
 
Algorithms for Concurrent  

Distributed Systems: 
The Mutual Exclusion problem 



Concurrent Distributed Systems 

Changes to the model from the MPS: 
– MPS basically models a distributed system in 

which processors needs to coordinate to 
perform a widesystem goal (e.g., electing their 
leader) 

– Now, we turn our attention to concurrent 
systems, where the processors run in parallel 
but without necessarily cooperating (for 
instance, they might just be a set of laptops in 
a LAN)  



Shared Memory System (SMS) 

Changes to the model from the MPS: 
– No cooperation  no communication channels 

between processors and no inbuf and outbuf 
state components 

– Processors notificate their status via a set of 
shared variables, instead of passing messages 
 no any communication graph! 

– Each shared variable has a type, defining a set 
of operations that can be performed 
atomically (i.e., instantaneously, without 
interferences) 



Shared Memory 

1p

3p

2p

4p

processors 



Types of Shared Variables 
1. Read/Write 

2. Read-Modify-Write 

3. Test & Set 

4. Compare-and-swap 
 . 
 .  
 . 

We will focus on the Read/Write type (the 
simplest one to be realized) 



Read/Write Variables 

Read(v) Write(v,a) 
return(v); v := a; 

In one atomic step a processor can: 
– read the variable, or 

– write the variable 

… but not both! 

 between a read and a write operation by a 
given processor (whose written value could be 
a function of the just read value), some other 
processor could have changed in the meantime 
the value of the variable!  



1p write 10 

10 

2pread 

10 

An example 



1p write 10 2pwrite 20 

Simultaneous writes 



1p write 10 2pwrite 20 

Possibility 1 

10 

Simultaneous writes are scheduled: 



1p write 10 2pwrite 20 

Possibility 2 

20 

Simultaneous writes are scheduled: 

 the surviving value is arbitrary!  



1p write 2pwrite 

In general: 

1a
2a

3p

write 3a
kp

write ka

Final value є {a1,…,ak} 

Simultaneous writes are scheduled: 



1p write 

2p

read 
1a

3p

write 

Final value є {a1,a2} 

Simultaneous reads and writes are also scheduled 

2a

p3 can read 
either a1, a2, or 
the value which 
was stored 
there before 



1p read 2pread 

Simultaneous Reads: no problem! 

a a 
a 

All read the same value 



Computation Step in the 
Shared Memory System 

• When processor pi takes a step: 
– pi 's state in the old configuration specifies 

which shared variable is to be accessed and 
with which operation 

– operation is done:  shared variable's value 
in the new configuration (possibly) changes 
according to the operation 

– pi 's state in the new configuration changes 
according to its old state and the result of 
the operation 



The mutual exclusion (mutex) problem 

– The main challenge in managing 
concurrent systems is 
coordinating access to resources 
that are shared among processes 

– Assumptions on the SMS 
(similarly to the MPS): 
• Non-anonymous (ids are in [0..n-1]) 

• Non-uniform 

• Asynchronous 



• Each processor's code is divided into four 
sections: 
 
 

 
 
 

– entry: synchronize with others to ensure 
mutually exclusive access to the … 

– critical: use some resource; when done, enter 
the… 

– exit: clean up; when done, enter the… 
– remainder: not interested in using the resource 

Mutex code sections 

entry 

critical 

exit 

remainder 



Mutex Algorithms 

• A mutual exclusion algorithm specifies 
code for entry and exit sections to 
ensure: 
– mutual exclusion: at most one processor is 

within the critical section at any time, and 

– some kind of liveness condition, i.e., a 
guarantee on the use of the critical section 
(under the general assumption that no 
processor stays in its critical section 
forever). There are three commonly 
considered ones: 



Mutex Liveness Conditions 
• no deadlock: if a processor is in its entry section at 

some point of time, then later some processor (i.e., 
maybe another one) is in its critical section (notice that 
a processor can be starved/locked in this situation) 

• no lockout: if a processor is in its entry section at some 
point of time, then later the same processor is in its 
critical section (but maybe it will be overtaken an 
unbounded number of times by some other processor) 

• bounded waiting: no lockout + while a processor is in its 
entry section, it can be overtaken in entering into the 
critical section only a bounded number of times by any 
other processor 

These conditions are increasingly stronger: bounded 
waiting  no lockout  no deadlock 



Complexity Measure for Mutex 

• Main complexity measure of interest 
for shared memory mutex algorithms is 
amount of shared space needed. 

• Space complexity is affected by: 
– how powerful is the type of the shared 

variables (recall we only focus on 
Read/Write type) 

– how strong is the liveness condition to be 
satisfied (no deadlock/no lockout/bounded 
waiting) 



Mutex Results Using R/W 

Liveness 

Condition 

upper bound lower bound 

no deadlock n booleans 

no lockout 3(n-1) booleans (for 
n=2k) 

(tournament algorithm) 

bounded 
waiting 

n booleans +  

n unbounded integers 

(bakery algorithm) 



The Bakery Algorithm 
(L. Lamport, 1974) 

• Guaranteeing: 
– Mutual exclusion 

– Bounded waiting 

• Using 2n shared read/write variables 
– booleans Choosing[i]: initially false, 

written by pi and read by others 

– (unbounded) integers Number[i]: initially 
0, written by pi and read by others 



Bakery Algorithm 
Code for entry section of pi: 
 Choosing[i] := true 

 Number[i] := max{Number[0],..., 

      Number[n-1]} + 1 

 Choosing[i] := false 

 for j := 0 to n-1 (except i) do 

  wait until Choosing[j] = false 

  wait until Number[j] = 0 or 

   (Number[j],j) > (Number[i],i) 

 endfor 

 
 
Code for exit section of pi: 
 Number[i] := 0 

Ticket of pi 

Semaphores 

Doorway 
subsection 
(DS) 

Bakery 
subsection 
(BS) 



The max operation 

The max instruction will look like as follows on 
the timeline of pi:  

time 

pi reads 
Number[1] and 
compare it with 
Max, and possibly 
updates Max  

pi reads 
Number[n-1] 

and compare 
it with Max, 
and possibly 
updates Max 

pi writes 
Number[i]:=Max+1 

pi reads 
Number[0] 

and stores its 
value in a local 
variable Max 

…… 



The semaphore 

The wait until instruction will look like as follows 
on the timeline of pi:  

time 

pi reads 
Choosing[j] 

and since it is 
true it must 
read it again 

pi reads 
Choosing[j] 

and since it is 
still true it 
must read it 
again 

pj writes 
Choosing[j]:=false 

pi reads 
Choosing[j] 

and since now 
it is false it 
can proceed 

pj writes 
Choosing[j]:=true 



BA Provides Mutual Exclusion 
Lemma 1: If pi is in the critical section (CS), then Number[i] > 0. 
Proof: Trivial: in the doorway section it always takes a number>0. 
Lemma 2: If pi is in the CS and Number[k] ≠ 0 (k ≠ i), then 

(Number[k],k) > (Number[i],i).  
Proof:  Observe that a chosen number changes only after exiting 

from the CS, and that a number is ≠ 0 iff the corresponding 
processor is either in the entry (bakery) section or in the CS. 
Now, since pi is in the CS, it passed the second wait statement 
for j=k.  

pi in CS and 
Number[k] ≠ 0 

pi's most recent 
read of Number[k] 
(second semaphore) 

Case 1: returns 0 
Case 2: returns (Number[k],k)>(Number[i],i) 

 There are two cases: 

time 



Case 1 

pi in CS and 
Number[k] ≠ 0 

pi's most recent read  
of Number[k] returns  
0. So pk is either in  
the remainder section  
or choosing number. 

pi's most recent 
read of Choosing[k], 
returns false. So pk  
is not in the middle 
of choosing number. 

pi's most recent 
write to Number[i] 

So pk starts choosing its number in this interval, sees pi's 
number, and then will choose a larger one (i.e., Number[k] > 
(Number[i]); so, it will never enter in CS before than pi, which 
means that its number does not change all over the time pi is in 
the CS, and so the claim is true  

time 
pi's second 
semaphore for j=k 

pi's first 
semaphore for j=k 



Case 2 

pi in CS and 
Number[k] ≠ 0 

pi's most recent 
read of Number[k] returns  
(Number[k],k)>(Number[i],i). 
So pk has already  
taken its number. 

So pk chooses Number[k]≥Number[i] in this interval, and does not 
change it until pi exits from the CS, since it cannot overtake pi. 
Indeed, pk will be stopped by pi either in the first wait statement (in 
case pk finished its choice before than pi and pi is still choosing its 
number), or in the second one (since (Number[i],i)<(Number[k],k)). 
Thus, it will remain (Number[i],i)<(Number[k],k) until pi finishes its 
CS, and the claim follows. 

END of PROOF 

time 
pi's second 
semaphore for j=k 



Mutual Exclusion for BA 

• Mutual Exclusion:  Suppose pi and pk are 
simultaneously in CS, i  k. 
– By Lemma 1, both have number > 0. 

– Since  Number[k], Number[i]  0, by Lemma 2 

• (Number[k],k) > (Number[i],i) and  

• (Number[i],i) > (Number[k],k) 



No Lockout for BA 
• Assume in contradiction there is a starved processor. 
• Starved processors must be stuck at the semaphores, not 

while choosing a number. 
• Starved processors can be stuck only at the second 

semaphore, since sooner or later the Choosing variable 
of each processor will become false  

• Let pi be a starved processor with smallest (Number[i],i). 
• Any processor entering entry section after that pi chose 

(i.e., wrote) its number, will choose a larger number, and 
therefore cannot overtake pi 

• Every processor with a smaller ticket eventually enters CS 
(not starved) and exits, setting its number to 0. So, in the 
future, its number will be either 0 or larger than Number[i] 

• Thus pi cannot be stuck at the second semaphore forever 
by another processor. 

 



What about bounded waiting? 

YES: It is easy to see that any processor 
in the entry section can be overtaken at 
most once by any other processor (and so 
in total it can be overtaken at most n-1 
times). 



Space Complexity of BA 

• Number of shared variables is 2n 

· Choosing variables are booleans 

· Number variables are unbounded: as long 
as the CS is occupied and some 
processor enters the entry section, the 
ticket number increases 

• Is it possible for an algorithm to use 
less shared space? 



Bounded-space 2-Processor  
Mutex Algorithm with no deadlock 

(J.L. Peterson, 1981)  

• Start with a bounded-variables algorithm 
for 2 processors with no deadlock, then 
extend to no lockout, then extend to n 
processors. 

• Use 2 binary shared read/write variables 
(intuition: if pi wants to enter into the CS, 
then it sets W[i] to 1): 
W[0]: initially 0, written by p0 and read by p1 
W[1]: initially 0, written by p1 and read by p0 

• Asymmetric (or non-homogenous) code: p0 
always has priority over p1 



Code for p0 's entry section: 
1 . 

2 . 

3 W[0] := 1 

4 . 

5 . 

6 wait until W[1] = 0 

 

Code for p0 's exit section: 
7 . 

8 W[0] := 0 

Bounded-space 2-Processor  
Mutex Algorithm with no deadlock  

Semaphore 



Code for p1 's entry section: 
1 W[1] := 0 

2 wait until W[0] = 0 

3 W[1] := 1 

4 . 

5    if (W[0] = 1) then goto Line 1 

6 . 

 

Code for p1 's exit section: 
7 . 

8 W[1] := 0 

Bounded-space 2-Processor  
Mutex Algorithm with no deadlock  

Semaphore 



Analysis 
• Satisfies mutual exclusion: processors use W variables 

to make sure of this (a processor enters only when its 
own W variable is set to 1 and the other W variable is 
seen to be 0; notice that when p1 is in the CS and p0 is 
waiting at Line 5 in the entry, then both W[0] and W[1] 
are equal to 1, while if p0 is in the CS and p1 is waiting at 
Line 2 in the entry, then W[0]=1, while W[1]=0) 

• Satisfies no-deadlock: if p0 wants to enter, it cannot be 
locked by p1 (since p1 will be forced to set W[1]:=0)  

• But unfair w.r.t. p1 (it can remain locked, if p0 sets W[0] 
to 1 continuously between line 3 and 5 of p1 execution)  

 Fix it by having the processors alternate in having the 
priority 



Uses 3 binary shared read/write 
variables and is symmetric: 

• W[0]: initially 0, written by p0 and 
read by p1 

• W[1]: initially 0, written by p1 and 
read by p0 

• Priority: initially 0, written and read 
by both 

Bounded-space 2-Processor  
Mutex Algorithm with no lockout 



Code for pi’s entry section: 
 

1 W[i] := 0 

2 wait until W[1-i] = 0 or Priority = i 

3 W[i] := 1 

4 if (Priority = 1-i) then 

5   if (W[1-i] = 1) then goto Line 1 

6 else wait until (W[1-i] = 0) 

 

Code for pi’s exit section: 
 

7 Priority := 1-i 

8 W[i] := 0 

Bounded-space 2-Processor  
Mutex Algorithm with no lockout 

Semaphores 



Analysis: ME 
Mutual Exclusion:   
• Suppose in contradiction p0 and p1 are simultaneously in CS, and 

then their W[] variables are set to 1.  

• W.l.o.g., assume p1 last write of W[1] before entering CS happens 

not later than p0 last write of W[0] before entering CS  

W[0]= W[1]=1, 
both procs in CS 

p1's most 
recent write 
to 1 of W[1] 
(Line 3) 

p0 's most 
recent write 
to 1 of W[0] 
(Line 3) 

p0 's most recent read  
of W[1] before entering  
CS (Line 5 or 6): 
returns 1, not 0 as it is 
needed to proceed! 

time 



Analysis: No-Deadlock 

• Useful for showing no-lockout. 

• If one processor ever stays in the 
remainder section forever, then its W[] 
variable will constantly be equal to 0, 
and so the other processor cannot be 
starved (it cannot be stuck at Line 5 or 
6) 

• So any deadlock would starve both 
processors in the entry section 



Analysis: No-Deadlock 
• Suppose in contradiction there is deadlock, 

and w.l.o.g., suppose Priority gets stuck at 
0 after both processors are stuck in their 
entry sections (indeed Priority cannot be 
changed within the entry section): 

p0 and p1 
stuck in entry 
Priority=0 

p0 not stuck 
in Line 2, skips 
Line 5, stuck in  
Line 6 with W[0]=1 
waiting for 
W[1] to be 0 

p0 sees 
W[1]=0, 
enters CS 

p1 sent back in 
Line 5, stuck 
at Line 2 with 
W[1]=0, waiting 
for W[0] to be 0 

time 



Analysis: No-Lockout 
• Suppose in contradiction p0, w.l.o.g., is starved. 
• Since there is no deadlock, p1 enters CS 

infinitely often. 
• The first time p1 executes Line 7 in exit section 

after p0 is stuck in entry, Priority gets stuck 
at 0 (only p0 can set Priority to 1) 

p1 at Line 7; 
Priority=0 
forever after 

p0 stuck 
in entry 

p0 not stuck 
in Line 2, skips  
Line 5, stuck at 
Line 6 with 
W[0]=1, waiting 
for W[1] to be 0 

p1 enters entry, 
gets stuck at 
Line 2 with 
W[1]=0, waiting 
for W[0] to  
be 0: p0 sees 
W[1]=0, and 
enters CS 

time 



Bounded Waiting? 

• NO: A processor, even if having 
priority, might be overtaken repeatedly 
(in principle, an unbounded number of 
times) when it is in between Line 2 and 
3.  



• Can we get a bounded-space no-lockout mutex 
algorithm for n>2 processors?  

• Yes! For the sake of simplicity, assume that 
n=2k, for some k>1. 

• Based on the notion of a tournament tree:  
complete binary tree with n-1 nodes 
– tree is conceptual only!  does not represent message 

passing channels 

• A copy of the 2-processor algorithm is 
associated with each tree node 
– includes separate copies of the 3 shared variables 

Bounded-space n-Processor  
Mutex Algorithm with no lockout 



Tournament Tree 
1 

2 3 

4 5 6 7 

p0, p1 p2, p3 p4, p5 p6, p7 

We label the tree nodes from top to down and from 
left to right, from 1 to n-1; then, associate 
processor pi, i=0,…, n-1, with the leaf node labelled 
2k-1 + i/2, where k = log n (recall that n=2k). Notice 
that, in general, if n≠2k, then we complete the tree 
by adding “dummy” leaves 



Tournament Tree Mutex Algorithm 

• Each processor begins entry section at 
the associated leaf (2 processors per 
leaf) 

• A processor proceeds to next level in 
the tree by winning the 2-processor 
competition for current tree node: 
– on left side, plays role of p0 
– on right side, plays role of p1 

• When a processor wins the 2-processor  
algorithm associated with the tree 
root, it enters CS. 



The entry code 

Entry 

Exit 



More on TT Algorithm 
• Code is recursive 
• pi begins at tree node v labelled 2k-1 + i/2, 

playing role of pi mod 2, where k = log n. 
• After winning at node v, "critical section" 

for node v is 
– entry code for all nodes on path from v/2 to 

root 
– real critical section 

• Finally, executes exit code for all nodes on 
path from root to v (in each of these nodes, 
gives priority to the other side and sets its 
want variable to 0)  



Analysis 
• Correctness: based on correctness of 2-

processor algorithm and tournament 
structure: 
– Mutual exclusion for TT algorithm follows from 

ME for 2-processors algorithm at tree root. 
– No-lockout for tournament algorithm follows from 

no-lockout for the 2-processor algorithms at all 
nodes of tree 

• Space Complexity: 3(n-1) boolean read/write 
shared variables. 

• Bounded Waiting?      No, as for the 2-
processor algorithm. 



Homework 
Consider the mutex problem on a synchronous DS of 8 processors 
(with ids in 0..7). Show an execution of the tournament tree 
algorithm by assuming the following: 

1. Initially, all the want and priority variables are equal to 0; 
2. The system is totally synchronous, i.e., lines of code are 

executed simultaneously by all processors; 
3. Throughout the entry section, a processor ends up a round 

either if it wins the competition (and possibly it enters the 
CS), or if it executes 7 lines of codes; 

4. If a node enters the CS at round k, then it exits at round 
k+1; 

5. Throughout the exit section, a processor ends up a round 
after having executed the exit code for a node of the tree; 

6. p0, p1, p3, p5 and p6 decide to enter the CS in round 1, while 
the remaining processors decide to enter the CS in round 2. 

 
Hints: 16 rounds until the last processor completes the exit 

section; entering sequence is p0, p5, p3, p6, p1, p4, p2, p7  


