

Algorithms for Concurrent

Distributed Systems:
The Mutual Exclusion problem

Concurrent Distributed Systems

Changes to the model from the MPS:
– MPS basically models a distributed system in

which processors needs to coordinate to
perform a widesystem goal (e.g., electing their
leader)

– Now, we turn our attention to concurrent
systems, where the processors run in parallel
but without necessarily cooperating (for
instance, they might just be a set of laptops in
a LAN)

Shared Memory System (SMS)

Changes to the model from the MPS:
– No cooperation  no communication channels

between processors and no inbuf and outbuf
state components

– Processors notificate their status via a set of
shared variables, instead of passing messages
 no any communication graph!

– Each shared variable has a type, defining a set
of operations that can be performed
atomically (i.e., instantaneously, without
interferences)

Shared Memory

1p

3p

2p

4p

processors

Types of Shared Variables
1. Read/Write

2. Read-Modify-Write

3. Test & Set

4. Compare-and-swap
 .
 .
 .

We will focus on the Read/Write type (the
simplest one to be realized)

Read/Write Variables

Read(v) Write(v,a)
return(v); v := a;

In one atomic step a processor can:
– read the variable, or

– write the variable

… but not both!

 between a read and a write operation by a
given processor (whose written value could be
a function of the just read value), some other
processor could have changed in the meantime
the value of the variable!

1p write 10

10

2pread

10

An example

1p write 10 2pwrite 20

Simultaneous writes

1p write 10 2pwrite 20

Possibility 1

10

Simultaneous writes are scheduled:

1p write 10 2pwrite 20

Possibility 2

20

Simultaneous writes are scheduled:

 the surviving value is arbitrary!

1p write 2pwrite

In general:

1a
2a

3p

write 3a
kp

write ka

Final value є {a1,…,ak}

Simultaneous writes are scheduled:

1p write

2p

read
1a

3p

write

Final value є {a1,a2}

Simultaneous reads and writes are also scheduled

2a

p3 can read
either a1, a2, or
the value which
was stored
there before

1p read 2pread

Simultaneous Reads: no problem!

a a
a

All read the same value

Computation Step in the
Shared Memory System

• When processor pi takes a step:
– pi 's state in the old configuration specifies

which shared variable is to be accessed and
with which operation

– operation is done: shared variable's value
in the new configuration (possibly) changes
according to the operation

– pi 's state in the new configuration changes
according to its old state and the result of
the operation

The mutual exclusion (mutex) problem

– The main challenge in managing
concurrent systems is
coordinating access to resources
that are shared among processes

– Assumptions on the SMS
(similarly to the MPS):
• Non-anonymous (ids are in [0..n-1])

• Non-uniform

• Asynchronous

• Each processor's code is divided into four
sections:

– entry: synchronize with others to ensure
mutually exclusive access to the …

– critical: use some resource; when done, enter
the…

– exit: clean up; when done, enter the…
– remainder: not interested in using the resource

Mutex code sections

entry

critical

exit

remainder

Mutex Algorithms

• A mutual exclusion algorithm specifies
code for entry and exit sections to
ensure:
– mutual exclusion: at most one processor is

within the critical section at any time, and

– some kind of liveness condition, i.e., a
guarantee on the use of the critical section
(under the general assumption that no
processor stays in its critical section
forever). There are three commonly
considered ones:

Mutex Liveness Conditions
• no deadlock: if a processor is in its entry section at

some point of time, then later some processor (i.e.,
maybe another one) is in its critical section (notice that
a processor can be starved/locked in this situation)

• no lockout: if a processor is in its entry section at some
point of time, then later the same processor is in its
critical section (but maybe it will be overtaken an
unbounded number of times by some other processor)

• bounded waiting: no lockout + while a processor is in its
entry section, it can be overtaken in entering into the
critical section only a bounded number of times by any
other processor

These conditions are increasingly stronger: bounded
waiting  no lockout  no deadlock

Complexity Measure for Mutex

• Main complexity measure of interest
for shared memory mutex algorithms is
amount of shared space needed.

• Space complexity is affected by:
– how powerful is the type of the shared

variables (recall we only focus on
Read/Write type)

– how strong is the liveness condition to be
satisfied (no deadlock/no lockout/bounded
waiting)

Mutex Results Using R/W

Liveness

Condition

upper bound lower bound

no deadlock n booleans

no lockout 3(n-1) booleans (for
n=2k)

(tournament algorithm)

bounded
waiting

n booleans +

n unbounded integers

(bakery algorithm)

The Bakery Algorithm
(L. Lamport, 1974)

• Guaranteeing:
– Mutual exclusion

– Bounded waiting

• Using 2n shared read/write variables
– booleans Choosing[i]: initially false,

written by pi and read by others

– (unbounded) integers Number[i]: initially
0, written by pi and read by others

Bakery Algorithm
Code for entry section of pi:
 Choosing[i] := true

 Number[i] := max{Number[0],...,

 Number[n-1]} + 1

 Choosing[i] := false

 for j := 0 to n-1 (except i) do

 wait until Choosing[j] = false

 wait until Number[j] = 0 or

 (Number[j],j) > (Number[i],i)

 endfor

Code for exit section of pi:
 Number[i] := 0

Ticket of pi

Semaphores

Doorway
subsection
(DS)

Bakery
subsection
(BS)

The max operation

The max instruction will look like as follows on
the timeline of pi:

time

pi reads
Number[1] and
compare it with
Max, and possibly
updates Max

pi reads
Number[n-1]

and compare
it with Max,
and possibly
updates Max

pi writes
Number[i]:=Max+1

pi reads
Number[0]

and stores its
value in a local
variable Max

……

The semaphore

The wait until instruction will look like as follows
on the timeline of pi:

time

pi reads
Choosing[j]

and since it is
true it must
read it again

pi reads
Choosing[j]

and since it is
still true it
must read it
again

pj writes
Choosing[j]:=false

pi reads
Choosing[j]

and since now
it is false it
can proceed

pj writes
Choosing[j]:=true

BA Provides Mutual Exclusion
Lemma 1: If pi is in the critical section (CS), then Number[i] > 0.
Proof: Trivial: in the doorway section it always takes a number>0.
Lemma 2: If pi is in the CS and Number[k] ≠ 0 (k ≠ i), then

(Number[k],k) > (Number[i],i).
Proof: Observe that a chosen number changes only after exiting

from the CS, and that a number is ≠ 0 iff the corresponding
processor is either in the entry (bakery) section or in the CS.
Now, since pi is in the CS, it passed the second wait statement
for j=k.

pi in CS and
Number[k] ≠ 0

pi's most recent
read of Number[k]
(second semaphore)

Case 1: returns 0
Case 2: returns (Number[k],k)>(Number[i],i)

 There are two cases:

time

Case 1

pi in CS and
Number[k] ≠ 0

pi's most recent read
of Number[k] returns
0. So pk is either in
the remainder section
or choosing number.

pi's most recent
read of Choosing[k],
returns false. So pk
is not in the middle
of choosing number.

pi's most recent
write to Number[i]

So pk starts choosing its number in this interval, sees pi's
number, and then will choose a larger one (i.e., Number[k] >
(Number[i]); so, it will never enter in CS before than pi, which
means that its number does not change all over the time pi is in
the CS, and so the claim is true

time
pi's second
semaphore for j=k

pi's first
semaphore for j=k

Case 2

pi in CS and
Number[k] ≠ 0

pi's most recent
read of Number[k] returns
(Number[k],k)>(Number[i],i).
So pk has already
taken its number.

So pk chooses Number[k]≥Number[i] in this interval, and does not
change it until pi exits from the CS, since it cannot overtake pi.
Indeed, pk will be stopped by pi either in the first wait statement (in
case pk finished its choice before than pi and pi is still choosing its
number), or in the second one (since (Number[i],i)<(Number[k],k)).
Thus, it will remain (Number[i],i)<(Number[k],k) until pi finishes its
CS, and the claim follows.

END of PROOF

time
pi's second
semaphore for j=k

Mutual Exclusion for BA

• Mutual Exclusion: Suppose pi and pk are
simultaneously in CS, i  k.
– By Lemma 1, both have number > 0.

– Since Number[k], Number[i]  0, by Lemma 2

• (Number[k],k) > (Number[i],i) and

• (Number[i],i) > (Number[k],k)

No Lockout for BA
• Assume in contradiction there is a starved processor.
• Starved processors must be stuck at the semaphores, not

while choosing a number.
• Starved processors can be stuck only at the second

semaphore, since sooner or later the Choosing variable
of each processor will become false

• Let pi be a starved processor with smallest (Number[i],i).
• Any processor entering entry section after that pi chose

(i.e., wrote) its number, will choose a larger number, and
therefore cannot overtake pi

• Every processor with a smaller ticket eventually enters CS
(not starved) and exits, setting its number to 0. So, in the
future, its number will be either 0 or larger than Number[i]

• Thus pi cannot be stuck at the second semaphore forever
by another processor.

What about bounded waiting?

YES: It is easy to see that any processor
in the entry section can be overtaken at
most once by any other processor (and so
in total it can be overtaken at most n-1
times).

Space Complexity of BA

• Number of shared variables is 2n

· Choosing variables are booleans

· Number variables are unbounded: as long
as the CS is occupied and some
processor enters the entry section, the
ticket number increases

• Is it possible for an algorithm to use
less shared space?

Bounded-space 2-Processor
Mutex Algorithm with no deadlock

(J.L. Peterson, 1981)

• Start with a bounded-variables algorithm
for 2 processors with no deadlock, then
extend to no lockout, then extend to n
processors.

• Use 2 binary shared read/write variables
(intuition: if pi wants to enter into the CS,
then it sets W[i] to 1):
W[0]: initially 0, written by p0 and read by p1
W[1]: initially 0, written by p1 and read by p0

• Asymmetric (or non-homogenous) code: p0
always has priority over p1

Code for p0 's entry section:
1 .

2 .

3 W[0] := 1

4 .

5 .

6 wait until W[1] = 0

Code for p0 's exit section:
7 .

8 W[0] := 0

Bounded-space 2-Processor
Mutex Algorithm with no deadlock

Semaphore

Code for p1 's entry section:
1 W[1] := 0

2 wait until W[0] = 0

3 W[1] := 1

4 .

5 if (W[0] = 1) then goto Line 1

6 .

Code for p1 's exit section:
7 .

8 W[1] := 0

Bounded-space 2-Processor
Mutex Algorithm with no deadlock

Semaphore

Analysis
• Satisfies mutual exclusion: processors use W variables

to make sure of this (a processor enters only when its
own W variable is set to 1 and the other W variable is
seen to be 0; notice that when p1 is in the CS and p0 is
waiting at Line 5 in the entry, then both W[0] and W[1]
are equal to 1, while if p0 is in the CS and p1 is waiting at
Line 2 in the entry, then W[0]=1, while W[1]=0)

• Satisfies no-deadlock: if p0 wants to enter, it cannot be
locked by p1 (since p1 will be forced to set W[1]:=0)

• But unfair w.r.t. p1 (it can remain locked, if p0 sets W[0]
to 1 continuously between line 3 and 5 of p1 execution)

 Fix it by having the processors alternate in having the
priority

Uses 3 binary shared read/write
variables and is symmetric:

• W[0]: initially 0, written by p0 and
read by p1

• W[1]: initially 0, written by p1 and
read by p0

• Priority: initially 0, written and read
by both

Bounded-space 2-Processor
Mutex Algorithm with no lockout

Code for pi’s entry section:

1 W[i] := 0

2 wait until W[1-i] = 0 or Priority = i

3 W[i] := 1

4 if (Priority = 1-i) then

5 if (W[1-i] = 1) then goto Line 1

6 else wait until (W[1-i] = 0)

Code for pi’s exit section:

7 Priority := 1-i

8 W[i] := 0

Bounded-space 2-Processor
Mutex Algorithm with no lockout

Semaphores

Analysis: ME
Mutual Exclusion:
• Suppose in contradiction p0 and p1 are simultaneously in CS, and

then their W[] variables are set to 1.

• W.l.o.g., assume p1 last write of W[1] before entering CS happens

not later than p0 last write of W[0] before entering CS

W[0]= W[1]=1,
both procs in CS

p1's most
recent write
to 1 of W[1]
(Line 3)

p0 's most
recent write
to 1 of W[0]
(Line 3)

p0 's most recent read
of W[1] before entering
CS (Line 5 or 6):
returns 1, not 0 as it is
needed to proceed!

time

Analysis: No-Deadlock

• Useful for showing no-lockout.

• If one processor ever stays in the
remainder section forever, then its W[]
variable will constantly be equal to 0,
and so the other processor cannot be
starved (it cannot be stuck at Line 5 or
6)

• So any deadlock would starve both
processors in the entry section

Analysis: No-Deadlock
• Suppose in contradiction there is deadlock,

and w.l.o.g., suppose Priority gets stuck at
0 after both processors are stuck in their
entry sections (indeed Priority cannot be
changed within the entry section):

p0 and p1
stuck in entry
Priority=0

p0 not stuck
in Line 2, skips
Line 5, stuck in
Line 6 with W[0]=1
waiting for
W[1] to be 0

p0 sees
W[1]=0,
enters CS

p1 sent back in
Line 5, stuck
at Line 2 with
W[1]=0, waiting
for W[0] to be 0

time

Analysis: No-Lockout
• Suppose in contradiction p0, w.l.o.g., is starved.
• Since there is no deadlock, p1 enters CS

infinitely often.
• The first time p1 executes Line 7 in exit section

after p0 is stuck in entry, Priority gets stuck
at 0 (only p0 can set Priority to 1)

p1 at Line 7;
Priority=0
forever after

p0 stuck
in entry

p0 not stuck
in Line 2, skips
Line 5, stuck at
Line 6 with
W[0]=1, waiting
for W[1] to be 0

p1 enters entry,
gets stuck at
Line 2 with
W[1]=0, waiting
for W[0] to
be 0: p0 sees
W[1]=0, and
enters CS

time

Bounded Waiting?

• NO: A processor, even if having
priority, might be overtaken repeatedly
(in principle, an unbounded number of
times) when it is in between Line 2 and
3.

• Can we get a bounded-space no-lockout mutex
algorithm for n>2 processors?

• Yes! For the sake of simplicity, assume that
n=2k, for some k>1.

• Based on the notion of a tournament tree:
complete binary tree with n-1 nodes
– tree is conceptual only! does not represent message

passing channels

• A copy of the 2-processor algorithm is
associated with each tree node
– includes separate copies of the 3 shared variables

Bounded-space n-Processor
Mutex Algorithm with no lockout

Tournament Tree
1

2 3

4 5 6 7

p0, p1 p2, p3 p4, p5 p6, p7

We label the tree nodes from top to down and from
left to right, from 1 to n-1; then, associate
processor pi, i=0,…, n-1, with the leaf node labelled
2k-1 + i/2, where k = log n (recall that n=2k). Notice
that, in general, if n≠2k, then we complete the tree
by adding “dummy” leaves

Tournament Tree Mutex Algorithm

• Each processor begins entry section at
the associated leaf (2 processors per
leaf)

• A processor proceeds to next level in
the tree by winning the 2-processor
competition for current tree node:
– on left side, plays role of p0
– on right side, plays role of p1

• When a processor wins the 2-processor
algorithm associated with the tree
root, it enters CS.

The entry code

Entry

Exit

More on TT Algorithm
• Code is recursive
• pi begins at tree node v labelled 2k-1 + i/2,

playing role of pi mod 2, where k = log n.
• After winning at node v, "critical section"

for node v is
– entry code for all nodes on path from v/2 to

root
– real critical section

• Finally, executes exit code for all nodes on
path from root to v (in each of these nodes,
gives priority to the other side and sets its
want variable to 0)

Analysis
• Correctness: based on correctness of 2-

processor algorithm and tournament
structure:
– Mutual exclusion for TT algorithm follows from

ME for 2-processors algorithm at tree root.
– No-lockout for tournament algorithm follows from

no-lockout for the 2-processor algorithms at all
nodes of tree

• Space Complexity: 3(n-1) boolean read/write
shared variables.

• Bounded Waiting? No, as for the 2-
processor algorithm.

Homework
Consider the mutex problem on a synchronous DS of 8 processors
(with ids in 0..7). Show an execution of the tournament tree
algorithm by assuming the following:

1. Initially, all the want and priority variables are equal to 0;
2. The system is totally synchronous, i.e., lines of code are

executed simultaneously by all processors;
3. Throughout the entry section, a processor ends up a round

either if it wins the competition (and possibly it enters the
CS), or if it executes 7 lines of codes;

4. If a node enters the CS at round k, then it exits at round
k+1;

5. Throughout the exit section, a processor ends up a round
after having executed the exit code for a node of the tree;

6. p0, p1, p3, p5 and p6 decide to enter the CS in round 1, while
the remaining processors decide to enter the CS in round 2.

Hints: 16 rounds until the last processor completes the exit

section; entering sequence is p0, p5, p3, p6, p1, p4, p2, p7

