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Maximal Independent Set 
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Independent (or stable) Set (IS): 

In a graph G=(V,E), |V|=n, |E|=m, any 
set of nodes that are not adjacent 
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Maximal Independent Set (MIS): 

An independent set that is no 

subset of any other independent set  
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Size of Maximal Independent Sets 

A graph G… 
…a MIS of 
minimum size… 

…a MIS of maximum 
size (a.k.a. maximum 
independent set) 

Remark 1: The ratio between the size of a maximum MIS and a 
minimum MIS is unbounded (i.e., O(n))! 

Remark 2: Depending on the application, we might be interested in 
finding a MIS of either small or large size, but unfortunately finding 
a minimum/maximum MIS is an NP-hard problem since deciding 
whether a graph has a MIS of size k is NP-complete 

Remark 3: On the other hand, a MIS can be found in polynomial time 
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Applications in DS: network topology control 

• In a network graph consisting of nodes representing 
processors, a MIS defines a set of processors which can 
operate in parallel without interference 

• For instance, in wireless ad hoc networks, to avoid 
interferences, a conflict graph (based on the overlapping 
in the transmission ranges) is built, and a MIS of such a 
graph defines a partition of the nodes enabling 
interference-free communication, where messages are 
broadcasted by the nodes in the MIS to their neighbors 
(in such an application, to reduce the congestion at the 
MIS nodes, one should find a MIS of maximum size, but as 
said before this is known to be NP-hard)  
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Applications in DS: network monitoring 

• A MIS is also a Dominating Set (DS) of the graph (the 
converse in not true, unless the DS is independent), 
namely every node in G is at distance at most 1 from at 
least one node in the MIS (otherwise the MIS could be 
enlarged, against the assumption of maximality!) 

In a network graph G consisting of nodes representing 
processors, a MIS defines a set of processors which can 
monitor the correct functioning of all the nodes in G: each 
node in the MIS will ping continuously its neighbors (in 
such an application, one should find a MIS of minimum 
size, to minimize the number of sentinels, but as said 
before this is known to be NP-hard)  

Question: Exhibit a graph G s.t. the ratio between a  
Minimum MIS and a Minimum Dominating Set is Θ(n), 
where n is the number of vertices of G. 
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A sequential algorithm to find a MIS 

Suppose that I will hold the final MIS, 
and assume that we are not interested in 
any respect to the final size of the MIS 

Initially I
G
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Pick an arbitrary  node     and add it to  I1v

1v

Phase 1: 

1GG 



9 

Remove       and neighbors )( 1vN1v

1G
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Remove       and neighbors )( 1vN1v

2G
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Pick a node         and add it to  I2v

2v

Phase 2: 

2G
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2v

Remove       and neighbors )( 2vN2v

2G
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Remove       and neighbors )( 2vN2v

3G
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Repeat until all nodes are removed 

Phases 3,4,5,…: 

3G
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Repeat until all nodes are removed 

No remaining nodes 

Phases 3,4,5,…,x: 

1xG
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At the end, set       will be a MIS of  I G

G
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Worst case graph (for number of phases): 

n nodes, n-1 phases 

Let G=(V,E) and n=|V| and m=|E|. If the algorithm is 
implemented in a centralized setting, then its running time is 
Θ(m). 

On the other hand, the number of phases of the algorithm is 
equal to the size of the found MIS, and clearly it is O(n).  

 

Analysis 
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Question 

Can you see a distributed version of the just 
given algorithm? 

 

Yes, we can elect a leader at each phase, and 
then add it to the MIS. In this distributed 
version, we would like to minimize the 
number of phases, since in this way the 
number of leader elections will be 
minimized! 
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A Generalized Algorithm For Computing a MIS 

Same as the previous algorithm, but at each 
phase, instead of a single node, we now select any 
independent set (this selection should be seen as 
a black box at this stage, i.e., we do not 
know/specify how such independent set is 
selected) 

 The underlying idea is that this approach will be 
useful for a distributed algorithm, since it will 
reduce the number of phases 
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Suppose that        will hold the final MIS I

Initially I

Example: 

G
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Find any independent set 1I

Phase 1: 

and add     to      : 1I I 1III 

1GG 
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1I )( 1INremove        and neighbors                    

1G
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remove        and neighbors                    1I )( 1IN

1G
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remove        and neighbors                    1I )( 1IN

2G
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Phase 2: 

Find any independent set 2I

2I I 2III 

On new graph 

2G

and add      to      : 
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remove        and neighbors                    2I )( 2IN

2G
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remove        and neighbors                    2I )( 2IN

3G
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Phase 3: 

Find any independent set 3I

3I I 3III 

On new graph 

3G

and add      to      : 
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remove        and neighbors                    3I )( 3IN

3G
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remove        and neighbors                    3I )( 3IN

No nodes are left 

4G
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Final MIS I

G
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1. The algorithm is correct, since independence and 
maximality follow by construction 

2. Running time is now Θ(m) (the time needed to 
remove the edges), plus the time needed at each 
phase to find an independent set (this is really 
the crucial step!) 

3. The number of phases now depends on the choice 
of the independent set in each phase: The larger 
the subgraph removed at the end of a phase, the 
smaller the residual graph, and then the faster 
the algorithm. Then, how do we choose such a set, 
so that independence is guaranteed and the 
convergence is fast?  

Analysis 



33 

Example: If       is a MIS,  

one phase is enough! 
1I

Example: If each       contains one node,  

         phases may be needed 
kI

)(n

(sequential greedy algorithm) 
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A Randomized Sync. Distributed Algorithm 

•Implements in a distributed setting the latter 
MIS algorithm, by choosing randomly at each 
phase the independent set, in such a way that it 
is expected to remove many nodes from the 
current residual graph 

•Works with synchronous, uniform models, and 
does not make use of the processor IDs 

Remark: It is randomized in a Las Vegas sense, 
i.e., it uses  randomization only to reduce the 
expected running time, but always terminates 
with a correct result (against a Monte Carlo 
sense, in which the running time is fixed, while 
the result is correct with a certain probability) 
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Let        be the maximum node degree  

in the whole graph G 

d

1 
2 d

Suppose that d is known to all the nodes 
(this may require a pre-processing) 
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Elected nodes are candidates for 

independent set 

Each node              elects itself  

with probability 

At each phase    : k

kI

d
p

1


1 
2 d

kGz 

z
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However, it is possible that neighbor nodes  

are elected simultaneously (nodes can check 
it out by testing their neighborhood) 

Problematic nodes kG
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All the problematic nodes step back to the 
unelected status, and proceed to the next 
phase. The remaining elected nodes form 

independent set Ik, and Gk+1 = Gk \ (Ik U N(Ik)) 

kG
kI

kI

kI
kI

1kG 

 
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Success for a node               in phase    : 

   disappears at the end of phase 

(enters        or           )  

Analysis: 

kGz 

kI

1 
2 y

No neighbor elects itself 

z

z

k

)( kIN

k

A good 
scenario 

that 
guarantees 

success for 
z and all of 
its neighbors 

elects itself 
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Basics of Probability 

Let A and B denote two events in a probability space; let 

1. A (i.e., not A) be the event that A does not occur; 

2. AՈB be the event that both A and B occur; 

3. AUB be the event that A or (non-exclusive) B occurs. 

Then, we have that: 

1. P(A)=1-P(A); 

2. if A and B are independent, then P(AՈB)=P(A)·P(B) 
Example: if two coins are flipped the chance of both being heads is ½·½=¼ 

3. if A and B are mutually exclusive, then 
P(AUB)=P(A)+P(B), otherwise P(AUB)=P(A)+P(B)-P(AՈB) 
Example: the chance of rolling a 1 or 2 on a six-sided dice is 1/6+1/6=1/3 

(mutual exclusion), while the chance of rolling a value ≤ 3 or an even value 
is 1/2 +1/2 - 1/6 = 5/6 (the two events are not mutually exclusive, since 
if 2 is rolled, then both events are verified, so we have to subtract the 
probabilty 1/6 that 2 is rolled) 
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Fundamental inequality 
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Probability for a node z of success in a phase:  

P(success z) = P((z enters Ik) OR (z enters N(Ik)))  

≥ P(z enters Ik)  

i.e., it is at least the probability that it elects itself 
AND no neighbor elects itself, and since these 
events are independent, if y=|N(z)|, then  

1 
2 y

p

p1

p1
p1

z

No neighbor elects itself 

elects itself 

P(z enters Ik) = p·(1-p)y      (recall that p=1/d) 
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Probability of success for a node in a phase: 

 
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with t=-1 and x=d1: 

(1-1/d)d ≥ (1-(-1)2/d)e(-1) 

i.e., (1-1/d)d ≥ 1/e·(1-1/d) 
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Therefore, node      disappears at the end  

of a phase with probability at least 

1 
2 y

z

z

ed2

1

 Node z does not disappear at the end  

of a phase with probability at most 
2ed

1
1
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after                  phases 

Definition: Bad event for node    : 

ned ln4

node      did not disappear  

This happens with probability  
P(ANDk=1,..,4ed lnn (z does not disappear at the end of phase k)) 

i.e., at most: 
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Independent 
events 
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after                  phases 

Definition: Bad event for graph G: 

ned ln4

at least one node did not disappear 
(i.e., computation has not yet finished) 

This happens with probability (notice 
that events are not mutually exclusive): 
          P(ORzG(bad event for z)) ≤ 

nn
nz

Gz

11
2




) for event P(bad
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within               phases 

Definition: Good event for graph G: 

ned ln4

all nodes disappear (i.e., computation 
has finished)  

This happens with probability: 

n

1
-1G] for event bad of ty[probabili1 

(i.e., with high probability (w.h.p.), since it 
goes to 1 as n goes to infinity) 
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Total number of phases: 

)log(ln4 ndOned 

# rounds for each phase: 3 
1. In round 1, each node adjusts its neighborhood (according 

to round 3 of the previous phase), and then elects itself 
with probability 1/d; then, it notifies its  neighbors on 
whether it succeeded or not; 

2. In round 2, each node receives notifications of election 
from its neighbors (if any), decide whether it is in Ik, and 
if this is the case, it notifies its neighbors, and stops; 

3. In round 3, each node receiving notifications from elected 
neighbors, realizes to be in N(Ik), notifies its neighbors 

about that, and stops.  
 total # of rounds:                      (w.h.p.) )log( ndO

(w.h.p.) 

Time complexity 
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Homework 

Can you provide a good bound on the total 
number of messages? 

 

Can you see an asynchronous version of the 
algorithm? 


