
1

The Minimum Spanning Tree
Problem

 Distributing Prim’s and Kruskal’s
Algorithm

2

Weighted Graph G=(V,E,w), |V|=n, |E|=m

1

9
2

14

8

6

3
10 115

7

164

15

13

12

6)(ew

17

18

For the sake of simplicity, we assume
that weights are positive integers

3

Spanning tree

1

9
2

14

8

6

3
10 11

7

164

15

13

12

17

Any tree T=(V,E’) (connected acyclic graph)
spanning all the nodes of G

5

18

4

1

9
2

14

8

6

3
10 115

4

15

13

12

Minimum-weight spanning tree

A spanning tree s.t. the sum of its weights is minimized:

17

(MST)

MST T*:= arg min {w(T)=Σe E(T) w(e)|T is a spanning tree of G}

18

7

16

In general, the MST is not unique.

5

MST fragment:

Any (connected) sub-tree of a MST

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16

6

Minimum-weight outgoing edge (MOE) of a fragment

An edge incident to a single node of the
fragment and having smallest weight (notice it
does not create any cycles in the fragment)

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16

Fragment

7

Property 1: The union of a MST fragment
and any of its MOE is a
fragment of some MST (so
called blue rule).

Property 2: If the edge weights are distinct

then the MST is unique

Two important properties for building a MST

8

Property 1: The union of a MST fragment
F T and any of its MOE is a
fragment of some MST.

Proof: Remind that in general the MST is
not unique. Let e be a MOE of F, and
for the sake of contradiction,
assume that FU{e} is not a fragment
of any MST of G, and then that e
does not belong to any MST of G. In
particular, this means that e does
not belong to T.

9

e

MOE

Fragment

F

MST T

Te

10

e
x)()(xwew

Fragment

F

MST T

Then add e to T (thus forming a
cycle) and
remove x (any
edge of T in
such a cycle
exiting from F)

11

e
x)()(xwew

Fragment

F

But w(T ’) w(T),

since T is an MST

 w(T ’)=w(T), i.e., T ’ is an MST

Obtain T ’

w(T))w(T'

and since

12

e

Fragment

thus is a fragment of MST T ’

}{eFF

}{eF

END OF PROOF

MST T’

 contradiction!

13

Property 2: If the edge weights are distinct

then the MST is unique

Proof: Basic Idea:

Suppose there are two MSTs

Then we prove that there is another
spanning tree of smaller weight

 contradiction!

14

Suppose there are two MSTs

15

Take the smallest-weight edge

not in the intersection, and assume
w.l.o.g. it is blue

e

16

e

Cycle in RED MST

17

e

Cycle in RED MST

e

e’: any red edge in the cycle not in BLUE MST

(since blue tree is acyclic)

18

e

Cycle in RED MST

e

)()(ewew Since is not in the intersection, e

(weights are distinct and the weight of e is the
smallest among edges not in the intersection)

19

e

Cycle in RED MST

e

)()(ewew

Delete and add in RED MST e e

 we obtain a new tree with smaller weight

 contradiction! END OF PROOF

20

Overview of MST distributed algos

There exist algorithms only when nodes have unique
ids. We will evaluate them according to their
message (and time) complexity. Upcoming results
follow:
• Distributed Prim:

• Asynchronous (uniform): O(n2) messages
• Synchronous (uniform): O(n2) messages, and O(n2)

rounds

• Distributed Kruskal (so-called Gallagher-
Humblet-Spira (GHS) algorithm) (distinct
weights):
• Synchronous (non-uniform): O(m+n log n) messages, and

O(n log n) rounds
• Asynchronous (uniform): O(m+n log n) messages

21

Prim’s Algorithm (sequential version)

Augment fragment F with a MOE

Repeat

Until no other edge can be added to F

Start with a node as an initial fragment,
say F, and repeatedly apply the blue rule

F={r V(G)}

22

1

9
2

14

8

6

3
10 115

4

15

13

12

Fragment F

17

18

7

16

r

23

1

9
2

14

8

6

3
10 115

4

15

13

12

Fragment F

MOE

17

18

7

16

r

24

1

9
2

14

8

6

3
10 115

4

15

13

12

Augmented fragment F

18

7

16

r

25

1

9
2

14

8

6

3
10 115

4

15

13

12

Fragment F

MOE

18

7

16

r

26

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16

r

Augmented fragment F

27

1

9
2

14

8

6

3
10 115

4

15

13

12

17

MOE

18

7

16

r

Fragment F

28

Final MST

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16

r

29

Theorem: Prim’s algorithm gives an MST

Proof: Use Property 1 repeatedly

END OF PROOF

30

Prim’s algorithm (distributed version)
Works with both asynchronous and synchronous non-
anonymous, uniform models (and with non-distinct weights)
 Algorithm (asynchronous high-level version):
 Let vertex r be the root as well as the first fragment (notice that r

should be provided by a leader election algorithm, and this is why we ask
for non-anonymity, although the actual algorithm will not make use of ids)

 REPEAT (phase)
• r broadcasts a message on the current fragment to search for a

MOE of the fragment (i.e., each vertex in the fragment searches
for its local (i.e., incident) MOE)

• Starting from the leaves of the fragment, apply the following
bottom-up procedure: each leaf reports the weight of its local
MOE (if any) to its parent, while an internal node reports to its
parent the weight of the MOE of its appended subfragment, i.e.,
the minimum between the weight of its local MOE and the weight
of the MOEs received by its children (in other words, it reports
the minimum among the weights of all the local MOEs of the nodes
in the subfragment rooted in it (ties are broken arbitrarily);

• the MOE of the fragment is then selected by r and added to the
fragment, by sending an add-edge message on the appropriate path

• finally, the root is notified the edge has been added

 UNTIL the fragment spans all the nodes

31

Local description of asynchronous Prim

Each processor stores:
1. The status of any of its incident edges, which

can be either of {basic, branch, reject};
initially all edges are basic

2. Its own status, which can be either {in, out}
of the fragment; initially all nodes are out

3. Parent channel (route towards the root)
4. Children channels (routes towards the

children)
5. Local (incident) MOE
6. MOE for each children channel
7. MOE channel (route towards the MOE of its

appended subfragment)

32

Types of messages in asynchronous Prim
1. Search_MOE: coordination message initiated by the root, that will

flood top-down towards all the nodes of the fragment

2. Test: originated by a node in the fragment that checks the status
of its basic edges in increasing order of weight (if any)

3. Reject, Accept: response to Test

4. Report(weight): originated by a node that reports to the parent
node the weight of the MOE of the appended subfragment

5. Add_edge: initiated by the root, it will descend the path in the
fragment towards the node adjacent to the fragment’s MOE, in
order to add it

6. Connect: sent by the end-node incident to the found MOE to its
adjacent on the MOE, in order to add it to the fragment (this
changes the status of the other end-node from out to in, and of
the MOE from basic to branch)

7. Connected: originated by the just added node, will travel back up
to the root to notify it that connection has taken place

33

Sample execution: At the beginning of a phase, the root
sends a Search_MOE message, and the message floods along
the fragment, so that each node in fragment starts looking
for its local MOE

r

34

r
10

15

To discover its local MOE, each node sends a Test message
over its basic edges in increasing order of weight, until it
receives an Accept. Rejected tests turn to reject the
status of the corresponding edge.

Test
Accept

Test

6
Reject

35

r
10

Then it knows its local MOE (notice this can be
void)

Local MOE

36

Then, if a node is a leaf, it sends a Report with the weight of its MOE (if
any) to its parent, while if a node has children, it waits for a Report from
each child, and then selects a global minimum between the weight of its
local MOE and the weights of the reported MOEs, which will be then
reported to its parent; in this way, each internal node stores and reports
the weight of the MOE of its appended subfragment

r
10

3

15

4

7

25

35 19 22

32

193 22

73

10
3

3Local MOE

Local MOE
Local MOE

Local MOE

Local MOE

37

The root selects the minimum among received MOEs
and sends along the appropriate path an Add_edge
message, which will become a Connect message at the
proper node

r

MOE
3

3

38

Added node changes its status to in, and connecting edge
becomes branch. Finally, a Connected message is sent back
along the appropriate path up to the root, which then starts a
new phase by resuming the Search_MOE procedure

r

in

branch

39

Thr: Asynchronous Prim requires O(n2) msgs.

Proof: We have the following messages:

1. Test-Reject msgs: at most 2 for each edge, namely
O(m)=O(n2) messages of this type.

2. In each phase, each node:

• sends at most a single message of the following
type: Report, Add_edge, Connect, and
Connected;

• receives at most a single Search_MOE message;

• sends and then receives at most a single Test
followed by an Accept;

which means that in each phase globally circulate O(n)
messages. Since we have n-1 phases, the claim follows.

Algorithm Message Complexity

END OF PROOF

40

Synchronous Prim

It will work in O(n2) rounds, can you see why?

Basically, each phase takes O(n) rounds; indeed, the
(only) fragment has height (longest root-leaf path,
in terms of edges) at most n-1, and so all the root-
nodes (and backwards) messages requires O(n)
rounds; moreover, each each node has at most n-1
incident edges, and so the local MOE selection
requires O(n) rounds; since we have O(n) phases, the
O(n2) bound follows

41

Kruskal’s Algorithm (sequential version)

Initially, each node is a fragment

• Find the smallest MOE e of all current
fragments

• Merge the two fragments adjacent to e

Repeat

Until there is only one fragment left

42

1

9
2

14

8

6

3
10 115

4

15

13

12

17

Initially, every node is a fragment

18

7

16

43

1

9
2

14

8

6

3
10 115

4

15

13

12

17

Find the smallest MOE

18

7

16

44

1

9
2

14

8

6

3
10 115

4

15

13

12

17

Merge the two fragments

18

7

16

45

1

9
2

14

8

6

3
10 115

4

15

13

12

17

Find the smallest MOE

18

7

16

46

1

9
2

14

8

6

3
10 115

4

15

13

12

17

Merge the two fragments

18

7

16

47

1

9
2

14

8

6

3
10 115

4

15

13

12

17

…go on by merging fragments…

18

7

16

48

…and discarding edges forming a cycle…

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16

49

…until arriving to the resulting MST

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16

50

Theorem: Kruskal’s algorithm gives an MST

Proof: Use Property 1, and observe that no
cycle is created (indeed, we always
select a MOE).

END OF PROOF

51

Distributed version of Kruskal’s Algorithm:
Gallagher-Humblet-Spira (GHS) Algorithm (1983)

• We start by providing a synchronous version, working under
the following restrictions: non-anonymous, non-uniform
MPS, distinct weights; for the sake of simplicity, we will
assume a synchronous start, but it is not really needed

• Works in phases, by repeatedly applying the blue rule to
multiple fragments

• Initially, each node is a fragment, and phases proceed by
implementing the following steps:

• Each fragment – coordinated by a fragment root node -
finds its MOE

• Merge fragments by using the found MOEs

Repeat a phase

Until there is only one fragment left

(These phases need to be synchronized, as we will see later)

52

Local description of synchronous GHS

Each processor stores, besides its own ID:

1. The status of any of its incident edges, which can be
either of {basic, branch, reject}; initially all edges are
basic

2. Fragment identity; initially, when each fragment is done
by a single node, this is equal to the node ID, but then
it will be equal to the ID of some node in the fragment

3. Root channel (current route towards the fragment root)

4. Children channels (current routes towards the
descending fragment leaves)

5. Local (incident) MOE

6. MOE for each children channel

7. MOE channel (route towards the MOE of the appended
subfragment)

53

Types of messages of synchronous GHS

1. Test(fragment identity): each node starts a phase by checking
the status of its basic edges in increasing weight order (if any)

2. Reject, Accept: response to Test

3. Report(weight): for reporting to the parent node the MOE of
the appended subfragment

4. Merge (this was called Add_edge in Prim): sent by the root to
the node incident to the MOE to activate the merging of
fragments

5. Connect(fragment identity): sent by the node incident to the
MOE to perform the merging; as we will see, this message will be
sent in the very same round by all the involved nodes; in the
immediately next round, merges took place, and a new root for
each fragment is selected, in a way that will be specified later

6. New_fragment(fragment identity): coordination message sent
by the new root of a just created fragment at the end of a
phase, and containing the new fragment identity (this will be
specified later)

54

Initially, every node is a fragment…

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16

… and every node is the root of a fragment, and the fragment
identity (reported within the nodes) is the node ID (reported
nearby the nodes), and so non-anonimity is required

f b

a d

e

c

g

h

i

m

l

f

a

b

d

e

c

g

h

i

l

m

55

10

15

Phase 1: In this very first phase, to discover its own MOE, a
node sends a Test message containing its fragment identity
over its basic edge of minimum weight, and it will certainly
receives an Accept; then, it will send a Connect message
containing its fragment identity (notice that Merge and
Connect messages are not needed in this first phase since
the root is directly adjacent to the MOE)

Accept

Test()

23

Connect()

56

1

9
2

14

8

6

3
10 115

4

15

13

12

17

Phase 1: In our example, each node finds its
MOE and sends a Connect message (arrows
denote the direction of the Connect
message)

18

7

16

f b

a d

e

c

g

h

i

m

l

Asymmetric MOE

Symmetric MOE

57

1

9
2

14

8

6

3
10 115

4

15

13

12

17

Phase 1: Merge the nodes and select a new root

18

Question: How do we select the new roots?

Notice: Several nodes
can be merged into a
single new fragment

58

Proposition: In merged fragments there is exactly one symmetric MOE.

Proof: Recall that each merging fragment has exactly 1 MOE. Assuming
that fragments find their MOE correctly (we will prove formally this
later), we claim that since edge weights are distinct, then no cycles are
created during merging. Indeed, for the sake of contradiction, assume this
is false. We can have two cases:

Merging more than 2 fragments

Impossible: either F1 or F2
is choosing a wrong MOE!

1F 2F

Merging 2 fragments

Fi
Fj

Impossible: let (Fi,Fj) be the (only) max-
weight edge on the cycle; then either Fi
or Fj is choosing a wrong MOE!

Selecting a new root: a useful property

59

(Proof cont’d) Then, since no cycles are created, we have that if k
fragments are merged, k-1 edges need to be used to perform the
merge (to guarantee connectivity and acyclicity). These edges
contain exactly k arrows, one for each fragment, and so there must
be exactly one edge with two arrows, i.e., a symmetric edge.

QED

2F

4F3F

5F

6F

7F

8F

60

Rule for selecting a new root in a fragment

1F2F

3F

5F

4F 6F

7Froot root

root

root

root root

root

61

Node with higher
fragment identity on the
unique symmetric MOE

Merged Fragment

Root

Rule for selecting a new root in a fragment (2)

62

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

Root

Root Root

Root Symmetric MOE

f

e

c

m

In our example, after the merges, each fragment
has its new root

b

a d
g

h

i

l

63

In a generic phase, after that merging has taken place, the
new root broadcasts New_fragment(x) to all the nodes in the
new fragment, where x was the fragment identity of the new
root in its previous fragment, and once this notification is
completed a new phase starts

e is the
symmetric MOE
of the merged
fragments, and x
is the identity of
the fragment the
red node was
belonging to
before the
merge

x is the identity of the new fragment

e

x x x

x x

x x x

64

In our example, at the end of phase 1 every
node in every fragment has its new
fragment identity, and a new phase can start

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

Root Root

Root

Root

End of phase 1 (notice that the fragment identity is
equal to the ID of some node in the fragment)

7

16

f c

f e

e

c

m

m

m

m

m

f

e

c

m

65

At the beginning of a generic phase, each node in a
fragment starts finding its local MOE: the fact that all
nodes in the graph have their actual identity guarantees
that the correct MOE of each fragment is found

10

3

15

4

7

25

35 19 22

32

66

10

15

To discover its own MOE, each node sends a Test message
containing its fragment identity over its basic edges in
increasing order of weight, until it receives an Accept

Test()
Accept

Test()

6
Reject

67

10

Then it knows its local MOE (notice this can be
void)

MOE

68

After receiving the Report from each child, a node sends its
own Report to its parent with the MOE of the appended
subfragment (the global minimum survives in propagation
towards the root)

MOE
MOE

MOE

MOE

10

3

15

4

7

25

35 19 22

193 22

73

10
3

3

32

69

After receiving the Report from each child, the root selects
the minimum MOE and sends along the appropriate path a
Merge message, which will become a Connect() message at
the proper node (which possibly becomes a new root)

MOE

3

3

70

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

Phase 2 of our example: After receiving the
new fragment identity at the end of the
previous phase, find again the MOE for each
fragment

7

16

f c

f e

e

c

m

m

m

m

m

71

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16

Phase 2: Merge the fragments and select a
new root

Root

Root
f c

f e

e

c

m

m

m

m

m

72

Broadcast the new fragment identity to all the
nodes in the new fragment, and so at the end of
phase 2 each node knows its own new fragment
identity.

End of phase 2

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16
Root

Root
f f

f m

m

f

m

m

m

m

m

f

m

73

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16

Phase 3: Find the MOE for each fragment

f f

f m

m

f

m

m

m

m

m

74

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16

Phase 3: Merge the fragments

Root

f f

f m

m

f

m

m

m

m

m

75

Broadcast the new fragment identity to all the
nodes in the new fragment, and so at the end of
phase 3 each node knows its own new fragment
identity.

 1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16

m m

m
m

m

m

m

m

m

m

m

End of phase 3

76

At the beginning of Phase 4, every node will start
searching its MOE, but all the edges will be
rejected, and so each node will report nil

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16

 the source node realizes this is the FINAL MST

m m

m
m

m

m

m

m

m

m

m

77

Syncronicity
• To guarantee correctness, selection of local MOEs must

start when all the nodes know their new fragment identity
(notice the difference w.r.t. Prim)

• But at the beginning of a phase, each fragment can have a
different number of nodes, and thus the broadcasting of the
new fragment identity can take different times fragments
and phases need to be “synchronized”

Phases’ synchronization
• First of all, assume that all the nodes start the local MOE

selection at the very same round (we will convince ourselves
about that on next slide); observe that each node has at
most n-1 incident edges, and so the local MOE selection
requires at most 2(n-1)+1 rounds (convince yourself… notice
that each Test-Reject/Accept takes 2 rounds) we assign
exactly 2n-1 rounds to the local MOE selection (this means
that if a node discovers a local MOE in less rounds, it will
wait in any case till 2n-1 rounds have passed before
proceeding to the Report step)

78

Syncronicity (2)
• Moreover, each fragment has height (longest root-leaf

path, in terms of edges) at most n-1, and so the Report
activity requires at most n rounds; this means, the root
node will find the MOE of the fragment in at most n
rounds. Again, it could take less than n round, but it will
wait in any case till n rounds have passed before
proceeding to the Merge step

• Similarly, the Merge message requires at most n rounds to
reach the proper node, and so we assign exactly n rounds
to this step, which means that the node which is incident
to the MOE will send the Connect message exactly at
round 4n-1 of a phase

• Finally, exactly at round 4n a node knows whether it is a
new root, and if this is the case it sends a New_fragment
message which will take at most n rounds to “flood”, and so
again we assign exactly n rounds to this step

 A fixed number of 5n total rounds are used for each phase
(in some rounds nodes do nothing…)!

79

Smallest Fragment size

 (#nodes)

End of phase

1 2

2 4

i i2

Algorithm Time Complexity (# rounds)

80

 Maximum # phases: ni 2log

Maximum possible fragment size ni 2

Number of nodes

Algorithm Time Complexity (# rounds)

Total time = Phase time • #phases =

n) O(log

rounds Θ(n) i.e., rounds, 5n

n) log O(n

81

Thr: Synchronous GHS requires O(m+n log n) msgs.

Proof: We have the following messages:

1. Test-Reject msgs: at most 2 for each edge, namely O(m)
messages of this type.

2. In each phase, each node:

• sends at most a single Report, Merge, Connect
message;

• receives at most a single New_Fragment message;

• sends and then receives at most a single Test
followed by an Accept;

which means that globally circulate O(n) messages in
each phase (and in particular, on the branch edges of a
fragment, circulate a constant number of messages in
each phase). Since we have at most log n phases, the
claim follows.

Algorithm Message Complexity

END OF PROOF

82

Homework

1. Execute synchronous GHS on the following graph:

2. What is a best-possible execution of synchronous GHS?

(Provide a class of instances on which the number of
rounds and the number of messages is asymptotically
minimum)

1

9

2

8

3

11

18

7

1

4

8
7

6

2

83

Asynchronous Version of GHS Algorithm

•Simulates the synchronous version, but it is
even stronger: Works with uniform models
and asynchronous start (but still requires
non-anonymity and distinct edge weights)

•As before, we have fragments which are
coordinated by a root node, and which are
merged together through their MOEs

•However, we have two types of merges now,
depending on the “size” of the merging
fragments, as we will describe soon:
absorption and join

84

Local description of asynchronous GHS
A node stores the same information as in the
synchronous case, but now:
1. A fragment (i.e., each node in it) is identified by a pair:

(fragment identity (id), level)

 where the fragment identity is again the ID of some
node in the fragment, and the level is a non-negative (and
monotonically increasing) integer; at the beginning, each
node is a fragment with identity (node ID, 0); during the
execution, the fragment identity changes and the level
increases as a consequence of absorptions and joins

2. A node has also a status which describes what is
currently doing w.r.t. the search of the MOE of its
appended subfragment, and it can be either of {sleeping,
finding, found}

85

Type of messages of asynchronous GHS
Similar to the synchronous case, but now:

1. New_fragment(id, level, node status): coordination
message flooding in the fragment just after a merge; this is
originated by a node onto which the merge was taking place

2. Test(id,level): to test a basic edge (in increasing order of
weight); when a node is testing an edge, it must be in a
finding state, and a Test message is replied (Accept/Reject)
if and only if the tested node has a not smaller level,
otherwise it is freezed

3. Report(weight): immediately after reporting the MOE of the
appended subfragment, a node put itself in a found state

4. Connect(id,level): to perform the merge; due to the above
constraint on the Test message, it follows that this message
will only travel from a fragment of level L to a fragment of
level L’≥L

86

Example: Initially, some nodes are awake and form a
fragment, while some other are sleeping (these will wake-up
either spontaneously or after receiving a message)

1

9
2

14

8

6

3
10 115

4

15

13

12

17

18

7

16

Every non-sleeping node is the root of its fragment, and the
fragment identity is the pair (node ID,0) (reported nearby
the nodes), and so non-anonimity is required

f b

a d

e

c

g

h

i

m

l

(f,0)

(a,0)

(e,0) (h,0)

(l,0)

87

10

15

• Similarly to the synchronous case, each awake node will start
searching its own MOE, by sending a Test message containing
its fragment identity (node ID, 0) over its basic edge of
minimum weight, and it will certainly receives an Accept, since
on the other side of the edge there must be a node with a
different fragment identity, and of level 0 (i.e., not smaller
than that of the testing node)

Accept

Test(,0)

Connect(,0)

• Then, it will send on such an edge a Connect(node ID, 0)
message, and depending on the fragment identity of the other
end-node, some kind of merge will take place, as we will see
soon.

Actions taken by a node of level 0

88

• Similarly to the synchronous case, nodes of a fragment are
coordinated by a root node, and each of them will search its
local incident MOE, by sending a Test(id,level) over its basic
edges in increasing order of weight, until it will receive an
Accept.

• If the level of the node receiving a Test message is smaller than
that of the querying node, then as we said the reply will be
delayed; however, once that a node receives an Accept (or once
that all its incident basic edges have been rejected), it will wait
for the Report messages of its children, and will then send its
Report message towards the root.

• Once the root has received all the Report messages, it will
select the MOE of the fragment, and will send a Merge message
along the proper way, which will become a Connect(id,level)
message at the proper node.

• Once again, depending on the fragment identity of the other
end-node, some kind of merge will take place, as we will see on
the next slide.

Actions taken by a node of level d>0

89

Fragment
Fragment

1F 2F
MOE(F1)

1. If L(F1)<L(F2), then F2 absorbs F1

Merge of two fragments

x y

2. If L(F1)=L(F2) and (x,y) is also the MOE of F2, then F1
and F2 will join (once that F2 will send a Connect to F1 on
the same edge), otherwise F2 will “freeze” the message
(and later on it will absorb F1)
3. L(F1)>L(F2) is instead impossible, since as we said
before, node y in this case would not have replied to a
previous Test on edge (x,y)

Connect(id(F1),L(F1))

Merges are generated by Connect messages:

90

New
fragment

1F 2F
MOE(F1)

Case 1: L(F1)<L(F2) merge as an Absorption

In this case, a “new” fragment is created with
the same identity as F2

A New_fragment(ID(F2),L(F2),status(y)) message is
broadcasted to nodes of F1 by the node y of F2 on
which the merge took place

New_fragment

x y

(cost of merging, in terms of number of
messages, proportional to the size of F1)

91

MOE(F1,2)

Fragment Fragment

1F 2F

A symmetric MOE will generate a bidirectional Connect
message on the same edge, and in this case, F1 joins with
F2 . This can happen iff L(F1)=L(F2), as otherwise either F1
or F2 would be locked in a Test

Notice that the system is asynchronous, and so the
Connect message on the two directions may be not
simultaneous (differently from sync GHS)

Case 2.1: L(F1)=L(F2) and (x,y) is also the MOE of F2
 merge as a Join

Connect

x y

92

New fragment

1F 2F

Merge as a Join: the combined level is 1)L(FL(F) 1,2

and a New_fragment(max(ID(F1),ID(F2)),L(F1,2)+1,finding)
message is broadcasted to all nodes of F1 and F2 by the new
root, i.e., the node with max ID field in the fragment
identity between x and y

(cost of merging, in terms of number of messages,
is proportional to the size of F1 and F2)

New_fragment

x y
MOE(F1,2)

93

Fragment Fragment

1F
2F

Test(id(F1),L(F1))

Remark: a Connect message cannot travel from a fragment of
higher level to a fragment of lower level (actually, this is for
message-complexity efficiency reasons, since absorption has a
cost proportional to the size of the absorbed fragment, as we
mentioned before). Indeed, recall that a Test message from a
fragment F1 to a fragment F2 is replied only once that
L(F1)≤L(F2) (this prevents F1 to find its MOE, i.e., to ask a
connection to F2, while L(F1)>L(F2))

94

Full proof is quite complicated. It must address the
following general properties:

1. Termination: Response to Test are sometimes delayed
deadlock is a priori possible!

2. Asynchronicity: Message transmission time is unbounded
 inaccurate information in a node about its own

fragment is a priori possible! Replies to Test messages
are really correct?

3. Absorption while the absorbing fragment is searching
for a MOE: in this case, new nodes are added to the
fragment, and they are dynamically involved in the on-
going MOE searching process. Is that feasible?

We will show formally only termination, while we only sketch
the proof for point 2 and 3

Correctness of asynchronous GHS

95

1. Termination (1/2)

Lemma: From any configuration with at least 2 fragments,
eventually either absorption or join takes place.

Proof: Let L be the minimum level in this configuration, and
let F be the (not necessarily unique) L-level fragment having
the lightest MOE. Then, any Test message sent by F either
reaches a fragment F’ of level L’≥L or a sleeping node. In the
first case, F gets a reply immediately, while in the second
case the sleeping node awakes and becomes a fragment of
level 0 this creates a new configuration, onto which the
argument of the proof is applied recursively eventually, we
get a configuration in which there are no sleeping nodes,
where only the first case applies. This means that F will get
all the needed replies, and then it will find its MOE, over
which a Connect message will be routed. Two cases are
possible:

96

1. Termination (2/2)

F
F'MOE(F)

Connect(id(F),L(F))

x y

1. L(F’)>L(F): in this case F’ absorbs F;

2. L(F’)=L(F): in this case, since (x,y) is a lightest MOE,
then it is also the MOE of F’ (recall that edge weights
are distinct) and F’ cannot be locked (similarly to F);
then, a join between F and F’ takes place.

END OF PROOF

Corollary: Asynchronous GHS terminates.

Proof: By contradiction, if not then there must be at least
two fragments left; but then the above lemma guarantees
their number will be progressively reduced to 1.

END OF PROOF

97

2. Asynchronicity (1/3)
Message transmission time is unbounded a node might
have inaccurate info about its status! Let us see an
example in which the red node of F1 is tested, but its
status is inaccurate since it did not yet received the new
fragment identity after that F1 was absorbed by F2

Absorbing Fragment

1F

2Fx y

New_fragment

Absorbed Fragment

0F

Test

Testing Fragment

We will show that an answer (Accept/Reject) given having
inaccurate information will not affect the correctness of the
algorithm!

98

2. Asynchronicity (2/3)
Claim 1: A node pi whose fragment identity is currently
(id,L) actually belongs to a fragment of level L’ L.

Proof: If the identity of pi is accurate, then L’=L, while if
it is inaccurate, then pi is participating in either a join or
an absorption. But in both cases, L’>L.
 QED

Remark 1: If a node pi of a fragment F sends a test to a
node pj of a fragment F’, then the fragment F is not
involved in a merge, and so the only inaccurate info might
be at pj.

Remark 2: Reject messages are always correct.

 Only an Accept message may be wrong, but we will see
this is not the case.

99

2. Asynchronicity (3/3)
Claim 2: If a node pi of a fragment F1=(id1,L1) sends a test
to a node pj of a fragment F2=(id2,L2) and pj accepts, then
pi and pj are not in the same fragment.

Proof: Notice that by definition, pj accepts iff
(id2,L2)≠(id1,L1) and L2 L1. We then have two cases:

1. L2>L1: by Claim 1, the real level of the fragment to
which pj belongs is L’ L2 > L1, and so it follows that pi
and pj are not in the same fragment (remember that by
Remark 1, information holds by pi are accurate).

2. L2=L1: again by Claim 1, the real level of the fragment
to which pj belongs is L’ L2 = L1, and so:

a) If L’ = L2 = L1, then it must be id2≠id1, and so it
follows that pi and pj are not in the same fragment;

b) If L’ > L2 = L1, i.e., L’ > L1, then see above. QED

 Accept messages are always correct as well!

100

3. Absorption while F’ is searching for a MOE

F
F'

MOE(F)
Connect x y

1.Transmitted status is finding: in this case, nodes in F start searching for their
local MOE, and node y will wait a Report from x before reporting to its parent
in F’. Apparently, it is possible that a node u in F, after getting the new identity,
tests a node v in F which is still not updated, and so v could wrongly reply
accept. But this is impossible, since the level of v is less than the level of u, due
to the absorption, and so v does not reply to u. (Notice the very same argument
can be applied also when a Join takes place)

2.Transmitted status is found: in this case, nodes in F do not participate to the
selection of the MOE for F U F’, and then it seems that edges outgoing from F
are omitted. However, observe that y has already found the MOE of the
appended subfragment, and since y is adjacent to (x,y), y must have at least
another incident basic edge (y,u) s.t. w(y,u) < w(x.y), since otherwise y would be
locked!. Hence, since any edge outgoing from F will be heavier than (x,y), no any
of them can be the MOE of F’, and so correctness is guaranteed.

END OF PROOF

New_Fragment(id(F’),L(F’),finding/found)

101

Lemma: A fragment of level L contains at least 2L
nodes.

Proof: By induction. For L=0 it is trivial. Assume it
is true up to L=k-1, and let F be of level k>0. But
then, either:

1. F was obtained by joining two fragments of level k-1,
each containing at least 2k-1 nodes by inductive
hypothesis F contains at least 2k-1 + 2k-1 = 2k nodes;

2. F was obtained after absorbing another fragment F’ of
level < k apply recursively to F\F’, until case (1) applies
(observe that we have to arrive to a fragment generated
by a Join, since k>0).

Algorithm Message Complexity

END OF PROOF

 The maximum level of a fragment is log n

102

Thr: Asynchronous GHS requires O(m+n log n) msgs.

Proof: We have the following messages:

1. Connect: at most 2 for each edge, namely O(m)
messages of this type;

2. Test-Reject: at most 2 for each edge, namely O(m)
messages of this type;

3. Each time the level of its fragment increases, a node
receives at most a single New_Fragment message,
sends at most a single Merge, Report message, and
finally sends and then receives at most a single Test
message followed by an Accept;

and since from previous lemma each node can change at most
log n levels, it means that each of the n nodes generates
O(log n) messages of type 3, and the claim follows.

Algorithm Message Complexity (2)

END OF PROOF

103

Summary of results for distributed MST

There exist algorithms only when nodes have unique
ids:
• Distributed Prim (non-distinct weights):

• Asynchronous (uniform): O(n2) messages
• Synchronous (uniform): O(n2) messages, and O(n2)

rounds

• Distributed Kruskal (GHS) (distinct weights):
• Synchronous (non-uniform): O(m+n log n) messages, and

O(n log n) rounds
• Asynchronous (uniform): O(m+n log n) messages

104

Homework
Execute asynchronous GHS on the following graph:

assuming that system is pseudosynchronous: Start from 1
and 5, and messages sent from odd (resp., even) nodes are
read after 1 (resp., 2) round(s)

1

9

2

24

8

6

3

1011
5

4

12

14

18

7

1

4

8
7

6

2

9

17

