Algorithms for UNRELIABLE Distributed Systems: The consensus problem

Failures in Distributed Systems

Let us go back to the message-passing model; it may undergo the following malfunctioning, among others:

Link failure: A link fails and remains inactive for some time; the network may get disconnected

Processor crash (or benign) failure: At some point, a processor stops forever taking steps; also in this case, the network may get disconnected

Processor Byzantine (or malicious) failure: during the execution, a processor changes state arbitrarily and sends messages with arbitrary content (name dates back to untrustable Byzantine Generals of Byzantine Empire, IV-XV century A.D.); also in this case, the network may get disconnected

Normal operating

Link (non-permanent) Failures

Faulty

link

Messages sent on the failed link are not delivered (for some time), but they cannot be corrupted

Processor (permanent) crash failure

Some of the messages are not sent (forever)

Crash failure in a synchronous MPS
After failure the processor disappears from the network

Processor Byzantine failure

Processor sends arbitrary messages (i.e., they could be either correct or corrupted), plus some messages may be not sent

Round Round Round Round Round Round

Byzantine failure in a synchronous MPS After failure the processor may continue functioning in the network

Consensus Problem

Every processor has an input $x \in X$ (notice that in this way the algorithms running at the processors will depend on their input), and must decide an output $y \in Y$. Assume that link or node failures can possibly take place in the system. Then, design an algorithm enjoying the following properties: Termination: Eventually, every non-faulty processor decides on a value $y \in Y$.
Agreement: All decisions by non-faulty processors must be the same.
Validity: If all inputs are the same, then the decision of a non-faulty processor must equal the common input (this avoids trivial solutions).
In the following, we assume that $X=Y=N$

Agreement

Start
Finish

Everybody has an initial value

Validity

If everybody starts with the same value, then non-faulty must decide that value

Start

Finish

Negative result for link failures

- Although this is the simplest fault a MPS may face, it may already be enough to prevent consensus
- More formally, there exist input instances for which it is impossible to reach consensus in case of single non-permanent link failures, even in the synchronous non-anonymous case
- To illustrate this negative result, we present the very famous problem of the 2 generals

Consensus under non-permanent link failures: the 2 generals problem

There are two generals of the same army who have encamped a short distance apart. Their objective is to decide on whether to capture a hill, which is possible only if they
 both attack (i.e., if only one general attacks, he will be defeated, and so their common output should be either "not attack" or "attack"). However, they might have
different opinion about what to do (i.e., their input). The two generals can only communicate (synchronously) by sending messengers, which could be captured (i.e., link failure), though. Is it possible for them to reach a common decision?

More formally, we are talking about consensus in the following MPS:

Impossibility of consensus under link failures

- First of all, notice that it is needed to exchange messages to reach consensus (as we said, generals might have different opinions in mind!)
- Assume the problem can be solved, and let Π be the shortest protocol (i.e., a solving algorithm with the minimum number of messages) for a given input configuration.
- Since this protocol is deterministic, for such a fixed input configuration, there will be a sequence of messages to be exchanged, which however may not be all successfully delivered, due to the possible link failure.
- In particular, suppose now that the last message in Π does not reach the destination (i.e., a link failure takes place). Since Π is correct independent of link failures, consensus must be reached in any case. This means, the last message was useless, and then Π could not be shortest!

Negative result for processor failures in asynchronous systems

- It is not hard to see that a processor failure (both permanent crash and byzantine) is at least as difficult as a non-permanent link failure, and then also in this case not for all the input instances it will be possible to solve the consensus problem
- Negative result: in the asynchronous case it can be proven that it is impossible to reach consensus for any system topology and already for a single crash failure!
\Rightarrow in search of some positive result, we focus on the synchronous case and we look at the powerful clique topology

Positive results: Assumption on the communication model for crash and byzantine failures

- Complete undirected graph (in a sense, this implies non-uniformity)
- Synchronous network, synchronous start: w.l.o.g., we assume that rounds are now organized as follows: messages are sent at the beginning of a round, and then delivered and read in the very same round

Overview of Consensus Results

f-resilient consensus algorithms (i.e., algorithms solving consensus for at most f faulty processors)

	Crash failures	Byzantine failures
Number of rounds	$f+1$ (tight)	$2(f+1)$ $f+1(t i g h t)$
Total number of processors	$n \geq f+1$ (tight)	$n \geq 4 f+1$ $n \geq 3 f+1(t i g h t)$
Message complexity	$O\left(n^{3}\right)$	$O\left(n^{3}\right)$

A simple algorithm for fault-free consensus

Each processor:

1. Broadcasts its input to all processors (including itself)
2. Reads all the incoming messages
3. Decides on the minimum received value

(only one round is needed,

 since the graph is complete)
Start

Broadcast values

0,1,2,3,4

Decide on minimum

0,1,2,3,4

Finish

This algorithm satisfies the agreement

Start

Finish

All the processors decide the minimum exactly over the same set of values

This algorithm satisfies the validity condition

Start

Finish

If everybody starts with the same initial value, everybody decides on that value (minimum)

Consensus with Crash Failures

The simple algorithm doesn't work

The failed processor doesn't broadcas \dagger its value to all processors

Broadcasted values

0,1,2,3,4
(4) $1,2,3,4$

$$
1,2,3,4 \text { (3) 0,1,2,3,4 }
$$

Decide on minimum

0,1,2,3,4

$$
1,2,3,4 \bigcirc 100,1,2,3,4
$$

Finish

No agreement!!!

An f-resilient to crash failures algorithm

Each processor:

Round 1:
Broadcast to all (including myself) my value;
Read all the incoming values:
Round 2 to round $f+1$:
Broadcast to all (including myself) any new received values (one message for each value):
Read all the incoming values;
End of round $f+1$:
Decide on the minimum value ever received.

Example 1: $f=1$ failures, $f+1=2$ rounds needed Start

(1) P_{5} $\mathrm{P}_{2}(4$
(2) P_{4}

Example 1: $f=1$ failures, $f+1=2$ rounds needed Round 1
(new values)

$$
1,2,3,4(2)^{p_{4}} \quad p_{3} 3^{0,1,2,3,4}
$$

Broadcast all values to everybody

Example 1: $f=1$ failures, $f+1=2$ rounds needed Round 2
0,1,2,3,4
p_{1}
$0,1,2,3,4$

$$
0,1,2,3,4<2^{p_{4}} \quad p_{3} 30,1,2,3,4
$$

Broadcast all new values to everybody

Example 1: $f=1$ failures, $f+1=2$ rounds needed

0,1,2,3,4

p_{1}
0,1,2,3,4

Decide on minimum value

Example 2: $f=1$ failures, $f+1=2$ rounds needed

Start

0 p_{1}

(1) p_{5} P_{2} (4)
(2) ${ }^{p_{4}} \quad p_{3} 3$

Example 2: $f=1$ failures, $f+1=2$ rounds needed
Round 1
(0) $0,1,2,3,4$

$$
\begin{aligned}
& 0,1,2,3,4 \\
& \left(1 p_{5}\right.
\end{aligned}
$$

No failures: all values are broadcasted to all

Example 2: $f=1$ failures, $f+1=2$ rounds needed
Round 2

$$
\begin{aligned}
& \text { 0,1,2,3,4, 1,2,3,4 } p_{1}^{p_{5}} 1,2,3,4 p_{2}^{0,1,2,3,4} \\
& 0,1,2,3,4 \\
& p^{2,1,2,3,4} \\
& p_{4} \\
& p_{3} \\
& 0,1,2,3,4
\end{aligned}
$$

No problem: processors p_{2} and p_{4} have already seen 1,2,3 and 4 in the previous round

Example 2: $f=1$ failures, $f+1=2$ rounds needed
Finish

0,1,2,3,4 $\bigcirc p_{5}$

P_{1}
$0,1,2,3,4$
$0,1,2,3,4 \bigcirc 0^{p_{4}} p_{3} \bigcirc 0,1,2,3,4$

Decide on minimum value

Example 3: $f=2$ failures, $f+1=3$ rounds needed

Start

${ }^{0} \mathrm{p}_{1}$

(1) p_{5}

(2) $p_{4} \quad p_{3}$

Example 3: $f=2$ failures, $f+1=3$ rounds needed

Round 1

$$
1,2,3,4
$$

Broadcast all values to everybody

Example 3: $f=2$ failures, $f+1=3$ rounds needed

Round 2

0,1,2,3,4
\[\begin{array}{r} 1,2,3,4
\mathrm{p}_{4} \end{array} \mathrm{p}_{3} \bigcirc \begin{aligned} \& 0,1,2,3,4
\& Failure 2 \end{aligned} \]

Broadcast new values to everybody

Example 3: $f=2$ failures, $f+1=3$ rounds needed

Round 3

Broadcast new values to everybody

Example 3: $f=2$ failures, $f+1=3$ rounds needed

Finish

0,1,2,3,4
(0) p_{5}

Decide on the minimum value

In general, since there are f failures and $f+1$ rounds, then there is at least a round with no new failed processors:

Round $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$

Example:

5 failures,
6 rounds

Correctness (1/2)

Lemma: In the algorithm, at the end of the round with no new failures, all the non-faulty processors know the same set of values.
Proof: For the sake of contradiction, assume the claim is false. Let x be a value which is known only to a subset of nonfaulty processors at the end of the round with no failures. Observe that any such processors cannot have known \times for the first time in a previous round, since otherwise it had broadcasted x to all. So, the only possibility is that it received it right in this round, otherwise all the others should know x as well. But in this round there are no failures, and so \times must be received and known by all, a contradiction.

Correctness (2/2)

Agreement: this holds, since at the end of the round with no failures, every (non-faulty) processor has the same knowledge, and this doesn't change until the end of the algorithm (no new values can be introduced, since we assumed synchronous start) \Rightarrow eventually, everybody will decide the same value! Remark: we don't know the exact position of the free-of-failures round, so we have to let the algorithm execute for $f+1$ rounds

Validity: this holds, since the value decided from each processor is some input value (no exogenous values are introduced)

Performance of Crash Consensus Algorithm

- Number of processors: $n>f$
- $f+1$ rounds
- $O\left(n^{2} \cdot k\right)=O\left(n^{3}\right)$ messages, where $k=O(n)$ is the number of different inputs. Indeed, each processor sends $O(n)$ messages (one for each processor) containing a given seen input value

A Lower Bound

Theorem: Any f-resilient to crash failures consensus algorithm requires at least $f+1$ rounds

Proof sketch: Assume by contradiction that f or less rounds are enough. Clearly, every algorithm which solves consensus requires that eventually non-faulty processors have the very same knowledge
Worst case scenario:
There is a processor that fails in
each round

Worst case scenario

Round 1

before processor $p_{i_{1}}$ fails, it sends its value a to only one processor $p_{i 2}$, and so at the end of round 1 only $\mathrm{p}_{\mathrm{i}_{2}}$ knows a

Worst case scenario

Round 12

before processor $\mathrm{p}_{\mathrm{i}_{2}}$ fails, it sends its value a to only one processor $\mathrm{p}_{\mathrm{i}_{3}}$, and so at the end of round 2 only $\mathrm{p}_{\mathrm{i} 3}$ knows a

Worst case scenario

Round 1
2
3
f

Before processor $p_{i f}$ fails, it sends its value a to only one processor $\mathrm{p}_{\mathrm{if+1}}$. Thus, at the end of round f only processor $p_{i_{f+1}}$ knows about a

Worst case scenario

Round 1

3

No agreement: Processor $\mathrm{p}_{\mathrm{if+1}}$ has a different knowledge, i.e., it may decide a, and all other processors may decide another value, say $b>a \Rightarrow$ contradiction, f rounds are not enough.

Consensus with Byzantine Failures

f-resilient to byzantine failures consensus algorithm:

solves consensus for at most f byzantine processors

Lower bound on number of rounds

Theorem: Any f-resilient to byzantine failures consensus algorithm requires at least $f+1$ rounds

Proof:
follows from the crash failure lower bound

An f-resilient to byzantine failures algorithm

The King algorithm (P. Berman, J.A. Garay, and K.J. Perry, FOCS 1989)
Solves consensus in $2(f+1)$ rounds for n processors out of which at most $n / 4$ can be byzantine, namely $f<n / 4$ (i.e., $n \geq 4 f+1$)
Assumption: The system is non-uniform and processors have (distinct) ids in $\{1, \ldots, n\}$ (and so the system is non anonymous), and we denote by p_{i} the processor with id i; this is common knowledge, i.e., processors cannot cheat about their ids (namely, p_{i} cannot behave like if it was $p_{j}, i \neq j$, even if it is byzantine!)

The King algorithm

There are $f+1$ phases; each phase has 2 rounds, used to update in each processor p_{i} a preferred value v_{i}. A \dagger the beginning, the preferred value is set to the input value

In each phase there is a different king
\Rightarrow There is a king that is non-faulty!

The King algorithm

 Phase $k=1, \ldots, f+1$
Round 1 , every processor p_{i} :

- Broadcast to all (including myself) its preferred value v_{i}
- Let a be the most frequent received value (including v_{i}, in case of tie pick an arbitrary value), a.k.a. majority value, and let $1 \leq m_{i} \leq n$ be its number of occurrences (or majority)
- Set $\mathrm{v}_{\mathrm{i}}=\mathrm{=a}$

The King algorithm

Phase $k=1, \ldots, f+1$

Round 2, king p_{k} :
Broadcast (to the others) its current preferred value v_{k}

Round 2, processor p_{i} :
After receiving v_{k}, if p_{i} selected in Round 1 a preferred value v_{i} with a weak majority, i.e., $m_{i}<n / 2+f+1$ (here non-uniformity is
required), then set $v_{i}:=v_{k}$, otherwise maintain your preferred value v_{i}

The King algorithm

End of Phase $f+1$:

Each non-faulty processor decides on its preferred value

Example 1: 6 processors, 1 fault $\Rightarrow 2$ phases

Phase 1, Round 1

Everybody broadcasts, and faulty p_{1} sends arbitrary values

Phase 1, Round 1

Choose the majority

$$
1,2,1,0,0,1 p_{4} \quad{ }^{p_{3}} \quad 0,2,1,0,0,1
$$

$$
\underset{1,2,1,0,0,1}{p_{6}}
$$

$$
\text { (0) } 0,2,1,0,0,1
$$

$$
p_{2}
$$

Each (weak) majority is equal to $3<\frac{n}{2}+f+1=5$
\Rightarrow On round 2, everybody will choose the king's value

Phase 1, Round 2

The faulty king broadcasts arbitrary values
\Rightarrow Everybody chooses the king's value

Phase 2, Round 1

Everybody broadcasts, and faulty p_{1} sends arbitrary values

Phase 2, Round 1

Choose the majority

$$
\begin{aligned}
& 1,3,1,0,0,1 p_{4} p_{3}^{p_{3}} \\
& 0,3,1,0,0,1 \\
& 0,3,1,0,0,1 p_{5} \\
& p_{0}, 1,3,1,0,0,1 p_{2} \\
& 0,3,1,0,0,1
\end{aligned}
$$

Each (weak) majority is equal to $3<\frac{n}{2}+f+1=5$
\Rightarrow On round 2, everybody will choose the king's value

Phase 2, Round 2

The non-faulty king p_{2} broadcasts its 0

Phase 2, Round 2

The non-faulty king p_{2} broadcasts its 0 \Rightarrow Everybody chooses the king's value \Rightarrow Final decision and agreement on 0

Example 2: 6 processors, 1 fault $\Rightarrow 2$ phases

Phase 1, Round 1

Everybody broadcasts, and faulty p_{2} sends arbitrary values

Phase 1, Round 1

Choose the majority

$$
\begin{array}{ll}
1,1,1,1,0,1 & p_{4} \quad{ }^{p_{3}} \\
1 & 1,0,1,1,0,1
\end{array}
$$

$$
1,0,1,1,0,11^{\mathrm{p}_{5}}
$$

Some majorities are strong (at least 5 votes), others are weak (less than 5 votes) \Rightarrow On round 2, somebody will choose the king's value, someone else will keep its own value

Phase 1, Round 2

The non-faulty king p_{1} broadcasts its 1 \Rightarrow Some processors switch to the king's value, but they will still selects 1 !

Phase 2, Round 1

Everybody broadcasts, and faulty p_{2} sends arbitrary values

Phase 2, Round 1

Choose the majority

$$
\begin{aligned}
& { }_{1,5,1,1,1,1} p_{4}^{p_{4}} \quad{ }^{p_{3}}{ }_{1} 1,0,1,1,1,1 \\
& 1,2,1,1,1,1,1 \\
& \underset{1,1,1,1,1,1}{\mathrm{p}_{6}}(1){ }_{1,0,1,1,1,1}^{\mathrm{p}_{1}}
\end{aligned}
$$

Each majority is at least $5=\frac{n}{2}+f+1$ i.e., it's strong!
\Rightarrow On round 2, nobody will choose the king's value

Phase 2, Round 2

The faulty king p_{2} broadcasts arbitrary values, but nobody changes its preferred value
\Rightarrow Final decision and agreement on 1

Correctness of the King algorithm

Lemma 1: At the end of a phase ϕ where the king is non-faulty, every non-faulty processor prefers the same value
Proof: Consider the end of round 1 of phase ϕ. There are two cases:
Case 1: All non-faulty processors have chosen their preferred value with weak majority (i.e., < $n / 2+f+1$ votes) [see phase 2 of Example 1]
Case 2: Some non-faulty processor has chosen its preferred value with strong majority (i.e., $\geq n / 2+f+1$ votes) [see phase 1 of Example 2]

Case 1: All non-faulty processors have chosen their preferred value at the end of round 1 of phase ϕ with weak majority (i.e., < $n / 2+f+1$ votes)
\Rightarrow Every non-faulty processor will adopt the value broadcasted by the king during the second round of phase ϕ, thus all of them will prefer the same value, since the king is non-faulty

Case 2: Suppose a non-faulty processor p_{i} has chosen its preferred value a at the end of round 1 of phase ϕ with strong majority ($\geq n / 2+f+1$ votes)
\Rightarrow This implies that at least $n / 2+1$ nonfaulty processors must have broadcasted a at start of round 1 of phase ϕ, and then at the end of that round, every other nonfaulty processor (including the king) must have received value a with an absolute majority of at least $n / 2+1$ votes, and so such a value becomes preferred in these processors

At end of round 2 , there are 2 cases:

1. If a non-faulty processor keeps its own value due to strong majority, then it maintains a
2. Otherwise, if a non-faulty processor adopts the value of the non-faulty king, then it prefers a as well, since the king has broadcasted a
Therefore: Every non-faulty processor prefers a

Lemma 2: Let a be a common value preferred by non-faulty processors at the end of a phase ϕ. Then, a will be preferred until the end.
Proof: First of all, notice that the system contains at most f byzantine processors, and then at least n-f non-faulty processors. But since $f<n / 4$, it follows that $n-f>n / 2+f$, since
$f<\frac{n}{4} \Rightarrow 2 f<\frac{n}{2} \Rightarrow 2 f<n-\frac{n}{2} \Rightarrow n-2 f>\frac{n}{2} \Rightarrow n-f>\frac{n}{2}+f$
This means, after ϕ, a will always be preferred with strong majority (i.e., $>n / 2+f$), and so, until the end of phase $f+1$, every non-faulty processor will keep on preferring a.

Agreement in the King algorithm

Follows from Lemma 1 and 2, observing that since there are $f+1$ phases and at most f failures, there is al least one phase in which the king is non-faulty (and thus from Lemma 1 at the end of that phase all nonfaulty processors prefer the same value, and from Lemma 2 this preference will be maintained until the end).

Validity in the King algorithm

Follows from the fact that if all (non-faulty) processors have a as input, then in round 1 of phase 1 each non-faulty processor will receive a at least n f times, i.e., with strong majority, since as we observed in Lemma 2:

$$
n-f>\frac{n}{2}+f
$$

and so in round 2 of phase 1 this will be the preferred value of all non-faulty processors, independently of the king's broadcasted value. From Lemma 2, this will be maintained until the end, and will be exactly the decided output!

Performance of King Algorithm

- Number of processors: $n>4 f$ (we will see it is not tight)
- $2(f+1)$ rounds (we will see it is not tight)
- $\Theta\left(n^{2} \cdot f\right)=O\left(n^{3}\right)$ messages. Indeed, each nonfaulty node sends n messages in the first round of each phase, each containing a given preference value, and each non-faulty king sends $n-1$ messages in the second round of each phase. Notice that we are not considering the fact that a byzantine processor could in principle generate an unbounded number of messages!

Homework

Show an execution with $n=4$ processors and $f=1$ for which the King algorithm fails.
Discuss the 3 possible cases:

1) Neither p_{1} nor p_{2} is faulty
2) p_{1} is faulty
3) p_{2} is faulty

An Impossibility Result

(M.C. Pease, R.E. Shostak, and L.

 Lamport, JACM 1980)Theorem: There is no f-resilient to byzantine failures algorithm for n processors when

$$
f \geq \frac{n}{3}
$$

Proof: First we prove the 3 processors case, and then the general case

The 3 processors case

Lemma: There is no 1-resilient to byzantine failures algorithm for 3 processors
Proof: Assume by contradiction that there is
a 1-resilient algorithm for 3 processors
Local Algorithm (notice we admit non-homogeneity)
$B(1)$

$\mathrm{A}(\mathrm{O})^{\text {I }}$ Input value (either 0 or 1$)_{85}$

A first execution

byzantine
p_{2} behaves (we don't know exactly what it will do) towards p_{0} (resp., p_{1}) has if it had input 0 (resp., 1)

(validity condition)

A second execution

byzantine

byzantine
p_{0} behaves towards p_{1}
(resp., p_{2}) has if it had input 0 (resp., 1)

(validity condition)

The view of $p_{2}\left(r e s p ., p_{0}\right)$ in the third execution, namely the behavior of p_{0} and p_{1} (resp., p_{1} and p_{2}) it observes, and thus its own behavior, is exactly the same as in the second (resp., the first) execution, so it must take the same decision as before!

No agreement!!! Contradiction, since the algorithm was supposed to be 1-resilient

Therefore:

There is no algorithm that solves consensus for 3 processors in which 1 is a byzantine!

The n processors case

Assume by contradiction that there is an f-resilient distributed algorithm A for $n>3$ processors for $f \geq \frac{n}{3}$

We will use A to solve consensus
for 3 processors and 1 byzantine failure

(contradiction)

W.I.o.g. let $n=3 f$, and let $P=\left\langle p_{0}, p_{1}, \ldots, p_{3 f-1}\right\rangle$ be the n processor system. We partition arbitrarily the n processors in 3 sets P_{0}, P_{1}, P_{2}, each containing $n / 3$ processors; then, given a 3-processor system $Q=\left\langle q_{0}, q_{1}, q_{2}\right\rangle$, we associate each q_{i} with P_{i}

Each processor q_{i} simulates the execution of algorithm A once restricted to the set P_{i} of $n / 3$ processors. In particular, q_{i} decides k if the majority of its processors decides k.

When a processor in Q fails, then at most $n / 3$ original processors in the original n processor system P are affected

Finish of algorithm A

But we were assuming that the original algorithm A tolerates at most $f=n / 3$ failures, so the remaining $2 f$ processors must agree!

Final decision

We reached consensus with 1 failure Impossible!!!

Therefore:

There is no f-resilient to byzantine failures algorithm for n processors in case

$$
f \geq \frac{n}{3}
$$

Question:
Is there an f-resilient to byzantine failures algorithm for n processors if $f<n / 3$, namely for $n \geq 3 f+1$?
For $n \geq 4 f+1$, YES (King algorithm), but what about $3 f+1 \leq n<4 f+1$, and in particular $n=3 f+1$?

Exponential Tree Algorithm (a.k.a. Exponential Information Gathering (EIG) algorithm, M.C. Pease, R.E. Shostak, and L. Lamport, JACM 1980)

This algorithm uses

- $n=3 f+1$ processors (optimal)
- $f+1$ rounds (optimal)
- exponential number of messages (sub-optimal, the King algorithm was using only $O\left(n^{3}\right) \mathrm{msgs}$)
- Each processor keeps a rooted tree data structure in its local state
- From a topological point of view, all the trees are identical: they have height $f+1$, each root has n children, the number of children decreases by 1 at each level, and all the leaves are at the same level
- Values are filled top-down in the tree during the $f+1$ rounds; more precisely, during round i, level i of the tree is filled (the root is at level 0)
- At the end of round $f+1$, the values in the tree are used to compute bottom-up the decision.

Example of Local Tree

The tree when $n=4$ and $f=1$:

Local Tree Data Structure

- Assumption: Similarly to the King algorithm, processors have (distinct) ids (now in $\{0,1, \ldots, n-1\}$), and we denote by p_{i} the processor with id i; this is common knowledge, i.e., processors cannot cheat about their ids;
Each tree node is labeled with a sequence of unique processor ids in $0,1, \ldots, n-1$ defined recursively as follows:
- Root's label is the empty sequence λ (the root has level 0 and height f+1);
- Root has n children, labeled 0 through n-1
- The child node of the root (level 1) with label i has n-1 children, labeled $\mathrm{i}: 0$ through $\mathrm{i}: \mathrm{n}-1$ and skipping i:i;
- A node at level d>1 has a label made up of d distinct indexes, say $i_{1}: i_{2}: \ldots, . i_{d-1} \cdot i_{d}$, where $i_{1}: i_{2} ; \ldots . . i_{d-1}$ is the label of its parent, and i_{d} is a value in $0,1, \ldots, n-1$; morover, if $d k f+1$, such a node has $n-d$ children, labeled $i_{1}: i_{2} ; \ldots, i_{d}: 0$ through $i_{1} \cdot i_{2} ; \ldots . . i_{d}: n-1$, skipping any index $i_{1}, i_{2}, \ldots, i_{d}$,
- Nodes at level $\mathrm{f}+1$ are leaves with label $\mathrm{i}_{1}: \mathrm{i}_{2} \ldots . . \mathrm{i}_{\mathrm{f}+1}$ and have height 0 .

Labels of the Sample Local Tree

 The tree when $n=4$ and $f=1$:

Filling-in the Tree Nodes

- Round 1:
- Initially store your input in the root (level 0)
- send level 0 of your tree (i.e., your input) to all (including yourself)
- store value \times received from $p_{j}, j=0, \ldots, n-1$, in tree node labeled j (level 1); use a default value "*" (known to all!) if necessary (i.e., in case a value is not received or it is unfeasible)
- node labeled j in the tree associated with p_{i} now contains what " p_{j} told to p_{i} " about its input (assuming p_{i} is non-faulty)
- Round 2:
- send level 1 of your tree to all, including yourself (this means, send n messages to each processor)
- let $\left\{x_{0}, \ldots, x_{n-1}\right\}$ be the set of values that p_{i} receives from p_{j}; then, p_{i} discards x_{j}, and stores each remaining x_{k} in level-2 node labeled k:j (and use default value "*" if necessary)
- node $k: j$ in the tree associated with p_{i} now contains " p_{j} told to p_{i} that " p_{k} told to p_{j} that its input was $x_{k}{ }^{\prime \prime \prime}$ "

Example: filling the Local Tree at round \#2

 As before, $n=4$ and $f=1$, and assume that nonfaulty p_{2} tells to non-faulty p_{1} that the first level of its local tree contains $\{a, b, c, d\}$; then, p_{1} stores in the local tree:Tree at p_{2} at the end of round 1 Tree at p_{1}
 $\begin{array}{llllllllllll}0: 1 & 0: 2 & 0: 3 & 1: 0 & 1: 2 & 1: 3 & 2: 0 & 2: 1 & 2: 3 & 3: 0 & 3: 1 & 3: 2\end{array}$

Filling-in the Tree Nodes (2)

- Round d>2:
- send level d-1 of your tree to all, including yourself (this means, send $n(n-1)$...($n-(d-2)$) messages to each processor, one for each node on level d-1)
- Let x be the value that p_{i} receives from p_{j} for node of level d-1 labeled $i_{1}: i_{2}: \ldots: i_{d-1}$, with $i_{1}, i_{2}, \ldots, i_{d-1}$ $\neq j$; then, p_{i} stores \times in tree node labeled $\mathrm{i}_{1}: i_{2}: \ldots . \mathrm{i}_{\mathrm{d}-1}: j$ (level d), using default value "*" if necessary
- Continue for $\mathrm{f}+1$ rounds

Calculating the Decision

- In round $f+1$, each processor uses the values in its tree to compute its final decision (output)
- Recursively compute the "resolved" value for the root of the tree, resolve(λ), based on the "resolved" values for the other tree nodes:
resolve $(\pi)=\left\{\begin{array}{l}\text { value in tree node labeled } \pi \text { if it is a } \\ \text { leaf } \\ \left.\text { majority\{resolve }\left(\pi^{\prime}\right): \pi^{\prime} \text { is a child of } \pi\right\}\end{array}\right.$ otherwise (use default "*" if tied)

Example of Resolving Values

 The tree when $n=4$ and $f=1$:

Resolved Values are consistent

Lemma 1: If p_{i} and p_{j} are non-faulty, then p_{i} 's resolved value for tree node labeled $\pi=\pi ' j$ is equal to what p_{j} stores in its node π ' during the filling-up of the tree (and so the value stored in π by p_{i} is the same value which is resolved in π by p_{i}, i.e., the resolved value is consistent with the stored value). (Notice this lemma does not hold for the root) Proof: By induction on the height h of tree node π.

- Basis: π is a leaf, i.e., has $h=0$. Then, p_{i} stores in node $\pi=\pi^{\prime} j$ what p_{j} sends to it for π^{\prime} in the last round (i.e., round $f+1$). By definition, this is the resolved value by p_{i} for π.
- Induction: π is not a leaf, i.e., has height $h>0$;
- By construction, π has at least $n-f$ children, and since $n>3 f$, this implies $n-f>2 f$, i.e., it has a majority of non-faulty children (i.e., whose last digit of the label corresponds to a non-faulty processor)
- Let $\pi k=\pi$ 'jk be a child of π of height $h-1$ such that p_{k} is non-faulty.
- Since p_{j} is non-faulty, it correctly reports a value v stored in its π ' node; thus, p_{k} stores it in its $\pi=\pi$ 'j node.
- By induction, p_{i}^{\prime} s resolved value for πk equals the value v that p_{k} stored in its π node.
- So, all of π 's non-faulty children resolve to v in p_{i} 's tree, and thus π resolves to v in p_{i} 's tree.

END of PROOF 110

Inductive step by a picture

Non-faulty $\mathrm{p}_{\mathrm{j}} \quad$ Non-faulty p_{k}

Corollary: all the non-faulty processors will resolve the very same value in $\pi=\pi^{\prime} j$, namely v

Non-faulty p_{i}
\Rightarrow resolve to v
 $n>3 f$, i.e., n-f $>2 f$, it follows there are more than $2 f$ nodes here, and so there is a majority of (at least $f+1$) nonfaulty nodes which will resolve to v by the inductive hypothesis

Validity

- Suppose all inputs of (non-faulty) processors are v
- Non-faulty processor p_{i} decides resolve(λ), which is the majority among resolve(j), $0 \leq j \leq n-1$, based on p_{i} 's tree.
- Since by Lemma 1 resolved values are consistent, if p_{j} is non-faulty, then p_{i} 's resolved value for tree node labeled j, i.e., resolve(j), is equal to what p_{i} stores in the tree node labeled j, which in turn is equal to what p_{j} stores in its root, namely p_{j} 's input value, i.e., v.
- Since there is a majority of non-faulty processors (indeed, $n>3 f$, and so at level 1 there are more than $2 f$ nodes associated with non-faulty processors), and their inputs are all equal to v, then p_{i} decides v.

Agreement: Common Nodes and Frontiers

Definition 1: A tree node π is common if all non-faulty processors compute the same value of resolve (π).

Notice that Lemma 1 told to us that all the nodes whose label ends with an index associated with a non-faulty processor are common. However it cannot be used to establish that the root is common, as we already pointed out, since the label of the root is the empty string.
\Rightarrow To prove agreement, we have now to show that also the root is common; to do that we need to show that there exist other common nodes, besides those captured by Lemma 1.
Definition 2: A tree node π has a common frontier if every path from π to a descending leaf contains at least a common node.

Observation: If π is common, then it has a common frontier. Lemma 2: If π has a common frontier, then π is common. Proof: By induction on the height h of π :

- Basis (π is a leaf, i.e., $h=0$): then, since the only path from π to a leaf consists solely of π, the common node of such a path can only be π, and so π is common;
- Induction (π is not a leaf): By contradiction, assume π has height $h>0$ and has a common frontier but is not common; then:
- Every child π ' of π has a common frontier (this is no \dagger true, in general, if π would be common);
- Since every child π ' of π has height $h-1$ and has a common frontier, then by the inductive hypothesis, it is common:
- Then, all non-faulty processors resolve the same value for every child π^{\prime} of π, and thus all non-faulty processors resolve the same value for π, i.e., π is common (contradiction!).

Agreement: the root has a common frontier

- There are $f+2$ nodes on any root-leaf path
- The label of each non-root node on a root-leaf path ends in a distinct processor index: $i_{1}, i_{2}, \ldots, i_{f+1}$
- Since there are at most f faulty processors, at least one of such nodes has a label ending with a non-faulty processor index
- This node, say $i_{1}: i_{2} i, \ldots, i_{k-1}: i_{k}$, by Lemma 1 is common (more precisely, in all the trees associated with nonfaulty processors, the resolved value in $i_{1}: i_{2}:, \ldots, i_{k-1}: i i_{k}$ equals the value stored by the non-faulty processor $p_{i k}$ in node $i_{1}: i_{2}: \ldots, \ldots i_{k-1}$)
\Rightarrow Thus, the root has a common frontier, since on any root-leaf path there is at least a common node, and so the root is common (by previous lemma)
\Rightarrow Therefore, agreement is guaranteed!

Complexity

- Exponential tree algorithm uses $f+1$ rounds, and $n=3 f+1$ processors are enough to guarantee correctness (see Lemma 1)
- Exponential number of messages:
- In round 1, each (non-faulty) processor sends n messages $\Rightarrow O\left(n^{2}\right)$ total messages
- In round $2 \leq d \leq f+1$, each of the $O(n)$ (non-faulty) processors broadcasts to all (i.e., n processors) the level $d-1$ of its local tree, which contains $n(n-1)(n-2) \ldots(n-$ $(d-2)$) nodes \Rightarrow this means, for round d, a total of $O(n \cdot n \cdot n(n-1)(n-2) \ldots(n-(d-2)))=O\left(n^{d+1}\right)$ messages
- This means a total of $O\left(n^{2}\right)+O\left(n^{3}\right)+\ldots+O\left(n^{f+2}\right)=O\left(n^{f+2}\right)$ messages, and since $f=O(n)$, this number is exponential in n if f is more than a constant relative to n

Homework

Show an execution with $n=3$ processors and $f=1$ for which the exp-tree algorithm fails.

Sketch of solution: p_{2} byzantine (green values are the resolved ones)

Randomized Byzantine Consensus

- This algorithm uses
- n>8f processors (sub-optimal)
- $O(\log n$) rounds (w.h.p., this is notable, since for $f=\Theta(n)$ it means breaking the lower bound barrier of $f+1$ rounds)
- O($n^{2} \log n$) number of messages (w.h.p., remind that the King algorithm was using $O\left(n^{3}\right)$ msgs)

There is a trustworthy processor q which at every round tosses a random coin and informs every other processor

$$
\begin{aligned}
& \text { Coin = heads }(\text { probability } 1 / 2) \\
& \text { Coin }=\text { tails }(\text { probability } 1 / 2)
\end{aligned}
$$

Each processor p_{i} has a preferred value v_{i}

In the beginning,
the preferred value is set to the initial value

Assume that initial value is binary

$$
v_{i} \in\{0,1\}
$$

The algorithm tolerates $f<\frac{n}{8}$ Byzantine processors

There are three threshold values:

$$
L=\frac{5 n}{8} \quad H=\frac{6 n}{8} \quad G=\frac{7 n}{8}
$$

In each round, processor p_{i} executes:

Broadcast v_{i};
Receive values from all processors; maj $_{i} \leftarrow$ majority value;
tally $y_{i} \leftarrow$ occurrences of maj ;
Receive coin from the trustworthy processor:
If coin=head then threshold $\leftarrow L=\frac{5 n}{8}$

$$
\text { else threshold } \leftarrow H=\frac{6 n}{8}
$$

If tally $y_{i} \geq$ theshold then $v_{i} \leftarrow$ maj $_{i}$

$$
\text { else } v_{i} \leftarrow 0
$$

If tally $y_{i}>G=\frac{7 n}{8} \quad$ then decision is reached

Analysis: Examine cases in a round

Termination: There is a processor p_{i}

$$
\text { with } \quad \text { tally } y_{i}>G=\frac{7 n}{8}
$$

Other cases:
Case 1: Two processors p_{i} and p_{k} have different maj $_{i} \neq$ maj $_{k}$

Case 2: All processors have same maj $_{i}$

Termination: There is a processor p_{i} with tally $y_{i}>G=\frac{7 n}{8}$

Since faulty processors are at most $f<\frac{n}{8}$
processor p_{i} received at least

$$
\text { tally } y_{i}-f>\frac{6 n}{8}
$$

votes for maj from good processors

Therefore, every good processor p_{k}
will have $\operatorname{maj}_{i}=\operatorname{maj}_{k}$
with tally $>H=\frac{6 n}{8}$
Consequently, at the end of the round all the good processors will have the same preferred value:

$$
v_{k}=m a j_{k}=m a j_{i}
$$

Observation:

If at the beginning of a round all the good processors (remind they are at least $\frac{7 n}{8}$) have the same preferred value, then the algorithm terminates (and solves correctly the consensus problem) in that round

This holds since for every processor p_{i} the termination condition tally $y_{i}>G=\frac{7 n}{8}$ will be true in that round

Notice that this observation implies validity

Therefore, if the termination condition is true for one processor at a round, then, the termination condition will be true for all processors at next round.

Case 1: Two processors p_{i} and p_{k} have different maj $_{i} \neq$ maj $_{k}$

We now show that it has to be that

$$
\begin{aligned}
& \text { tall }_{i}<L=\frac{5 n}{8} \\
& \text { tally } y_{k}<L=\frac{5 n}{8}
\end{aligned}
$$

and
And therefore $v_{i}=v_{k}=0$
Thus, every processor chooses 0 , and the algorithm terminates correctly in next round

Proof: Suppose (for sake of contradiction) that

$$
\text { tall }_{i} \geq L=\frac{5 n}{8}
$$

Then at least

$$
\text { tally } y_{i}-f>\frac{4 n}{8}=\frac{n}{2}
$$

good processors have voted maj $_{i}$
Consequently, we would have maj $_{i}=$ maj $_{k}$

Case 2: All processors have same maj $_{i}$

Then for any two processors p_{i} and p_{k} it holds that \mid tally $y_{i}-t a l l y_{k} \mid \leq f$

Since otherwise, the number of faulty processors would exceed f

Let $P_{\min }$ be the processor with

tall $_{\text {min }}=\min _{i}\left\{\right.$ tally $\left.y_{i}\right\}$

We have 4 possible subcases:
2.1 tall $y_{\text {min }}<L=\frac{5 n}{8}$ and threshold $=H=\frac{6 n}{8}$ good
2.2 tall $y_{\text {min }} \geq L=\frac{5 n}{8}$ and threshold $=L=\frac{5 n}{8}$ good
2.3 tall $y_{\text {min }}<L=\frac{5 n}{8}$ and threshold $=L=\frac{5 n}{8}$ bad
2.4 tall $y_{\text {min }} \geq L=\frac{5 n}{8}$ and threshold $=H=\frac{6 n}{8}$ bad

We do not know the exact probability each of the 4 possible subcases will occur, but good and bad cases will occur with probability $1 / 2$

Sub-case 2.1: \quad tall $_{y_{\min }}<L=\frac{5 n}{8}$

and threshold $=H=\frac{6 n}{8}$

then, for any processor p_{k} it holds
tall $_{k} \leq$ tally $_{\text {min }}+f<L+f \leq \frac{6 n}{8}=H$

And therefore $v_{i}=v_{k}=0$

Thus, every processor chooses 0, and the algorithm terminates in next round

Sub-case 2.2: \quad tally $y_{\text {min }} \geq L=\frac{5 n}{8}$

and threshold $=L=\frac{5 n}{8}$

then, for any processor p_{k} it holds

$$
\text { tall }_{k} \geq \text { tall }_{\text {min }} \geq L
$$

And therefore $v_{k}=v_{\text {min }}=m a j_{\text {min }}$

Thus, every processor chooses $V_{\text {min }}$, and the algorithm terminates in next round

- In other words, subcases 2.1 and 2.2 will make the algorithm terminate in the next round, while the remaining two subcases will be bad (i.e., the algorithm will not stop in next round)
- From the above analysis, it follows that the algorithm will terminate w.h.p. within $O(\log n)$ rounds, since at each round it will terminate in the next round with probability at least $\frac{1}{2}$ (remember we are in Case 2, which is one out of the three cases we analyzed); thus, the probability it will not terminate within $\log n$ rounds will be at most $(1 / 2)^{\log n}=1 / n$, and so the probability it will terminate within $\log n$ rounds will be at least 1-1/n
- Concerning the message complexity, in each round circulate $O\left(n^{2}\right)$ messages, and so w.h.p. the total number of messages will be $O\left(n^{2} \log n\right)$

Homework

Show an execution with $n=9$ processors and $f=1$ for which the randomized algorithm does not converge.

Consensus in the Shared Memory Model

Consider n processors in shared memory:

$$
p_{0}, \ldots, p_{n-1}
$$

which try to solve the consensus problem, but they can crash

Local
Shared memory

Local memory

p_{5}

Every processor starts with an initial value stored in local memory (w.l.o.g., 0 or 1)

communication through shared memory

\square

At the end of execution, every processor has to decide the same value (0 or 1, agreement), and if every processor starts with the same value, then every processor should decide that value (validity condition)

Wait-freedom in asynchronous systems:

A processor should be able to finish
execution of an algorithm
even if all other processors fail

Wait-freedom captures:

- Asynchronous executions
- Crash failures

Consensus Number

Consensus Number of a shared-variable type:
The maximum number of processors for which a shared-variable type can be used to solve the wait-free consensus problem

Shared-variableType Consensus Number

Read/Write

1

Test\&Set

Compare\&Swap
∞
(infinity)

Read/Write

Shared Memory
Suppose that the shared memory can only be accessed through Read or Write operations

\square

Theorem: The consensus number of the Read/Write shared-variable type is 1

Proof of Theorem:

Trivially, a system with only 1 processor using read/write (shared) variables enjoys wait-free consensus.

It remains to show:
Wait-free consensus cannot be solved using only read/write shared variables for $n \geq 2$ processors

Approach:
We will show that any algorithm
that solves wait-free consensus for $n \geq 2$
has an execution that never terminates

System configuration: \boldsymbol{C}

Is the set of all variables in the system, including local and shared

A distributed system execution can be always be viewed as a:

sequence of configurations

Initial
configuration

Final
configuration

Processor action: Read or Write

Valence of a system configuration C : set of set of all values decided by a nonfaulty processor in some configuration reachable from C by an admissible execution.

consensus reached consensus may be not reached consensus reached always on value 1 here since processors may always on value 0 decide different values

A terminating execution:

Initial
configuration

Bivalent Bivalent

Univalent: from Univalent

Final
configuration
this point on all
the non-faulty
processors will
decide the same

To prove the theorem, we will show that there is always an execution where every configuration is bivalent

Initial
configuration

Bivalent Bivalent Bivalent

Never-ending execution

Similar configurations for processor P_{0}

$$
C_{1} \stackrel{p_{0}}{\approx} C_{2}
$$

Same shared variables
Local variables of others may differ

Lemma: If there exist univalent configurations

C_{1} and C_{2} such that $C_{1} \stackrel{P_{i}}{\approx} C_{2}$
then if C_{1} is v-valent
then C_{2} is v-valent too

$$
(v=0 \text { or } 1)
$$

Proof of Lemma:

Univalent

Univalent

Univalent

Execution
with only P_{i}
taking actions

Execution with only p_{i}
taking actions

Univalent

Univalent

Univalent

Univalent

Lemma: There exists a bivalent initial configuration

Proof of Lemma:

Possible Initial Configurations

Shared Memory

Local Memory

Initial Configuration
I_{0}
I_{01} I_{1}
©
(1)

(1)
(1)

Empty

Possible Initial Configurations

Shared Memory

Empty

Local Memory

Initial Configuration

I_{0}
p_{0} (

\vdots
\vdots
I_{01}
(0)
(1)
\vdots
(1)
?
I_{1}
(1)
(1)

(1)

1-valent

Possible Initial Configurations

Shared Memory

Empty

Local Memory

Initial Configuration $I_{0} \quad I_{01}$ I_{1}
(1)
(1) \vdots
p_{n-1} (0)
(1)
(1)

0 -valent 1 -valent? 1 -valent

No, because $I_{0} \stackrel{P_{0}}{\approx} I_{01}$

Possible Initial Configurations

Shared Memory
\square

Local Memory

Initial Configuration

I_{01} I_{1}
p_{0} (O)
p_{1} ©
\vdots
(0) (1)
(1)
\vdots
\vdots
(1)
(1)

0 -valent 0 -valent? 1 -valent
No, because $I_{01} \stackrel{p_{1}}{\approx} I_{1}$

Possible Initial Configurations

Shared Memory

Empty

Local Memory

Initial Configuration

I_{0}
0
p_{0} (
p_{1} ©
\vdots
I_{01}
(0)
(1)

(1)
(1)

0 -valent bivalent 1 -valent

Critical processor for a configuration:

the configuration is bivalent, and after the processor takes step the configuration becomes univalent

Lemma: If C is a bivalent configuration then, there is at least one processor which is not critical

Proof of Lemma:

Assume for contradiction that all processors are critical
p_{0}, C_{0} univalent
bivalent
univalent
Possible executions

It cannot be that all have the same valence ($v=0$ or 1) otherwise C would be univalent
$p_{0}, C_{0} v$-valent
bivalent

There must exist two processors with different valences

Case 1: suppose that they access different shared variables

two possible executions

same result holds for any kind of operation (Read or Write)
that the processors apply to x and y

Case 2: suppose that they access the same shared variable
subcase: read/read

two possible executions

subcase: read/write

two possible executions

subcase: write/write

In all cases we obtained contradiction Therefore, there exists a processor which is not critical

Therefore, we can construct an execution

bivalent bivalent bivalent

Never ends
Initial
configuration
Consensus can never be reached

