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Network monitoring: 
detecting node failures 
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Monitoring failures in (communication) DS 

• A major activity in DS consists of monitoring 
whether all the system components work properly 

• To our scopes, we will concentrate our attention 
on DS which can be modelled by means of a MPS, 
thus embracing all those real-life applications 
which make use of an underlying communication 
graph G=(V,E) 

• Here, we have to monitor nodes and links 
(mal)functioning, through the use of a set of 
sentinel nodes, which will periodically return to a 
network administrator a certain set of 
information about their neighborhood 



Formalizing the k-node-monitoring problem 

• Input: A graph G = (V,E) modeling a MPS, a parameter k, 
and a query model Q, namely a formal description of the 
entire process through which a sentinel node x reports its 
piece of information to the network administrator (i.e., (1) 
which nodes are queried by x, and (2) which type of 
information x can return to the system as a result of the 
queries);   

• Goal: Compute a minimum-size subset of sentinel nodes 
SV allowing to monitor G with respect to the 
simultaneous failure of at most k nodes in G, i.e., such 
that the composition of the information reported by the 
nodes in S to the network administrator is sufficient to 
identify the precise set of crashed nodes, for any such 
set of size at most k.  
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Network monitoring and dominance in graphs 

• The simplest possible query models are those in which 
each sentinel node communicates with its neighbors only, 
and thus a sentinel node can report a set of information 
about its neighborhood  the monitoring problem in this 
case is naturally related with the concept of dominance in 
graphs, i.e., with the activity of selecting a set of nodes 
(dominators) in a graph in order to have all the nodes of 
the graph within distance at most 1 from at least a 
dominator 

• These query models are then further refined on the basis 
of the type of messages that sentinel nodes exchange with 
their neighbors and with the network administrator 
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Dominating Set 

Given a graph G=(V,E), a dominating set of G 
is a set of nodes DV such that every node 
of G is at distance at most 1 from D 

|D|=4 x 
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x dominates 
{x,y,z} 
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Minimum Dominating Set (MDS): 

This is a dominating set of minimum size  

|D*|=3 x 

y z 

a 
b 

c 

d 

e 

f 

g 



14 

In a query model in which a sentinel node: 
1. Sends a ping to each adjacent node and waits for a reply; 
2. Reports to the network administrator the id (i.e., the system is 

non-anonymous) of the set of adjacent nodes which did not 
reply; 

a MDS D* of a graph G=(V,E) is an optimal solution for the 
1-node-monitoring problem (indeed, if a node in V\D* fails, 
its id will be detected by at least a node in D*, while if a 
node in D* fails, then the system directly detects it since 
of the unreported monitoring). 

Network monitoring and MDS 
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A special type of Dominating Set:  

the Identifying Code (IC) 
This is a dominating set D in which every node v is 
dominated by a distinct set of nodes in D (this is called the 
identifying set of v)  
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A Minimum IC (MIC) is an IC of smallest 
cardinality. 
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In a query model in which a sentinel node: 
1. Sends a ping to each adjacent node and waits for a reply; 
2. Reports to the network administrator an alarm bit (0 if all the 

adjacent replied, 1 otherwise - notice that in this case the 
system might be anonymous); 

a MIC C* of a graph G=(V,E) is an optimal solution for the 1-
node-monitoring problem (indeed, if a node in V\C* fails, it 
will be exactly detected by the unique set of node in C* 
that dominate it, while if a node in C* fails, then the system 
directly detects it since of the unreported monitoring).  

Network monitoring and MIC 
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Our problems 
• We will then study the monitoring problem for single 

node failures (i.e., node crashes) w.r.t. the two following 
query models: 
1. Sentinels are able to return the id of the adjacent failed node  

we will search for a MDS of the network (MDS problem) 
2. Sentinels are only able to return an alarm bit about the 

neighborhood (i.e., a warning that an adjacent node has failed)  
we will search for a MIC of the network (MIC problem) 

• Main questions: Are MDS and MIC problems easy or NP-
hard? If so, can we provide efficient (distributed) 
approximation algorithms to solve them? 

• We will show that MDS and MIC problems are NP-hard, 
and that they are both not approximable within o(ln n); 
we will also provide an Θ(ln n)-approximation distributed 
algorithm for MDS and MIC (only a sketch) 

 
 

 



Reminder: being NP-hard 
• A decision problem P  is NP-hard iff one can reduce in 

polynomial time any NP-complete problem P’ to it, i.e., there 
exists a polynomial-time algorithm that maps an instance of P’ 
to an instance of P, and such that the YES-instances of P’ will 
be mapped to the YES-instances of P, and vice-versa (this is 
a.k.a. Karp reduction, denoted by P’ ≤K P) 

• Of course, if we could solve an NP-hard problem in polynomial 
time, then P=NP 

• Notice that MDS and MIC are optimization problems, since we 
search for solutions of minimum size, and so they are not 
encompassed by the above NP-hardness definition 

• However, it is easy to provide a decision version of an 
optimization problem, without affecting its intrinsic complexity: 
it suffices to add a threshold value to the input, and then asking 
whether a solution either above or below that threshold does 
actually exist 
  In the following, we will assume that the class NP-hard 
contains both decision and optimization problems 



The class NP-hard: a picture 
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Reminder: optimization problems and approximability 

• An optimization problem A is a quadruple (I, F, c, g), where 
• I is a set of instances; 
• given an instance x ∈ I, F(x) is the set of feasible solutions; 
• given a feasible solution y ∈ F(x), c(y) denotes the cost of y, which is 

usually a positive real; 
• g is the goal function, and is either min or max. 
• The goal is then to find for some instance x an optimal solution, that is, a 

feasible solution y with 
c(y) = g {c(y') | y' ∈ F(x)}.  

• For NP-hard optimization problems, unfortunately we do not know 
polynomial-time solving algorithms, thus we resort to approximation 
algorithms: Given a minimization (resp., maximization) problem A, let 
OPTA(x) denote the cost of an optimal solution for A w.r.t. the 
instance x; then, we say that A is ρ-approximable, with ρ≥1 (resp., ρ≤1), 
if there exists a polynomial-time algorithm for A which for any 
instance x ∈ I returns a feasible solution whose measure is at most 
(resp., at least) ρ∙OPTA(x).  

• Moreover, we say that A is ρ-inapproximable, if under some reasonable 
assumptions (typically, PNP), A is not ρ-approximable 



Reducibility between (NP-hard) 
optimization problems 

 
• In a Karp reduction, the focus is just on a mapping between 

YES-instances of the two involved problems, so no any 
attention is paid w.r.t. the measure of the mapped 
solutions, which is instead crucial for optimization 
problems 

• In other words, a Karp reduction transforms an NP-hard 
optimization problem into another NP-hard problem, but 
the two problems may be completely different from an 
approximability point of view   

• For optimization problems, we can then use a special 
(stronger) type of reduction, namely the L-reduction, 
which linearly preserves the degree of approximability of a 
problem; such a type of reduction is also useful to prove 
NP-hardness, as we will see soon 

 



L-reduction: definition 
Let A and B be optimization problems and cA and cB be their respective 
cost functions. A pair of functions f and g is an L-reduction from A to B 
(we write A≤LB) if all of the following conditions are met: 

1. functions f and g are computable in polynomial time; 

2. if x is an instance of problem A, then f(x) is an instance of problem B (and 
so f is used to transform instances of A into instances of B); 

3. if y is a feasible solution of f(x), then g(x,y) is a feasible solution of x (and 
so g is used to transform solutions of B into solutions of A); 

4. there exists a positive constant α such that for every instance x of A 
OPTB(f(x)) ≤ α OPTA(x); 

(informally, the cost of an optimal solution of the transformed instance is 
close to the cost of an optimal solution of the original instance) 

5. there exists a positive constant β such that for every instance x of A and 
every solution y of f(x) 

|OPTA(x) - cA(g(x,y))| ≤ β|OPTB(f(x)) - cB(y)| 

(informally, the distance from an optimal solution of the transformed 
solution g(x,y) is close to the distance from an optimal solution of the 
solution found for the transformed instance f(x)). 

 

 

 



L-reduction: consequences 
Let us focus on minimization problems (all results hold for maximization 
problems as well): 

Fact 1: If A is L-reducible to B and B admits a (1+δ)-approximation 
algorithm, with δ>0, then A admits a (1+δαβ)-approximation algorithm, 
where α and β are the constants associated with the L-reduction 

(and so in particular if α=β=1, the approximation ratio is equal). 
Indeed, by dividing both sides of the inequality in Point 5 by OPTA(x): 

|1 - cA(g(x,y))/OPTA(x)| ≤  

β|OPTB(f(x))/OPTA(x) - (1+δ) OPTB(f(x))/OPTA(x)| 

and since from Point 4 OPTB(f(x)) ≤ α OPTA(x) 

|1 - cA(g(x,y))/OPTA(x)| ≤ α β|1 - (1+δ) |  cA(g(x,y))/OPTA(x) ≤ 1+δαβ. 

Fact 2: A corollary of Fact 1 is that if A is L-reducible to B and A is 
not approximable within a factor of 1+δ, with δ>0, then B is not 
approximable within a factor of 1+δ/αβ (since otherwise by Fact 1 A 
would admit a (1+δ)-approximation algorithm). In particular, if δ=ω(1), 
then a δ-inapproximability of A implies a δ-inapproximability of B 



L-reduction: consequences (2) 
 

Fact 3: If A is L-reducible to B and A is NP-hard, then B is also NP-
hard (this comes from the first three items of the definition, since 
any reduction from an NP-complete problem Π to A can be easily 
extended in polynomial time to a reduction to B). 

 

Fact 4: If A is L-reducible to B and B is L-reducible to A, then A and 
B are asymptotically equivalent in terms of (in)approximability.  



The Set Cover problem 

We will show that the (Minimum) Set Cover Problem and the Minimum 
Dominating Set Problem are asymptotically equivalent in terms of 
(in)approximability (i.e., we show an L-reduction in both directions). Even 
more, we will show that in both directions of the reduction, α=β=1. 
• First of all, we recall the definition of the Set Cover (SC) problem. 

An instance of SC is a pair (U={o1,…,om}, S={S1,…,Sn}), where U is a 
universe of objects, and S is a collection of subsets of U. The 
objective is to find a minimum-size collection of subsets in S whose 
union is U. In the following, w.l.o.g., we assume that n=Θ(m) 

• SC is well-known to be NP-hard, and to be not approximable within (1-
o(1)) ln n, unless P=NP. 

• On the positive side, the greedy heuristic (i.e., at each step, and until 
exhaustion, choose the so-far unselected set in S that covers the 
largest number of uncovered elements in U) provides a (essentially 
tight) Θ(ln n) approximation ratio. 
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L-reduction from MDS to SC (1/3) 

• Instance tranformation: Given an instance x of MDS, namely a graph 
G = (V, E) with V = {1, 2, ..., n}, construct (in polynomial time) an SC 
instance (U, S) as follows: the universe U is V, and the family of subsets 
is S = {S1, S2, ..., Sn} such that Si consists of the vertex i and all the 
vertices adjacent to i in G (this is the function f, and notice that the 
two instances are such that |V|=|S|=n). 

• For example, given the graph G = (V,E) shown below, we construct a set 
cover instance with the universe U = {1, 2, ..., 6} and the subsets 
S1 = {1, 2, 5}, S2 = {1, 2, 3, 5}, S3 = {2, 3, 4, 6}, S4 = {3, 4}, 
S5 = {1, 2, 5, 6}, and S6 = {3, 5, 6}.  
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L-reduction from MDS to SC (2/3) 
• Solution tranformation: It is easy to see that if C = {Si1, Si2

,…, Sik
} is a 

feasible solution of SC, then D = {i1, i2,…, ik} is a dominating set for G, 
(since all the objects in U, namely all the vertices of G, are covered), 
with |D| = |C| (this is the poly-time computable function g, and notice 
that the two solutions have the same size, i.e., cA(g(x,y)) = cB(y)).  

• Moreover, notice that if D is a dominating set for G, then C = {Si : i ∈ D} 
is a feasible solution of SC (since all the vertices of G, namely all the 
objects in U, are covered), with |C| = |D|. Hence, from the previous 
point, an optimal solution of MDS for G equals the size of a Minimum 
Set Cover (MSC) for (U,S) 

• In our example, D = {3, 5} is a dominating set for G, and this 
corresponds to the set cover C = {S3, S5} of the universe. For example, 
vertex 4 is dominated by vertex 3 ∈ D, and the element 4 ∈ U is 
contained in the set S3 ∈ C. 
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L-reduction from MDS to SC (3/3) 

• From the previous two points, we have OPTB(f(x)) = OPTA(x), 
and so α=1, and moreover since as said before, cA(g(x,y)) = 
cB(y), we have that  

|OPTA(x) - cA(g(x,y))| = |OPTB(f(x)) - cB(y)|, i.e., β=1.  

•  Therefore, MDS ≤LSC with α=β=1, and thus from Fact 1, a 
ρ-approximation algorithm for SC provides exactly a ρ-
approximation algorithm for MDS. 
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L-reduction from SC to MDS (1/4) 
• Instance tranformation: Let now (U,S) be an instance of SC with 

the universe U={o1,…,om}, and the family of subsets S={S1,…,Sn}, 
and let I={1,…,n}; w.l.o.g., we assume that U and the index set I 
are disjoint. Construct (in polynomial time) a graph G = (V,E) as 
follows: the set of vertices is V = I ∪ U, there is an edge {i,j} ∈ E 
between each pair i, j ∈ I, and there is also an edge {i,o} for each 
i ∈ I and o ∈ Si. That is, G is a split graph: I is a clique and U is an 
independent set. This is the function f, and notice that the two 
instances are now such that n=|S||V|=n+m). 

• For example, let be given the following instance of SC: 
U = {a, b, c, d, e}, S1 = {a, b, c}, S2 = {a, b}, S3 = {b, c, d}, and 
S4 = {c, d, e}, and so I = {1, 2, 3, 4}. This provides the graph 
G=(I∪U,E) below. 
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L-reduction from SC to MDS (2/4) 
• Solution tranformation: Now let D be a dominating set for G. Then it 

is possible to construct another dominating set X such that |X| ≤ |D| 
and X ⊆ I: simply replace each o ∈ D ∩ U by a neighbour i ∈ I of o. 
Then C = {Si : i ∈ X} is a feasible solution of SC, with |C| = |X| ≤ |D|. 
This is the poly-time computable function g, but notice that the two 
solutions have not the same size in general (i.e., cA(g(x,y)) ≤ cB(y)). 
Remark: Notice however that if D were a minimum dominating set for 
G, then clearly |X| = |D| (indeed remember that X is a dominating set) 

• For instance, in our example, where U = {a, b, c, d, e}, S1 = {a, b, c}, 
S2 = {a, b}, S3 = {b, c, d}, and S4 = {c, d, e}, given any dominating set for 
the graph G, say D = {a, 3, 4}, we can construct a dominating set 
X = {1, 3, 4} which is not larger than D and which is a subset of I. The 
dominating set X now corresponds to the set cover C = {S1, S3, S4}.  
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L-reduction from SC to MDS (3/4) 
• Conversely, if C = {Si : i ∈ D ⊆ I} is a feasible solution of SC, then 

D is a dominating set for G, with |D| = |C|: First, for each o ∈ U 
there is an i ∈ D such that o ∈ Si (since D is a SC), and since by 
construction o and i are adjacent in G, this implies that all the 
nodes in U are dominated. Second, since D ⊆ I must be nonempty, 
each i ∈ I is adjacent to a vertex in D (since G[I] is a clique) 

• For instance, in our example, U = {a, b, c, d, e}, S1 = {a, b, c}, 
S2 = {a, b}, S3 = {b, c, d}, and S4 = {c, d, e}, and so C = {S1, S4} is a 
set cover; this corresponds to the dominating set D = {1, 4}. 
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L-reduction from SC to MDS (4/4) 

• From the previous point and the remark on slide (2/4), it follows 
that 

   OPTB(f(x)) = OPTA(x), and so α=1. 

• Moreover, as we said before, cA(g(x,y)) ≤ cB(y), and moreover 
cA(g(x,y)) ≥ OPTA(x)  and cB(y) ≥ OPTB(f(x))  (they are 
minimization problems), and so we have that  

|OPTA(x) - cA(g(x,y))| ≤ |OPTB(f(x)) - cB(y)| 

and so β=1.  

 Then, SC ≤LMDS with α=β=1, and from Fact 2, a ω(1)-
inapproximability of SC implies a ω(1)-inapproximability for 
MDS. 
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Consequences on the approximability of MDS 

• From the bidirectional L-reduction from SC, it 
follows that MDS is as hard to approximate as 
SC. 

• This means, MDS is NP-hard and cannot be 
approximated within (1-o(1)) ln n, unless P=NP.  

• On the positive side, the greedy heuristic for SC 
(i.e., at each step, and until exhaustion, choose 
the so-far unselected set in S that covers the 
largest number of uncovered elements in U) can 
be reformulated for MDS in order to provide a 
(essentially tight) Θ(ln n) approximation ratio. 
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Recap: the MDS and the MIC problems 

• MDS: Given a graph G=(V,E), find a dominating set of G 
(i.e., is a set of nodes D  V such that every node of G is 
at distance at most 1 from D) of minimum size  a MDS 
is useful to monitor node failures when sentinel nodes are 
able to report the ID of an adjacent failing node 

• MIC: Given a graph G=(V,E), find an identifying code of G 
(i.e., is a set of nodes D  V such that every node v of G 
is at distance at most 1 from a univocal set of nodes Dv  
D) of minimum size  a MIC is useful to monitor node 
failures when sentinel nodes are able to only report an 
alarm bit that an adjacent node failed 

• MDS is as hard to approximate as SC, i.e., it is NP-hard 
and cannot be approximated within (1-o(1)) ln n, unless 
P=NP, but admits a (tight) Θ(ln n) approximation 
algorithm 34 



35 

Centralized MDS Greedy Algorithm (1/4) 
 

Greedy Algorithm (GA): For any node v of the given 
graph G, let N(v) denote its neighborhood in G, 
i.e., the set of adjacent nodes, and define span(v) 
to be the number of non-dominated nodes in {v} U 

N(v). Then, start with empty dominating set D, 
and so initially span(v)=1+|N(v)|, and at each step 
add to D node v with maximum span, until all 
nodes are dominated. 

Theorem: The GA is H(+1)-approximating, where  

is the degree of G, and H(k) = 1+1/2+1/3+…+1/k ≤ 
1+ln k, i.e., the GA is (1+ln (+1))-approximating, or 
(1+ln n)-approximating (since  ≤ n-1). 
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Centralized MDS Greedy Algorithm (2/4) 

Proof: We prove the theorem by using amortized analysis. We call 
black the nodes in D, grey the nodes which are dominated 
(neighbors of nodes in D), and white all the non-dominated nodes. 
Each time we choose a new node of the dominating set (each 
greedy step), we have a cost increasing of 1, (since one node is 
added to the solution), but instead of assigning the whole cost to 
the node we have chosen, we distribute the cost equally among all 
newly dominated nodes.  

Now, assume that we know a MDS D*. By definition, to each node 
which is not in D*, we can assign a neighbor from D*. By assigning 
each node to exactly one node of D*, the graph is decomposed 
into stars, each having a dominator (node in D*) as center, and 
non-dominators as leaves. Clearly, the cost of a MDS is 1 for each 
such star, or, in other words, each node of a star of k+1 nodes 
centered at vD* and of degree k (i.e., with k leaves) will cost 
1/(k+1). But what the cost of such a star will be in the solution 
found by the GA?  
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Creating the stars 

D* is is a dominating set of minimum size  
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Three stars centered at D* are created… 
…and the corresponding costs are visualized 
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Centralized MDS Greedy Algorithm (3/4) 
• Let us look at a single star with center v in D*. Assume that at the 

beginning of the current step of the GA, v is not black (i.e., it is either 
white or grey), and let w(v) be the number of current white nodes in the 
star of v in D*. First of all, notice that span(v)w(v), since w(v) considers 
only a subset of nodes adjacent to v.  

 

• If the GA selects in this step a node v’, some of these white nodes may 
become grey, so they will get charged a cost of 1/span(v’) (observe this can 
happen iff v and v’ are at distance at most 2 in G).  

 

• By the greedy condition of the algorithm, span(v’)  span(v)  w(v), since 
otherwise the algorithm should rather have chosen v for D instead of v’. 
Therefore, a white node of v becoming grey/black in the current step is 
charged by at most 1/w(v).  

 

• Notice that after becoming grey/black, nodes do not get charged any more. 
Notice also that the cost that will be charged in the future to the 
remaining (if any) white nodes in the star of v will be larger, since w(v) is 
non-increasing w.r.t. the steps of the GA.  



39 

Centralized MDS Greedy Algorithm (4/4) 
As a consequence, in the worst case (i.e., to maximize the cost charged to 
the star of v), no two nodes in the star of v become grey/black at the same 
step of the GA. Thus, in the worst case, denoting by k≤δ(v) the degree of 
the star of v in D*, the first node gets charged by at most 1/(k+1), the 
second node gets charged by at most 1/k, and so on. Thus, the total 
amortized cost of a star for the GA is at most 

 

1/(k+1) +1/k +… +1/2+1 = H(k+1) ≤ H(δ(v)+1) ≤ H(+1) ≤ 1 + ln (+1) 

 

against a cost of 1 for the optimum.    ■ 
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Distributing (synchronously) the GA (1/2) 

• Synchronous, non-anonymous, uniform MPS 

• Proceed in phases, initially no node is in D 

• Each phase has 3 steps: 
1. each node calculates its current span, by 

testing adjacent nodes (2 rounds); 

2. each node sends (span, ID) to all nodes within 
distance 2 (2 rounds); 

3. each node joins the dominating set D iff its 
(span, ID) is lexicographically higher than all 
others within distance 2 (1 round to notify 
neighbors); in this case, it will exit from the 
computation 
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Distributing (synchronously) the GA (2/2) 
• It can be easily proven that the distributed algorithm has the same 

approximation ratio as the greedy algorithm: indeed, the analysis of 
the GA only involves nodes which are at distance at most 2 in G, as we 
have observed in the proof, which is exactly the tested neighborhood 
of the distributed algorithm 

• However, the algorithm can be quite slow, since it can take O(|D|) 
phases to terminate, where D is the returned dominated set. Look for 
instance at the following  caterpillar graph (path of decreasing 
degrees) of n nodes: 

 

 

 
 Nodes along the "backbone" (of length (n)) add themselves to D 

sequentially from left to right  (n) phases (and rounds) are 
needed! 

 Via randomization, the greedy algorithm can be modified so as to 
terminate w.h.p. in O(log  log n) rounds, with an expected O(log )-
approximation ratio. 

 

 



(In)approximability of MIC 

• Concerning the MIC problem, the situation is very 
similar to MDS. 

• More precisely, MIC is NP-hard and cannot be 
approximated within (1-o(1)) ln n, unless P=NP. 

• On the positive side, there exists a sequential (1+ln 
n)-approximation algorithm for MIC. 

• Moreover, the distributed GA for the MDS problem 
can be easily modified to solve the MIC problem in a 
distributed setting (it will essentially explore the 3-
neighborood of a node instead of its 2-
neighborood), and it will run in O(|IC|), where IC is 
the returned identifying code.  
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Assignment 
1. Provide a message complexity analysis of the 

distributed GA for the MDS problem 

2. Run the greedy algorithm for the MDS problem 
on the following graph (the optimum is given by 
red nodes), and compute the apx ratio 
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