
0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 1

Collaborative Model-Driven Software Engineering:
a Classification Framework and a Research Map

Mirco Franzago, Davide Di Ruscio, Ivano Malavolta and Henry Muccini

Abstract—Context: Collaborative Model-Driven Software Engineering (MDSE) consists of methods and techniques where multiple
stakeholders manage, collaborate, and are aware of each others’ work on shared models.
Objective: Collaborative MDSE is attracting research efforts from different areas, resulting in a variegated scientific body of knowledge. This
study aims at identifying, classifying, and understanding existing collaborative MDSE approaches.
Method: We designed and conducted a systematic mapping study. Starting from over 3,000 potentially relevant studies, we applied a rigorous
selection procedure resulting in 106 selected papers, further clustered into 48 primary studies along a time span of 19 years. We rigorously
defined and applied a classification framework and extracted key information from each selected study for subsequent analysis.
Results: Our analysis revealed the following main findings: (i) there is a growing scientific interest on collaborative MDSE in the last years; (ii)
multi-view modeling, validation support, reuse, and branching are more rarely covered with respect to other aspects about collaborative
MDSE; (iii) different primary studies focus differently on individual dimensions of collaborative MDSE (i.e., model management, collaboration,
and communication); (iv) most approaches are language-specific, with a prominence of UML-based approaches; (v) few approaches support
the interplay between synchronous and asynchronous collaboration.
Conclusion: This study gives a solid foundation for classifying existing and future approaches for collaborative MDSE. Researchers and
practitioners can use our results for identifying existing research/technical gaps to attack, better scoping their own contributions, or
understanding existing ones.

Index Terms—Model-Driven Engineering, Collaborative Software Engineering, Systematic Mapping study.

F

1 INTRODUCTION

COLLABORATIVE software engineering (CoSE) deals
with methods, processes and tools for enhancing col-

laboration, communication, and co-ordination (3C) among team
members [1]. The importance of CoSE is evident [2]–[4] and
recently empowered by the prominence of agile methods,
open-source software projects, and global software develop-
ment [1]. CoSE is not only about software development team
members, but it also embraces external and non-technical
stakeholders, like customers and final users, as advised by
current research on participatory design methods [5], [6].

CoSE can be applied to different artifacts towards the
engineering of software systems. When focusing on soft-
ware design, considered to be one of the key aspects of
software engineering [7], multiple stakeholders with differ-
ent technical knowledge and background collaborate on the
system design [8]. In this context, shared models are used
as “a reduced representation of some system that highlights the
properties of interest from a given viewpoint” [9]. Models allow
each stakeholder to focus on domain-specific concepts, to
abstract upon the aspects of the system in which she is
more expert, and to assess specific properties of the system
early in the life cycle. A model is a specific design artifact
that can be either graphical, XML-based, or textual, and can

• M. Franzago, D. Di Ruscio and H. Muccini are with the Department of
Information Engineering, Computer Science and Mathematics (DISIM),
University of L’Aquila, Italy.
E-mail: {mirco.franzago, davide.diruscio, henry.muccini}@univaq.it

• I. Malavolta is with the Department of Computer Science, Vrije Univer-
siteit Amsterdam, The Netherlands.
E-mail: i.malavolta@vu.nl

Manuscript received Month XX, 20XX; revised Month XX, 20XX.

have an unambiguously defined semantics, which allows
precise information exchange and many additional usages.
By systematically using models as first-class entities for de-
scribing specific aspects of a software system, Model-Driven
Software Engineering (MDSE) provides suitable engines
for defining, analyzing, and manipulating those models
throughout the system development life cycle, including
syntactical validation, model analysis, model simulation,
model transformations, model execution, and model debug-
ging [4].

This work focuses on specializing CoSE to MDSE. In the
context of this work, our definition of collaborative MDSE
approach is a method or technique in which multiple stakeholders
manage, collaborate, and are aware of each others’ work on a set of
shared models. A collaborative MDSE approach is composed
of three main complementary dimensions (the way those
dimensions have been elicited is carefully discussed in
Section 3): a model management infrastructure for managing
the life cycle of the models, a set of collaboration means
for allowing involved stakeholders to work on the mod-
elling artifacts collaboratively, and a set of communication
means for allowing involved stakeholders to be aware of
the activities of the other stakeholders, exchange messages
and information within the team, sharing (design) decisions,
reducing potential ambiguities, and more.

Collaborative MDSE is gaining a growing interest in both
academia and practice [3], [4]. A number of research projects
are being run to enable large teams of modelers to construct
and refine large models in a collaborative manner [3]. For
instance, the Dawn Eclipse project1 is investigating collabo-

1. http://wiki.eclipse.org/Dawn

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 2

rative UIs to provide collaborative access for GMF diagrams;
EMFCollab2 is a light-weight solution to let multiple users
edit a single EMF model concurrently. The Modeling Team
Framework (MTF)3 open source project under the Eclipse
Modeling Framework Technology Project (EMFT) provides
a mechanism like a meta repository for software configu-
ration management of Eclipse projects. GenMyModel4 sup-
ports the design and sharing of design diagrams in real-
time: the metamodel-compliance of the diagrams is always
ensured, there are no conflict resolution for the end-users
and no lock-unlock barriers. UNICASE5 is an open-source
project that, based on the Eclipse platform, offers a unified
repository for software engineering projects and specific
views on this model for project participants like architects,
project manager or developers. Collaboro6 is an open-source
project allowing both developers and users to participate
together to the creation and evolution of domain-specific
modeling languages [10]. MDEForge [11] is a web-based
modeling platform realizing an extensible and community-
based repository of modeling artifacts; MDEForge enables
the development, analysis and reuse of modeling artifacts
by adopting a software-as-a-service paradigm7.

A body of knowledge in the scientific literature about col-
laborative model-driven software engineering (MDSE) ex-
ists as well (e.g., [12]–[19]). Such studies are scattered across
different independent research areas, such as software engi-
neering, model-driven engineering, languages and systems,
and model integrated computing. However, a holistic view
on what Collaborative MDSE is, its components, and challenges
in collaborative MDSE is still missing.

Goal of this study is to identify, classify, and under-
stand approaches that support collaborative MDSE. We
focus on those approaches in which several distributed
technical and/or non-technical stakeholders collaborate to
produce and manage models of a software system, working
in a shared environment, either synchronously or asyn-
chronously. Stakeholders can include, but are not limited to,
technical actors (modelers, designers, developers), domain
experts, non-technical managers, customers, and users of
the software system. We are interested in identifying and an-
alyzing the different approaches to support multi-user mod-
eling tasks where the models can be either domain-specific
or domain-independent. In any case, studied approaches
must consider the models as first-class elements within
the whole software process. Also, studied approaches must
provide synchronization mechanisms, e.g. conflicts manage-
ment/resolution, conflicts avoidance, versioning and roll-
back support.

In order to tackle our goal we apply a well-established
methodology from the medical and software engineering
research communities called systematic mapping study
(SMS) [20], [21]. Following known SMS protocols, we
have scrutinized more than 3,000 research articles. 48 of
them have been selected after a careful analysis based

2. http://qgears.com/products/emfcollab/
3. http://www.eclipse.org/proposals/mtf/
4. http://www.genmymodel.com/
5. http://marketplace.eclipse.org/content/unicase
6. http://som-research.github.io/collaboro
7. http://www.mdeforge.org/

on rigorously-defined inclusion and exclusion criteria, and
deeply analyzed.

The main contributions of this study are:

• the definition of the complementary dimensions of col-
laborative MDSE: model management, collaboration,
and communication;

• the elicitation of a taxonomy of collaborative MDSE,
used to create a reusable classification framework for
understanding, classifying, and comparing present
and future work on collaborative MDSE. The frame-
work has been realized by following an incremental
process that, starting from the main definition pro-
vided above, elaborated on each individual parame-
ter to identify all possible characteristics of collabo-
rative MDSE;

• the identification of current characteristics, chal-
lenges and shortcomings, and publication trends
with respect to collaborative MDSE approaches.

To the best of our knowledge, this paper presents the first
systematic investigation into the state of the art of research
on collaborative MDSE. The results of this study provide
a complete, comprehensive and replicable picture of the
state of the art of research on collaborative MDSE, help-
ing researchers and practitioners in finding characteristics,
limitations, and gaps of current research on the topic.
Article outline. This article is structured as follows. Sec-
tion 2 provides the needed background on Model-Driven
Software Engineering, Collaborative Software Engineering,
and Collaborative MDSE, and motivates the need for this
study. Section 3 presents collaborative MDSE and its dimen-
sions: model management, collaboration, and communica-
tion, whereas Section 4 presents the design of our study.
Sections 5, 6, 7, 8, 9, and 10 elaborate on the obtained
results. Section 10 presents results orthogonal to the research
questions, whereas an overall discussion is presented in
Section 11. Threats to validity are analyzed in Section 12.
Section 13 closes the paper and discusses future work.

2 BACKGROUND

In this section we introduce main concepts that found the
basis of Collaborative MDSE. More specifically, we present
model-driven software engineering and collaborative soft-
ware engineering in Section 2.1 and Section 2.2, respectively.
Systematic studies with different scopes but related to col-
laborative MDSE are discussed in Section 2.3. The need for
our systematic mapping study on collaborative MDSE is
motivated in Section 2.4.

2.1 Model-Driven Software Engineering
Model-Driven Software Engineering (MDSE) refers to the
systematic use of models as first-class entities through-
out the software engineering life cycle. Model-driven ap-
proaches shift development focus from third-generation
programming language codes to models expressed in
proper domain-specific modeling languages [22]. The ob-
jective is to increase productivity and reduce time to mar-
ket by enabling the development of complex systems by
means of models defined with concepts that are much
less bound to the underlying implementation technology

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 3

and are much closer to the problem domain. This makes
the models easier to specify, understand, and maintain [9]
helping the understanding of complex problems and their
potential solutions through abstractions. In MDSE, models
are expressed in terms of concepts formalized in metamodels,
and model transformations are employed either to produce
target models or to generate textual artifacts. Model trans-
formations can be employed for different reasons e.g., to
enable interoperability of different tools, to take advantage
of analysis tools provided by the target language, and to
generate various artifacts related to the modeled systems
(such as source code, configuration files, and documenta-
tion). Models are specified by means of editors providing
modelers with textual or graphical constructs, and facilities
for checking the validity of the specified models with respect
to the corresponding metamodels.

The relevance of MDSE is evident by the increasing
interest in scientific challenges in the area, active technology
projects (e.g., the Eclipse Modeling Project8) and numerous
industrial projects ranging from direct applications of MDSE
concepts and tools, to those developing its foundations.
There are many success stories of MDSE, ranging from
the development of large-scale enterprise Web applications,
to clinical data management, and to public authority data
interchange [23]–[31].

Even though current modeling tools provide features
that can simplify and automate many steps of model-based
development, obstacles to the wider adoption of MDSE
technologies still exist [32]. One limiting factor is related
to the limited support for collaborative MDSE [11], which
focuses on the need for consistent reuse of modeling artifacts
that are collaboratively produced and consumed during the
different development phases.

2.2 Collaborative Software Engineering
As quoted from [2, p. 3], ”[...] any software project with more
than one person is created through a process of collaborative
software engineering”. The importance of CoSE is evidenced
in a number of sources [2]–[4]. Its growth is strongly as-
sociated to the prominence of outsourcing, open source
software projects, global software engineering processes,
and distributed agile methods [2, ch.1 & ch.19]. If we add
that 86% of the (architectural) design decisions are group
based [33], where each group comprises from five to ten
members [34], the role of collaborative software engineering
becomes easily clear.

Orthogonally to the collaboration, communication, and co-
ordination (3C) dimensions [1], the three key insights for
CoSE are remarked in [2, ch. 1]: software engineering col-
laboration is model-based, software project management
creates the organizational structure under which collabora-
tion is fostered, and global software engineering challenges
increase collaboration complexity. Very importantly for this
study is the first key insight highlighting the model-based
nature of CoSE. Much collaboration in software engineering
is related to software-related artifacts (such as, UML dia-
grams, source code, and bug reports), therefore, most of the
collaboration in software engineering is over a set of formal
or semi-formal artifacts co-workers collaborate upon.

8. https://projects.eclipse.org/projects/modeling

Stakeholders, with different roles and concerns (ranging
from technical to external), collaborate on the creation of
different models each one representing the system from
a different perspective [35]. Stakeholders collaborate over
diverse organizational structures [36], [37] enforced by
modern organizational practices, such as open-source, out-
source, multi-site and agile software. Software developers
work is organized around networks, communities, groups
and they are exposed to one or more organizational barriers,
i.e., impediments, social, organizational or otherwise that
hinder the harmonious operation across the organizational
social structure [36]. Knowledge must be produced and ex-
changed among and across teams, exacerbating the need of
knowledge definition (through agreed ontologies), knowl-
edge exchange (based on agreed protocols) and awareness,
and coordination.

The global dimension of software engineering adds fur-
ther complexities, such as geographical, temporal, cultural
and linguistic distance. Model-based collaboration tools,
process support tools, awareness tools, and collaboration
infrastructures have been developed for improving the col-
laboration, communication, and co-ordination between and
among teams [38].

Building a theoretical understanding of CoSE is still
considered a challenge today [1]. This is a further motivation
for this work.

2.3 Existing Systematic Studies related to Collaborative
MDSE
In this section we discuss other existing systematic studies
(literature review (SLR) and mapping study (SMS)) related
to this work. Based on our knowledge and after a manual
search, we did not find any existing systematic study on the
topic. In any case, in the following we report those studies
that, even if they have different scopes and objectives, can
be related to our research.

Table 1 shows the existing systematic studies, their spe-
cific focus, and quality assessment. Based on the criteria ex-
plained in [39], we calculate the total score of each study by
summing up the answer to each of the following questions
(Yes(Y)=1, Partly(P)=0.5, No(N)=0)9

Q1 Are the systematic study inclusion and exclusion
criteria described and appropriate?

Q2 Is the literature search likely to have covered all
relevant studies?

Q3 Did the reviewers assess the quality/validity of the
included studies?

Q4 Were the basic data/studies adequately described?

A systematic literature review on the models of collab-
oration in the domain of distributed software development
(DSD) is presented in [40]. This study focuses on the models
and tools for DSD based on life cycle of traditional software
development (and its variations), where each phase of the cycle is
performed. Differently, in our study we focus on the various
aspects of the collaboration in the model-driven software
engineering domain, where the models are placed as first-
class artifacts.

9. Note that the score reflects how well the empirical study has been
conducted, rather than the tightness of the related study to this paper.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 4

TABLE 1: Existing systematic studies on collaborative soft-
ware engineering and collaborative modeling

Study Year Q1 Q2 Q3 Q4 Total Focus
[40] 2011 Y Y Y Y 4.0 Ways of collaboration

used in DSD
[41] 2012 Y P P Y 3.0 Tools supporting dis-

tributed teams in GSE
[42] 2008 P Y P P 2.5 Collaborative modeling

support systems

In [41] a systematic mapping study is proposed with the
objective to discover all the tools available in the literature
supporting global software engineering (GSE) activities.
Our work is more comprehensive because it identifies (in
addition to tool support) also methods, techniques and
approaches to support modeling activities in collaborative
settings with the focus on model-based activities. Moreover,
in the literature there are other systematic studies in the DSD
and GSE scope [43], but all of them focus on tools and/or
approaches to address issues like collaboration process man-
agement, team members awareness or collaboration tools
support; there is no existing study specifically focusing on
collaborative MDSE.

Finally, in [42] the authors identify challenges and best
practices in collaborative modeling activity, where model-
ers, end-users and experts are all involved in the model-
based design of the system, and collaborate to create a
shared understanding of the system under development
(or part of it). Among others, the main difference between
this study and ours is that in [42] collaborative modeling
is considered as the joint creation of a shared graphical rep-
resentation of a system, i.e., a sketching activity where the
created models are used as communication means between
team members. This kind of models (possibly conforming to
some syntactical rules) are very different from our definition
of models, where modeling is a complex activity based
on precise models whose semantics is rigorously defined
according to a specific modeling language. These models al-
low precise information exchange but also many additional
usages, including: syntactical validation, model checking,
model transformation, code generation [4, § 2.1].

2.4 The need for a Systematic Mapping Study on Collabo-
rative MDSE

This research complements the existing studies described in
Section 2.3 to investigate the state-of-research about collab-
orative MDSE. So far, a large body of knowledge has been
proposed in both modeling software systems (e.g., model-
driven engineering techniques, domain-specific modeling
languages, model transformations, etc.), and collaboration
for software production (e.g., global software engineering
methods, methods for participatory design of software sys-
tems, version control systems, etc.).

Even if the progress of research on the above mentioned
areas has started more than a decade ago and the various
research communities are still very active, we did not find
any evidence that could help us in assessing the impact
of existing research on collaborative MDSE. Thus, in this
study we aim to identify, classify, and understand existing
research on collaborative MDSE. Those activities will help

researchers and practitioners in identifying trends, limita-
tions, and gaps of current research on collaborative MDSE
and its future potential.

3 COLLABORATIVE MODEL-DRIVEN SOFTWARE EN-
GINEERING

In Sections 2.1 and 2.2 we outlined the main concepts
of MDSE and collaborative software development, respec-
tively. In this section we go a step further and, in order
to avoid a potential threat to the external validity of our
study, we define a reference definition for characterizing
collaborative approaches in the context of MDSE. In order
to provide an objective definition of collaborative MDSE, we
rigorously applied the following process:

1) we analyzed a set of studies about MDSE ap-
proaches with a strong focus on collaboration;

2) we performed an investigation on existing literature
about collaborative approaches for software engi-
neering in general;

3) based on the analyzed papers, we produced a ten-
tative definition of collaborative MDSE;

4) we asked to a pool of MDSE and global software
engineering experts to objectively assess the sound-
ness of the obtained definition and we refined the
definition according to the feedback provided by the
experts10.

Table 2 presents the set of pilot studies on MDSE ap-
proaches with a strong focus on collaboration; we identified
them by performing a preliminary screening on the avail-
able literature about collaborative MDSE. For what concerns
the second point of our semi-systematic process, in order to
avoid a potential bias with respect to the construct validity
of our study, we decided not to restrict our focus on MDSE-
based approaches only. Indeed, in this step we consid-
ered relevant papers on collaborative and global software
engineering which contribute with definitions of types of
tools, requirements, building blocks, and various categories
for characterizing approaches for collaborative and global
software engineering. Table 3 presents the set of studies we
identified in this step.

As a result of the above mentioned process, in the
context of this study a collaborative MDSE approach can be
defined as a method or technique in which multiple stakeholders
manage, collaborate, and are aware of each others’ work on a set
of shared models. As shown in Figure 1 [46], a collaborative
MDSE approach considers models as first-class elements
that drive both the software development activities and
the other model-based tasks in the context of a software
engineering process [4], and is composed of three main
complementary dimensions:

• a model management infrastructure for managing the
life cycle of the models; such an infrastructure may

10. We performed this step (i) by directly discussing collaborative
MDSE with personal contacts and (ii) during the 2016 edition of a
workshop dedicated to collaborative modelling in MDE, co-located
with the MODELS conference.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 5

TABLE 2: Selected studies about MDSE approaches with a
strong focus on collaboration

Study Title Year
Maróti et al. [12] Next Generation (Meta) Modeling:

Web-and Cloud-based Collabora-
tive Tool Infrastructure

2014

Syriani et al. [13] AToMPM: A Web-based Modeling
Environment

2013

Farwick et al. [14] A web-based collaborative meta-
modeling environment with secure
remote model access

2010

Thum et al. [15] SLIM - A Lightweight Environ-
ment for Synchronous Collaborative
Modeling

2009

Cataldo et al. [16] CAMEL: a tool for collaborative dis-
tributed software design

2009

Bruegge et al. [17] Unicase- an Ecosystem for Uni-
fied Software Engineering Research
Tools

2008

De Lucia et al. [18] Enhancing collaborative
synchronous UML modelling
with fine-grained versioning of
software artifacts

2007

Kelly et al. [19] Metaedit+: a fully configurable
multi-user and multi-tool case and
came environment

1996

TABLE 3: Selected studies about collaborative and global
software engineering

Study Title Year
Dullemond et al. [44] Collaboration Spaces for Virtual

Software Teams
2014

Beecham et al. [41] Tools used in Global Software Engi-
neering: A systematic mapping re-
view

2012

Lanubile et al. [45] Collaboration Tools for Global Soft-
ware Engineering

2010

Whitehead [38] Collaboration in Software Engineer-
ing: A Roadmap

2007

contain a (possibly distributed) repository for man-
aging the persistence of the models and their related
metadata, a modelling tool [4] for creating, editing,
or deleting models, interchange formats for sharing
models across projects and organizations (see Section
5);

• a set of collaboration means for allowing involved
stakeholders to work on the modelling artifacts
collaboratively and to coordinate themselves as a
team (e.g., model versioning systems, model merging
mechanisms, conflict management and visualization
systems, model comparison engines) as discussed in
Section 6;

• a set of communication means for allowing involved
stakeholders to be aware of the activities of the
other stakeholders and exchange messages and in-
formation within the team. Those activities can be
carried out by sharing (design) decisions, tracking
discussions among the stakeholders with regard to
modeling artifacts, collecting relevant information
about various aspects of the project (e.g., activities
dashboard, general notifications of activities, issue
trackers, asynchronous messaging systems, chat, so-
cial networks, wiki) as discussed in Section 7.

An orthogonal aspect related to the previous dimensions
is automation i.e., the capability of partially or fully automating

software engineering activities with the aim of increasing both
quality and productivity [47]. Automation is provided by tools
and classifying them in the context of collaborative MDSE
represents an important contribution, which deserves to be
investigated in a separated work already planned as future
work.

Fig. 1: Complementary dimensions of collaborative MDSE

It is important to note that a common trait across the
above mentioned dimensions is that in all of them (i) stake-
holders work as a team (so our definition does not focus on
those approaches involving a single stakeholder) and (ii) the
focus is on the software-intensive aspect of the system being
modeled, meaning that the activities related to model man-
agement, collaboration, and communication are performed
in the context of more large-grained software engineering
activities like software design, requirements elaboration,
system validation, testing, evolution and maintenance.

We consider such a definition of collaborative MDSE
approach throughout our investigation, especially during
the studies selection, data extraction, and data analysis
activities.
Example. In the following we describe WebGME, the first
study of Table 2, in order to give a concrete idea about
the typical traits and features of a collaborative MDSE
approach. WebGME is a web-based infrastructure for sup-
porting the collaborative modelling, analysis, and synthesis
of complex, large-scale information systems [12], [48].

For what concerns model management, WebGME is mod-
elling language independent and allows stakeholders to
create their own domain-specific modelling language by
means of a web-based editor, which permits to specify
the metamodel of the new language and the concrete
representations of its metaclasses; starting from the cre-
ated metamodel, WebGME automatically configures itself
to support the newly specified language at the modelling
level. Models are edited using web-based clients running
in the stakeholders’ browsers so that no installation or
configuration of specific clients is needed, and the editors
are platform independent; those clients support a number
of different visualization techniques for the models. A set
of multiple APIs are provided to interface WebGME with
external tools, custom domain-specific visualization com-
ponents, and external code generation engines. Also, the
infrastructure provides extension points to customize it with
plugins, language decorators, visualizers, or new elements
in the user interface.

Collaboration is performed at the modelling level in real-
time (i.e., all changes are immediately propagated to all the
involved stakeholders, similar to how Google Docs works).

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 6

WebGME supports model versioning and conflict resolution
via a lightweight branching scheme, which is transparently
supported by the infrastructure: through WebGME model
branching system each stakeholder can monitor in real-time
information about the activity of other stakeholders (i.e.
the history of actions, commits, timestamps, etc. performed
by other users). WebGME also provides a mechanism for
managing cross-cutting concerns that allows stakeholders
to collaboratively visualize and modify associations among
elements belonging to different models.

From the communication perspective, WebGME does not
provide built-in nor external communication means. The
users can not directly communicate, and the workspace
awareness is allowed through the branch history actions’
log; also, the WebGME web editor shows in real-time (i)
if the currently edited model is in sync with respect to the
models edited by the team, (ii) if the client editor is currently
connected to the network, and (iii) the specific branch in
which the stakeholder is currently working on.

4 RESEARCH METHOD

This study has been carried out by following the guidelines
for performing systematic mapping studies [20], [21], [49].
The whole study can be divided into three main phases:
planning, conducting, and documenting. Each phase has been
performed by one or more members of the research team of
this study (see Appendix A). In order to mitigate potential
threats to validity and possible biases, the artifacts produced
during each phase of the study have been circulated to
external experts for independent review. More specifically,
we identified two classes of external experts: SLR experts
and domain experts. SLR experts are contacted for getting
feedback about our review protocol, possible unidentified
threats to validity, possible problems in the overall construc-
tion of our study; whereas, domain experts are contacted
for getting feedback about whether our review protocol and
final reports can be effective with respect to the object of
our mapping study (i.e., collaborative MDSE approaches).
All the external reviewers provided their feedback and their
suggestions have been implemented in the study.

To allow replication and verification of our study, a
complete replication package11 is publicly available to in-
terested researchers. It includes a description of the review
protocol, the list of all considered and selected studies, the
description of the parameters for the data extraction activity
(data extraction form), raw data, and the R scripts for data
analysis. In the following we go through each phase of the
process
Planning. It aims at (i) establishing the need for performing
a mapping study on collaborative MDSE (see Sections 2.3
and 2.4), (ii) identifying the main research questions (see
Section 4.1), and (iii) defining the protocol to be followed by
the involved researchers while carrying on each step of the
whole review process. The output of our planning phase
is a well-defined review protocol [50], that underwent an
external evaluation by the previously mentioned external
reviewers.

11. http://www.di.univaq.it/mirco.franzago/collaborativeMDSE/

Conducting. In this phase we set the previously defined
protocol into practice. More specifically, we performed the
following activities:

• Search and selection: we (i) considered the search
strings identified in Section 4.2.1 and we applied
them to electronic data sources, and (ii) apply back-
ward and forward snowballing techniques for ex-
panding the set of considered studies [51]. Then,
the potentially relevant studies have been filtered in
order to obtain the final list of primary studies to be
analyzed (for the complete list of primary studies see
after the Section References). Sections 4.2.1 and 4.2.2
describe in details the search and selection strategy
of this research.

• Classification framework definition: we defined the set
of parameters to compare the primary studies and
for collecting the information needed for analyzing
the primary studies. The design of the classification
framework is based on the research questions [49].

• Data extraction: in this activity we went into the
details of each primary study, and we filled a cor-
responding data extraction form, as defined in the
previous activity. Filled forms have been collected
and aggregated in order to be ready to be analyzed
during the next activity. More details about this ac-
tivity are presented in Section 4.3.

• Data synthesis: this activity focused on a comprehen-
sive summary and analysis of the data extracted in
the previous activity. The main goal of this activity is
to elaborate on the extracted data in order to address
each research question of our study (see Section 4.1).
The details about this activity are in Section 4.4.

Documenting. According to the guidelines provided in [20],
the main activities performed in this phase have been: (i) a
thorough elaboration on the data extracted in the previous
phase with the main aim of setting the obtained results
in their context, (ii) a thorough analysis and discussion of
possible threats to validity (see Section 12), and (iii) the writ-
ing of a report describing the performed mapping study;
the produced report has been evaluated by the previously
mentioned external reviewers and is the basis of this paper.

4.1 Research Questions
We formulate the goal of this research by using the Goal-
Question-Metric perspectives (i.e., purpose, issue, object,
viewpoint [52]). Table 4 shows the result of the above
mentioned formulation.

TABLE 4: Goal of this research

Purpose Identify, classify, and understand
Issue the publication trends, characteristics, and challenges
Object of existing collaborative MDSE approaches
Viewpoint from a researcher’s viewpoint.

In the following we present the research questions we
translated from the above mentioned overall goal. For each
research question we also provide its primary objective of
investigation.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 7

• RQ1: What are the characteristics of collaborative MDSE
approaches? This research question has been decom-
posed into more detailed sub-questions in order for
it to be addressed, sub-questions coming from the
three dimensions of collaborative MDSE.

– RQ1.1: What are the characteristics of the model
management infrastructure of existing collabora-
tive MDSE approaches?

– RQ1.2: What are the characteristics of the col-
laboration means of existing collaborative MDSE
approaches?

– RQ1.3: What are the characteristics of the com-
munication means of existing collaborative MDSE
approaches?

Objective: to identify and classify existing collabora-
tive MDSE approaches according to the three dimen-
sions of collaborative MDSE.
Outcome: a map that classifies a set of collabora-
tive MDSE approaches based on different categories
(e.g., characteristics of collaborative model editing
environments, model versioning mechanisms, model
repositories, support for communication and deci-
sion making, etc.).

• RQ2 - What are the challenges and shortcomings of
existing collaborative MDSE approaches?
Objective: to identify current limitations and chal-
lenges with respect to the state of the art in collab-
orative MDSE.
Outcome: a map that classifies collaborative MDSE
approaches with respect to their limitations, faced
challenges, and future work.

• RQ3: What are the publication trends that can be deduced
from the scientific publications about collaborative MDSE
approaches over time?
Objective: to identify and classify the interest of re-
searchers in collaborative MDSE approaches and
their various characteristics over time.
Outcome: a map that classifies the collected primary
studies according to publication year, venue, applied
research strategies, etc. Also, the map classifies col-
lected primary studies according to their focus on
the various characteristics of collaborative MDSE
approaches over time.

The classification resulting from our investigation on
RQ1, RQ2, and RQ3 provides a solid foundation for a thor-
ough identification and comparison of existing and future
approaches for collaborative MDSE. This contribution is
useful for both researchers willing to further contribute with
new collaborative MDSE approaches, or willing to better
understand or refine existing ones.

The above listed research questions drove the whole
study, with a special influence on the studies search and
selection, data extraction, and data analysis activities.

4.2 Search and Selection Strategy
When searching among potentially relevant studies it is fun-
damental to achieve a good trade-off between the coverage
of existing research on the considered topic and to have a
manageable number of studies to be analyzed. As shown

in Figure 2, we designed our search and selection process
as a multi-stage process in order to have full control on the
number and characteristics of the studies being considered.

Fig. 2: Search and selection process

4.2.1 Search Strategy
As discussed in [53], an optimum search strategy is expected
to provide effective solutions to the following questions:
which, where, what, and when. In the following we discuss
how our search strategy answers each of them.
Which approaches? Our search strategy consists of two
main steps: (i) an automatic search on Electronic Data
Sources (EDS) and (ii) a snowballing procedure. During the
first step, following the guidelines in [20], we composed
the search string (Listing 1) based on identified keywords
from research questions and area of study (i.e., collaborative
MDSE).

As recommended in guidelines for systematic studies,
we complemented our automatic search in order to extend
the coverage on the topic [21]. For this purpose, we applied
a snowballing procedure on the results of the automatic
search12. The start set for the snowballing procedure was
composed by the selected papers retrieved by the automatic
search.

Our selection criteria (see Section 4.2.2) have been ap-
plied to each potentially relevant study (either coming from
the automatic search or from the snowballing) and, if a
paper was included, snowballing was applied iteratively.
The procedure ended when no new papers were found.
Where to search? Figure 2 shows the electronic databases
we used for the automatic search. These are the main
sources of literature for potentially relevant studies on soft-
ware engineering [54]. Also, these EDSs have been selected
from the recommendations made by experts in the area of
software engineering. We do not use Google Scholar since
it may generate many irrelevant results and have consider-
able overlap with ACM and IEEE on software engineering
literature [54]; nevertheless, we used Google Scholar in the
forward snowballing procedure [51].

12. Snowballing refers to using the reference list of a paper (backward
snowballing) or the citations to the paper (forward snowballing) to
identify additional papers [51].

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 8

What to search? A suitable search string is the input to
the EDSs identified in the previous section. According to
the guidelines provided in [20], we used the following
systematic strategy for constructing our search string:

1) derive major aspects relevant to the study, according
to the research questions and to a set of relevant pilot
studies (Table 2 shows the considered pilots). Each
aspect is represented by a ”cluster” that groups a
set of terms; identified clusters are collaborative and
MDSE;

2) add keywords (main terms) to each cluster obtained
from known primary studies and research ques-
tions;

3) identify and include in a cluster synonyms and
related terms of the main terms;

4) incorporate alternative spellings and synonyms us-
ing Boolean OR;

5) link the cluster keywords using Boolean AND;
Following this strategy, after a series of test executions

and refinements the resulting search string is shown in the
Listing 1. Each electronic data source has a specific syntax
for search strings, so we adapted our generic search string
to the specific syntax and criteria of each electronic data
source.

Listing 1: Composed search string
(c o l l a b o r a t ⇤ OR coordinat⇤ OR cooperat⇤ OR
concur⇤ OR globa l)
AND
(MDE OR MDD OR MDA OR MDS⇤ OR EMF OR DSL OR
DSML OR ”model driven ” OR ” e c l i p s e modeling
framework” OR ”domain s p e c i f i c language ” OR
”domain s p e c i f i c modeling language ”)

Due to the nature of the involved electronic databases
and indexing systems, search results could include also ele-
ments that were clearly not research papers, such as confer-
ence and workshop proceedings, standards specifications,
textbooks, editorials, etc. After the initial search, we manu-
ally removed all those false positive results in order to have
a coherent set of potentially relevant research studies 13.
By referring to Figure 2, after merging all the studies and
removing duplicates we obtained 3,047 potentially relevant
studies.
When and what time span to search? We included in our
search all the studies coming from the selection step, avoid-
ing publication year constraints, so we did not consider
publication year as criterion for the search and selection
steps.

4.2.2 Selection Strategy
As suggested in [20], we decided the selection criteria of
this study during its protocol definition, to reduce the like-

13. The false positive removal process was completely manual, except
for SpringerLink due to its internal querying algorithm. SpringerLink,
at the time of our search, did not allow to exclude paper references
from the search metadata, bringing to thousands of unmanageable
false positive results (62,238 in our case). We overcame this problem by
implementing a script that was able to locally apply the search string
(see Listing 1) on the previously downloaded 62,238 results. Thus,
we automatically selected 389 works that we subsequently refined
manually by obtaining 317 results for the following steps.

lihood of bias. In the following we provide inclusion (I) and
exclusion (E) criteria of our study:

• I1 - Studies proposing an MDSE method or technique
for supporting the collaborative work of multiple
stakeholders on models. The study, to be included,
has to cover the three complementary dimensions
of model management/collaboration means/com-
munication means.

• I2 - Studies in which models are the primary artifacts
within the collaboration process.

• I3 - Studies providing some kind of validation or
evaluation of the proposed method or technique
(e.g., via a case study, a survey, experiment, exploita-
tion in industry, formal analysis, example usage).

• I4 - Studies subject to peer review [49] (e.g., journal
papers and papers published as part of conference
proceedings will be considered, whereas white pa-
pers will be discarded).

• I5 - Studies written in English language and available
in full-text.

• E1 - Studies discussing only business processes and
collaboration practices, without proposing a specific
method or technique.

• E2 - Secondary studies (e.g., systematic literature
reviews, surveys, etc.).

• E3 - Studies in the form of tutorial papers, long
abstract papers, poster papers, editorials, because
they do not provide enough information.

Inclusion/exclusion criteria should be aligned with the
research questions: indeed, all the criteria together aim to
guide the answering process to the research questions [55].
As in any systematic literature study, the definition of inclu-
sion/exclusion criteria has been guided by 2 main drivers:
(i) keeping the focus of the selected papers on the scope of
the study (i.e., ”semantic” criteria), and (ii) avoiding grey or
not scientific works containing many relevant keywords, but
with no relevance for the body of knowledge advancement
of the topic (i.e., ”syntactic” criteria). Specifically, in this
work, I1, I2 and E1 are the semantic criteria: they are
strongly related to RQ1 (RQ1.1, RQ1.2, RQ 1.3); the other
criteria are syntactic: they are not related to a specific RQ,
instead they are important to keep the selected papers
scientifically relevant for our study.

In this context, each study has been included as primary
study if it satisfied all inclusion criteria, and it has been
discarded if it met any exclusion criterion. The definition of
the above mentioned criteria has been tested by considering
the pilot studies (Table 2); the criteria have been incremen-
tally refined until they were covering all the pilot studies.
On the 3,047 potentially relevant papers, we performed a
first manual step applying the selection criteria on title and
abstract of the papers, obtaining 160 papers (it took 120
man-hours). On these 160 we performed a comprehensive
second manual step reading the whole papers full-text (title,
abstract, keywords, sections and appendices, if any (this
activity took 100 man-hours). After the application of the
above mentioned selection criteria we obtained a set of 78
potentially relevant studies. It is important to note that from
the 3,047 potentially relevant studies we obtained only 78

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 9

primary studies because on the one hand (i) our search
string is quite inclusive (e.g., papers with the terms concur-
rency and MDE in the abstract actually matched the search
string) in order to do not loose any potentially relevant
paper but, on the other hand, (ii) we carefully applied all
selection criteria, where I1, I2, and E1 allowed us to consider
only those studies that were really falling within the scope
of our research.

Most of the potentially relevant studies (⇡90%) were
excluded by applying the selection criterion I1. This fact is
due to two main reasons. Firstly, due to time constraints, as
soon as one inclusion criteria was not met, then we directly
excluded the currently considered paper; secondly, since I1
is the criterion with the strongest relation to the concept of
collaborative MDSE, it cut out the majority of the out-of-
scope papers (e.g., approaches unsuitable for the software
engineering domain, non-collaborative approaches, specific
approaches that do not cover all the three dimensions of C-
MDSE, etc.). Also I2 and E1 can be considered ”semantic”
criteria, they excluded ⇡9% of the remaining set of excluded
papers. Only the last ⇡1% was excluded applying the other
criteria. As suggested by [49], two researchers assessed a
random sample of the studies. For assessing the objectiv-
ity of this phase the inter-researcher agreement has been
measured, achieving a promising 0.89 value for the Cohen
Kappa statistic14.

Moreover, we performed a clustering activity on the
78 studies in order to group papers presenting different
aspects of the of the same approach. More specifically, if
an approach was published in more than one paper (for
example, if a conference paper was extended to a journal
version), only one instance has been counted as a primary
study. In those cases the journal version of the study has
been preferred, as it is supposed to be the most complete;
nevertheless, both versions have been used in the data
extraction phase [49] and in the analysis of the publication
trends (RQ3, see Section 9). After this clustering activity we
obtained 20 ”clusters” of independent primary studies.

Finally, we complemented the results of the automatic
search with a snowballing activity starting from the 20
primary studies resulting from the automatic search. The
snowballing activity involved a manual screening of 2,345
potentially relevant studies (it took 160 man-hours), leading
to 28 additional primary studies, which lead to the final
set of 48 primary studies (see Figure 2). Interestingly, we
obtained more primary studies from the snowballing ac-
tivity (i.e., 28 studies) with respect to those obtained from
the automatic search (i.e., 20 studies). This phenomenon
can be explained by the fact that collaborative MDSE is a
relatively new research topic; we noticed that researchers
used a very heterogeneous terminology when writing the
title, abstract, and keywords of their studies, leading to
the fact that our automatic search may have missed some
potentially relevant studies. We included the snowballing
activity in order to (i) mitigate this potential threat to the
validity of our study and (ii) to keep the automatic search
manageable, given the available time and resources. As
extensively discussed in [51], snowballing is particularly

14. To be successful, the result of the Cohen Kappa statistic must be
above or equal to 0.80 [21].

useful for extending automatic searches since new studies
almost certainly must cite at least one paper among the
previously identified relevant studies. Also, as empirically
assessed in [56], regardless of the differences in the actual
numbers and figures obtained when applying automatic
search and snowballing, similar patterns and conclusions
are identified when using those techniques, especially when
they are used in combination (like we do in this study).

4.3 Data Extraction
The goal of this step is to identify and collect from the
selected primary studies (complete list after Section Refer-
ences) the appropriate and relevant information to answer
our research questions (see section 4.1). To achieve this goal,
we defined a rigorous classification framework to organize
the extracted data in a structured manner; the classification
framework is composed of a set of concepts, references
among concepts and attributes representing the set of data
items extracted from each primary study.

The creation of an effective classification framework
demands a detailed analysis of the contents of each primary
study. In light of this, we followed a systematic process
called keywording [57] for defining our classification frame-
work so that it took all the primary studies into account [57].

Fig. 3: Overview of the keywording process

As shown in Figure 3, our keywording process is com-
posed of two main steps:

1) Collect keywords and concepts: we collected keywords
and concepts by reading each primary study. When
all primary studies have been analyzed, all key-
words and concepts have been combined together to
clearly identify the context, nature, and contribution
of the research. The output of this stage is the set of
keywords extracted from the primary studies.

2) Cluster keywords and concepts: when keywords and
concepts have been finalized, then we performed
a clustering operation on them in order to have
a set of representative clusters of keywords. We
identified the clusters by applying the open card
sorting technique [58] to categorize collaborative
MDSE related keywords into relevant groups: each
cluster represents one of the aspects under a specific
dimension of our classification. After the clusteriza-
tion step, keywords and concepts within a cluster
have been structured in terms of composition, at-
tributes, cardinalities, etc. In order to minimize bias,

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 10

this step has been performed by two researchers
and the results have been double-checked by the
other two researchers. The output of this stage is the
finalized classification framework containing all the
identified concepts, references, and attributes, each
of them representing a specific aspect regarding
collaborative MDSE.

In order to make our data extraction strategy more
robust, we preliminarily performed a sensitivity analysis to
assess whether the results will be consistent independently
from the researcher performing the analysis [49]. More
specifically, we considered a random sample of 10 primary
studies and two authors of this study classified them inde-
pendently, and each disagreement have been discussed and
resolved. Once the extraction strategy has been assessed and
set up, the first author of this study read the full text of
each primary study and extracted its data according to the
classification framework with the support of the other mem-
bers of the research team (see Appendix A). A detailed data
extraction form document as the complete extracted data
spreadsheet are available within the replication package at
www.di.univaq.it/mirco.franzago/collaborativeMDSE/.

4.4 Data Synthesis
The data synthesis activity involves collating and summa-
rizing the data extracted from the primary studies [21,
§ 6.5] with the main goal of understanding, analyzing,
and classifying current research on collaborative MDSE.
We designed and executed our data synthesis activity by
following lessons learned and findings presented by Cruzes
et al. in [59]. Specifically, our data synthesis is divided into
two main phases: vertical analysis, and horizontal analysis.
Vertical analysis. We analyzed the extracted data to find
trends and collect information about each research question
of our study. In this case, we applied the line of argu-
ment synthesis [49]: firstly, we individually analyzed each
primary study in order to document it and to tabulate
its main features with respect to each specific concept of
the classification framework; secondly, we analyzed the set
of primary studies as a whole in order to reason about
potential patterns and trends. We present the results of our
vertical analysis by grouping them according to our research
questions across Sections 5, 6, and 7, 8, and 9.
Horizontal analysis. In this phase we analyzed the ex-
tracted data to explore possible relations across different
dimensions and facets of our research. We cross-tabulated
and grouped the data and made comparisons between two
or more concepts of our classification framework. In this
context, we used contingency tables analysis as the strategy
for evaluating the actual existence of those relations. In the
following we describe the steps we followed for performing
the horizontal analysis:

1) Contingency tables construction: we computed a
contingency table for every possible pair of concepts
within our classification framework15.

2) Relevant insights formulation: we collaboratively
created and discussed a set of 67 potentially relevant

15. this step is automatically performed once via a dedicated R script
available in our replication package.

insights to be investigated, where each relevant
insight is composed of the following elements:

a) concepts: a pair of concepts of the classifi-
cation framework,

b) proposedBy: the team member proposing
the insight,

c) hypotheses: a set of hypotheses to be con-
firmed by the contingency table,

d) table: a reference to the contingency table
between the two paired concepts.

3) Data analysis: we iteratively analyzed each poten-
tially relevant insight created in the previous step
in order to check if its contingency table actually
confirms or disproves its related hypotheses.

4) Reporting: we reported each result obtained in the
previous step as a short paragraph similar to those
in Section 10.

5) Filtering: we filtered out all the results which were
either (i) not supported by a sufficient number of
data points, or (ii) chaotic, not revealing any evident
pattern. This filtering step was performed manually
and collaboratively by the four co-authors until a
full agreement about the inclusion of each pair was
reached. More specifically, because of the semantic
nature of the pairs composing the selected contin-
gency tables, no fixed rules could have been defined
to drive the filtering step (i.e., a specific number of
data points or criteria to detect chaotic behavior).
Consequently, we analyzed collaboratively table by
table searching for interesting findings through a
selection based on an inter-researchers agreement.

To clarify how data have been cross-tabulated, it
is possible to consider as an explanatory example
the case involving the following pair of concepts: <
CollaborationType, V ersioningType >; their correspond-
ing extracted data is reported in Table 14 and Table 16.
This case involves only one hypothesis, i.e., that “approaches
without versioning support are equally distributed across ap-
proaches supporting synchronous and asynchronous collabora-
tion”. Thanks to the vertical analysis (see Table 14), we
already know that approaches without support for version-
ing are 28; by matching those 28 approaches with those
in Table 14, we also know that 22 studies over those 28
support synchronous collaboration, whereas only 6 studies
over 28 support asynchronous collaboration, thus falsifying
the formulated hypothesis. A complete discussion of the
results of the horizontal analysis is presented in Section 10.

5 MODEL MANAGEMENT (RQ1.1)
In this section we describe the characteristics of collabo-
rative MDSE approaches with respect to the model man-
agement facilities provided by the adopted tools. By ana-
lyzing the primary studies under such a dimension, a set
of representative concepts have been identified as shown
in Fig. 4. The first layer of the taxonomy is composed
of five elements: supported artifact, modeling language,
editor, application domain, and multi-view support. In the
following subsections the obtained data for each element are
discussed.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 11

Fig. 4: Taxonomy for the management support of collaborative MDSE approaches

5.1 Supported Artifact
Stakeholders may need to collaborate on different kinds
of artifacts. They can collaborate on the specification of
models, or they can even define new modeling languages to
cover a particular application domain. Most of the analyzed
approaches (44 out of 48 studies) support the collaborative
definition of models (as shown in Table 5). Only few ap-
proaches (4 out of 48 studies) provide modelers with the
means to develop in a collaborative manners both mod-
els and metamodels. Indeed, further artifacts are typically
employed when applying model driven techniques e.g.,
model transformations and code generators. Even though
none of them are considered by the analysed studies, we
expect that in the near future they will be also supported by
collaborative tools. Such a confidence is supported by some
recent works [60]–[63] that in our opinion can go towards
that direction.

TABLE 5: Distribution of supported modeling artifacts

Artifact Type #Studies Studies
Model 44 P1, P3, P4, P5, P6, P7, P8,

P9, P10, P12, P14, P15, P16,
P17, P18, P19, P20, P21,
P22, P23, P24, P25, P26,
P27, P28, P29, P30, P31,
P32, P34, P35, P36, P37,
P38, P39, P40, P41, P42,
P43, P44, P45, P46, P47, P48

Model and Metamodel 4 P2, P11, P13, P33

5.2 Modeling Language
During the analysis of the obtained data we no-
ticed a prevalence of collaborative approaches, which

are designed to support specific modeling languages
(ModelingLanguageType concept in Fig. 4) like UML,
BPMN, and MBUI of the Cameleon Reference Framework 16

(27 out of 48 studies, see Table 6). According to the extracted
data, UML is the most considered modeling language since
20 primary studies are about it.

TABLE 6: Distribution of language specificity

Language specificity #Studies Studies
Language specific 27 P3, P6, P7, P9, P10, P15,

P18, P19, P20, P21, P24,
P25, P26, P27, P29, P30,
P31, P32, P34, P35, P36,
P37, P38, P42, P43, P44, P45

Language independent 21 P1, P2, P4, P5, P8, P11, P12,
P13, P14, P16, P17, P22,
P23, P28, P33, P39, P40,
P41, P46, P47, P48

More specifically, the means provided by the analyzed
approaches to add or refine new languages are essentially
three: import, extension, and type inference as identified in
the LanguageCustomizationMeanType concept in Fig. 4
and shown in Table 7. Even though language customization
is not widely supported yet (26 approaches out of the 48 do
not provide any language customization means), the import
technique is the most recurrent one: language definitions are
packaged in modules, which can be installed or removed in
the provided modeling tools, depending on the stakeholder
needs. In the case of the extension technique, modelers
are provided with extensibility constructs, which permit
to extend already existing modeling languages to better

16. http://giove.isti.cnr.it/projects/cameleon.html

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 12

cover the concepts of the considered application domain.
The approaches implementing the inference mechanism (i.e.,
P2, P5, P22, and P48) permit to define custom languages by
sketching new modeling constructs, which then will be used
to (semi-) automatically infer their types.

TABLE 7: Distribution of language customization mean type

Language Customiza-
tion Mean Type

#Studies Studies

None 26 P3, P6, P7, P9, P10, P15,
P18, P19, P20, P24, P25,
P26, P27, P29, P30, P31,
P32, P34, P35, P36, P37,
P38, P42, P43, P44, P45

Import 14 P1, P4, P8, P12, P14, P16,
P17, P23, P28, P39, P40,
P41, P46, P47

Extension 6 P8, P11, P13, P14, P21, P33
Inference 4 P2, P5, P22, P48

5.3 Editor
In any modeling approach the features provided by the
supporting editor can make the difference. According to
the extracted data, the analyzed approaches are endowed
with editors, which can be distinguished under several
characteristics as presented by the concept Editor and
related elements in Fig. 4. One of the main distinguishing
elements is represented by the way editors can be used, i.e.,
whether they need to be installed on the client machines, or
whether they are ready to use since Web-based. As shown
in Table 8 most of the editors are desktop-based only, and
15 approaches provide modelers with Web-based editing
tools only. Papers P23 and P24 do not provide any client
since they are mainly about conceptual aspects of real-time
collaborations.

TABLE 8: Distribution of editor type

Editor Type #Studies Studies
Desktop-based 28 P1, P2, P5, P9, P12, P15,

P17, P21, P22, P25, P26,
P27, P28, P29, P30, P31,
P33, P36, P37, P38, P39,
P40, P42, P43, P44, P46,
P47, P48

Web-Based 15 P3, P4, P6, P7, P10, P11,
P13, P14, P16, P18, P19,
P32, P34, P35, P45

Both 3 P8, P20, P41
Not information 2 P23, P24

Another characteristic aspect of modeling editors
is represented by the concrete syntaxes that modelers
can use to specify models. According to the concept
ConcreteSyntaxType shown in Fig. 4, models can be
specified by means of several notations, which can be tex-
tual, graphical, tree-based, and tabular. It is not possible
to identify the notation which best fits any situation. For
instance, developers might prefer textual notations, whereas
business analysts might like more graphical or tabular-
based syntaxes. As shown in Tab. 9, most of the analyzed ap-
proaches provide modelers mainly with graphical and tree-
based notations. Some approaches permit to specify models

in a flexible way by enabling the definition of sketches that
might be manipulated later to introduce typing informa-
tion. The approaches labeled as external are not restricted
to particular concrete syntaxes. They provide collaborative
engines, able to manage models developed by means of
external tools.

TABLE 9: Distribution of concrete syntax type

Concrete Syntax Type #Studies Studies
Graphical 38 P2, P3, P4, P6, P7, P8, P9,

P10, P11, P12, P13, P14,
P15, P16, P18, P19, P20,
P21, P22, P24, P25, P26,
P27, P29, P30, P32, P34,
P35, P38, P39, P40, P41,
P42, P43, P44, P45, P47, P48

Tree-based 14 P7, P8, P13, P15, P19, P21,
P22, P33, P34, P39, P41,
P42, P47, P48

Sketch-based 7 P2, P8, P9, P27, P31, P41,
P43

External 6 P1, P5, P17, P23, P28, P46
Textual 5 P13, P16, P21, P24, P45
Tabular 2 P12, P21

When developing modeling artifacts, having the avail-
ability of techniques and tools enabling early checks of the
specified models is of paramount importance. Validation
activities can be performed e.g., to check static semantics
aspects, or functional and extra-functional properties of the
system being modeled. As shown in Fig. 4 by means of
the ValidationSupportType concept, several techniques
can be adopted to validate models. All of them share the
idea of querying the analyzed models in order to find oc-
currences of some (anti-)patterns of interest. The languages
and tools, which are provided to specify such patterns
(e.g., OCL expressions, rule-based predicates, etc.) represent
the distinguishing elements of the considered validation
mechanisms. As shown in Table 10 only 15 approaches out
of the 48 primary studies implement some model validation
support.

TABLE 10: Distribution of validation support type

Validation Support
Type

#Studies Studies

OCL-based 6 P17, P33, P35, P41, P46, P48
Constraint-based 5 P21, P32, P41, P45, P48
Rule-based 3 P12, P16, P37
Critics-based 1 P41

With the concept ReuseGranularityType shown in
Fig. 4 we refer to the mechanisms provided by the consid-
ered model management infrastructure to search and reuse
already specified models (or part of them), by resembling
the established reuse and integration practices in software
development. In the case of MDSE, similar modeling arti-
facts often need to be developed from scratch, thus raising
the upfront investment and compromising the productiv-
ity benefits of model-based processes. For instance, when
modelers identify the need for a domain-specific modeling
language, it is quite common to implement it from scratch
instead of reusing already developed languages that might
satisfy their requirements [64]. By analyzing the selected

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 13

primary studies, we noticed that reuse can occur at different
levels of granularity (see Table 11): P11 and P14 provide the
means to reuse already specified models in new projects,
whereas P13 and P35 rely on the notion of package consisting
of a set of interrelated models, which are made reusable as
whole. Other approaches permit to link and reuse specific
fragments of existing modeling artifacts.

TABLE 11: Distribution of model reuse granularity

Model Reuse Granu-
larity

#Studies Studies

Model Fragment 7 P2, P6, P12, P30, P34, P38,
P41

Model 2 P11, P14
Package 2 P13, P35

5.4 Application Domain

According to the analyzed data, most of the considered
primary studies support the specification of models for
any application domain as shown in Table 12. Only few
approaches are defined for dealing with specific kinds of
systems i.e., mobile applications, Web application, business
applications, and IT systems. An additional level of speci-
ficity we have identified is represented by the supported
system parts, i.e., user interface, business logic, navigational
structure, and data layer. For instance, P19 provides an
approach for the collaborative modeling of user interfaces
for Web applications.

TABLE 12: Distribution of application domain and system
parts

Application
Domain Type

#Studies Studies Focus

Generic 44 P1, P2, P3, P4,
P5, P6, P7, P8,
P9, P10, P11,
P12, P13, P15,
P16, P17, P18,
P20, P21, P22,
P23, P24, P25,
P26, P27, P28,
P29, P30, P31,
P32, P33, P34,
P36, P37, P38,
P39, P40, P41,
P42, P43, P44,
P45, P47, P48

Any. Only
P4 focuses
on UI

Mobile Applications 1 P14 UI, Data,
Business
Logic,
Navigation

Web Applications 1 P19 UI
Business Applications 1 P35 Any
IT Systems 1 P46 Any

5.5 Multi-View Support

To tame the complexity of software systems, some ap-
proaches permit to decompose models into different views,
each focusing on specific aspects of the whole system.
According to the MultiViewSupportType concept shown
in Fig. 4, multi-view modeling approaches are distinguished

between synthetic, and projective [65]. In the former, a num-
ber of views are specified by means of dedicate languages,
and the model of the whole system is automatically syn-
thesized from them. In the latter, each view is obtained by
projecting the system model by hiding details not relevant
for the particular view. According to the analyzed data, only
13 out of the 48 primary studies provide the support for
multi-view specifications (see Table 13).

TABLE 13: Distribution of approaches supporting multi-
views

Multi-Views Support #Studies Studies
Projective 7 P12, P13, P20, P21, P35,

P36, P46
Synthetic 5 P4, P8, P14, P24, P41
Both 1 P16

Characteristics of the model management infrastructure
(RQ1.1)

Most approaches support the collaborative defini-
tion of models, rather than other MDSE artifacts, with
a prevalence of collaborative approaches supporting
the collaborative work on UML models. Editors are
mostly desktop-based, mainly with graphical and tree-
based notations. Collaborative model validation is only
partially supported. Most of the approaches support
the specification of models for any application domain,
while multi-view support is quite limited.

6 COLLABORATION (RQ1.2)
In this section we describe the characteristics of collabo-
rative MDSE approaches with respect to the stakeholders’
collaboration aspect. By analyzing the primary studies un-
der such a dimension, specific concepts have been identified
as shown in Fig. 5. In particular, according to the elicited
CollaborationType concept, stakeholders can work on
the same modeling artifacts in different manners as shown
in Table 14 and described below:
. Synchronous: in this case collaboration occurs in real-
time and stakeholders remotely work together on the same
artifacts by resembling face-to-face interactions. Such a kind
of collaboration can be the most effective since it permits
to solve issues in (near) real-time. As discussed later in
the paper, the infrastructure supporting such a kind of
collaboration should provide stakeholders with the means
to share workspaces and to enable the synchronous editing
of the artifacts there in;
. Asynchronous: stakeholders work on the same artifacts
but not at the same time. Since different changes can be
performed on the same artifacts from different people and
at different time, the employed collaborative infrastructure
has to provide stakeholders with the means to detect and
resolve conflicting changes that might occur. According to
the performed analysis, different strategies can be imple-
mented to propagate changes and to manage conflicting
ones. Most of the available asynchronous approaches im-
plement typical mechanisms provided by version control

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 14

Fig. 5: Taxonomy for the collaboration support of collaborative MDSE approaches

TABLE 14: Distribution of collaboration type

Collaboration Type #Studies Studies
Synchronous 24 P2, P4, P7, P9, P10, P11,

P13, P14, P15, P16, P17,
P18, P19, P24, P25, P26,
P27, P29, P31, P32, P39,
P40, P43, P44

Asynchronous 20 P1, P3, P5, P6, P8, P12, P20,
P21, P30, P33, P34, P35,
P36, P37, P38, P42, P45,
P46, P47, P48

Both 4 P22, P23, P28, P41

systems like SVN or Git. In particular, modelers perform
local changes and then commit them to a central repository.
In case of conflicts, modelers have to manually resolve them
by possibly interacting with the authors of the conflicting
changes. Importantly, before starting any editing session,
modelers have to update their local version of the artifacts
being modified. In the approaches presented in P36 and P37,
modelers do not have to explicitly download the remote
version of the edited model, which instead is automatically
updated immediately after any commit performed to the
central repository. In case of conflicting changes detected
during the automatic updates, a general resolution rule is
applied i.e., the last operated changes are applied.

According to the NetworkArchitecture concept
shown in Fig. 5, the adopted collaborative infrastructure
can make use of a central server, can be peer-to-peer, or
mixed. In case a central server is available (which is the most
recurrent configuration as shown in Table 15), collaborative

tasks are performed by relying on data remotely stored in a
common resource. Alternatively, as presented in P36 and
P37 it is possible to work in a collaborative manner by
means of peer-to-peer configurations. In particular, all the
artifacts, messages, and editing operations are exchanged
among the parties involved in the collaborative sessions. In
P28, P31, and P41 authors propose a mixed solution relying
on a central server providing storage facilities for manag-
ing models, whereas messages and editing operations are
directly exchanged among the involved stakeholders.

TABLE 15: Distribution of network architecture

Network Architecture #Studies Studies
Central Server 43 P1, P2, P3, P4, P5, P6, P7,

P8, P9, P10, P11, P12, P13,
P14, P15, P16, P17, P18,
P19, P20, P21, P22, P23,
P24, P25, P26, P27, P29,
P30, P32, P33, P34, P35,
P38, P39, P40, P42, P43,
P44, P45, P46, P47, P48

Peer to peer 2 P36, P37
Mixed 3 P28, P31, P41

Further than the types of collaboration and network
architectures, the taxonomy we extracted and shown in Fig.
5 consists of additional concepts as presented in the remain-
ing of the section. In particular, Section 6.1 describes the
concepts related to the versioning support (when available),
whereas Section 6.3 presents the concepts related to the
editing facilities provided by the adopted modeling tools.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 15

6.1 Versioning Support

Similarly to source code, modeling artifacts can evolve
during their life-cycle e.g., due to refinements operated
on previously represented abstractions or to the specifi-
cation of unforeseen requirements. In such cases, having
the availability of versioning systems able to keep track of
the performed changes is of paramount importance e.g.,
to perform change impact analysis or to simply retrieve
the subsequent versions of a given modeling artifact. Even
though the importance of model versioning has been largely
recognized by modeling experts, there is still a deficiency of
such a facility in currently available collaborative tools (28
out of 48 primary approaches do not provide any model
versioning support as shown in Table 16).

TABLE 16: Distribution of versioning type

Versioning type #Studies Studies
None 28 P2, P3, P4, P7, P9, P10, P11,

P12, P14, P15, P16, P17,
P19, P24, P25, P26, P27,
P29, P30, P31, P32, P36,
P37, P39, P40, P43, P44, P47

Adhoc 9 P1, P8, P13, P18, P20, P23,
P33, P42, P48

Models 5 P21, P22, P28, P34, P38
Generic 4 P5, P35, P41, P46
Wiki 2 P6, P45

According to the extracted taxonomy, two types of ar-
chitecture can be employed for supporting the versioning
of the modeling artifacts, i.e., centralized and distributed
(VCSArchitectureType concept in Fig. 5). As shown in
Table 17, the majority of primary studies supporting a ver-
sioning system adopt a centralized architecture (19 studies
over 20). Interestingly, only 1 primary study adopts a dis-
tributed versioning architecture (P33), where the DICoMEF
approach for semi-automatic conflict detection, reconcilia-
tion, and merging for models and metamodels has been
presented. The DICoMEF approach is fully distributed, but
the process of conflict detection and merging is centralized;
more specifically, groups of stakeholders can be dynamically
formed in DICoMEF and a designated controller has the
responsibility to store, receive and forward model change
requests among the members of each group.

TABLE 17: Distribution of VCS architecture type

VCS Architecture Type #Studies Studies
Centralized 19 P1, P5, P6, P8, P13, P18,

P20, P21, P22, P23, P28,
P34, P35, P38, P41, P42,
P45, P46, P48

Distributed 1 P33

When developing modeling artifacts by exploiting ver-
sioning systems, it might be helpful to create branches of
the project being developed in order to allow model parts
to be specified in parallel. This is particularly required for
large models, which demand the participation of several
stakeholders with different knowledge. Once branches have
been properly developed, they require to be merged back
onto the parent branch. According to the extracted data, few

approaches, 11 out of 48, provide modelers with branching
mechanisms as shown in Table 18.

TABLE 18: Distribution of branching support

Branching Support #Studies Studies
Not supported 37 P1, P2, P3, P4, P5, P6, P7,

P9, P10, P11, P12, P14, P15,
P16, P17, P19, P22, P23,
P24, P25, P26, P27, P29,
P30, P31, P32, P36, P37,
P39, P40, P42, P43, P44,
P45, P46, P47, P48

Supported 11 P8, P13, P18, P20, P21, P28,
P33, P34, P35, P38, P41

6.2 Conflict Management
When several modelers work in parallel on the same arti-
facts, it is also necessary to adopt conflict detection techniques
able to discover conflicts, i.e., discordant changes performed
on the same elements by different stakeholders. Most of the
analyzed approaches provide modelers with some conflict
detection techniques (27 out of the 48 analyzed papers as
shown in Table 19). Some of the considered papers (12 out
of 27) try to prevent conflicts by adding further constraints
on the editing phases, e.g., before changing models, mod-
elers have to lock the elements they want to modify. This
way, they have exclusive accesses to model elements and
consequently conflicts are simply avoided.

TABLE 19: Distribution of conflict detection support

Conflict detection sup-
port

#Studies Studies

Yes 27 P1, P5, P6, P8, P13, P16,
P17, P19, P20, P21, P22,
P23, P24, P28, P30, P33,
P34, P35, P36, P37, P38,
P41, P42, P44, P46, P47, P48

Avoided 12 P2, P3, P9, P10, P11, P12,
P14, P18, P32, P39, P40, P45

None 9 P4, P7, P15, P25, P26, P27,
P29, P31, P43

In order to reconcile conflicts, which might occur because
of discordant changes, resolution means should be pro-
vided by the adopted collaborative modeling framework.
As shown in Table 20 most of the analyzed approaches
providing conflict detection features (17 of 27) prefer to com-
pletely delegate the resolution phase to the stakeholders that
caused the conflicts. Other approaches (9 of 27) implement
a mixed approach, i.e., try to automate the resolution phase
as much as possible, and involve humans only for deal
with discordant changes, which cannot be automatically
solved since further information is required. The approach
presented in P36 automates the conflict resolution phase
by applying a general rule that when two changes are
conflicting, those performed late overwrite those occurred
first.

6.3 Shared Workspace
By analyzing the 48 primary studies we identified two
recurrent aspects related to how stakeholders can actually

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 16

TABLE 20: Distribution of conflict resolution type

Conflict resolution
type

#Studies Studies

Manual 17 P1, P8, P13, P16, P17, P19,
P20, P21, P28, P30, P34,
P35, P41, P42, P44, P46, P47

Mixed 9 P5, P6, P22, P23, P24, P33,
P37, P38, P48

Auto 1 P36

collaborate during the editing phases. Few approaches (only
4 as shown in Table 21) expect a collaboration occurring
among several people working face-to-face in the same
room. Such a kind of collaboration can turn out to be too
restrictive and this justifies why most of the analyzed work
provide modelers with a remote shared workspace. The
works P28 and P30 provide the support for both kinds of
interaction.

TABLE 21: Distribution of shared workspace location type

Workspace location
type

#Studies Studies

Remote 42 P1, P3, P4, P6, P7, P8, P9,
P10, P11, P12, P13, P14,
P15, P16, P17, P18, P19,
P20, P21, P22, P23, P24,
P25, P26, P27, P29, P32,
P33, P34, P35, P36, P37,
P38, P39, P40, P41, P42,
P43, P44, P45, P46, P47

Local 4 P2, P5, P31, P48
Both 2 P28, P30

The process underpinning the collaboration of several
stakeholders can be different depending on the roles and
expertise of the involved modelers and on how they are
geographically distributed. To this end, we analyzed if the
primary studies faced the problem to give to the users
a workflow to follow during the modeling activities. As
shown in Table 22, 27 works prescribed a workflow in terms
of steps and roles that have to be followed by a given
collaborative editing process. Very few papers (only 5 out
of 48) consider this aspect irrelevant and do not describe
at all the sequence of actions to be followed during the
collaborative modeling process.

TABLE 22: Distribution of prescribed workflow

Prescribed workflow #Studies Studies
Yes 27 P1, P5, P6, P8, P9, P10, P11,

P13, P14, P16, P17, P22,
P24, P28, P30, P32, P33,
P34, P36, P37, P38, P41,
P42, P44, P45, P47, P48

Partially described 16 P2, P12, P15, P18, P19, P20,
P21, P23, P25, P26, P29,
P31, P35, P39, P43, P46

No 5 P3, P4, P7, P27, P40

6.4 Roles
While analyzing the considered 48 primary studies concern-
ing the collaboration aspect, we have identified several user
roles, each involved in collaboration activities with different

tasks and rights. More specifically, users collaboratively
working on the same modelling artifacts can play one or
more of the following main roles:

• Facilitator: this group consists of users that can play a
key role in any collaborative modelling session. They
are senior users that make decisions when needed;

• Project Administrator: users in this group have full
access to the artifacts being developed including
their deletions;

• Server Administrator: this group refers to users that
can administer also users further than the projects
being developed;

• Reader: users belonging to such a group can only
see developed modelling artifacts without having the
possibility to operate changes on them;

• Integrator: some approaches recognize such a role
representing users, which have the responsibility
of performing integration activities i.e., merging
changes operated by different developers and ask
them to review and agree the integrated results;

• Controller: the controller propagates accepted
changes to all members of a given group of users,
and changes propagated from the controller are
applied on the artifacts stored in the main branch of
the considered repository;

• Editor: users of such group can read and write their
local copy of the (meta)models, and can only read
those that are in the main branch of the considered
repository;

• Project Leader: in case of conflicting changes, some
approaches consider a particular kind of users that
can start discussions among modelers aiming at mit-
igating conflicting changes and resolve them. Project
leaders have such a responsibility.

TABLE 23: Distribution of roles

Roles #Studies Studies
Facilitator 8 P3, P9, P21, P23, P30, P32,

P37, P45
Administrator
(Project/Server)

4 P11, P14, P16, P21

Reader 4 P11, P16, P21, P33
Integrator 1 P1
Controller 1 P33
Editor 1 P33
Project Leader 1 P45

The distribution of such roles in the analyzed approaches
is shown in Table 23. The primary studies that are not in-
cluded in those shown in Table 23 consider all the modelers
involved in the collaboration activities as pairs.

Characteristics of collaboration means (RQ1.2)
The collaborative infrastructure is mostly based on

a star-like topology with data stored in a central server.
Versioning is mostly supported through a centralized
versioning system architecture. Branches creation is
only sporadically supported while conflict detection is
employed by over half of the approaches. Collaboration
is mostly based on a remote shared workspace. The

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 17

workflow specification of how different stakeholders
shall interact is described (or partially described) by
most of the approaches. MDSE collaboration involves
a number of different stakeholders with different roles.

7 COMMUNICATION (RQ1.3)
In this section we describe the characteristics of collabo-
rative MDSE approaches in relation to how they support
stakeholders’ communication. Figure 6 shows the taxonomy
we extracted from the primary studies when focusing on
this dimension of collaboration. The first layer of the tax-
onomy is composed of three elements: target stakeholders,
workspace awareness, and communication support. We de-
scribe the obtained data for each element in the following
subsections.

7.1 Target Stakeholders
By taking inspiration from the conceptual foundations of
the ISO/IEC/IEEE 42010 standard [35], a stakeholder can
be defined as an individual, team, or organization having an
interest in one or more models of the system. Since collabo-
ration intrinsically implies involvement of a potentially het-
erogeneous set of stakeholders, the first aspect that we want
to investigate is whether involved stakeholders are technical
(e.g., software architects, developers, system engineers) or
non-technical (e.g., business analysts, UI designers, or even
product owners) (see the StakeholderType concept in
Figure 6). As shown in Figure 7, the vast majority of the
studies assume that only technical stakeholders collaborate
on models (41/48), followed by only 6 approaches designed
for both technical and non-technical stakeholders (P4, P6,
P14, P20, P44, P47). Interestingly, there is a unique approach
designed for non-technical stakeholders only (P2), pub-
lished in 2015; the approach allows participants to sketch
and use lightweight metamodeling techniques to collabora-
tively define notations and step-wise guides them towards
the formalization of the drawings into precisely defined
models.

During the analysis of obtained data we also noted
that there are 9 approaches that are dedicated to specific
types of stakeholders. Those approaches provide some specific
instrument or modeling language tailored to a specific ap-
plication domain (e.g., data-intensive mobile apps in P14)
or stakeholders’ role (e.g., software architects in P47). In
Table 24 we present the full list of types of stakeholders
as they have been reported in those studies.

7.2 Workspace Awareness
Workspace awareness is defined as the up-to-the-moment
understanding of other stakeholders’ interaction with a
shared workspace [66]. In our context, the workspace com-
prises the modelling environment provided by the collabo-
rative MDSE approach (e.g., the online web editor in which
stakeholders create and modify models in real-time in P13)
and all its additional facilities like a shared dashboard (e.g.,
in P21), integration to a wiki-based engine (e.g., in P7), or
special notification areas in the tool (e.g., in P24). Intuitively,

TABLE 24: Approaches dedicated to specific types of stake-
holders

Study Specific target stakeholders Year
P4 Developer, functional analyst, usability expert,

domain expert, designer
2014

P6 Business process expert, modeling expert 2013
P14 Designer, end user, customer, information ar-

chitect, UI designer, app developer, back-end
developer, content producer, project manager

2014

P17 Software architect 2010
P19 Designer, developer, software architect, soft-

ware engineer
2013

P31 Analyst, business process stakeholder 2011
P44 Domain expert, model engineer 2012
P45 Business analyst 2011
P47 Software architect 2015

in the context of our study workspace awareness focuses
on the level of understanding that each stakeholder has on
the operations performed by other stakeholders on the mod-
elling artifacts. It is important to note that workspace aware-
ness is limited to events happening in the workspace [66],
it does not encompass verbal communication or informal
awareness mechanisms like chats, emails, or documentation
exchanged outside the workspace provided by the MDSE
approach.

Table 25 details the tools provided by each approach for
supporting the workspace awareness among stakeholders.
From the extracted data we can observe that there is a
certain fragmentation with respect to the types of tools for
workspace awareness, ranging (among many) from real-
time model updates (28/48 primary studies), to the high-
lighting of other stakeholders’ cursors or pointers (5/48), to
model update notifications via automatic emails (2/48). It
should be noted that many collaborative MDSE approaches
(specifically, 36/48) provide multiple workspace awareness
tools in combination; this means that stakeholders can ben-
efit from the characteristics of each available tool in terms
of interaction with other stakeholders, understandability
of the models being produced, teamwork, and situational
awareness of their current project.

In order to better investigate how our primary studies
perform with respect to workspace awareness, we assess
their awareness level according to the elements of workspace
awareness presented in [66, Table I]. More specifically, here
we consider the who, what and where elements relating to
the present state of a project; the final awareness level of
a primary study is Low if it supports only one element
(according to the I1 inclusion criterion, there are no primary
studies with zero workspace awareness elements in our
study), Medium if it supports two elements, or High if it
supports all elements. As shown in Figure 8, the majority
of the primary studies have a Low workspace awareness
level (29/48), whereas Medium and High levels are quite
balanced with 8 and 11 primary studies, respectively. This
result is quite interesting because it can be seen as an
indication of room for improvement in terms of workspace
awareness for collaborative MDSE approaches. For instance,
workspace awareness support for the WebGME (P13) users
is allowed through real-time updates in the modeling editor
and through an implicit lock that prevent to modify/delete
a model element already selected by another user: the

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 18

Fig. 6: Taxonomy for the communication support of collaborative MDSE approaches

TABLE 25: Distribution of workspace awareness tools

Awareness tools #Studies Studies
Real-time model updates visualized directly in the modeling editor 28 P2, P4, P7, P9, P10, P11, P13, P14, P15, P16, P17, P18, P19, P22,

P24, P25, P26, P27, P29, P31, P32, P36, P37, P39, P40, P41, P43,
P44

Generic notification system (e.g., popup messages, etc.) 20 P6, P7, P10, P13, P14, P15, P16, P17, P18, P21, P23, P24, P28,
P33, P34, P38, P42, P45, P46, P47

List of currently active stakeholders 15 P6, P7, P9, P10, P18, P27, P30, P31, P32, P36, P39, P40, P41,
P43, P44

Highlight the selection of model elements by other stakeholders 10 P2, P6, P7, P10, P11, P25, P27, P41, P43, P44
Highlight conflicts on model elements after concurrent editing 8 P6, P22, P24, P33, P34, P44, P47, P48
Each user as an associated color for highlighting her actions or
messages

8 P7, P9, P27, P31, P39, P40, P41, P44

Real-time indication about the operations performed by other stake-
holders

8 P22, P34, P38, P39, P40, P41, P44, P48

Highlight locked model elements by other stakeholders 7 P2, P3, P8, P12, P28, P29, P34
Each stakeholder can see other stakeholders’ cursor or pointer 6 P18, P25, P29, P39, P40, P43
Based on the versioning system (e.g., commit messages, update
notifications, etc.)

5 P1, P5, P35, P42, P46

Free-hand drawing in a special area of the client tool for sketching
ideas

3 P9, P39, P40

Model overview where stakeholders can visually see where other
stakeholders are working

3 P9, P39, P43

Based on a wiki engine (e.g., updates log, active users, etc.) 2 P6, P45
Dedicated area with general information about other stakeholders’
activities (e.g., log)

2 P6, P10

Notifications via automatic emails 2 P20, P34
Dedicated area with editing operations details (e.g., operations’
timestamps)

2 P8, P21

Dedicated area with editing conflicts to manage 1 P38

locked element gives to the user an indication of where
another user is working on (i.e. where dimension support).
Unfortunately the modeling updates just ”appear” in the

editor without any indication about who is updating nor the
details of the current actions that other users are performing;
this is a clear gap in the who and what dimensions of

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 19

Fig. 7: Results - stakeholder types

Fig. 8: Workspace awareness levels

workspace awareness on which the authors of WebGME
may work.

7.3 Communication Support

As already discussed in Section 3, in MDSE communication
support allows stakeholders to discuss and present what
they and other stakeholders are doing on specific modelling
artifacts. Historically, software engineers have adopted a
wide range of communication tools and technologies, such
as telephone, teleconferences, email, voice mail, discussion
lists, the Web, instant messaging, voice over IP, etc. [67].
Our primary studies present a wide set of communication
tools and technologies; we classified them into built-in and
external communication tools. Built-in communication tools
are provided by a collaborative MDSE approach and are
integrated into it (e.g., models annotations in the editor,
internal chat), whereas external communication tools are
only prescribed by the collaborative MDSE approach and
do not live inside it (e.g., voice calls, emails, face-to-face
meeting).

Table 26 presents the distribution of all built-in and ex-
ternal communication tools emerging from our analysis. It is
easy to note that there is a great variability here, where we
have chat (18/48) and model annotations (13/48) as clear
winners for built-in communication means; voice (3/48),
email (2/48), and teleconference software (2/48) are the
most prescribed external communication means.

15 11 5 7 2

2 1

3 1 1

0

0

0

1

2

3

4

0 1 2 3 4 5
Number of built−in communication tools

N
um

be
r o

f e
xt

er
na

l c
om

m
un

ic
at

io
n

to
ol

s

Fig. 9: Results - Number of built-in and external communi-
cation tools

TABLE 26: Communication tools

Built-in comm.
tools

#Studies Studies Conversation-
based (subset)

Chat 18 P7, P9, P10,
P11, P16, P18,
P22, P24, P25,
P26, P27, P29,
P32, P34, P39,
P40, P43, P44

P7, P9, P10,
P11, P16, P18,
P22, P24, P25,
P26, P27, P29,
P32, P34, P39,
P40, P43, P44

Annotations 13 P3, P6, P7, P8,
P12, P18, P20,
P21, P26, P27,
P30, P31, P40

-

Comments 8 P6, P8, P12,
P20, P21, P27,
P30, P45

P6, P8, P12,
P20, P21, P45

Change propos-
als

7 P21, P22, P30,
P33, P39, P40,
P48

-

Voting system 6 P22, P30, P39,
P40, P45, P48

-

Tags 1 P6 -
Model reviews 1 P8 -
Calls for atten-
tion

1 P9 -

Sticky notes in
the editor

1 P9 P9

Audio messaging 1 P25 P25
Editing conflicts
table

1 P27 P27

Feedback 1 P38 -
Dedicated forum 1 P45 P45
External comm.
tool

#Studies Studies Conversation-
based (subset)

Voice 3 P2, P28, P30 P2, P28, P30
Email 2 P20, P47 P47
Teleconference
software

2 P28, P30 P28, P30

External chat 1 P47 P47
Face-to-face
meetings

1 P48 -

Hand gestures 1 P2 P2
Wiki 1 P20 -
Hyperlinks 1 P3 -
Multimedia
annotations

1 P33 -

By looking at the obtained numbers, it is evident that
there is a certain unbalance with respect to the number of
built-in and external communication tools; indeed, as shown
in Figure 9, there is a strong predominance of built-in com-
munication tools with respect to external ones. Interestingly,
we found out also that 15 out of 48 primary studies do not
provide any clear indication about how communication is
supported by the proposed approach, unveiling a potential
gap in how state-of-the-art approaches support the three
dimensions of collaborative MDSE. Moreover, 11 studies
provide only one (built-in) communication tool, followed by
14 studies providing more than one built-in communication
tool (e.g., the approach presented in P39 supports an in-
ternal chat system, an engine for making change proposals
in the models, and a voting system for those proposals).
Finally, there are few studies in which external communi-
cation tools are prescribed; in this context we can observe
that 3 studies propose a combined use of two external
communication tools (P2, P28, P47), 2 studies support the
use of one built-in and one external communication tool
(P3 and P33), and other 3 studies support and prescribe
other different combinations of communication tools (P20,

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 20

P30, and P48). None of the considered studies propose
the use of more than 4 built-in and more than 2 external
communication-tools.

We also analyzed our primary studies in terms of sup-
port for conversation-based communication. In this context,
the idea is that stakeholders may need to communicate
with each other with a question-and-answer interaction
style, where communication contents about some modelling
artifact can be organized hierarchically and linked to other
communication contents (e.g., a comment in a model can be
marked as a reply to another comment). In the last column
of Table 26 we report the studies providing conversation-
based communication.

TABLE 27: Types of supported tracing links

Traceability link type #Studies Studies
Annotations on model
elements

14 P3, P6, P7, P8, P12, P18,
P20, P21, P26, P27, P30,
P31, P33, P40

Links to model ele-
ments in chat text

6 P9, P11, P26, P39, P40, P44

Comments on model ele-
ments

4 P8, P12, P20, P21

Change proposals linked
to model elements

3 P21, P22, P48

Voting system for change
proposals linked to
model elements

2 P22, P48

Links to model ele-
ments in the Wiki text

1 P20

Sticky notes on model el-
ements

1 P9

Hyperlinks to model el-
ements in unstructured
textual documents

1 P3

Links to model ele-
ments in multimedia an-
notations

1 P33

Feedback system linked
to model elements

1 P38

What distinguishes collaboration in MDSE within soft-
ware engineering is that collaboration in MDSE is artifact-
based; indeed, the focus of MDSE activities is on the produc-
tion of new models, the creation of shared meaning around
the models, and elimination of error and ambiguity within
the models [67]. Under this perspective, it is fundamental
to have traceability links to the models in order to keep a
structured link between the design decisions discussed in
communication-oriented contents (e.g., the text of a chat or
the page of a Wiki) and modeling artifacts (e.g., a model or a
specific model element). In Table 27 we present the primary
studies providing those tracing links.

Characteristics of communication means (RQ1.3)
The vast majority of the primary studies are in-

tended to support the collaboration among technical
stakeholders, with a unique approach designed for
non-technical ones. Many are the tools for workspace
awareness (being real-time updates and notification
systems the most frequent). Still, the awareness level
in most of the studies is low. Communication tools and
technologies, classified into built-in and external, are
diverse, with chat and annotations being the most used

ones (in the built-in category). Conversation-based com-
munication is quite frequently used, especially through
chat and comments. Traceability links are frequently
kept through annotations or links to model elements
in chat text.

8 CHALLENGES AND SHORTCOMINGS (RQ2)
In this section we focus on the challenges that researchers
are facing and have identified either as actual limitations
of their approaches or future enhancements that will be
considered in the future. In this context, the main objective is
to answer research question RQ2, that is, to identify current
limitations and challenges with respect to the state of the art
in collaborative MDSE. In order to achieve this goal, for each
primary study we collected all the information provided by
its authors regarding (i) identified limitations of the pro-
posed approach, (ii) identified challenges that have not been
solved in the current form of the proposed approach, and
(iii) discussed directions for future work. Such information
has been extracted by (i) making a thorough reading of the
full text of each primary study, and (ii) applying the open
card sorting technique [58], similarly to what has been done
for building the classification framework in the context of
RQ1. After the application of the card sorting technique
we noticed that the identified clusters of limitations and
shortcomings could have been further grouped into two
main groups:

• Limitations and shortcomings related to aspects of
the C-MDSE taxonomy17 (see Table 28);

• Limitations and shortcomings focussing on qualita-
tive aspects of the presented approaches, such as
their usability, performance and scalability (see Ta-
ble 29).

Table 28 provides an overview of the limitations and
shortcomings which have been mentioned more than once
among our primary studies. By looking at the table it is
evident that the most relevant challenge with respect to
collaborative MDSE is conflicts management; indeed, even
if in the recent years some approaches for managing this
aspect of collaborative modeling have been proposed (e.g.,
P46, P47), 15 studies over 48 still mention conflict manage-
ment either as a limitation or as an aspect to improve in the
future. Model synchronization and propagation of changes
across models edited within the collaborating team are also
mentioned as relevant challenges (9 studies over 48).

As shown in the table, many other limitations and chal-
lenges have been identified in the primary studies, ranging
from improving the support for the collaboration workflow
of the team (4 studies), interoperability with external mod-
eling, analysis, or simulation tools (2 studies), and so on.
Finally, in 11 cases the authors mentioned approach-specific

17. Concepts of the classification framework are referred in the third
column by means of a dot notation. For instance, with Collabora-
tion.ConflictDetection.ConflictResolution we refer to the concept Conflic-
tResolution contained in the ConflictDetection entity belonging to the
Collaboration dimension as shown in Fig. 5

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 21

TABLE 28: Identified limitations and shortcomings according to the C-MDSE taxonomy

Limitations and shortcomings #Studies Studies Related concepts of the classification framework
Conflicts management 15 P1, P5, P6, P11, P13, P16,

P17, P22, P23, P24, P28,
P29, P42, P43, P48

Collaboration.ConflictDetection.ConflictResolution

Model synchronization and change
propagation

9 P4, P8, P11, P19, P21, P29,
P38, P43, P46

Collaboration.VersioningSupport.ModelMerging

Constraints specification, enforcing,
and conformance checks

5 P11, P13, P33, P42, P46 ModelManagement.Editor.validationSupport

Support for collaboration workflows and
integration with development process

4 P19, P21, P33, P39 Collaboration.SharedWorkspace.prescribed workflow

Tool improvement 4 P9, P12, P28, P40 Communication.WorkspaceAwareness.AwarenessTool,
ModelManagement.Editor

Support for versioning and models
editing history

3 P10, P11, P48 Collaboration.VersioningSupport

Support for combined asynchronous
and synchronous collaboration

2 P16, P37 Collaboration.collaboration type

Independence from any specific model-
ing language

2 P6, P42 ModelManagement.ModelingLanguage

Interoperability with external tools 2 P9, P12 ModelManagement.Editor.ConcreteSyntaxType
Better coverage of modeling languages
concepts

2 P10, P36 ModelManagement.ModelingLanguage.LanguageCu-
stomizationMean

Support for audio communication 2 P31, P44 Communication.CommunicationSupport

limitations and challenges, e.g., the definition and application
of transformations between models across different abstraction
levels (P19), the fact that the technology for deploying software
tools over the web is still immature (P3), or the need to manage
the logs in a systematic manner (P26).

As shown in Table 29, from a qualitative perspective
we identified three recurrent areas of improvement for C-
MDSE approaches. Specifically, usability has been mentioned
in 7 primary studies over 48, followed by performance (3/48)
and scalability (3/48) improvement. In conclusion, from the
extracted data we can observe that identified limitations and
shortcomings are quite fragmented, where each research
group is focusing on specific sub-problems related to col-
laboration in MDSE (this is also evident from the paper
fragments reported in Table 29). Nevertheless, the points
discussed above can be seen as an indication of the specific
areas within collaborative MDSE that will likely receive
scientific interest in the future; so, future researchers on
collaborative MDSE can use them as a compass towards
making an impact in this specific research domain.

Challenges and Shortcomings (RQ2)
Limitations and shortcomings are varied. Conflicts

management, while addressed in some papers, is still
frequently considered to be a limitation or to re-
quire some improvement. Model synchronization with
change propagation is also mentioned as relevant chal-
lenge. From a qualitative perspective, usability, perfor-
mance and scalability are the most mentioned areas of
improvement for future C-MDSE approaches.

9 PUBLICATION TRENDS (RQ3)
In this section we present the publication trends on collab-
orative MDSE approaches. In order to provide a complete
picture about the number and types of publications on the
topic, in this section we consider all the selected publica-
tions, independently of the clustering step we performed

during the search and selection phase (see Section 4.2.2).
More specifically, for answering RQ3 we considered a total
of 106 publications, including both the 78 publications that
we selected before the clustering step and the 28 publi-
cations resulting from the snowballing activity. For each
primary study we extracted publication year, publication
venue, and publication type. In the following we discuss
the obtained results.

Figure 10 presents the distribution of the publications on
collaborative MDSE approaches18. From the collected data,
we can observe that relatively few studies were published
until 2003, whereas we can notice a growth of the number of
publications starting from 2004. More precisely, the average
number of publications between 1996 and 2003 is less than
1 study per year, whereas it reached a value of 8.33 publi-
cations per year in the period between 2004 and 2015 . This
result confirms the scientific interest and need of research
on collaborative MDSE approaches in the last years.

The first publication on collaborative MDSE was
published in 1996 (P12), where the authors presented
MetaEdit+. The key features of MetaEdit+ as collaborative
MDSE approach are: (i) the support of high-level specifica-
tion languages (i.e., what we could call a domain-specific
language today), (ii) an open architecture in which the
models repository is agnostic of the used tools and provides
dedicated APIs to tool providers, (iii) a set of mechanisms
for concurrent access of repository data via different tools
and by different types of users, (iv) the support for different
alternative views of the same models, such as matrices,
tables, etc. As a comparison to a modern approach for
collaborative MDSE we refer the reader to our discussion
of WebGME in Section 3.

We classified analyzed research studies in order to assess
their distribution by (i) type of publication (i.e., journal,
conference, or workshop paper) and (ii) targeted publication
venues.

Figure 11 shows the publication types of the analyzed

18. Our search process covers the research studies published until
January 2016, thus potentially partial data for 2015.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 22

TABLE 29: Identified limitations and shortcomings (qualitative aspects)

Qualitative aspects of
C-MDSE

#Studies Studies Examples (paper fragments)

Usability 7 P4, P24, P31,
P39, P44, P45,
P47

N . . . evaluation techniques of the so called groupware usability to test the suitability
of AMEs with real stakeholders . . . Remote collaboration and inclusion of visualization
techniques for better interaction. (P4)
N Operation undo has not been taken into account for the moment. It requires further study
and efforts. (P24)
N Students reported that the tool usability could be improved, so as to allow analysts to better
follow the dynamics of interviews. Some students, for instance, decided to use different tools
for documenting the interview, due to their difficulties in using NetSketcher accordingly
. . . and the use of ”drag and drop” for choosing and placing process elements into the drawing
space. (P31)
N . . . the development of more complex editors is not one of our priorities, although we
consider it to be one of our objectives for the improvement of the method. (P39)
N . . . we plan to extend our prototype with additional features to increase the usability of
the tool. An example would be the integration of speech. This would complement the chat
window with a convenient way of communicating with other participants and approaches a
face-to-face interaction. (P44)
N We will also improve the usability of the tool, thanks to the execution of further case
studies and experiments. (P45)
N . . . exploring different ways of delivering feedback to architects, the effect of variations in
the immediacy with which feedback is delivered. (P47)

Performance improve-
ment

3 P31, P42, P43 N Students suggested ideas for improving NetSketcher, such as: improvements in gesture
recognition for process elements - it seems that it needs to be faster in order to allow them to
follow the interview speed (P31)
N limitations of the Odyssey-SCM current release regards configuration constraints, partial
check-outs, and workspace caching (P42)
N If larger amounts of data were to be transmitted, or a large number of clients were to be
connected it would be necessary to reconsider . . . A major reason for choosing the current
strategy is, however, the simplicity and flexibility of decentralization (P43)

Scalability improvement 3 P12, P42, P43 N First, it does not address the need for multiple distributed repositories which is typical for
large scale software development. Second, its concurrency management strategies can be too
demanding for large scale software repositories. (P12)
N Currently, the server layer is centralized. The adoption of a distributed server layer, is left
for future work. (P42)
N A major reason for choosing the current strategy is, however, the simplicity and flexibility
of decentralization (P43)

primary studies over the years 19. The most common pub-
lication type is conference with 62 (65.72%) studies over
106, followed by workshop papers with 27 (28.62%) studies,
and finally journal papers with only 17 (18.02%) studies.
Such a high number of conference and workshop papers
may indicate that this topic is still a young research theme,
despite some studies have been already published in the
nineties.

Table 30 shows the publication venues that hosted more
than two publications (the last row of the table is an
aggregate of all the publication venues with two or less
publications). From these data we can notice that research
on collaborative MDSE is spread across a large number of
venues (76 venues for 106 publications) spanning different
research areas like (global) software engineering, MDSE,
system engineering, business informatics, programming
languages. We can elaborate this finding as an indication
that collaborative MDSE is perceived today as orthogonal
with respect to many other research areas, rather than a
specific research topic. Nevertheless, the organization of
scientific events (e.g., conferences or workshops) fully ded-
icated to collaborative MDSE may help in giving a clearly
defined identity of the research community working on this
topic. The first step towards this change is the international
workshop on Collaborative Modelling in MDE (COMMit-

19. See previous footnote.

TABLE 30: Publication venues with more than one publica-
tion on collaborative MDSE

Publication venue Type #Publications
ACM/IEEE international confer-
ence on Model Driven Engineering
Languages and Systems (MODELS)

Conference 5

International Conference on Global
Software Engineering (ICGSE)

Conference 5

Comparison and Versioning of Soft-
ware Models (CVSM)

Workshop 5

International Conference on Soft-
ware Engineering (ICSE)

Conference 4

ACM Symposium on Applied Com-
puting (SAC)

Conference 4

ACM Conference on Computer-
Supported Cooperative Work and
Social Computing (CSCW)

Conference 4

International Conference on Com-
putational Science (ICSS)

Conference 4

Hawaii International Conference on
System Sciences (HICSS)

Conference 3

Others - 72
TOTAL - 106

MDE 2016)20, at its second edition and co-located with
the ACM/IEEE international conference on Model Driven
Engineering Languages and Systems (MODELS), the most
known forum in the MDSE community.

20. Web: http://cs.gssi.it/commitmde2016/; Proceedings of the first
edition: http://ceur-ws.org/Vol-1717/

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 23

1
0 0

1
0 0

1

3

7

5

7
6

12
11

9

6

2

16

10
9

0

5

10

15

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Fig. 10: Distribution of primary studies by year

1

1 1

2

1

4

3

3

2

6

1

1

4

1

3

1

8

10

1

8

1

3

3 1

1

11

4

1

6

4

4

3

2

Conference

Journal

Workshop

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

Fig. 11: Distribution of primary studies by type of publication

Publication trends (RQ3)
The first primary paper on collaborative MDSE

dates back to 1996. While the number of studies pub-
lished in the 1996-2003 time frame has been quite lim-
ited, a growth can be noticed from 2004 onwards. Most
of the papers have been published in conferences and
workshops, across a large number of different venues.

10 ORTHOGONAL FINDINGS

This section reports the results orthogonal to the vertical
analysis presented in the previous sections. For the purpose
of this section, we cross-tabulated and grouped the data, we
made comparisons between pairs of concepts of our classi-
fication framework, and identified perspectives of interest.
Collaboration types VS versioning. As previously ex-
plained, the majority (22/28) of approaches supporting
synchronous collaboration do not provide any means for model
versioning. This result is surprising since users of those
approaches collaborate in real-time on models, but they do
not have any information about how the models evolved
throughout their life span, they cannot perform rollback
operations to past versions of the models, they do not
have a vision about who worked on the models in the
past, etc. Such operations play a key role when collabo-
ratively working on source code development by means
of versioning systems like SVN and Git. In other settings,
real-time collaboration is endowed with versioning facili-
ties. For instance, Google Docs permits different users to
collaboratively work on the same document, and gives the

possibility to revert textual changes, to keep track of the
modifications done on the text, and each user is aware of
the editing operations done by the other contributors. Thus,
we can reasonably expect that synchronous collaboration
and model versioning will play together a similar role in
collaborative MDSE approaches as well.

The situation about approaches with asynchronous col-
laboration is more stable, with the majority (18/24) of
approaches supporting some kind of model versioning,
though it is quite widespread with 7 approaches pro-
viding an ad-hoc versioning system, 5 providing model-
level versioning, 4 reusing a generic text-based one, and 2
building on a wiki-based versioning system. Nevertheless,
6 approaches do not provide any versioning support; in
those cases the approach internally manages and stores past
versions of the models (mainly for merging and conflict de-
tection), but they are not explicitly exposed to the modeler.
Collaboration types VS conflict management. It emerged
that conflicts are managed in a very variegated manner in
approaches with synchronous collaboration. More specifically,
9 approaches do not directly manage conflicts (e.g., the
order of edit operations over time is used as driver for con-
flict management), 9 approaches avoid conflicts on models
by design (e.g., locking mechanisms on the fragments of
models being edited), 9 approaches provide explicit conflict
detection mechanisms (e.g., via 3-way merging). In any case,
complementing synchronous collaboration with real-time
communication mechanisms will surely help in terms of
conflict avoidance, mitigation, and resolution.

For what concerns approaches with asynchronous col-
laboration, the majority (21/24) manages conflicts with ded-
icated engines, whereas the remaining approaches (3/24)

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 24

have mechanisms for conflicts avoidance.
Collaboration types VS communication. Chat is the
clear winner in approaches with synchronous collaboration
(14/27), where in some cases it has been complemented with
other communication means such as model element annota-
tions (6/27), change proposals (2/27), comments on models
(1/27), etc. Approaches with asynchronous collaboration are
far more widespread in terms of communication means, no
clear trend can be identified here.
Collaboration types VS shared workspace. Collaborative
MDSE surely helps for geographically distributed teams,
but also teams working in the same place. In this case we
assess which collaboration type has been more investigated
by researchers, depending on whether the targeted stake-
holders are geographically distributed or not. We found
a striking balance when cross-checking those two aspects
of collaboration, with asynchronous and synchronous col-
laboration similarly tailored for geographically-distributed
(22/27 vs 18/24, respectively), localized teams (2/27 vs 2/24
cases, respectively), and mixed teams (1 case each).
Multi-view VS modeling editors. We cross-checked the
support for multi-view modeling with the types of modeling
editors. It emerged that multi-view modeling is not correlated
with specific types of editors (e.g., graphical, textual, etc.).
However, we noticed that the majority of approaches sup-
porting external third-party editors (5/6) supports only single-
view modeling. This finding can be seen as an indication of
future research in which multi-view modeling and third-
party editors can be integrated in order to let users benefit
from (re-)using familiar modeling editors when doing multi-
view modeling. As of today, the only approach supporting
multi-view modeling with third-party editors is P46, where
MagicDraw21 and Eclipse are used as external editors via
dedicated model adapters.
Multi-view VS UML. The majority of UML-based approaches
(17/22) do not provide any means for supporting multi-view
collaborative modeling; i.e., those approaches support only
to edit one UML diagram at a time. This result is quite
interesting since UML is intrinsically a multi-view modeling
language, where multiple diagrams can be instantiated from
a single UML model. It does not come as a surprise that the
remaining 5 approaches (namely, P20, P21, P35, P36, P46)
are based on projectional views.
Multi-view VS workspace awareness. In our vertical anal-
ysis we highlighted that only 11 primary studies over 48
score high in terms of workspace awareness. Interestingly,
the majority of them (10/11) are single-view approaches.
We can interpret this result as an indication that so far
researchers have focused their efforts on the simplest case,
where stakeholders collaborate on the same models and
concepts. The only exception to this trend is P41, where
real-time model updates, user selection highlighting, active
users, and their actions with personalized colors are all inte-
grated within a meta-tool for (synthetically linked) domain-
specific modeling languages.
Modeling editors VS stakeholder types. The underlying
rationale behind cross-checking the proposed modeling ed-
itors and stakeholder types is to identify which modeling
editors researchers perceive as more suitable for technical or

21. http://www.nomagic.com/products/magicdraw.html

non-technical stakeholders. In the following we categorize
our observations with respect to the types of involved
stakeholders:

• Technical and non-technical stakeholders. Interestingly,
in almost all approaches in which these two types of
stakeholders collaborate (5/6), the graphical editor
is the only means for manipulating models (the
only exception is P45, where the graphical editor
is complemented by a textual one). This decision
may be rooted into usability and understandability
aspects of the editors for non-technical users. This
reflection unveils an interesting gap in current re-
search on collaborative MDSE: since it is well known
that graphical editors are not really suitable for large
or complex models [68], as of today collaborative
MDSE approaches allow technical and non-technical
stakeholders to collaborate only on small-scale sim-
ple models; given that the trend of having larger and
larger models is evident [68], future collaborative
MDSE approaches shall provide efficient and elegant
solutions to this limitation.

• Technical stakeholders only. Across the 41 approaches
for technical stakeholders only we can see a wide
spreading of many combinations of modeling edi-
tors, with a clear prevalence of graphical, tree-based,
and textual editors. An interesting perspective is
given by the fact that external third-party editors
are used only by technical stakeholders. This fact
can be due to the need of technical stakeholders to
actually perform operations on the models for which
specific tools are strictly needed (e.g., analysis, code
generation, etc.).

• Non-technical stakeholders only. The only approach
dedicated to non-technical stakeholders only is
FlexiSketch (P2), which is the only approach provid-
ing a sketch-based modeling editor (complemented
with a graphical one). Proposed in 2015, FlexiSketch
can be seen as one of the first attempts in achieving
fast and flexible editing with non-technical stake-
holders, together with a sketch recognition algorithm
and collaborative features (they use the whiteboard
metaphor). This line of research may play a relevant
role in the future of collaborative MDSE in terms of
a better involvement of non-technical stakeholders
into MDSE and model-based development in gen-
eral.

11 DISCUSSION

The body of knowledge of this work relies on a total of
106 selected papers, clustered into 48 primary studies (as
discussed in Section 4.2.2). Each paper has been selected
according to our definition of collaborative MDSE; more
specifically, each selected paper is a scientific peer-reviewed
article where multiple stakeholders manage, collaborate,
and are aware of each others’ work on a set of shared mod-
els, and covers the three dimensions of model management,
collaboration, and communication.

Our study reveals that some of the different taxonomy
elements are more rarely covered with respect to others.
Specifically, multi-views, validation support, reuse support, and

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 25

branching are individually covered by no more than one
third of the papers. Let us clarify that this result by no
means implies that there is limited literature or support on
collaborative multi-views management, validation support,
etc. For example, multi-view modeling and management is
becoming prominent in software engineering, both in the
domain of software architecture description (e.g., [69]) and
in model-driven engineering (e.g., [70]). Instead, this means
that among all the selected papers (covering at the same
time model management, collaboration, and communica-
tion elements), those four elements of the taxonomy have
a more limited application.

We also noticed that different primary studies focus
differently on individual dimensions of collaborative MDSE.
The Model Management dimension is strongly covered by
papers P35 (supporting 11 over 12 aspects of management),
and P12, P13, P14, P21, P41, and P46 (covering 10 aspects).
On the opposite, P23, P24, P31, and P44 support only six as-
pects of model management. Collaboration is totally covered
by P8, P21, and P33 (with 12 over 12 aspects covered), while
minimally covered by P4, P7, and P27 (covering only aspects
of collaboration). Communication is extensively supported by
P6, P20, P44, and P48 (with 8/10 aspects covered), while a
limited support is provided by P5, P13, P15, P23, P35, P36,
P37, P41, P42, and P46 (with 3/10 aspects covered). This
reflects the fact that, while all our primary studies cover (by
definition) the three dimensions, their primary focus is still
on one specific dimension, rather than on all of them. Our
interpretation of this phenomenon is that scientific publi-
cations, in order to make a contribution, preferably focus
on a specific aspect or dimension, rather than presenting
a broad and complete approach with respect to all the
three dimensions. This trend may be different in practice,
where collaborative MDSE tools might instead cover many
dimensions at once. We will analyze, as part of our future
work, how commercial tools match with our taxonomy and
dimensions.

What our study reveals is also that many of the analyzed
approaches (20 primary studies) are built specifically for
the UML, and support the collaborative work on more than
one UML model (11 studies). Metamodel-level collaborative
work is supported by four studies (P2, P11, P13, and P33 in
Tab. 5). UML is by far the most known modeling language
in MDSE, so, it comes with no surprise that most of the
approaches focus on collaborative aspects of UML. Still,
seven approaches focus on other languages (such as BPMN).
This can be interpreted as, a more limited in scope, but still
relevant interest into collaborative MDSE outside the UML.
As reported before, while this figure is representative of the
state of the art in collaborative MDSE research, it does not
represent in any way the state of the practice (e.g., industrial
modeling tools) that will be investigated in future work.

Another result, to be further evaluated through a state
of the practice analysis, is that only four studies support
the interplay between synchronous and asynchronous col-
laboration mechanisms (see Table 14): P22 supports an
asynchronous editing with a synchronous conflict resolu-
tion, while P23, P28, and P41 support both asynchronous
and synchronous mechanisms with partial locking of the
whole model. Again, this does not signify that there is
limited interest on the combination of synchronous and

asynchronous mechanisms. Still, academic papers covering
the three collaborative MDSE dimensions have little focus
on this aspect.

12 THREATS TO VALIDITY

In 2015 Petersen et al. proposed an up-to-date set of guide-
lines for conducting systematic mapping studies in software
engineering [20]. In that paper the authors also proposed a
check-list for objectively assessing the quality rating for sys-
tematic mapping studies. According to the metrics defined
in Petersen’s quality checklist, we achieved an outstanding
score of 61.5%, defined as the ratio of the number of actions
taken in comparison to the total number of actions reported
in the quality checklist. The quality score of our study is far
beyond the scores obtained by existing systematic mapping
studies in the literature, which have a distribution with a
median of 33% and 48% as absolute maximum value [20].
We achieved such a high level of quality by (i) carefully
designing our study in advance, (ii) formalizing such a
study design into a research protocol which was subject
to external reviews by independent researchers, (iii) by
conducting our study by carefully following well-accepted
and updated guidelines of systematic mapping studies [20],
[21], and (iv) by assessing, validating, and discussing the
results and potential threats in each phase of the study. In
the following we detail the main threats to validity of our
study and how we mitigated them.
External validity. It refers to the generalizability of obtained
results and findings [49]. In our study, the most severe
threat related to external validity may consist of having
a set of primary studies that is not representative of the
whole research on collaborative MDSE. We mitigated this
potential threat by following a search strategy including
both automatic search and backward-forward snowballing
of selected studies. Moreover, defining, iteratively refining
and piloting, and validating a set of well-defined inclusion
and exclusion criteria contributed to reinforce the external
validity of our study. Another potential threat could have
been the consideration of studies published in the English
language only. However, the English language is the most
widely used language for scientific papers, so this threat
can be reasonably considered as minimal. Along the same
lines, gray literature (e.g., white papers, non-reviewed pub-
lications or books, etc.) is not included in our research; this
potential threat is intrinsic to our study design since we
want to focus exclusively on the state of the art presented
in high-quality scientific studies. A further threat to external
validity can be associated by the fact that, while including
academic papers, we did not include tools and industrial
research con collaborative MDSE. This potential threat is
mitigated by avoiding to provide any conclusion that may
be biased by the scientific nature of this study, and by
planning a future work devoted to collaborative MDSE tools
analysis.
Internal validity. It refers to the level of influence that
extraneous variables may have on the design of the study.
We mitigated this potential threat to validity by (i) rigor-
ously defining and validating the protocol of our study,
and (ii) defining our classification framework by carefully
following the keywording process (see Section 4.3), which

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 26

has been also validated using the pilot studies. Regarding
the validity of the synthesis of collected data, when doing
both the vertical and horizontal analysis we employed well-
assessed descriptive statistics, so the threats were minimal.
Furthermore, during the horizontal analysis we also cross-
analyzed the values of different concepts and attributes of
the classification framework in order to make a sanity test
of the extracted data. This analysis helped us in identifying
and fixing some minimal issues about the consistency of the
extracted data.
Construct validity. It concerns the validity of extracted data
with respect to the research questions. In the context of
mapping studies it mainly deals with the selection of the
primary studies with respect to how they really represent
the population in light of the research questions. We miti-
gated this potential source of threats in different ways. More
specifically, the automatic search has been performed on
multiple electronic databases to avoid potential biases due
to publishers’ policies and business concerns. Also, we are
reasonably confident about the construction of the search
string used in our automatic search since the terms used
were extracted from the research questions and refined by
analyzing the set of pilot studies. Moreover, the automatic
search is complemented by the snowballing activity, thus
making us reasonably confident about our search strategy.
After having collected all relevant studies from the auto-
matic search, we rigorously screened them according to
well-documented inclusion and exclusion criteria (see Sec-
tion 4.2.2). Also, in order to assess the quality of the selection
process, both principle and secondary researchers assessed
a random sample of studies, and inter-researcher agree-
ment has been statistically measured, obtained a promising
Cohen-Kappa coefficient of 0.89.
Conclusion validity. It concerns the relationship between
the extracted data and the obtained results. We mitigated
potential threats to conclusion validity by applying well-
accepted systematic methods and processes throughout our
study and we documented all of them in our research proto-
col, so that this study can be replicated by other researchers
interested in collaborative MDSE. Moreover, we are aware
that other researchers may identify concepts and attributes
different from the ones in our classification framework. We
mitigated this potential threat by (i) letting the concepts and
attributes emerge from the pilot studies and refining them
throughout the data extraction activity, (ii) performing an
external evaluation by independent researchers who were
not involved in our research, and (iii) having the data extrac-
tion process conducted by two researchers. We also avoided
to discuss results that may not be directly related to the
extracted data. We therefore avoided to include any finding
that, since solely extracted from research papers, may be not
representative of the collaborative MDSE community.

13 CONCLUSIONS

Collaborative MDSE consists of methods or techniques in
which multiple stakeholders manage, collaborate, and are aware
of each others’ work on a set of shared models. A collaborative
MDSE approach is composed of 3+1 main complementary
dimensions. Models are the central pillar, representing the

artifact to be managed, communicated, and used for collab-
oration purposes. The model management dimension includes
the editing, multi-view, and tool support components. The
collaboration dimension brings with it versioning, branching,
merging and conflict management facilities. The communica-
tion dimension takes into account stakeholders, awareness,
and communication support.

In this study we present a systematic mapping study
with the goal of identifying, classifying, and understanding
existing collaborative MDSE approaches. Starting from over
3,000 potentially relevant studies, we applied a rigorous
selection procedure resulting in 48 primary studies along
a time span of nineteen years. Moreover, we rigorously
defined a classification framework with the target of ex-
tracting from each primary study information pertaining to
publication trends, characteristics, and challenges faced by
researchers over the years.

After analyzing and thoroughly discussing the extracted
data we obtained the following results: (i) there is a growing
scientific interest on collaborative MDSE in the last years,
with the majority of studies published in a (very heteroge-
nous set of) conferences and workshops; (ii) while they are
becoming prominent in model-driven software engineering,
multi-view modeling, models validation, reuse, and branch-
ing are more rarely covered with respect to other aspects
about collaborative MDSE; (iii) different primary studies
focus differently on individual dimensions of collaborative
MDSE (i.e., model management, collaboration, and com-
munication); (iv) most approaches are metamodel-specific
(i.e., they do not support ad-hoc user-defined DSMLs),
with a prominence of UML-based approaches; (v) while
a number of approaches focus on either synchronous or
asynchronous communication means, only 4 support the
interplay between them. As already mentioned in Section
11, those results while thoroughly representing the state of
the research in collaborative MDSE (compatibly with our
definition and protocol), do not reflect industrial practices
or tools.

In addition to the previously described results we also
obtained a number of interesting insights for each research
question of our study, they are reported in dedicated sum-
mary boxes in Sections 5, 6, 7, 8, 9. Also, we identified
perspectives of interest crossing different dimensions and
aspects of collaborative MDSE, they are reported in Section
10.

What is next? If on the one hand our analysis of collab-
orative MDSE approaches has revealed a growing scientific
interest in the topic over the years, on the other hand the
time is ripe for investigating on the real needs that MDSE
practitioners experience while collaborating on modeling
artifacts. In this study we reported on the lack or limited
presence of certain collaboration features, still, we could not
report on the impact due to those limitations. Such analysis
will help to better shape the modeling tools of tomorrow,
and their core features.

While introducing this paper, we briefly reported on
existing (industrial) tools supporting collaborative MDSE.
A matching of existing tools to our classification framework
would reveal how existing MDSE tools support the identi-
fied collaboration dimensions as well as their maturity and
adoption. Existing tools can then be mapped to the practi-

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 27

tioners needs, so to provide a clear view on collaboration
via modeling technologies.

What we consider to be in our personal wish list is
the realization of a collaborative modeling framework that,
while being able to host modeling artifacts such as models,
metamodels, transformations, and megamodels, may pro-
vide a layer of services for the collaborative management of
those artifacts. The first step towards this direction consists
in defining a set of collaboration links among modeling ar-
tifacts supporting the propagation of changes among them.

To conclude: software production is more and more
subject to globalization, with teams required to work dis-
tributed and with fast pace, and with stakeholders com-
ing with different potentially conflicting concerns. Those
needs impose higher degree of automation, collaboration
awareness, and distributed and fast decision making. We
expect that whatever a model will look like in the next few
years, being them specifying a cyber-physical space, an IoT
architecture, or the collaboration of smart objects in a smart
city, potentially they will be managed collaboratively. Each
stakeholder will come with its own model kind, specialized
to certain analysis or code generation. She will be able to
search for a model or a transformation, combine models,
evolve models and metamodels. Collaboration will be there,
and automation will be required at different levels.

ACKNOWLEDGMENTS

We would like to thank the following external reviewers
of this study: Dimitrios S. Kolovos (University of York,
UK), Muhammad Ali Babar (University of Adelaide, Aus-
tralia), and Patricia Lago (Vrije Universiteit Amsterdam, The
Netherlands). They provided invaluable feedback about our
research protocol. We also thank the anonymous reviewers
whose suggestions substantially improved the quality of
this study.

REFERENCES

[1] I. Mistrı́k, J. Grundy, A. van der Hoek, and J. Whitehead, “Col-
laborative software engineering: Challenges and prospects,” in
Collaborative Software Engineering, I. Mistrı́k, J. Grundy, A. Hoek,
and J. Whitehead, Eds. Springer Berlin Heidelberg, 2010, pp.
389–403.

[2] I. Mistrı́k, J. Grundy, A. Hoek, and J. Whitehead, Eds., Collaborative
Software Engineering. Springer Berlin Heidelberg, 2010.

[3] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra, J. S.
Cuadrado, J. De Lara, I. Ráth, D. Varró, M. Tisi, and J. Cabot, “A
research roadmap towards achieving scalability in model driven
engineering,” in Proceedings of the Workshop on Scalability in Model
Driven Engineering, ser. BigMDE ’13. New York, NY, USA: ACM,
2013, pp. 2:1–2:10, http://doi.acm.org/10.1145/2487766.2487768.

[4] M. Brambilla, J. Cabot, and M. Wimmer, Model-driven software
engineering in practice. Morgan & Claypool Publishers, 2012, vol. 1,
no. 1.

[5] D. Schuler and A. Namioka, Eds., Participatory Design: Principles
and Practices. Hillsdale, NJ, USA: L. Erlbaum Associates Inc.,
1993.

[6] K. Vredenburg, J.-Y. Mao, P. W. Smith, and T. Carey, “A sur-
vey of user-centered design practice,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’02. New York, NY, USA: ACM, 2002, pp. 471–478,
http://doi.acm.org/10.1145/503376.503460.

[7] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns and Java-(Required). Prentice Hall, 2004.

[8] P. J. Denning, “Design thinking,” Commun. ACM, vol. 56, no. 12,
pp. 29–31, Dec. 2013, http://doi.acm.org/10.1145/2535915.

[9] B. Selic, “The pragmatics of model-driven development,”
IEEE Softw., vol. 20, no. 5, pp. 19–25, Sep. 2003,
http://dx.doi.org/10.1109/MS.2003.1231146.

[10] J. L. C. Izquierdo and J. Cabot, “Community-driven language
development,” in 2012 4th International Workshop on Modeling in
Software Engineering (MISE). IEEE, 2012, pp. 29–35.

[11] J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio, “Collab-
orative repositories in model-driven engineering,” IEEE Software,
vol. 32, no. 3, pp. 28–34, May 2015.

[12] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi,
L. Jurácz, T. Levendoszky, and Á. Lédeczi, “Next generation
(meta) modeling: Web-and cloud-based collaborative tool infras-
tructure,” Proceedings of MPM, p. 41, 2014.

[13] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen,
S. Van Mierlo, and H. Ergin, “Atompm: A web-based modeling
environment.” in Demos/Posters/StudentResearch@ MoDELS. Cite-
seer, 2013, pp. 21–25.

[14] M. Farwick, B. Agreiter, J. White, S. Forster, N. Lanzanasto, and
R. Breu, A web-based collaborative metamodeling environment with
secure remote model access. Springer, 2010.

[15] C. Thum, M. Schwind, and M. Schader, “Slim - a lightweight
environment for synchronous collaborative modeling,” in Model
Driven Engineering Languages and Systems. Springer, 2009, pp.
137–151.

[16] M. Cataldo, C. Shelton, Y. Choi, Y.-Y. Huang, V. Ramesh, D. Saini,
and L.-Y. Wang, “Camel: a tool for collaborative distributed soft-
ware design,” in ICGSE 2009. Fourth IEEE International Conference
on Global Software Engineering, 2009. IEEE, 2009, pp. 83–92.

[17] B. Bruegge, O. Creighton, J. Helming, and M. Kögel, “Unicase–
an ecosystem for unified software engineering research tools,” in
Third IEEE International Conference on Global Software Engineering,
ICGSE, vol. 2008. Citeseer, 2007.

[18] A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora, “Enhanc-
ing collaborative synchronous uml modelling with fine-grained
versioning of software artefacts,” Journal of Visual Languages &
Computing, vol. 18, no. 5, pp. 492–503, 2007.

[19] S. Kelly, K. Lyytinen, and M. Rossi, “Metaedit+ a fully config-
urable multi-user and multi-tool case and came environment,” in
Advanced Information Systems Engineering. Springer, 1996, pp. 1–
21.

[20] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for
conducting systematic mapping studies in software engineering:
An update,” Information and Software Technology, vol. 64, pp. 1–18,
2015.

[21] B. A. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” 2007.

[22] J. Bézivin, “On the unification power of models,”
Softw Syst Model, vol. 4, no. 2, pp. 171–188, may 2005,
http://dx.doi.org/10.1007/s10270-005-0079-0.

[23] D. Di Ruscio, R. F. Paige, and A. Pierantonio, “Guest Editorial
to the Special Issue on Success Stories in Model Driven Engi-
neering,” Sci. Comput. Program., vol. 89, no. PB, pp. 69–70, 2014,
http://dx.doi.org/10.1016/j.scico.2013.12.006.

[24] M. Brambilla and P. Fraternali, “Large-scale model-driven engi-
neering of web user interaction: The webml and webratio experi-
ence,” Science of Computer Programming, vol. 89, pp. 71–87, 2014.

[25] J. Davies, J. Gibbons, J. Welch, and E. Crichton, “Model-driven
engineering of information systems: 10 years and 1000 versions,”
Science of Computer Programming, vol. 89, pp. 88–104, 2014.

[26] A. Nadas, T. Levendovszky, E. K. Jackson, I. Madari, and J. Szti-
panovits, “A model-integrated authoring environment for privacy
policies,” Science of Computer Programming, vol. 89, pp. 105–125,
2014.

[27] J. Davies, J. Gibbons, S. Harris, and C. Crichton, “The cancergrid
experience: metadata-based model-driven engineering for clinical
trials,” Science of Computer Programming, vol. 89, pp. 126–143, 2014.

[28] J. Hutchinson, J. Whittle, and M. Rouncefield, “Model-driven
engineering practices in industry: Social, organizational and man-
agerial factors that lead to success or failure,” Science of Computer
Programming, vol. 89, pp. 144–161, 2014.

[29] F. Büttner, U. Bartels, L. Hamann, O. Hofrichter, M. Kuhlmann,
M. Gogolla, L. Rabe, F. Steimke, Y. Rabenstein, and A. Stosiek,
“Model-driven standardization of public authority data inter-
change,” Science of Computer Programming, vol. 89, pp. 162–175,
2014.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 28

[30] J. S. Cuadrado, J. L. C. Izquierdo, and J. G. Molina, “Applying
model-driven engineering in small software enterprises,” Science
of Computer Programming, vol. 89, pp. 176–198, 2014.

[31] E. Dubois, C. Bortolaso, D. Appert, and G. Gauffre, “An mde-
based framework to support the development of mixed interactive
systems,” Science of Computer Programming, vol. 89, pp. 199–221,
2014.

[32] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Hel-
dal, “Industrial adoption of model-driven engineering: Are the
tools really the problem?” in Lecture Notes in Computer Science.
Springer Science Business Media, 2013, pp. 1–17.

[33] D. Tofan, M. Galster, and P. Avgeriou, “Difficulty of architectural
decisions a survey with professional architects,” in Software Ar-
chitecture, ser. Lecture Notes in Computer Science, K. Drira, Ed.
Springer Berlin Heidelberg, 2013, vol. 7957, pp. 192–199.

[34] S. Rekha and H. Muccini, “Suitability of software architecture
decision making methods for group decisions,” in Software Ar-
chitecture. Springer, 2014, pp. 17–32.

[35] ISO/IEC/IEEE 42010, Systems and software engineering — Architec-
ture description, ISO, December 2011.

[36] D. A. Tamburri, P. Lago, and H. van Vliet, “Organizational social
structures for software engineering,” ACM Computing Surveys, pp.
1–35, 2012.

[37] N. Nagappan, B. Murphy, and V. Basili, “The influence of organi-
zational structure on software quality: an empirical case study,” in
International conference on Software engineering. Leipzig, Germany.:
IEEE, May 2008, pp. 521–530.

[38] J. Whitehead, “Collaboration in software engineering: A
roadmap,” in 2007 Future of Software Engineering. IEEE Computer
Society, 2007, pp. 214–225.

[39] B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner,
M. Niazi, and S. Linkman, “Systematic literature reviews in
software engineering–a tertiary study,” Information and Software
Technology, vol. 52, no. 8, pp. 792–805, 2010.

[40] R. G. C. Rocha, C. Costa, C. M. de Oliveira Rodrigues, R. R.
de Azevedo, I. H. de Farias Junior, S. R. de Lemos Meira, and
R. Prikladnicki, “Collaboration models in distributed software
development: a systematic review.” CLEI Electron. J., vol. 14, no. 2,
2011.

[41] J. Portillo-Rodrı́guez, A. Vizcaı́no, M. Piattini, and S. Beecham,
“Tools used in global software engineering: A systematic mapping
review,” Information and Software Technology, vol. 54, no. 7, pp. 663–
685, 2012.

[42] M. Renger, G. L. Kolfschoten, and G.-J. De Vreede, “Challenges in
collaborative modelling: a literature review and research agenda,”
International Journal of Simulation and Process Modelling, vol. 4, no. 3,
pp. 248–263, 2008, http://dx.doi.org/10.1504/IJSPM.2008.023686.

[43] A. Marques, R. Rodrigues, and T. Conte, “Systematic literature
reviews in distributed software development: A tertiary study,” in
Global Software Engineering (ICGSE), 2012 IEEE Seventh International
Conference on, Aug 2012, pp. 134–143.

[44] K. Dullemond, B. van Gameren, and R. Van Solingen, “Collabo-
ration spaces for virtual software teams,” Software, IEEE, vol. 31,
no. 6, pp. 47–53, 2014.

[45] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaı́no, “Collabora-
tion tools for global software engineering,” IEEE software, vol. 27,
no. 2, p. 52, 2010.

[46] D. Di Ruscio, M. Franzago, H. Muccini, and I. Malavolta, “En-
visioning the future of collaborative model-driven software en-
gineering,” in Proceedings of the 39th International Conference on
Software Engineering Companion, ser. ICSE-C ’17. IEEE Press, 2017,
pp. 219–221.

[47] P. Grnbacher and Y. Ledru, “Automated software engineering:
introduction,” ERCIM News, vol. 58, July 2004.

[48] M. Maróti, R. Kereskényi, T. Kecskés, P. Völgyesi, and A. Lédeczi,
“Online collaborative environment for designing complex compu-
tational systems,” Procedia Computer Science, vol. 29, pp. 2432–2441,
2014.

[49] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering, ser. Computer
Science. Springer, 2012.

[50] M. Franzago, D. Di Ruscio, I. Malavolta, and H. Muccini, “Protocol
for a Systematic Mapping Study on Collaborative Model-Driven
Software Engineering,” DISIM - University of L’Aquila, Tech. Rep.
TR-001-2016, https://arxiv.org/pdf/1611.02619.pdf.

[51] C. Wohlin, “Guidelines for snowballing in systematic literature
studies and a replication in software engineering,” in 18th Interna-

tional Conference on Evaluation and Assessment in Software Engineer-
ing, EASE ’14, London, England, United Kingdom, May 13-14, 2014,
2014, p. 38, http://doi.acm.org/10.1145/2601248.2601268.

[52] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question
metric approach,” in Encyclopedia of Software Engineering. Wiley,
1994.

[53] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in
software engineering,” Inf. Softw. Technol., vol. 53, no. 6, pp. 625–
637, Jun. 2011, http://dx.doi.org/10.1016/j.infsof.2010.12.010.

[54] L. Chen, M. A. Babar, and H. Zhang, “Towards an evidence-
based understanding of electronic data sources,” in Proceed-
ings of the 14th International Conference on Evaluation and
Assessment in Software Engineering, ser. EASE’10. Swin-
ton, UK, UK: British Computer Society, 2010, pp. 135–138,
http://dl.acm.org/citation.cfm?id=2227057.2227074.

[55] M. Kuhrmann, D. M. Fernández, and M. Daneva, “On the prag-
matic design of literature studies in software engineering: an
experience-based guideline,” Empirical Software Engineering, pp. 1–
40, 2016.

[56] S. Jalali and C. Wohlin, “Systematic literature studies: database
searches vs. backward snowballing,” in Proceedings of the ACM-
IEEE international symposium on Empirical software engineering and
measurement. ACM, 2012, pp. 29–38.

[57] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Sys-
tematic mapping studies in software engineering,” in Pro-
ceedings of the 12th International Conference on Evaluation and
Assessment in Software Engineering, ser. EASE’08. Swin-
ton, UK, UK: British Computer Society, 2008, pp. 68–77,
http://dl.acm.org/citation.cfm?id=2227115.2227123.

[58] D. Spencer, Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[59] D. S. Cruzes and T. Dybå, “Research synthesis in software en-
gineering: A tertiary study,” Information and Software Technology,
vol. 53, no. 5, pp. 440–455, 2011.

[60] J. D. Rocco, D. D. Ruscio, A. Pierantonio, J. S. Cuadrado, J. de Lara,
and E. Guerra, “Using ATL transformation services in the mde-
forge collaborative modeling platform,” in Theory and Practice of
Model Transformations - 9th International Conference, ICMT 2016,
Held as Part of STAF 2016, Vienna, Austria, July 4-5, 2016, Proceed-
ings, 2016, pp. 70–78.

[61] A. Lajmi, J. Martinez, and T. Ziadi, “DSLFORGE: textual modeling
on the web,” in Proceedings of the Demonstrations Track of the
ACM/IEEE 17th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS 2014), Valencia, Spain, October
1st and 2nd, 2014., 2014.

[62] C. C. Manzanares, J. S. Cuadrado, and J. de Lara, “Building MDE
cloud services with Distil,” in Proceedings of the 3rd International
Workshop on Model-Driven Engineering on and for the Cloud 18th
International Conference on Model Driven Engineering Languages and
Systems (MoDELS 2015), Ottawa, Canada, September 29, 2015., 2015,
pp. 19–24.

[63] H. Bruneliere, J. Cabot, and F. Jouault, “Combining model-driven
engineering and cloud computing,” in Modeling, Design, and Analy-
sis for the Service Cloud-MDA4ServiceCloud’10: Workshop’s 4th edition
(co-located with the 6th European Conference on Modelling Foundations
and Applications-ECMFA 2010), 2010.

[64] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino,
and A. Pierantonio, “Mdeforge: an extensible web-based modeling
platform,” in Proceedings of the 2nd International Workshop on Model-
Driven Engineering on and for the Cloud co-located with the 17th
International Conference on Model Driven Engineering Languages and
Systems, CloudMDE@MoDELS 2014, Valencia, Spain, September 30,
2014., 2014, pp. 66–75.

[65] A. Cicchetti, F. Ciccozzi, and T. Leveque, “A hybrid approach
for multi-view modeling,” Electronic Communications of the EASST,
vol. 50, 2012.

[66] C. Gutwin and S. Greenberg, “A descriptive framework of
workspace awareness for real-time groupware,” Computer Sup-
ported Cooperative Work (CSCW), vol. 11, no. 3-4, pp. 411–446, 2002.

[67] J. Whitehead, I. Mistrı́k, J. Grundy, and A. van der Hoek, “Col-
laborative software engineering: Concepts and techniques,” in
Collaborative Software Engineering. Springer, 2010, pp. 1–30.

[68] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra,
J. S. Cuadrado, J. De Lara, I. Ráth, D. Varró, M. Tisi et al., “A
research roadmap towards achieving scalability in model driven
engineering,” in Proceedings of the Workshop on Scalability in Model
Driven Engineering. ACM, 2013, p. 2.

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 29

[69] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang,
“What industry needs from architectural languages: A survey,”
IEEE Trans. Software Eng., vol. 39, no. 6, pp. 869–891, 2013,
http://dx.doi.org/10.1109/TSE.2012.74.

[70] R. F. Paige, P. J. Brooke, and J. S. Ostroff, “Metamodel-
based model conformance and multiview consistency check-
ing,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 3, Jul. 2007,
http://doi.acm.org/10.1145/1243987.1243989.

[71] H. Zhang and M. A. Babar, “Systematic reviews in software
engineering: An empirical investigation,” Information and Software
Technology, vol. 55, no. 7, p. 1341 1354, 2013.

SELECTED PRIMARY STUDIES
[P1] C. Barlelt, G. Molter, and T. Schumann, “A model repository for

collaborative modeling with the jazz development platform,”
in HICSS’09. 42nd Hawaii International Conference on System
Sciences, 2009. IEEE, 2009, pp. 1–10.

[P2] D. Wüest, N. Seyff, and M. Glinz, “Flexisketch team: collabora-
tive sketching and notation creation on the fly,” in Proceedings of
the 37th International Conference on Software Engineering-Volume
2. IEEE Press, 2015, pp. 685–688.

[P3] T. N. Graham, H. D. Stewart, A. R. Kopaee, A. G. Ryman, and
R. Rasouli, “A world-wide-web architecture for collaborative
software design,” in Software Technology and Engineering Prac-
tice, 1999. STEP’99. Proceedings. IEEE, 1999, pp. 22–29.

[P4] A. Garcı́a Frey, J.-S. Sottet, and A. Vagner, “Ame: an adaptive
modelling environment as a collaborative modelling tool,” in
Proceedings of the 2014 ACM SIGCHI symposium on Engineering
interactive computing systems. ACM, 2014, pp. 189–192.

[P5] P. Sriplakich, X. Blanc, and M.-P. Gervals, “Collaborative soft-
ware engineering on large-scale models: requirements and
experience in modelbus,” in Proceedings of the 2008 ACM sym-
posium on Applied computing. ACM, 2008, pp. 674–681.

[P6] S. Erol and G. Neumann, “A case-study of wiki-supported
collaborative drafting of business processes models,” in 2013
IEEE 15th Conference on Business Informatics. IEEE, 2013, pp.
382–390.

[P7] M. Dirix, A. Muller, and V. Aranega, “Genmymodel: an online
uml case tool,” in ECOOP - European Conferences on Object-
Oriented Programming, 2013.

[P8] M. Elaasar and J. Conallen, “Design management: a collab-
orative design solution,” in European Conference on Modelling
Foundations and Applications. Springer, 2013, pp. 165–178.

[P9] M. Cataldo, C. Shelton, Y. Choi, Y.-Y. Huang, V. Ramesh,
D. Saini, and L.-Y. Wang, “Camel: a tool for collaborative
distributed software design,” in ICGSE 2009. Fourth IEEE Inter-
national Conference on Global Software Engineering, 2009. IEEE,
2009, pp. 83–92.

[P10] C. Thum, M. Schwind, and M. Schader, “Slim - a lightweight
environment for synchronous collaborative modeling,” in
Model Driven Engineering Languages and Systems. Springer,
2009, pp. 137–151.

[P11] M. Farwick, B. Agreiter, J. White, S. Forster, N. Lanzanasto, and
R. Breu, A web-based collaborative metamodeling environment with
secure remote model access. Springer, 2010.

[P12] S. Kelly, K. Lyytinen, and M. Rossi, “Metaedit+ a fully config-
urable multi-user and multi-tool case and came environment,”
in Advanced Information Systems Engineering. Springer, 1996,
pp. 1–21.

[P13] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi,
L. Jurácz, T. Levendovszky, and Á. Lédeczi, “Next generation
(meta) modeling: Web-and cloud-based collaborative tool in-
frastructure.” in MPM@ MoDELS, 2014, pp. 41–60.

[P14] M. Franzago, H. Muccini, and I. Malavolta, “Towards a col-
laborative framework for the design and development of data-
intensive mobile applications,” in Proceedings of the 1st Inter-
national Conference on Mobile Software Engineering and Systems.
ACM, 2014, pp. 58–61.

[P15] S. Lili and S. R. Sutarsa, “Mue: Multi user uml editor,” in
Information and Communication Technology Seminar, 2005, p. 41.

[P16] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen,
S. Van Mierlo, and H. Ergin, “Atompm: A web-based model-
ing environment.” in Demos/Posters/StudentResearch@ MoDELS.
Citeseer, 2013, pp. 21–25.

[P17] J. young Bang, D. Popescu, G. Edwards, N. Medvidovic,
N. Kulkarni, G. M. Rama, and S. Padmanabhuni, “Codesign: a

highly extensible collaborative software modeling framework,”
in 2010 ACM/IEEE 32nd International Conference on Software
Engineering, vol. 2. IEEE, 2010, pp. 243–246.

[P18] V. M. Penichet, J. A. Gallud, R. Tesoriero, and M. Lozano,
“Design and evaluation of a service oriented architecture-based
application to support the collaborative edition of uml class
diagrams,” in International Conference on Computational Science.
Springer, 2008, pp. 389–398.

[P19] V. Genaro Motti, D. Raggett, S. Van Cauwelaert, and J. Van-
derdonckt, “Simplifying the development of cross-platform
web user interfaces by collaborative model-based design,” in
Proceedings of the 31st ACM international conference on Design of
communication. ACM, 2013, pp. 55–64.

[P20] B. Bruegge, A. H. Dutoit, and T. Wolf, “Sysiphus: Enabling
informal collaboration in global software development,” in
2006 IEEE International Conference on Global Software Engineering
(ICGSE’06). IEEE, 2006, pp. 139–148.

[P21] B. Bruegge, O. Creighton, J. Helming, and M. Kögel, “Unicase–
an ecosystem for unified software engineering research tools,”
in Third IEEE International Conference on Global Software Engi-
neering, ICGSE, vol. 2008. Citeseer, 2007.

[P22] P. Brosch, M. Seidl, K. Wieland, M. Wimmer, and P. Langer,
“We can work it out: Collaborative conflict resolution in model
versioning,” in ECSCW 2009. Springer, 2009, pp. 207–214.

[P23] A. Cicchetti, H. Muccini, P. Pelliccione, and A. Pierantonio,
“Towards a framework for distributed and collaborative mod-
eling,” in WETICE’09. 18th IEEE International Workshops on
Enabling Technologies: Infrastructures for Collaborative Enterprises.
IEEE, 2009, pp. 149–154.

[P24] H.-m. Cai, X.-f. Ji, and F.-l. Bu, “Research of consistency main-
tenance mechanism in real-time collaborative multi-view busi-
ness modeling,” Journal of Shanghai Jiaotong University (Science),
vol. 20, pp. 86–92, 2015.

[P25] C. Cook and N. Churcher, “Constructing real-time collabo-
rative software engineering tools using caise, an architecture
for supporting tool development,” in Proceedings of the 29th
Australasian Computer Science Conference-Volume 48. Australian
Computer Society, Inc., 2006, pp. 267–276.

[P26] D. Xu, J. Kurogi, Y. Ohgame, and A. Hazeyama, “Distributed
collaborative modeling support system associating uml dia-
grams with chat messages,” in 33rd Annual IEEE International
Computer Software and Applications Conference, vol. 1. IEEE,
2009, pp. 367–372.

[P27] N. Boulila, “Group support for distributed collaborative con-
current software modeling,” in 19th International Conference on
Automated Software Engineering, 2004. Proceedings. IEEE, 2004,
pp. 422–425.

[P28] S. Krusche and B. Bruegge, “Model-based real-time synchro-
nization,” in International Workshop on Comparison and Version-
ing of Software Models (CVSM14), 2014.

[P29] M. C. Pichiliani and C. M. Hirata, “A guide to map application
components to support multi-user real-time collaboration,” in
International Conference on Collaborative Computing: Networking,
Applications and Worksharing. IEEE, 2006, pp. 1–5.

[P30] P. Rittgen, “Collaborative modeling: A design science ap-
proach,” in Hawaii International Conference on System Sciences
(HICSS), 2009, pp. 1–10.

[P31] N. Baloian, G. Zurita, F. M. Santoro, R. M. Araujo, S. Wolfgan,
D. Machado, and J. A. Pino, “A collaborative mobile approach
for business process elicitation,” in Computer Supported Cooper-
ative Work in Design (CSCWD), 15th International Conference on.
IEEE, 2011, pp. 473–480.

[P32] N. Baghaei, A. Mitrovic, and W. Irwin, “Supporting collabo-
rative learning and problem-solving in a constraint-based cscl
environment for uml class diagrams,” International Journal of
Computer-Supported Collaborative Learning, vol. 2, no. 2-3, pp.
159–190, 2007.

[P33] A. A. Koshima and V. Englebert, “Collaborative editing of
emf/ecore meta-models and models: Conflict detection, rec-
onciliation, and merging in dicomef,” Science of Computer Pro-
gramming, vol. 113, pp. 3–28, 2015.

[P34] A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora, “En-
hancing collaborative synchronous uml modelling with fine-
grained versioning of software artefacts,” Journal of Visual
Languages & Computing, vol. 18, no. 5, pp. 492–503, 2007.

[P35] V. Kulkarni, S. Reddy, and A. Rajbhoj, “Scaling up model
driven engineering–experience and lessons learnt,” in Inter-

0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2755039, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 30

national Conference on Model Driven Engineering Languages and
Systems. Springer, 2010, pp. 331–345.

[P36] A. Mougenot, X. Blanc, and M.-P. Gervais, “D-praxis: A peer-
to-peer collaborative model editing framework,” in Distributed
Applications and Interoperable Systems. Springer, 2009, pp. 16–
29.

[P37] J. Michaux, X. Blanc, M. Shapiro, and P. Sutra, “A semantically
rich approach for collaborative model edition,” in Proceedings
of the ACM Symposium on Applied Computing. ACM, 2011, pp.
1470–1475.

[P38] A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora, “Con-
current fine-grained versioning of uml models,” in Software
Maintenance and Reengineering, 2009. CSMR’09. 13th European
Conference on. IEEE, 2009, pp. 89–98.

[P39] J. Gallardo, C. Bravo, and M. A. Redondo, “A model-driven
development method for collaborative modeling tools,” Journal
of Network and Computer Applications, vol. 35, no. 3, pp. 1086–
1105, 2012.

[P40] R. Duque, J. Gallardo, C. Bravo, and A. J. Mendes, “Defining
tasks, domains and conversational acts in cscw systems: the
space-design case study.” J. UCS, vol. 14, no. 9, pp. 1463–1479,
2008.

[P41] N. Zhu, J. Grundy, J. Hosking, N. Liu, S. Cao, and A. Mehra,
“Pounamu: A meta-tool for exploratory domain-specific visual
language tool development,” Journal of Systems and Software,
vol. 80, no. 8, pp. 1390–1407, 2007.

[P42] L. Murta, H. Oliveira, C. Dantas, L. G. Lopes, and C. Werner,
“Odyssey-scm: An integrated software configuration manage-
ment infrastructure for uml models,” Science of Computer Pro-
gramming, vol. 65, no. 3, pp. 249–274, 2007.

[P43] K. M. Hansen and C. H. Damm, “Building flexible, distributed
collaboration tools using type-based publish/subscribe-the dis-
tributed knight case.” in IASTED Conf. on Software Engineering,
2004, pp. 595–600.

[P44] S. Forster, J. Pinggera, and B. Weber, “Collaborative business
process modeling.” in EMISA, vol. 206. Citeseer, 2012, pp.
81–94.

[P45] C. D. Francescomarino, C. Ghidini, M. Rospocher, L. Serafini,
and P. Tonella, “A framework for the collaborative specification
of semantically annotated business processes,” Journal of Soft-
ware Maintenance and Evolution: Research and Practice, vol. 23,
no. 4, pp. 261–295, 2011.

[P46] M. Breu, R. Breu, and S. Löw, “Moveing forward: Towards an
architecture and processes for a living models infrastructure,”
Int. J. Adv. Life Sci, vol. 3, 2011.

[P47] J. Y. Bang and N. Medvidovic, “Proactive detection of
higher-order software design conflicts,” in Software Architecture
(WICSA), 2015 12th Working IEEE/IFIP Conference on. IEEE,
2015, pp. 155–164.

[P48] K. Wieland, P. Langer, M. Seidl, M. Wimmer, and G. Kappel,
“Turning conflicts into collaboration,” Computer Supported Co-
operative Work (CSCW), vol. 22, no. 2-3, pp. 181–240, 2013.

Mirco Franzago is a PhD student in Information
and Communication Technologies (Software Engi-
neering and Intelligent Systems curriculum) at the
Department of Information Engineering, Computer
Science and Mathematics (DISIM) - University of
L’Aquila, Italy. His research focuses on collabora-
tive software engineering, model-driven engineer-
ing (MDE) and mobile enabled systems, in par-
ticular on how MDE techniques can be exploited
to support stakeholders’ collaboration during the
design and development of complex and mobile-

enabled software systems. He is program committee member of MOBILE-
Soft International Conference, COMMitMDE International Workshop, and
reviewer for the major conferences and workshops in his fields of interest
(ICSE, ASE, MoDELS, and others).

Davide Di Ruscio is Assistant Professor at the De-
partment of Information Engineering Computer Sci-
ence and Mathematics of the University of L’Aquila.
His main research interests are related to several
aspects of Model Driven Engineering (MDE) includ-
ing domain specific modelling languages, model
transformation, model differencing, model evolu-
tion, and coupled evolution. He has published more
than 100 papers in various journals, conferences
and workshops on such topics. He has been co-
guest editor of a number of journal special is-

sues. He has been in the PC and involved in the organization of several
workshops and conferences, and reviewer of many journals like IEEE
Transactions on Software Engineering, Science of Computer Programming,
Software and Systems Modeling, and Journal of Systems and Software.
He is member of the steering committee of the International Conference
on Model Transformation (ICMT), of the Software Language Engineering
(SLE) conference, of the Seminar Series on Advanced Techniques & Tools
for Software Evolution (SATTOSE), and of the Workshop on Modelling in
Software Engineering at ICSE (MiSE). More information is available at
http://www.di.univaq.it/diruscio.

Ivano Malavolta is Assistant Professor at the
Vrije Universiteit Amsterdam, The Netherlands,
Department of Computer Science, Faculty of Sci-
ences. He co-organized all the editions of the in-
ternational workshop on collaborative modelling in
MDE (COMMitMDE), co-located with the MOD-
ELS 2016 conference. His research focuses on
software architecture, model-driven engineering
(MDE), and mobile-enabled systems, especially
how MDE techniques can be exploited for architect-
ing complex and mobile-enabled software systems

at the right level of abstraction. Recently, he is applying empirical methods
to assess practices and trends in the field of software engineering. He
authored more than 60 papers in international journals and peer-reviewed
international conferences proceedings; they include articles published in
the IEEE Transactions on Software Engineering (TSE) and the Interna-
tional Conference on Software Engineering (ICSE), which are considered
the leading journal and conference in the field of software engineering,
respectively. He received a PhD in computer science from the University
of L’Aquila in 2012. He is a member of ACM and IEEE. More information is
available at http://www.ivanomalavolta.com.

Henry Muccini is an Associate Professor in Soft-
ware Engineering from the University of L’Aquila,
Italy. He received is PhD degree from the Uni-
versity of Rome La Sapienza in 2002, and he
has been visiting professor at the University of
California, Irvine. My research interests are in the
Software Engineering field, and more specifically,
on software architecture descriptions and analysis,
model driven engineering, and engineering Cyber-
Physical Systems. Henry is General Chair of MO-
BILESoft 2017, and has been co-chair of the Pro-

gram Committee of WICSA 2016 (the 13th Working IEEE/IFIP Conference
on Software Architecture), as well as of EUROMICRO SEAA and QSIC in
2012. He is the theme issue editorial board member of IEEE Software, a
member of the IFIP WG 2.10 on Software Architecture, and the responsible
of the CINI laboratory on Smart Cities and Communities, as well as of
the Living Lab, at the University of L’Aquila. He is the person in charge of
two international double degree master programmes in Computer Science
and Software Engineering. More detailed information may be found at
http://www.HenryMuccini.com and https://it.linkedin.com/in/henrymuccini.

