
1

Maximal Independent Set

2

Independent (or stable) Set (IS):

In a graph G=(V,E), |V|=n, |E|=m, any
set of nodes that are not adjacent

3

Maximal Independent Set (MIS):

An independent set that is no

subset of any other independent set

4

Size of Maximal Independent Sets

A graph G…
…a MIS of
minimum size…

…a MIS of maximum
size (a.k.a. maximum
independent set)

Remark 1: The ratio between the size of a maximum MIS and a
minimum MIS is unbounded (i.e., O(n))!

Remark 2: Depending on the application, we might be interested in
finding a MIS of either small or large size, but unfortunately finding
a minimum/maximum MIS is an NP-hard problem since deciding
whether a graph has a MIS of size k is NP-complete

Remark 3: On the other hand, a MIS can be found in polynomial time

5

Applications in DS: network topology control

• In a network graph consisting of nodes representing
processors, a MIS defines a set of processors which can
operate in parallel without interference

• For instance, in wireless ad hoc networks, to avoid
interferences, a conflict graph (based on the overlapping
in the transmission ranges) is built, and a MIS of such a
graph defines a partition of the nodes enabling
interference-free communication, where messages are
broadcasted by the nodes in the MIS to their neighbors
(in such an application, to reduce the congestion at the
MIS nodes, one should find a MIS of maximum size, but as
said before this is known to be NP-hard)

6

Applications in DS: network monitoring

• A MIS is also a Dominating Set (DS) of the graph (the
converse in not true, unless the DS is independent),
namely every node in G is at distance at most 1 from at
least one node in the MIS (otherwise the MIS could be
enlarged, against the assumption of maximality!)

In a network graph G consisting of nodes representing
processors, a MIS defines a set of processors which can
monitor the correct functioning of all the nodes in G: each
node in the MIS will ping continuously its neighbors (in
such an application, one should find a MIS of minimum
size, to minimize the number of sentinels, but as said
before this is known to be NP-hard)

Question: Exhibit a graph G s.t. the ratio between a
Minimum MIS and a Minimum Dominating Set is Θ(n),
where n is the number of vertices of G.

7

A sequential algorithm to find a MIS

Suppose that I will hold the final MIS,
and assume that we are not interested in
any respect to the final size of the MIS

Initially I
G

8

Pick an arbitrary node and add it to I1v

1v

Phase 1:

1GG 

9

Remove and neighbors)(1vN1v

1G

10

Remove and neighbors)(1vN1v

2G

11

Pick a node and add it to I2v

2v

Phase 2:

2G

12

2v

Remove and neighbors)(2vN2v

2G

13

Remove and neighbors)(2vN2v

3G

14

Repeat until all nodes are removed

Phases 3,4,5,…:

3G

15

Repeat until all nodes are removed

No remaining nodes

Phases 3,4,5,…,x:

1xG

16

At the end, set will be a MIS of I G

G

17

Worst case graph (for number of phases):

n nodes, n-1 phases

Let G=(V,E) and n=|V| and m=|E|. If the algorithm is
implemented in a centralized setting, then its running time is
Θ(m).

On the other hand, the number of phases of the algorithm is
equal to the size of the found MIS, and clearly it is O(n).

Analysis

18

Question

Can you see a distributed version of the just
given algorithm?

Yes, we can elect a leader at each phase, and
then add it to the MIS. In this distributed
version, we would like to minimize the
number of phases, since in this way the
number of leader elections will be
minimized!

19

A Generalized Algorithm For Computing a MIS

Same as the previous algorithm, but at each
phase, instead of a single node, we now select any
independent set (this selection should be seen as
a black box at this stage, i.e., we do not
know/specify how such independent set is
selected)

 The underlying idea is that this approach will be
useful for a distributed algorithm, since it will
reduce the number of phases

20

Suppose that will hold the final MIS I

Initially I

Example:

G

21

Find any independent set 1I

Phase 1:

and add to : 1I I 1III 

1GG 

22

1I)(1INremove and neighbors

1G

23

remove and neighbors 1I)(1IN

1G

24

remove and neighbors 1I)(1IN

2G

25

Phase 2:

Find any independent set 2I

2I I 2III 

On new graph

2G

and add to :

26

remove and neighbors 2I)(2IN

2G

27

remove and neighbors 2I)(2IN

3G

28

Phase 3:

Find any independent set 3I

3I I 3III 

On new graph

3G

and add to :

29

remove and neighbors 3I)(3IN

3G

30

remove and neighbors 3I)(3IN

No nodes are left

4G

31

Final MIS I

G

32

1. The algorithm is correct, since independence and
maximality follow by construction

2. Running time is now Θ(m) (the time needed to
remove the edges), plus the time needed at each
phase to find an independent set (this is really
the crucial step!)

3. The number of phases now depends on the choice
of the independent set in each phase: The larger
the subgraph removed at the end of a phase, the
smaller the residual graph, and then the faster
the algorithm. Then, how do we choose such a set,
so that independence is guaranteed and the
convergence is fast?

Analysis

33

Example: If is a MIS,

one phase is enough!
1I

Example: If each contains one node,

 phases may be needed
kI

)(n

(sequential greedy algorithm)

34

A Randomized Sync. Distributed Algorithm

•Implements in a distributed setting the latter
MIS algorithm, by choosing randomly at each
phase the independent set, in such a way that it
is expected to remove many nodes from the
current residual graph

•Works with synchronous, uniform models, and
does not make use of the processor IDs

Remark: It is randomized in a Las Vegas sense,
i.e., it uses randomization only to reduce the
expected running time, but always terminates
with a correct result (against a Monte Carlo
sense, in which the running time is fixed, while
the result is correct with a certain probability)

35

Let be the maximum node degree

in the whole graph G

d

1
2 d

Suppose that d is known to all the nodes
(this may require a pre-processing)

36

Elected nodes are candidates for

independent set

Each node elects itself

with probability

At each phase : k

kI

d
p

1


1
2 d

kGz 

z

37

However, it is possible that neighbor nodes

are elected simultaneously (nodes can check
it out by testing their neighborhood)

Problematic nodes kG

38

All the problematic nodes step back to the
unelected status, and proceed to the next
phase. The remaining elected nodes form

independent set Ik, and Gk+1 = Gk \ (Ik U N(Ik))

kG
kI

kI

kI
kI

1kG 



39

Success for a node in phase :

 disappears at the end of phase

(enters or)

Analysis:

kGz 

kI

1
2 y

No neighbor elects itself

z

z

k

)(kIN

k

A good
scenario

that
guarantees

success for
z and all of
its neighbors

elects itself

40

Basics of Probability

Let A and B denote two events in a probability space; let

1. A (i.e., not A) be the event that A does not occur;

2. AՈB be the event that both A and B occur;

3. AUB be the event that A or (non-exclusive) B occurs.

Then, we have that:

1. P(A)=1-P(A);

2. if A and B are independent, then P(AՈB)=P(A)·P(B)
Example: if two coins are flipped the chance of both being heads is ½·½=¼

3. if A and B are mutually exclusive, then
P(AUB)=P(A)+P(B), otherwise P(AUB)=P(A)+P(B)-P(AՈB)
Example: the chance of rolling a 1 or 2 on a six-sided dice is 1/6+1/6=1/3

(mutual exclusion), while the chance of rolling a value ≤ 3 or an even value
is 1/2 +1/2 - 1/6 = 5/6 (the two events are not mutually exclusive, since
if 2 is rolled, then both events are verified, so we have to subtract the
probabilty 1/6 that 2 is rolled)

41

Fundamental inequality

t

x2
t e

x

t
1

x

t
1e 



















 x 1,x

 t x,|t|

2,7182...e 

42

Probability for a node z of success in a phase:

P(success z) = P((z enters Ik) OR (z enters N(Ik)))

≥ P(z enters Ik)

i.e., it is at least the probability that it elects itself
AND no neighbor elects itself, and since these
events are independent, if y=|N(z)|, then

1
2 y

p

p1

p1
p1

z

No neighbor elects itself

elects itself

P(z enters Ik) = p·(1-p)y (recall that p=1/d)

43

Probability of success for a node in a phase:

 

2ed

1

d

1
1

ed

1

d

1
1

d

1

p)p(1p1p
d

dy























At least

for 2d

Fundamental inequality

with t=-1 and x=d1:

(1-1/d)d ≥ (1-(-1)2/d)e(-1)

i.e., (1-1/d)d ≥ 1/e·(1-1/d)

x2
t

x

t
1

x

t
1e 



















44

Therefore, node disappears at the end

of a phase with probability at least

1
2 y

z

z

ed2

1

 Node z does not disappear at the end

of a phase with probability at most
2ed

1
1

45

after phases

Definition: Bad event for node :

ned ln4

node did not disappear

This happens with probability
P(ANDk=1,..,4ed lnn (z does not disappear at the end of phase k))

i.e., at most:

2ln2

ln22ln4
11

2

1
1

2

1
1

needed n

nedned




































z

z

(fund. ineq. (1+t/x)x ≤ et with t =-1 and x =2ed)

Independent
events

46

after phases

Definition: Bad event for graph G:

ned ln4

at least one node did not disappear
(i.e., computation has not yet finished)

This happens with probability (notice
that events are not mutually exclusive):
 P(ORzG(bad event for z)) ≤

nn
nz

Gz

11
2




) for event P(bad

47

within phases

Definition: Good event for graph G:

ned ln4

all nodes disappear (i.e., computation
has finished)

This happens with probability:

n

1
-1G] for event bad of ty[probabili1 

(i.e., with high probability (w.h.p.), since it
goes to 1 as n goes to infinity)

48

Total number of phases:

)log(ln4 ndOned 

rounds for each phase: 3
1. In round 1, each node adjusts its neighborhood (according

to round 3 of the previous phase), and then elects itself
with probability 1/d; then, it notifies its neighbors on
whether it succeeded or not;

2. In round 2, each node receives notifications of election
from its neighbors (if any), decide whether it is in Ik, and
if this is the case, it notifies its neighbors, and stops;

3. In round 3, each node receiving notifications from elected
neighbors, realizes to be in N(Ik), notifies its neighbors

about that, and stops.
 total # of rounds: (w.h.p.))log(ndO

(w.h.p.)

Time complexity

49

Homework

Can you provide a good bound on the total
number of messages?

Can you see an asynchronous version of the
algorithm?

