Natural deduction
The truth table and the Davis-Putnam algorithm do not explain why a formula
is a tautology.
The natural deduction is a way to build tautologies.
For this, for each operator there are rules for creating the operator
(Introduction rules) and rules for using the operator (Elimination rules).
Conjunction
Introduction
Elimination
Example
Disjunction
Introduction
Elimination
Example
Implication
Introduction
Elimination
Example
|
(A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C)) |
N.B.
All the hypotheses of the proof have been introduced by the introduction rule.
Hence, the conclusion is a tautology.
Equivalence
Introduction
Elimination
Example
False
Elimination
Negation
Introduction
Elimination
Example
Exercises
E1. Find a proof of
((A ∨ B) ⇒ C) ≡ ((A ⇒ C) ∧ (B ⇒ C)).
E2. Find a proof of
(A ⇒ B) ⇒ (B ⇒ A).
E3. Find a proof of
A ⇒ ¬¬A.
E4*. Find a proof of
A ⇒ (A ∧ A).
E5*. Find a proof of
((A ∨ B) ∧ (A ⇒ B)) ⇒ B.
E6*. Find a proof of
(A ∨ B) ⇒ ((A ⇒ C) ⇒ ((B ⇒ C) ⇒ C)).
E7*. Find a proof of
((A ∧ B) ∧ C) ⇒ (A ∧ (B ∧ C)).
E8*. Find a proof of
((A ⇒ C) ∧ (B ⇒ C)) ⇒ ((A ∨ B) ⇒ C).
E9*. Find a proof of
((A ∨ B) ∧ (A ∨ ¬B)) ⇒ A.
E10*. Find a proof of
((A ∨ ¬B) ∧ B) ⇒ A.
E11*. Find a proof of
((A ⇒ B) ∧ (B ⇒ ¬A)) ⇒ ¬A.
E12*. Find a proof of
((A ⇒ ¬B) ∧ B) ⇒ ¬A.
Classical Logic
With the previous rules we do not have yet the usual logic.
To have such logic, we need A ∨ ¬A to be true for any
formula A. So, we change the rule:
with:
Example
Now it is possible to prove A ∨ ¬A:
Exercises
E13. Find a proof of
¬¬A ⇒ A.
E14. Find a proof of
((A ⇒ B) ⇒ A) ⇒ A.
E15. Find a proof of
((A ⇒ B) ∨ C) ⇒ ((A ⇒ C) ∨ B).
Monica Nesi