactly 1 step) = 1 – 1/2 = 1/2

• Probability that a generic id makes exactly 2 steps is equal to the
probability it makes at least 2 steps minus the probability it makes at
least 3 steps: Prob(to make exactly 2 steps) = 1/2 – 1/3 = 1/6

• …

• Probability that a generic id makes exactly k steps is equal to the
probability it makes at least k steps minus the probability it makes at
least k+1 steps: Prob(to make exactly k steps) = 1/k – 1/(k+1) = 1/k(k+1)

• …

• Probability that a generic id makes exactly n steps is just 1/n

31

Average case analysis CR-algorithm (2)

 Expected number of steps (i.e., of messages) for each id is

 E(# messages) = Σi=1,…,n i · Prob(to make exactly i steps)=

 = 1·1/2 + 2·1/6 + 3·1/12 + . . . + (n-1)·1/[n(n-1)] + n·1/n =

 = 1/2+1/3+1/4+…+1/n+1 = 1+Σi=2,..,n 1/i ≤

 ≤ 1+
n

 1/i di = 1+ln n - ln 1 = 1+ln n = Θ(log n)

 Average message complexity is:

Θ(n log n) (i.e., Θ(log n) for each of the n ids – remember that we
assumed all were waking up at the same time) + n (for the leader
announcement)

= Θ(n log n).
 

1

32

Can We Use Fewer Messages?
The O(n2) algorithm is simple and works in

both synchronous and asynchronous model.
But can we solve the problem with fewer

messages?
Idea:

Try to have msgs containing larger ids travel
smaller distance in the ring

33

An O(n log n) messages asyncronous algorithm:
 the Hirschberg-Sinclair algorithm (1980)

1
2

3
4

5

6

7

8

Again, the maximum id node is elected leader

34

Hirschberg-Sinclair algorithm (1)

• Assume ring is bidirectional

• Carry out elections on increasingly larger sets

• Algorithm works in (asynchronous) phases k=0,1,2,…

• No synchronized start is required: Every processor which
wakes-up (either spontaneously or by a message arrival),
tries to elect itself as a temporary leader of the current
phase to access to the next phase

• pi becomes a temporary leader in phase k=0,1,2,… iff it has
the largest id of its 2k–neighborood, namely of all nodes
that are at a distance 2k or less from it; to establish that, it
sends probing messages on both sides

• Probing in phase k requires at most 4·2k messages for each
processor trying to become leader

35

Message types

1. Probing (or election) message: it travels
from the temporary leader towards the
periphery of the actual neighborhood and
will contain the fields (id, current phase,
step counter); as for the CR-algorithm, a
probing message will be stopped if it
reaches a processor with a larger id

2. Reply message: it travels from the
periphery of the actual neighborhood
towards the temporary leader and will
contain the fields (id (of the temporary
leader), current phase)

36

1
2

3
4

5

6

7

8

odneighborhok2

2k nodes
2k nodes

37

Hirschberg-Sinclair algorithm (2)

• Only processors that win the election in
phase k can proceed to phase k+1

• If a processor receives a probe message
with its own id, it elects itself as leader

• Remark: it is uniform (number of
processors does not need to be known by
the algorithm)

38

HS algorithm: pseudo-code for a generic
processor

39

1
2

3
4

5

6

7

8

Phase 0: each node sends a probing message
(id, 0, 1) to its 20=1-neighborhood, i.e., to its

left and its right
1

8

2

6

4 7

3

5 8

1

5

3 7
4

6

2

40

1
2

3
4

5

6

7

8

Phase 0: each node receives a probing message (id, 0, 1) from
its left and its right, and so it realizes it is the last node of
the neighborhood (since 20=1); if the received id is greater
than its own id, it sends back a reply message

8
8

6

6

7 7

5

5

41

If: a node receives both replies

Then: it becomes a temporary leader

 and proceeds to the next phase

1
2

3
4

5

6

7

8
8

8

6

6

7 7

5

5

42

1
2

3
4

5

6

7

8

Phase 1: send a probing message (id,1,1) to left
and right nodes in the 21-neighborhood

8

8
5

5

7

7

6

6

43

1
2

3
4

5

6

7

8

8

8

5

5

7

7
6

6

If: received id my own id

Then: forward the probing message (id,1,2)



44

If: received id > my own id

Then: send a reply message

1
2

3
4

5

6

7

8

At second step: since step counter=2, if a node receive a
probing message, it realizes it is on the boundary of the 2-
neighborood

8

8

7

7

45

1
2

3
4

5

6

7

8

If: a node receives a reply message with another id

Then: forward it

If: a node receives both replies

Then: it proceed to the next phase

8
8

7 7

46

1
2

3
4

5

6

7

8

Phase 2: send id to the 22=4-neighborhood

7
7

8

8

47

1
2

3
4

5

6

7

8

If: received id current id

Then: send a reply



At the 22 step:

8

8

48

1
2

3
4

5

6

7

8

If: a node receives both replies

Then: it becomes temporary leader

8

8

49

1
2

3
4

5

6

7

8
leader

Phase 3: send id to 23=8-neighborhood

 The node with id 8 will receive its own
probe message, and then becomes the
leader!

8

50

1
2

5

6

8
leader

 n nodes Θ(log n) phases

In general:

51

Analysis of HS algorithm

Correctness: Similar to CR algorithm.
Message Complexity:

Each msg belongs to a particular phase and is
initiated by a particular proc.

Probe distance in phase i is 2i
Number of msgs initiated by a processor in

phase i is at most 4·2i (probes and replies in
both directions)

52

Phase 0: 4

Phase 1: 8

…

Phase i:

…

Phase log n:

Message complexity

Max # messages per each
node trying to become
temporary leader

22 i

2log2 n

Max # nodes trying to
become temporary leader

n

2/n

in 2/

nn log2/

53

Phase 0: 4

Phase 1: 8

…

Phase i:

…

Phase log n:

Total messages:









n4

)log(nnO 

22 i

2log2 n

n

2/n

in 2/

nn log2/

n4

n4

n4

Max # current leaders Max # messages per leader

Message complexity

54

Can we do better?
• The O(n log n) algorithm is more complicated

than the O(n2) algorithm but uses fewer
messages in the worst case.

• It works in both the synchronous and the
asynchronous case (and no synchronized start is
required)

• Can we reduce the number of messages even
more? Not in the asynchronous model:

Thr: Any asynchronous uniform LE algorithm
on a ring requires Ω(n log n) messages.

55

Homework:

1. What about a best case for HS?

2. Can you see an instance of HS which will use Θ(n log n)
messages?

3. What about a variant of HS in which probing messages
are sent only along one direction (for instance, on the
left side)?

4. Do we need the left/right notion in a processor when
running HS?

56

Solution of the homework
1. What about a best case for HS? Imagine a situation in

which ids are given in increasing order…

2. Can you see an instance of HS which will use Θ(n log n)
messages? Yes, the one we gave in our example!

3. What about a variant of HS in which probing messages
are sent only along one direction (for instance, on the
left side)? No problem, but nodes passing a phase may be
more now…

4. Do we need the left/right notion in a processor when
running HS? No, definitively!

57

A Θ(n)-messages Synchronous Algorithm

Rounds are grouped in phases: each phase consists
of n rounds:

If in phase k=0,1,,… there is a node with id k

• it elects itself as the leader;

• it notifies all the other nodes it became the leader;

• the algorithm terminates.

Remark: The node with smallest id is elected leader

Requirements: n must be known (i.e., it is non-uniform), and
all the processors must start together at the very
beginning (this assumption could be easily relaxed)

Reminder: At each round each processor, in order:
•Reads the incoming messages buffer;

•Makes some internal computations;

•Sends messages which will be read in the next round.

58

Phase 0 (rounds 1, 2, …, n=8): no message sent

9
22

33

24

15

16

57

48

n nodes

59

9
22

33

24

15

16

57

48

n nodes

Phase 1 (rounds n+1=9,…, 2n=16): no message
sent

60

22

33

24

15

16

57

48

n nodes

… Phase k=9: at the beginning of round 73 (which is equal to
k*n+1), node with id=9 realizes phase 9 has started, so it
elect itself as the leader, by announcing it with a clock-wise
message (that will take the next n-1=7 rounds to reach all
the nodes in the ring)

9

new leader

61

22

33

24

15

16

57

48

n nodes

Phase 9 (n rounds): n messages sent

9

new leader

62

22

33

24

15

16

57

48

n nodes

9

new leader

Algorithm Terminates

Phase 9 (n rounds): n messages sent

63

22

33

24

15

16

57

48

n nodes

9

new leader

Total number of messages: n

Phase 9 (n rounds): n messages sent

64

Algorithm analysis

Correctness: Easy to see

Message complexity: Θ(n), which can be shown
to be optimal

Time complexity (# rounds): Θ(n·L), where L
is the leader (i.e., smallest) id in the ring 
not bounded by any function of n  it is not
strongly polynomial in n. Notice however that
it is commonly assumed that L=O(nk), k=O(1)

Other disadvantages:
– Requires synchronous start (not really!)

– Requires knowing n (non-uniform)

65

Homework

Show that the algorithm can be modified in order to be
correct also if not all the processors wake up at round 1.

 Solution

It suffices to notice that since the system is uniform, then
if a processor with id x wakes up at rounk k>1, then it will
simply compute (k-1)/n, and the following cases are possible:

1. (k-1)/n returns a reminder equal to 0, and k/n=x: in
this case, the processor immediately elects itself as
the leader;

2. (k-1)/n returns a reminder other than 0, and k/n<x: in
this case, the processor starts participating to the
election process;

3. (k-1)/n returns a reminder other than 0, and k/nx: in
this case, the processor does not participate to the
election process.

66

Works in a weaker model than the previous
synchronous algorithm:
– uniform (does not rely on knowing n)

– processors need not start at the same round; a processor
either wakes up spontaneously or when it first gets a
message

– IDEA: messages travel at different “speeds” (the
leader’s one is the fastest)

Reminder: At each round each processor, in order:
• Reads the incoming messages buffer;

• Makes some internal computations;

• Sends messages which will be read in the next round.

Another Θ(n)-messages Synchronous Algorithm:
the slow-fast algorithm

67

Another Θ(n)-messages Synchronous Algorithm:
the slow-fast algorithm

• A processor that wakes up spontaneously is active;
sends its id in a fast message (one edge per round)
in a clockwise direction

• A processor that wakes up when receiving a msg is
relay; it does not enter ever in the competition to
become leader

• A processor only forwards a message whose id is
smaller than any other competing id it has seen so
far, including its own one in case it is active (notice
this is different from CR algorithm)

• A fast message carrying id m that reaches an active
processor becomes slow: it starts traveling at one
edge every 2m rounds (i.e., a processor that receives
it at round r, will forward it at round r+2m)

• If a processor gets its own id back, it elects itself
as leader

68

Algorithm analysis

Correctness: convince yourself that the
active processor with smallest id is elected.

Message complexity: Winner's msg is the
fastest. While it traverses the ring, other
messages are slower, so they are overtaken
and stopped before too many messages are
sent.

69

Message Complexity

A message will contain 2 fields: (id, 0/1
(slow/fast))

Divide msgs into four types:
1. fast msgs
2. slow msgs sent while the leader's msg is fast
3. slow msgs sent while the leader's msg is slow
4. slow msgs sent while the leader is sleeping

Next, count the number of each type of msg.

70

Show that no processor forwards more than
one fast msg (by contradiction):

Suppose pi forwards pj’s fast msg and pk's fast
msg. But when pk's fast msg arrives at pj:

1. either pj has already sent its fast msg, so pk's

msg becomes slow (contradiction)

2. pj has not already sent its fast msg, so it never
will (contradiction) since it is a relay

Number of type 1 msgs is O(n).

Number of Type 1 Messages
(fast messages)

pk pj pi

71

Number of Type 2 Messages
(slow msgs sent while leader's msg is fast)

Leader's msg is fast for at most n rounds

by then it would have returned to leader

Slow msg i is forwarded n/2i times in n rounds
Max. number of msgs is when ids are as small as

possible (0 to n-1 and leader is 0)
Number of type 2 msgs is at most

 ∑n/2i ≤ n

i=1

n-1

72

Number of Type 3 Messages
(slow msgs sent while leader's msg is slow)

 Maximum number of rounds during which leader's
msg is slow is n·2L (L is leader's id).

No msgs are sent once leader's msg has returned to
leader

Slow msg i is forwarded n·2L/2i times during n·2L
rounds.

Worst case is when ids are L to L+n-1 (independently
of L, and so in particular, when L=0)

Number of type 3 msgs is at most

 ∑n·2L/2i ≤ 2n
i=L

L+n-1

73

Number of Type 4 Messages
(slow messages sent while leader is sleeping)

Claim: Leader sleeps for less than n rounds.
Proof: Indeed, it can be shown that the leader will
awake after at most k<n rounds, where k is the
distance in the ring between the leader and the
closest counter-clockwise active processor which
woke-up at round 1 (prove by yourself by using
induction)
• Slow message i is forwarded n/2i times in n rounds
• Max. number of messages is when ids are as small as

possible (0 to n-1 and leader is 0)
• Number of type 4 messages is at most

 ∑n/2i ≤ n
i=1

n-1

74

Total Number of Messages

We showed that:
number of type 1 msgs is at most n

number of type 2 msgs is at most n

number of type 3 msgs is at most 2n

number of type 4 msgs is at most n

 total number of msgs is at most 5n=O(n),
and of course is at least n, and so the
message complexity is Θ(n)

75

Time Complexity

Running time is O(n·2L), where L is the leader
(i.e., smallest) id. Even worse than previous
algorithm, which was O(n·L). This algorithm is
polynomial in n only if we assume that the
smallest identifier is O(log n) (which is
realistic, though)

 The advantage of having a linear number of

messages is paid by both the synchronous
algorithms with a number of rounds which
depends on the minimum id

76

Summary of LE algorithms on rings

• Anonymous rings: no any algorithm

• Non-anonymous asynchronous rings:
– O(n2) algorithm (unidirectional rings)

– O(n log n) messages (optimal, bidirectional
rings)

• Non-anonymous synchronous rings:
– Θ(n) messages (optimal), O(n·L) rounds (non-

uniform)

– Θ(n) messages (optimal), O(n·2L) rounds
(uniform)

77

LE algorithms on general topologies

INPUT: a MPS G=(V,E) with |V|=n and |E|=m

• Anonymous: no any algorithm (of course…)

• Non-anonymous asynchronous systems:
– O(m+n log n) messages

• Non-anonymous synchronous systems:
– O(m+n log n) messages, O(n log n) rounds

(notice that this could be used on a ring by
returning an O(n log n) messages and rounds algo;
can you guess whether we have already given –at
least implicitly- such a result?)

• Homework: think to complete graphs…

78

Proof of the Claim that the leader sleeps for less than n
rounds.

Proof: Let p* denote the leader, and let p1, p2, …, pk be the
processors which are active when p* wakes up, in counter-
clockwise order w.r.t. p*.

pk

pk-1

p2

p1

p*

Let r(p)1 be the round at which
an active processor p wakes up.
We show by induction that

r(p*) < r(pi)+|pip
*|, for i=1,…,k,

where |pip
*|<n is the clockwise

distance (i.e., number of edges)
separating pi and p* in clockwise
order in the ring.

79

Proof of the Claim (follows)
pk

pk-1

p2

p1

p*

• i=1: trivially, r(p*)<r(p1)+|p1p
*|,

since otherwise p* cannot be
active;

• Assume that r(p*)<r(pi-1)+|pi-1p
*|;

we have to show that
r(p*)<r(pi)+|pip

*|; but trivially

r(pi-1)<r(pi)+| pi pi-1 |

since otherwise pi-1 cannot be
active; then, by the inductive
hypothesis

 r(p*)<r(pi-1)+|pi-1p
*|<r(pi)+| pi pi-1 |+|pi-1p

*|= r(pi)+|pip
*|.

 Thus, since there is at least an active processor in
p1, p2, …, pk that woke up at round 1, say pj, and since
|pjp

|≤n-1, it follows that r(p)<r(pj)+|pjp
*| ≤n.

80

1
5

11
8

7

2

6

3

Homework: Write the pseudo-code and execute the slow-
fast algorithm on the following ring, assuming that p1, p5, p8
will awake at round 1, and p3 will awake at round 2.

p1

p2

p3

p4

p5

p6

p7

p8

Pseudocode
TYPE MSG{

 int ID

 boolean SPEED // 0=SLOW; 1=FAST}

PROGRAM MAIN{//Start at any round
either spontaneously or after
receiving a message

 STATE:=Non_Leader

 SMALLER_ID:=+∞

 R:= current round //taken from the
universal clock

 IF(IN_BUFFER=Empty){

 SMALLER_ID:=MY_ID

 MSG.ID:=MY_ID

 MSG.SPEED:=1

 SEND(MSG)

 REPEAT(ACTIVE_CASE)

 } ELSE REPEAT(RELAY_CASE)

}

81

PROCEDURE RELAY_CASE{//This is repeated in any round
since the waking-up round

 R:= current round

 IF(IN_BUFFER=Non-Empty){

 RECEIVE(MSG) //This makes the IN_BUFFER empty

 IF(MSG.ID < SMALLER_ID){

 SMALLER_ID:=MSG.ID

 OUT_BUFFER:=MSG

 IF(MSG.SPEED=1) TIMEOUT:=R

 ELSE TIMEOUT:=R+(2^MSG.ID)-1}}

 IF(R=TIMEOUT) SEND(OUT_BUFFER)

}

PROCEDURE ACTIVE_CASE{//This is repeated in any round following
the waking-up round

 R:= current round

 IF(IN_BUFFER=Non-Empty){

 RECEIVE(MSG) //This makes the IN_BUFFER empty

 IF(MSG.ID=MY_ID){

 STATE:=Leader

 EXIT}

 IF(MSG.ID < SMALLER_ID){

 SMALLER_ID:=MSG.ID

 TIMEOUT:=R+(2^MSG.ID)-1

 MSG.SPEED:=0;

 OUT_BUFFER:=MSG //The buffer may be overwritten

 }}

 IF(R=TIMEOUT) SEND(OUT_BUFFER)

}

