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1 Introduction

A term rewriting system (or simply rewrite system) is a particular abstract
reduction system 〈A,−→〉 [12], where A is the set T (Σ, V ) of first-order terms
with function symbols in Σ and variables in V .

In the following some basic notions on term rewriting will be introduced.
In particular, we will consider the completion of an equational theory E and
the E-unification of terms. For more details the reader can refer to [1, 3].

2 First-order terms

Let us define the set of terms in a first-order language without sorts (the so-
called unsorted terms), as this restriction simplifies the formalization while
preserving all interesting notions.

Given a set of function symbols Σ, called signature, the terms on such a
signature are defined as all well-formed expressions that can be built starting
from the function symbols in Σ. If we also consider a countable set of variables
V , we obtain the set of terms over Σ and with variables in V .
The number n∈N of the arguments of a function symbol f ∈Σ is called the
arity of f . If n = 0, f is a constant symbol. Σn denotes the set of all function
symbols in Σ with arity n. Thus, we have Σ =

⋃

n Σn.

Definition 1 Let Σ be a finite signature and V be a countable set of vari-
ables. The set Ter = T (Σ, V ) of (finite) terms with function symbols in Σ
and variables in V is defined as follows:

i) f ∈Ter for all f ∈Σ0

ii) V ⊆Ter
iii) f(t1, . . . , tn)∈Ter for all f ∈Σn and ti ∈Ter, i = 1, . . . , n.

Equality in Ter, written =, is the syntactic identity.
In the following we will indifferently use Ter, T (Σ, V ) or Ter(Σ, V ) for de-
noting the set of terms over a signature Σ and with variables in V . V ar(t)
denotes the set of variables occurring in term t. If V ar(t) = ∅, then t is
called closed or ground. The set of closed terms is denoted with Ter0 or
T (Σ), where Ter0⊂Ter.
Σ(t) is used to denote the set of symbols of Σ occurring in term t.
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Example 1: Consider the signature Σ = {0, succ, =} with arity 0, 1, 2 re-
spectively. Given variables x, y ∈V , the terms succ(x) and succ(succ(y))
are examples of terms in the set Ter on Σ and V . The terms 0, succ(0),
succ(succ(0)) are in Ter0. •

Remark 1: The set V and the relation = are in every first-order language,
and they are also called logical symbols.
The terms with the equality symbol =, e.g. =(x, y), are considered boolean
terms. This also holds for other predicate symbols.
Note that it always holds V ∩Σ = ∅, even though it might not be explicitly
stated in the following.

Remark 2: The expression “first-order” means that the (free) variables are
individual , that is they can be replaced by any term. From the semantic point
of view, they can only be interpreted as individuals (and not, for example,
as a set of individuals) in the semantic domain used to interpret the given
language. Obviously, in a first-order language describing sets, variables are
interpreted as sets, and sets of sets will not be denoted in such a language.

In the following it will be necessary to deal with the structure of terms.
Le us begin by representing terms by means of trees.

2.1 Term representation as labelled ordered trees

Each element t∈Ter can be represented in a natural way as a finite labelled
ordered tree, whose nodes are labelled with elements in Σ(t)∪V ar(t). Vari-
ables can only label the tree leaves, except for the case when the term is a
variable (in this case the leaf of the tree coincides with its root). Let us show
some examples of terms with the corresponding trees.

• 0: 0 r

• x: x r

• succ(0): succ r

?
0 r
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• +(x, 0): + r

À JĴ
x r r0

• +(x, succ(y)): + r

À JĴ
x r rsucc

?
ry

• +(succ2(x), succ3(y)): + r

À JĴ
succ r rsucc

? ?
succ r rsucc

? ?
x r rsucc

?
ry

Let us remark that these trees are finitely branching, because the arity of
any function symbol is finite and the number of the branches exiting a node
gives the arity of the function symbol labelling that node. The leaves of a
tree are thus labelled with variables or constants.
Trees are ordered because the term f(x, y) is different from f(y, x), as equal-
ity on terms is syntactic identity.

2.2 Subterms, occurrences, positions, contexts

Subterm of a term t is a term that corresponds to a subtree of the tree T
corresponding to t. For example, succ(0) is a subterm of +(succ(0), x). To
denote that s is a subterm of t we can simply write s∈ t. The notion of
subterm is distinct from that of occurrence, as a subterm can have more oc-
currences in a term, like succ(0) in +(succ(0), succ(0)). Os(t) is the multiset
of all occurrences of s in t. Whenever Os(t) = ∅, s is not a subterm of t.
O(t) is the multiset of all occurrences of all subterms of t. To single out a
particular occurrence of a subterm, it is useful the notion of position, while
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for denoting that a term is a subterm of another term it is sufficient to use
the notion of context, as defined below.

Let us first introduce the notion of position.

Definition 2 Given t∈T (Σ, V ), the set Pos(t) of the positions of t is a set
of strings of positive integer numbers, inductively defined as follows:

i) if t∈V then Pos(t) = {ε} where ε denotes the empty string
ii) if t = f(t1, . . . , tn) with f ∈Σn and ti ∈T (Σ, V ), then

Pos(t) = {ε} ∪
⋃n

i=1{i.p | p∈Pos(ti)}
where . denotes the operation of string concatenation.

Positions will be denoted with p, q, p′, etc. The set of positions is partially
ordered with respect to the prefix ordering defined as follows: for any two
positions p and q, we have that p≤ q if and only if there exists a position p′

such that p.p′ = q. In this case we say that p is a prefix of q. If two positions
p and q are not comparable with respect to the prefix ordering, then p and q
are said parallel or disjoint, written p || q.

Hence, a position in a term t is a string of integers denoting the path
leading to an occurrence of a subterm s in the tree T of t; more precisely, a
position in a term t is a string of integers denoting the path leading to the
node which is the root of the subtree corresponding to an occurrence of a
subterm s of t.

Definition 3 Given t∈T (Σ, V ) and p∈Pos(t), the subterm of t occurring
at position p, witten t|p, is defined inductively on the length of p:

t|ε = t

f(t1, . . . , tn)|i.q = ti|q

or, equivalently,

t|p =

{

t if p = ε
ti|q if p = i.q and t = f(t1, . . . , ti, . . . , tn)

Definition 4 Given t, t′ ∈T (Σ, V ) and p∈Pos(t), the term obtained from
t by replacing the subterm at position p with t′, written t[t′]p, is defined by
induction on the length of p:

t[t′]ε = t′

f(t1, . . . , tn)[t′]i.q = f(t1, . . . , ti[t
′]q, . . . , tn)
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Indeed, if p = i.q the term t has the form f(t1, . . . , tn) for some function
symbol f ∈Σn and terms t1, . . . , tn ∈T (Σ, V ), 1≤ i≤n.
As already mentioned, p is sometimes used as t|p ∈O(t).

Sometimes, it is necessary to distinguish between variable positions and
non-variable positions. The set of non-variable positions of a term t is

Pos′(t) = { p∈Pos(t) | t|p 6∈V }.

Example 2: Let a, f, g ∈Σ and x, y ∈V . Given the term t = f(x, g(y, a, a)),
its set of position is Pos(t) = {ε, 1, 2, 2.1, 2.2, 2.3} and the subterms are:
t|ε = f(x, g(y, a, a)), t|1 = x, t|2 = g(y, a, a), t|2.1 = y, t|2.2 = a, t|2.3 = a.
The two occurrences of the constant a are thus identified. The set of non-
variable positions is Pos′(t) = {ε, 2, 2.2, 2.3}. •

Whenever it is not necessary to give the position of an occurrence, because
we simply want to say that a term s is a subterm of a term t, it is enough to
use the notation of context and write t = C[s], where C[ ] is called a context
and is obtained from a term by deleting an occurrence of a subterm. The
symbol [ ] stands for the empty occurrence.
For example, in f(g(a), a) = C[a], the context C[ ] is either f(g(a), [ ]) or
f(g([ ]), a).
We can also use C[a, a] to stress both occurrences of a by means of the
‘double’ context C[ , ] = f(g([ ]), [ ]). In general, a context with n empty
occurrences can be used for denoting n occurrences of a subterm in a given
term (without giving their positions).
Frequently, we also have the notation t[a] in place of t = C[a].
If, whenever using the context notation, we also want to stress the position,
a redundant notation C[ ]|p can be used, so that C[s]|p denotes the subterm
s at position p.

2.3 Substitutions

The typical feature of variables is that they can be replaced by means of
substitutions.

Definition 5 Let Σ be a signature and V be a countable set of variables. A
substitution is a function σ : V → T (Σ, V ) such that σ(x) 6= x only for a
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finite number of variables. For any substitution σ we define:
i) the domain D(σ), as the (finite) set of variables replaced by σ:

D(σ) = {x∈V | σ(x) 6= x} , σ(x)∈T (Σ, V )

ii) the set I(σ) of the variables introduced by σ:

I(σ) =
⋃

x∈D(σ)

V ar(σ(x)).

Thus, a substitution can be represented as a finite set of bindings of
the form {σ(x)/x | x∈D(σ)}. Each substitution σ : V → T (Σ, V ) can be
extended to a function σ′ : T (Σ, V ) → T (Σ, V ) as follows: for x∈V we
have σ′(x) = σ(x) and for a non-variable term t = f(t1, . . . , tn) we have
σ′(t) = f(σ′(t1), . . . , σ

′(tn)).
A substitution σ is said closed if and only if V ar(σ(x)) = ∅ for every

x∈D(σ). id denotes the identity or empty substitution, i.e. D(id) = ∅.
The composition of two substitutions σ and θ is the function θ◦σ defined
as (θ◦σ)(x) = θ(σ(x)) for every x, which is still a substitution: the set of
substitutions is closed under composition.

Sometimes, as it will be shown in the following, substitutions will be
required to be acyclic, that is x 6∈V ar(σ(x)) for all x∈D(σ). A stronger
condition is that of idempotency .

Definition 6 A substitution σ is idempotent if no element in D(σ) is a
subterm of any element of the codomain of σ.

Idempotency of substitutions means that by applying an idempotent substi-
tution to a term in Ter, we always obtain a term in Ter, that is the term
does not become an infinite term.
Idempotent substitutions are not closed under composition.

2.4 Matching substitutions and unifiers

Definition 7 Let s and t be terms in T (Σ, V ). We say that s subsumes t,
written s≤ t, if and only if there exists a substitution σ such that σ(s) = t.
If such σ exists, σ is called a matching substitution or simply a match of s
and t. The term t is an instance of term s.

The partial ordering on terms can be extended to substitutions.
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Definition 8 Given two substitutions σ, σ′, σ≤σ′ if and only if for all x∈V
we have σ(x)≤ σ′(x).

Here we consider idempotent substitutions.

Definition 9 Given s, t∈T (Σ, V ), s and t are unifiable if and only if there
exists a substitution σ such that σ(s) = σ(t). If such σ exists, then σ is called
a unifying substitution or simply a unifier of s and t.

The set of all unifiers of two terms s and t is denoted U∅(s, t).
In general, there can be several unifiers of two terms, or no unifiers.

Definition 10 Let s, t∈T (Σ, V ). If s and t are unifiable, then there exists
a most general unifier (mgu, for short) of s and t. In other words, there
exists σ ∈U∅(s, t) such that for all θ∈U∅(s, t) we have σ≤ θ.

The mgu is unique modulo variable renaming and can be computed with
the algorithm described in Section 2.5.2. Moreover, from the above defini-
tions it follows that, when considering acyclic substitutions, the matching of
terms can be seen as unification in only one direction. A match is a substi-
tution that, when applied to only one of the two terms, makes them equal,
while a unifier is a substitution that, when applied to both terms, makes them
equal. In the case of generic (possibly cyclic) substitutions, this is not true
in general.

Example 3: Let a, b, f, g ∈Σ and x, y ∈V . The terms s = f(x, a) and
t = f(b, y) are unifiable with mgu σ = {b/x, a/y}, but they cannot be made
equal by means of a match, that is neither term subsumes the other. The
terms s′ = x and t′ = g(x) are not unifiable, but they can be made equal by
means of the (cyclic) match σ′ = {g(x)/x} applied to s′, as σ′(s′) = t′. •

2.5 Algorithms of symbolic manipulation on terms

2.5.1 Instantiation

The problem of instantiation can be seen as the problem of finding a solu-
tion for the disequality s≤ t. In the case of s, t∈T (Σ, V ), the solution is
a matching substitution that, when applied to s, produces the instantiated
term t, because σ(s) = t. When such σ exists, it is unique. If t is a closed
term, then the substitution σ is also closed.
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In s≤ t, t is said an instance of s and s is said an anti-instance of t, as one
can obtain s from t by replacing an occurrence of a non-variable subterm of
t with a variable. For any term t, we can define the following two subsets in
(Ter,≤):
- the set Inst(t) of all instances of t, which can be finite, infinite or empty,
and
- the set Antinst(t) of all anti-instances of t, which is always finite and non-
empty. In fact, a variable is an anti-instance of any term.

2.5.2 Unification

The problem of unification is that of finding a solution for the equation s = t.
In the case of s, t∈T (Σ, V ), the solution is a substitution that, when applied
to both terms s and t, produces the same unified term. In this case we talk
of syntactic unification, opposed to semantic unification that will be treated
at the end of these notes.

The unification problem is in general undecidable for any language. In
particular, this problem becomes decidable for first-order languages, such
as T (Σ, V ), and various algorithms have been given which differ for their
efficiency. Here, we consider the Algorithm of the Solved Form, which is also
known as the Algorithm by Martelli-Montanari.

Definition 11 A system of equations is in solved form if it has the following
form:

x1 = t1

. . .

xn = tn

where i 6= j implies xi 6= xj, i, j = 1, . . . , n, and every xi has a unique occur-
rence in the system (that is, the one on the left-hand side of the equation).

Note that a system of equations in solved form is a way to represent an
idempotent unifier {t1/x1, . . . , tn/xn} that, once applied to the two terms
to be unified, yields the unified term. The idea of the algorithm is thus to
find the solution (a substitution) of a system of equations E, if it exists, by
trying to transform such a system into a system in solved form, Eris, which is
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empty at the beginning of the procedure. This is done by applying in a non-
deterministic manner the inference rules given in Fig. 1, so that the following
derivation is generated in case of successful termination of the algorithm

(E, ∅), . . . , (E ′, E ′
ris), . . . , (∅, Eris).

(Delete)
(E ∪ {t = t}, Eris)

(E,Eris)

(Decomposition)
(E ∪ {f(t1, . . . , tn) = f(s1, . . . , sn)}, Eris)

(E ∪ {t1 = s1, . . . , tn = sn}, Eris)

(Failure 1)
(E ∪ {f(t1, . . . , tn) = g(s1, . . . , sm)}, Eris), f 6= g

failure and termination

(Failure 2)
(E ∪ {x = t[x]}, Eris), x∈V ar(t)

failure and termination

(Var. Elimination)
(E ∪ {x = t}, Eris), x 6∈V ar(t)

({t/x}E,Eris ∪ {x = t})

Figure 1: Rules for the solved form.

Remark 3: The substitution θ = Eris that is computed by the algorithm
on its successful termination, i.e. whenever E becomes ∅ without failure, is
idempotent, that is θ(θ(x)) = θ(x) for all x. This derives from the fact that
each variable on the left-hand side of each equation has unique occurrence in
the system in solved form.

Proposition 1 1. The algorithm of the solved form terminates.
2. The algorithm computes a system of equations in solved form or (aut) fails.

Proposition 2 The algorithm of the solved form is correct.

Hence, when the algorithm computes a unifier for two terms, such terms
are unifiable and the unified term belongs to Inst(s) ∩ Inst(t). However,
does the algorithm capture all unifiable cases?

Proposition 3 The algorithm of the solved form is complete.

Proposition 4 The substitution computed by the algorithm of the solved
form is a most general unifier.
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2.5.3 Anti-unification

We have seen that unifying two terms consists of finding their more general
common instance, when such an instance exists. Anti-unifying two terms
consists of finding their more particular common anti-instance, that always
exists. The problem of anti-unification is decidable.

A simple algorithm for building the anti-unified term of two terms in Ter
consists of examining the two terms in parallel from left to right and, while
keeping the corresponding symbols equal, we:
- maintain a variable if one of the two corresponding symbols is a variable,
- introduce a new variable if the corresponding symbols are both constant
(paying attention to giving the same names to the new variables that must
have the same values).

Example 4: Let a, b, c, f, g, h∈Σ and x, y, z ∈V . The anti-unified term
of the terms f(a, b) and g(a, b) is x, the anti-unified term of f(a, x) and
f(y, b) is f(y, x), and the anti-unified term of f(x, h(y, a)) and f(b, h(c, x))
is f(x, h(y, z)). •

3 Equational calculus

Definition 12 Let Σ be a signature and V be a set of variables. A Σ-identity
(or Σ-equation) is a pair (l, r)∈T (Σ, V )×T (Σ, V ), written l = r. The
terms l and r are said left-hand side and right-hand side, respectively, of the
identity l = r.

Note that many authors do not make distinction between identities and
equations, and it is often said that a set of identities is (the base of) an
equational theory . In fact, there is a logical difference between identities and
equations. Identities are equalities whose variables are implicitly universally
quantified, that is equalities that are assumed to be true for any values as-
signed to variables. Equations are instead equalities that typically we want
to solve, whose variables are implicitly existentially quantified: thus, we want
to find those values that, once replaced to the variables, make the equation
true. In the following we will indifferently talk of identities and equations,
while keeping the logical distinction between the two notions.
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3.1 Equational deduction

Identities can be used for transforming terms into other “equivalent” terms
by replacing instances of left-hand sides with the corresponding instances of
right-hand sides and vice versa.

Definition 13 Let E be a set of Σ-identities. The reduction relation
−→E ⊆T (Σ, V )×T (Σ, V ) is defined as follows: given s, t∈T (Σ, V ),

s −→E t if and only if ∃ (l = r)∈E ∃p∈Pos(s) ∃σ substitution
such that s|p = σ(l) and t = s[σ(r)]p.

Example 5: Let Σ = {e, i, f} be a signature where e is a constant symbol, i
is a unary function symbol and f is a binary function symbol. Let x, y, z ∈V
and E be the set with the following identities:

f(x, f(y, z)) = f(f(x, y), z) (1)

f(e, x) = x (2)

f(i(x), x) = e (3)

The identities in E provide an equational presentation of the group theory
and can be used for reducing terms to their normal forms with respect to
such a theory. Let t = f(i(e), f(e, e)). This term can be reduced to the
normal form e by means of two different sequences of reduction steps. In the
first one the identities (1), (3) and (2) are applied:

f(i(e), f(e, e)) −→E f(f(i(e), e), e) −→E f(e, e) −→E e

while (2) and (3) are used in the second sequence:

f(i(e), f(e, e)) −→E f(i(e), e) −→E e.

•

The convertibility relation
∗
←→E is the reflexive-transitive-symmetric clo-

sure of −→E [12]. When doing equational reasoning, we would like to decide
whether two terms are equal modulo a theory which is defined through a set
E of equations, that is s

∗
←→E t for s, t∈T (Σ, V ). The relation

∗
←→E can

be syntactically characterized as follows.
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Definition 14 Let R be a binary relation over T (Σ, V ).
i) R is closed with respect to substitutions if and only if sR t implies
σ(s)Rσ(t) for all s, t∈T (Σ, V ) and substitution σ.
ii) R is closed with respect to the operations in Σ if and only if
s1R t1, . . . , snR tn implies f(s1, . . . , sn)R f(t1, . . . , tn) for all n≥ 0, f ∈Σn

and s1, . . . , sn, t1, . . . , tn ∈T (Σ, V ).

Proposition 5 Let E be a set of Σ-identities. The relation
∗
←→E is the

smallest equivalence relation over T (Σ, V ) that contains E and is closed with
respect to substitutions and the operations in Σ.

Hence, starting from the set E of Σ-identities, the relation
∗
←→E can be

obtained by closing E with respect to reflexivity, symmetry, transitivity, sub-
stitutions and operations in Σ. This procedure of closure can be described
through a system of inference rules that allow one to carry out equational de-
duction, i.e. derive from E all equations s = t that are syntactic consequences
of E , written E ` s = t. The following is an alternative characterization of
the relation

∗
←→E.

Definition 15 Let E be a set of Σ-identities. The syntactic consequences
of E are derived through the following inference rules:

(s = t)∈E
E ` s = t

E ` t = t
E ` s = t
E ` t = s

E ` s = t E ` t = u
E ` s = u

E ` s = t
E ` σ(s) = σ(t)

E ` s1 = t1 . . . E ` sn = tn
E ` f(s1, . . . , sn) = f(t1, . . . , tn)

Proposition 6 Let E be a set of Σ-identities. The relation
∗
←→E generated

from E is the set of identities that are obtained by applying the inference
rules of the deductive system given in Definition 15.

Thus, for all s, t∈T (Σ, V ), we have s
∗
←→E t if and only if E ` s = t in

a finite number of steps using the rules of the deductive system. Such rules
allow one to produce proof trees [1].
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3.2 Models

So far we have introduced notions at syntactic level without providing a
semantic interpretation of the symbols under consideration and have trans-
formed terms by manipulating their symbolic representations. Given a sig-
nature Σ, a Σ-model gives an interpretation of the function symbols in Σ.
For definitions on models, validity, satisfiability, variety and semantic con-
sequences of a set of equations, please refer to [10] (in Italian, Section 3.2).
Here, we simply recall the semantic definition of an equational theory as fol-
lows. Let E |= s = t denote that the identity s = t is a semantic consequence
of E. The relation =E = {(s, t)∈T (Σ, V ) × T (Σ, V ) | E |= s = t} is the
equational theory induced by E, where E is the base or the set of axioms of
the theory.

In what follows, when considering an equational theory, it will be sufficient
to give the axioms E of the theory and we will talk of the equational theory
E with some abuse of notation.

The relation
∗
←→E is the smallest equivalence relation over T (Σ, V ) that

is closed with respect to operations in Σ and substitutions. Starting from
E and by applying the inference rules of the deductive system given in Def-
inition 15, all equations that are true in the theory can be derived. This
is what is asserted by the well-known Birkhoff’s completeness theorem,
i.e. the semantically defined (model-theoretic) relation =E coincides with the

syntactically defined (proof-theoretic) relation
∗
←→E.

Theorem 1 Let E be a set of equations and s = t be an equation. Then we
have that s =E t if and only if E ` s = t.

4 Term rewriting systems

A term rewriting system is a particular abstract reduction system 〈A,−→〉,
where A is a set of terms and −→ is a reduction relation, also called rewrit-
ing relation. Various well-known algorithmic systems (Turing machines, λ-
calculus, etc.) can be formalized as term rewriting systems. Here we consider
first-order term rewriting systems, where the set of terms is T (Σ, V ) and the
rewriting relation is defined through a set of rewriting rules over T (Σ, V ).

Let us recall that the semantics of a functional programming language,
such as ML, SML, CAML, etc. is essentially given through a rewriting sys-
tem. The definition of a function in a functional language is that of a rewrit-
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ing system, i.e. a set of rules that assert how to evaluate the application of
such function to given arguments. The evaluation of an expression in this
language is a process of transformation (rewriting) of the given expression
until it is not possible any more to apply further transformations. The result
of this process is the value of the expression, i.e. its normal form with respect
to the transformation rules.

The process of transformation to normal form can be performed by ap-
plying different evaluation (or reduction) strategies. A strategy defines how
to choose, at each step, the subexpression to reduce first among all reducible
subexpressions (redexes). We have, for example, the evaluation strategy
“call-by-value” (like in the languages of the ML family) and the evaluation
strategy “lazy evaluation” (like in the languages Miranda and Haskell).

Definition 16 A term rewriting system ( trs for short) or rewrite system R
over a signature Σ is a set {(li, ri) | li, ri ∈T (Σ, V ), li 6∈V, V ar(ri)⊆V ar(li)}.
The pairs (li, ri) are called rewrite rules and are written li−→ ri (oriented
equations).
The rewrite relation −→R over T (Σ, V ) is defined as the smallest relation
that contains R and is closed with respect to substitutions and the operations
in Σ (or contexts):

i) t −→R s implies σ(t) −→R σ(s) for all substitution σ;
ii) t −→R s implies f(. . . , t, . . .) −→R f(. . . , s, . . .) for all f ∈Σn, n> 0.

4.1 Redex, derivation, normal form

Definition 17 Given a trs R over Σ, a term t rewrites (or reduces) to a
term s, written t −→R s, is there exist a rule l−→ r in R, a substitution σ
and a redex t|p at position p, such that t|p = σ(l) and s = t[σ(r)]p.

Example 6: Let R be the following trs:

f(h(x)) −→ h(x)

h(h(x)) −→ x

h(a) −→ a

Given the term t = h(f(h(b))), let us check which reductions can be applied in
R starting from t. The positions of t are Pos(t) = {ε, 1, 1.1, 1.1.1}. The only
possible reduction is with the first rule, p = 1, t|p = f(h(b)) and σ = {b/x},
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and we have t −→R t′ = t[σ(h(x))]p = h(h(b)). Given Pos(t′) = {ε, 1, 1.1},
we have another reduction step with the second rule, p = ε, t′|p = t′ and
σ′ = {b/x}, thus t′ −→R t′′ = t′[σ′(x)]p = b. The reduction sequence is as
follows: h(f(h(b))) −→R h(h(b)) −→R b. •

From now on we will write −→ instead of −→R, whenever R is known
from the context. Recall that a term t is in normal form with respect to a trs
R if and only if there is no term s such that t −→ s, that is no subterm of t is
an instance of the left-hand side of some rewrite rule in R. Moreover, a term
s is a normal form of a term t with respect to R if and only if t

∗
−→ s and s

is in normal form with respect to R. The following notation will sometimes
be used: given two terms s, t and a relation −→, s ↓ t denotes that s and t
have a common successor, i.e. there exists a term u such that s

∗
−→ u

∗
←− t.

A normal form of a term t with respect to a trs R will be written t↓.

5 Terminating rewrite systems

We know that the termination property (SN) of a rewrite system ensures the
existence of the normal form for any term, as there are no sequences with
an infinite number of reduction steps [12]. Unfortunately, the problem of
the termination of a rewrite system is, in general, undecidable. This result
holds even if the rewrite rules contain only unary function symbols, or if we
consider a rewrite system with only one rule with function symbols whose
arity is greater than 1.
In fact, every Turing machine can be formalized as a rewrite system such
that, for each computation step of a Turing machine, there is a reduction
in the corresponding rewrite system: thus, the decidability of termination in
rewrite systems would make the Halting Problem decidable.
The termination problem is decidable in the case of closed rewrite systems,
whose rules do not contain any variable.
The termination problem is common to various contexts, more or less ab-
stract, in both Computer Science and Mathematics. Typically, for deciding
the termination of rewrite systems, we can use:

• partial orderings on terms having useful properties for the termination
problem;

• embedding of a system into another one that is known to be terminating.
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The undecidability, in general, of termination of a (finite) rewrite sys-
tem forces one to look for sufficient conditions which allow one to establish
whether a rewrite system is terminating or not. The idea is based on the
intuition of what a rewrite system does, that is when reducing a term by
means of a rewrite relation, the structural complexity of the resulting term
be, in a certain sense, smaller than that of the starting term. Obviously,
this intuition does not agree with the notion of infinite rewriting and is thus
connected with the notion of termination. The aim is that of establishing
a partial ordering Â on the set of terms T (Σ, V ), such that we can prove
that, if t −→ s, then we have t Â s. Hence, it would be sufficient to find
a well-founded ordering Â on terms, such that t −→ s implies t Â s for all
terms t, s. This means that a rewrite system R is terminating if and only if
the rewrite relation −→R is contained in the relation Â.

However, this result is not very helpful as it expresses a condition on all
possible reductions. Instead, we want to give a similar result that takes into
consideration the term structure and the way terms can reduce. A rewrite
relation is, by definition, closed with respect to contexts and substitutions.
The aim is to define orderings on terms that are well-founded and closed
under contexts and substitutions, so that, once we have an ordering with
such properties, in order to check whether a rewrite system is terminating,
it is sufficient to verify a condition on the rules of the rewrite system (and
the rules are assumed to be a finite number), opposed to a condition on all
possible reductions (that can be an infinite number).

5.1 Partial orderings useful for termination

Let us consider reduction orderings and some particular cases.

5.1.1 Reduction orderings

The relation Â⊂ T (Σ, V )×T (Σ, V ) is a reduction ordering if it is:

• partial;

• strict (irreflexive and transitive);

• antisymmetric;

• well-founded or noetherian;
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• closed under contexts (also said monotone or compatible with opera-
tions):

t Â t′ =⇒ C[t] Â C[t′]

for any context C[], or equivalently

t Â t′ =⇒ f(. . . , t, . . .) Â f(. . . , t′, . . .)

for any f ∈Σ;

• closed under substitutions (also said stable):

t Â t′ =⇒ σ(t) Â σ(t′)

for any substitution σ.

Example 7: Let t Â t′ if |t| > |t′|, where |.| : T (Σ, V ) −→ N, with |t| ≥ 1,
gives the number of characters that are in t when is considered as a string.
Verify that Â is not a reduction ordering, as the closure under substitutions
is not satisfied. •

Example 8: Let t Â t′ if |t| > |t′| and |t|x > |t′|x for each variable x, where
|t|x gives the number of occurrences of the variable x in t.
Verify that Â is a reduction ordering. •

Proposition 7 (Lankford Theorem) A rewrite system R is terminating if
and only if there exists a reduction ordering Â such that l Â r for each
l −→ r in R.

Proof (the proof has not been presented at the lectures, thus is not part of
the programme of the course)

If l Â r for each l −→ r in R, then −→R ⊆ Â and also
∗
−→R ⊆ Â, as Â is

transitive. Moreover, as Â is well-founded, each reduction is finite, since the
relation −→R is induced by the rules.

Vice versa, if R is terminating, we can define t Â t′ if t
+
−→R t′.

Since −→R ⊆
+
−→R, we have l Â r if l −→ r for every rule in R.

This ordering is a reduction ordering, because from the fact that R is termi-
nating it follows that Â is irreflexive, transitive, antisymmetric, well-founded
and closed under substitutions and contexts.

Simplification orderings are particular reduction orderings.
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5.1.2 Simplification orderings

The relation Â⊂ T (Σ, V )×T (Σ, V ) is a simplification ordering if it is:

• partial;

• strict;

• antisymmetric;

• has the subterm property (property stronger than well-foundedness),
that is:

t = C[t′] Â t′

for any context C[] 6= [] of t′. Using positions, an equivalent definition
is

t Â t|p

for any position p∈Pos(t)\{ε};

• closed under contexts;

• closed under substitutions.

It is easy to define simplification orderings, as each proper subterm t′ of t is
such that t Â t′.

Example 9: Verify that >lex is not a simplification ordering, as the subterm
property is not satisfied (if f >lex g, then f(g(f(x))) >lex g(f(x)), but it not
true that g(f(x)) >lex f(x)). •

Every simplification ordering on a finite signature contains the embedding
ordering (for a definition of homomorphic embedding, please refer to [1]).

Theorem 2 Let Σ be a finite signature. Every simplification ordering Â on
T (Σ, V ) is a reduction ordering.

For the proof we refer to [1], where the embedding ordering is used.

Recursive path orderings (rpo for short) are another class of particular
reduction orderings.
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5.1.3 Recursive path orderings

Before defining recursive path orderings, we must extend orderings on ele-
ments to finite multisets of elements.
Let (A,Â) be a set A (in our setting A = T (Σ, V )) equipped with a partial
ordering Â. The ordering Â is extended to the ordering ÂÂ on finite multisets
on A, thus yielding (MA,ÂÂ), with the following definition (with M,M1,M2

meta-variables for multisets).

Definition 18 M1 ÂÂ M2 if M1 6= M2 and for all m2 ∈M2\M1 there exists
m1 ∈M1\M2 such that m1 Â m2.

Example 10: M1 = {3, 3, 4, 0} ÂÂM2 = {3, 2, 2, 1, 1, 1, 4} as
M2\M1 = {2, 2, 1, 1, 1}
M1\M2 = {3, 0}
and we have 3 Â 2 and 3 Â 1.
Instead, the relation does not hold between M1 = {3, 1, 1} and M2 = {4, 1}
as M2\M1 = {4}, M1\M2 = {3, 1} and we have that neither 3 Â 4 nor 1 Â 4.

•

Proposition 8 If Â is well-founded, then ÂÂ is also well-founded.

The ordering ÂÂ can also be defined as the transitive closure of the re-
placement of an arbitrary element in a multiset with a finite number (possibly
zero) of elements, which are smaller in Â than the given element.

We now define the ordering rpo for closed or ground terms, and then
extend rpo to terms with variables. The rpo is parametric on an ordering >,
defined on the signature Σ, that establishes the precedences (or priorities) of
the operators.

Definition 19 Let (Σ, >) be the signature equipped with a partial ordering
> on Σ. The ordering rpo on T (Σ) is recursively defined as follows:

s = f(s1, . . . , sm) Ârpo t = g(t1, . . . , tn)

if:

i) f = g and {s1, . . . , sm} ÂÂrpo {t1, . . . , tn}

ii) f > g and {s} ÂÂrpo {t1, . . . , tn}
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iii) f ¤ g and {s1, . . . , sm} Â<rpo {t}

where Â<rpo is ÂÂrpo or the equality ∼, by taking into account that two terms
are considered equal if they are equal modulo permutation of the arguments.

Thus, the two terms f(t1, t2) = f(t2, t1) are considered equal according
to the above definition, as they are equal modulo permutations of the argu-
ments.

The ordering rpo is extended to terms with variables by simply adding to
the clauses in Definition 19 a further clause that deals with the introduction
of variables, so that the resulting ordering on terms is stable.

Definition 20 The generalized rpo on T (Σ, V ) is defined as follows:
given two terms s and t, we have that s Ârpo t if i), ii) or iii) of Definition 19
holds or
iv) s 6∈V and t∈V ar(s).

Theorem 3 Every rpo is a simplification ordering.

Proof The reader may refer to [1].

Example 11: Let R be the following rewrite system on the signature
Σ = {a, b, c, f, g, h}:

f(a, b) −→ g(c)

h(f(a, c)) −→ h(b)

c −→ b

If we take an rpo based on the precedences h > g > f > a > b > c, we can
check that in f(a, b) −→ g(c) we have that f(a, b) Ârpo g(c) does not hold,
and in c −→ b it is not true that c Ârpo b. •

Example 12: Let R be the following rewrite system on the signature
Σ = {a, f, g, h}:

f(x, a) −→ g(x)

f(x, g(y)) −→ g(f(x, y))

h(x, a) −→ x

h(x, g(y)) −→ f(h(x, y), x)
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One has to give a reduction ordering on terms such that R is terminating
with respect to such an ordering. It is sufficient to consider an rpo based on
the precedences h > f > g. In fact, we can verify that for each rule l −→ r
in R we have l Ârpo r. •

6 Confluent rewrite systems

From the Newman Lemma on abstract reduction systems [12], we know that
SN + WCR =⇒ CR. We also know that the convertibility relation is,
in general, undecidable. However, it is decidable for terminating rewrite
systems. In fact, the following decidability result follows from termination
and the Church-Rosser property:

Lemma 1 If the relation −→ is noetherian and Church-Rosser, then
∗
←→

is decidable.

Proof We have s
∗
←→ t if and only if s↓ ≡ t↓, as the normal form for any

term exists and is unique in canonical rewrite systems.

Thus, given a terminating rewrite system, local confluence ensures con-
fluence. The term structure allows us to obtain a sufficient condition for
local confluence. In order to express this condition, we need to introduce the
notion of critical pair.

6.1 Spectrum of the rules of a rewrite system

The situations in reduction sequences that can compromise local confluence
are those where a term can rewrite in two different ways. These situations
can be found by considering those cases where more than one rule can be
applied to the same term. As a reduction sequence is obtained by closing the
rewrite rules under substitutions and contexts, we can consider the set of all
possible instances of the left-hand sides of the rules in R, thus defining the
notion of spectrum of the rules [2].

Definition 21 Let R be a rewrite system. The spectrum of the rules of R
is defined as follows:

spectrum(R) = {σs | ∃t. (s, t)∈R, σ substitution}
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Let us consider the following set B:

B = {(s, t) | ∃u, s′, t′. u∈ spectrum(R), s′ ←− u −→ t′, s = s′↓, t = t′↓}.

Note that the definition given for B is not general, as the case of rule appli-
cation to subterms is not considered. This simplification is done to make the
idea of the critical situations to be considered more intuitive and immediate.

If we represent graphically the situations described by the definition of
B, looking at the spectra of the rewrite rules means to examine the following
rules:

l −→ r

σ1l −→ σ1r

σ2l −→ σ2r

. . .

and to find those terms u that appear as equal left-hand sides σil = τjl
′ in

two different spectra:

l −→ r l′ −→ r′

σ1l −→ σ1r τ1l
′ −→ τ1r

′

σ2l −→ σ2r τ2l
′ −→ τ2r

′

. . . . . .
σil −→ σir
τjl

′ −→ τjr
′

. . .
. . . . . .

If we extend the notion to the most general situation, we need to deal with
all those cases where the instances of two left-hand sides of rules are such
that a subterm of one instance coincides with the whole other instance. This
means that the first instance is a term that, by definition, rewrites in two
different ways, because a rule is applied on the whole term and another rule
is applied on the subterm. These situations are captured by the notion of
critical pairs.

6.2 Critical pairs

Let us start with some examples of critical pairs derived from rewrite rules.
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Example 13:

0 + succ(x) −→ succ(x)

y + succ(z) −→ succ(y + z)

Using the mgu σ = {0/y, x/z}, we have σ(0 + succ(x)) = σ(y + succ(z)) =
0+succ(x). By applying the first rule to the unified term we obtain succ(x),
while by applying the second rule we obtain succ(0 + x). These terms are
both in normal form with respect to the given rules. In this way we have
computed the critical pair (succ(x), succ(0 + x)). •

Example 14:

or(x, y) −→ x

or(x, y) −→ y

With the empty substitution id we have that the term or(x, y) reduces to x
using the first rule, and to y using the second rule. Both terms are in normal
form with respect to the given rules. The critical pair is (x, y). •

Example 15:

f(g(x)) −→ b

g(h(a)) −→ c

With the mgu θ = {h(a)/x}, from the unified term f(g(h(a))) we obtain the
critical pair (b, f(c)). •

Let us show an example of critical pair generated from only one rule,
whose left-hand side unifies with (also said overlaps on) the left-hand side of
a renamed variant of the same rule.

Example 16:

f(f(x)) −→ r(x)

f(f(y)) −→ r(y)

Using the mgu θ = {f(x)/y}, the term f(f(x)) unifies with f(y), thus getting
the unified term f(f(f(x))), from which the critical pair (r(f(x)), f(r(x))) is
obtained. The term r(f(x)) derives from the redex f(f(f(x))) by replacing
the variable y of the second rule with f(x), while the term f(r(x)) derives
from the innermost redex f(f(x)) of f(f(f(x))) using the first rule. •

23



Definition 22 (s, t) is a critical pair for a rewrite system R if there exist
two rules (with no variables in common)

l1 −→ r1

l2 −→ r2

a position p∈Pos′(l1) and an mgu θ such that

θ(l1|p) = θ(l2)

so that s = θ(l1)[θ(r2)]p and t = θ(r1).

Graphically we have:

θ(l1)

θ(l1)[θ(r2)]p θ(r1)

À JĴ

The set CC of critical pairs of a rewrite system is given by all critical
pairs that can be obtained from its rules and their renamed variants. As we
have seen in Example 16, after variable renaming, a rule can also overlap on
itself on a proper subterm and generate a critical pair.

Definition 23 A trs R is said ambiguous if its set CC of critical pairs is
non-empty.

By definition, a critical pair (s, t) of a rewrite system R contains two
terms that are convertible in R, but the pair might not be convergent.

Definition 24 A critical pair (s, t) of a trs R is convergent if s ↓ t.

The importance of the notion of critical pair lies in the intuitive fact that
whenever a term t reduces in one step in R to two syntactically different
terms t1 and t2, we have that t1 has a subterm that is an instance of one
element of a critical pair of R and t2 has a subterm that is an instance of
the other element of the same critical pair. This is what is asserted by the
so-called Critical Pairs Lemma, whose proof provides the details of all
syntactically possible cases (the proof can be found in [1]).
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6.3 The Huet Lemma

If a rewrite system R has a finite number of rules, then its set CC of critical
pairs is also finite. The following lemma provides a sufficient condition for
checking local confluence.

Lemma 2 (Huet Lemma) A rewrite system R is locally confluent (WCR) if
and only if all its critical pairs are convergent.

Proof (the proof has not been presented at the lectures, thus is not part of
the programme of the course)
If R is WCR, all its critical pairs are obviously convergent. Hence, we only
prove the ‘if’ implication “if all critical pairs of R are convergent, then R is
locally confluent”.
The following cases describe the three possible relations in which redexes can
be inside a term. The graphical representation simplifies the proof develop-
ment and makes it more intuitive.

1. Disjoint redexes

σ l θ l’

σ r θ

σ r θ l’ σ l θ r’

l r

l’ r’ l r

r’

l’ r’

For example, the term t = f(g(x), h(b)) can be reduced using the rules
g(x) −→ a and h(y) −→ c, thus obtaining f(a, h(b)) and f(g(x), c)
respectively, which clearly converge to f(a, c).
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2. Nested redexes (variable overlapping)

x x

l r

l r

x

l’ r’
*

l’ r’

x x

l’ r’
*

x x x

For example, the term t = h(f(g(x)), c) reduces using rules g(y) −→ a
and f(x) −→ r(x, x), thus obtaining h(f(a), c) and h(r(g(x), g(x)), c)
respectively, which clearly converge to h(r(a, a), c).

3. Overlapping redexes (where the convergence hypothesis on the critical
pairs is used)
The term t = C[(σl)[θl′]p] can be represented as follows:

l

l’
σ σ

θ

The term t reduces by the rule l −→ r to t1 = C[σr] and by the rule
l′ −→ r′ to t2 = C[(σl)[θr′]p]. By setting ρ = σ◦θ, we have t1 = C[ρr]
and t2 = C[(ρl)[ρr′]p]. By the convergence hypothesis on the critical

pairs, we have t1
∗
−→ C[t′]

∗
←− t2 for some term t′.

For example, the term t = h(f(f(f(a)))) can be reduced in two dif-
ferent ways using the rule f(f(x)) −→ b, thus obtaining h(b) and
h(f(b)) respectively, which give a non-convergent critical pair. If the
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rewrite system had further rules that make the critical pair convergent,
e.g. f(b) −→ c and b −→ c, then the rewrite system would be WCR.

7 Canonical rewrite systems

In this section we describe a method for deriving a canonical rewrite system,
starting from a rewrite system that is not canonical, but admits a finite
equivalent canonical rewrite system. The semantic meaning of this method,
that is based on a “completion” of an equational theory, lies in the fact that
it provides a decision procedure for the word problem in an equational theory.

7.1 The word problem

Given an equational theory E, the word problem consists of deciding whether
E ` s = t, i.e. if s = t modulo E. This problem can be solved by means of
rewriting if there exists a rewrite system R equivalent to E, that is with the
same deduction power of E. Let us recall that an equation denotes equality
and thus can be applied in both directions, while a rewrite rule can be applied
only in one direction. Finally, the substitutions required when rewriting are
matches applied to the rewrite rules.

Definition 25 A rewrite system R is equivalent to a set of equational ax-
ioms E if for all s, t∈T (Σ, V ) we have

s
∗
←→R t if and only if E ` s = t.

The aim is thus to find (if it exists) a rewrite system R equivalent to E.

Theorem 4 If R equivalent to E is canonical (or convergent or complete),
then the word problem in E is decidable.

Proof We have s↓ ≡ t↓ if and only if s
∗
←→R t if and only if E ` s = t.

Hence, we can use −→ instead of←→ without ever backtracking in reduction
sequences. The vice versa of this theorem is not true. There are equational
theories with a decidable word problem that do not admit a finite equivalent
complete rewrite system [4].
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7.2 The Knuth-Bendix Theorem

The following result, known as the Knuth-Bendix theorem, can be con-
sidered as a corollary of the Newman Lemma and the Huet Lemma:

Theorem 5 A terminating rewrite system is canonical if all its critical pairs
are convergent.

Proof If all critical pairs of a rewrite system are convergent, then the
system is locally confluent by the Huet Lemma. As the rewrite system is
also terminating, by the Newman Lemma the system is confluent.

Given a set of equational axioms specifying a particular structure, we
must determine whether there exists a canonical rewrite system equivalent
to the given set. Given a rewrite system R that is not complete, the problem
of its completion consists in finding a set R′ of rewrite rules that is equivalent
and complete. Let us see how we can proceed to determine, if it exists, such
canonical rewrite system.

Suppose that a terminating rewrite system is given, thus we consider the
problem of confluence. From [2] we can formulate the problem as follows:
given a rewrite relation −→R, determine a rewrite relation −→R′ such that

∗
←→R =

∗
←→R′ and −→R′ has the property CR.

The idea is to consider all possible situations in which confluence can be
compromised, and we try to recover these cases by introducing the new pair
(s, t) into the relation R′, that is by adding the new rule s −→ t or t −→ s
into the relation −→R′ . The pair is introduced only if its insertion does not
compromise the termination of the rewrite system under construction. The
new rule preserves the correctness of the procedure (both s and t derive from

the same term), as
∗
←→R =

∗
←→R′ . If the completion procedure terminates

with success (as we will see below), then R′ is confluent.
If R′ is terminating, we know that it is sufficient to derive the property

WCR, thus it is enough to compute all its critical pairs (that are in a finite
number) and then to orient them with respect to the given reduction ordering
in order to preserve termination.

7.3 Completion procedures

Based on the Knuth-Bendix theorem, several completion procedures have
been given in the literature, more or less efficient, that under the termination
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hypothesis try to eliminate all critical pairs of a rewrite system. Here we
illustrate the inference rules that must be applied non-deterministically, by
choosing in an arbitrary way which rule to apply and where. Each strategy
of application of the inference rules (with the possible addition of further
rules) defines a specific completion procedure.

One starts with a set of equational axioms E, that has to be transformed
into an equivalent canonical rewrite system, initially empty. Thus, the initial
configuration is the pair (E, ∅).

A reduction ordering Â is established to be used in some of the inference
rules given in Fig. 2 in such a way that the termination property is preserved.

Remark 4: Each completion procedure explicitly depends on the chosen
reduction ordering. The reduction ordering is an input parameter to the
completion procedure together with the set E. The input is thus (E, Â).

Orient (with similar rule if r Â l):

(E ∪ {l = r}, R), l Â r

(E,R ∪ {l −→ r})

Failure:
(E ∪ {l = r}, R), l ¨ r, r ¨ l

(failure)

Delete:
(E ∪ {l = l}, R)

(E,R)

Simplify on the left (with similar rule on the right):

(E ∪ {l = r}, R), l
+
−→ l↓

(E ∪ {l↓= r}, R)

Deduce:
(E,R), (c = c′) ∈ CC

(E ∪ {c = c′}, R)

Figure 2: Basic rules for completion.

The basic inference rules for completion are given in Fig. 2. By applying
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such rules, a sequence of configurations is built

(E, ∅), (E1, R1), . . . , (Ei, Ri), . . .

where (Ei, Ri) ` (Ei+1, Ri+1) for each i. Such a sequence can

1. terminate with (∅, Rn). In this case Rn is canonical and all equations
have been oriented.
If E, besides being finite, is also closed and Â is a total ordering on
closed terms, the completion procedure terminates with success [6, 14].

2. terminate with (Ei, Ri) and Ei 6= ∅, i.e. the procedure fails. This
happens, for example, when a critical pair cannot be oriented with
respect to the given reduction ordering. This can even happen when an
equivalent complete rewrite system actually exists for E. For details on
this situation we refer to [4]. Changing the reduction ordering during
completion with one ‘more powerful’ (that preserves the ordering on
those terms already compared with respect to the previous reduction
ordering) may result in an incorrect completion procedure, even in the
case of successful termination [13].

3. be infinite, and at the limit it can either fail or derive a canonical
rewrite system with an infinite (countable) set of rewrite rules. In this
case we talk of divergence of completion.

Besides the basic rules for completion, we can also consider the follow-
ing inference rules, which perform simplifications on the rules of the current
rewrite system Ri:

Compose:
(E,R ∪ {l −→ r}), r −→ r′

(E,R ∪ {l −→ r′})

Collapse:

(E,R ∪ {l −→ r}), l −→ l′ by lk −→ rk with l −→ r ¤ lk −→ rk

(E ∪ {l′ = r}, R)

where ¤ is a well-founded ordering on rewrite rules defined as follows:
l −→ r¤ lk −→ rk if (i) a subterm of l is an instance of lk or (ii) l and lk are
equal and r Â rk.
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In a way similar to the inference rule Simplify that reduces to normal form
the sides of the equations in Ei with respect to Ri, the inference rules Com-

pose and Collapse allow one to reduce the rewrite rules in Ri, thus yielding
an inter-reduced rewrite system.

7.4 Properties of the completion rules

1. The rules for completion generate a terminating rewrite system.
In fact, each equation is transformed into a rule only if this is allowed
by the given reduction ordering Â.

2. The rules for completion are correct in the sense that if (Ei, Ri) `

(Ei+1, Ri+1), then
∗
←→(Ei,Ri) =

∗
←→(Ei+1,Ri+1), and thus the underlying

equational theory is unchanged.
By examining each inference rule, Orient, Delete and Deduce are
obviously correct, the remaining rules are correct based on the defini-
tion of rewrite relation.
For the correctness of infinite completion we refer to [1], here we are
mainly interested in finite rewrite systems.

Example 17: The classic example of completion by Knuth-Bendix is ob-
tained by orienting the theory

0 + x = x

x + (−x) = 0

(x + y) + z = x + (y + z)

with respect to an rpo based on the precedence + > 0 and by considering
the associativity of “+” (third equation) from left to right, thus getting the
incomplete system

0 + x −→ x

x + (−x) −→ 0

(x + y) + z −→ x + (y + z)

In fact, for example, from the term 0 + (−0) we obtain the critical pair
(−0, 0) which is not convergent; from (x + (−x)) + y we obtain the critical
pair (y, x + (−x + y)) which is again not convergent. •
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Other examples are presented in [1]. Note that these examples should
be typically given to tools implementing the completion procedure, as there
might be a very high number of applications of the inference rules to carry
out. Completion procedures are implemented in some automatic theorem
provers, like Otter, RRL, EQP and Larch Prover [17], and in other proof
assistants, like CiME, ELAN and Maude [15, 16, 18].

The completion procedure has also been extended to deal with typical
cases of non-termination and failure. There are extensions where critical pairs
that cannot be oriented are considered as rewrite rules in both directions,
and others which carry out completion modulo equivalence classes based on
those equations of E that are kept as equations.

8 Rewriting modulo equations

When some equations of a theory E cannot be oriented, we proceed to instan-
tiating, unifying, completing, . . . modulo such equations. Rewriting modulo
equations replaces the relation R with R/E everywhere and a reduction can
be written as follows:

t1 −→R/E t2 =E t′2 −→R/E . . .

If the equivalence classes are finite, −→R/E is decidable if −→R is decidable.

8.1 E-unification

Let us keep the set E as a set of equational axioms and formulate the unifica-
tion problem as s =E t, whose solutions are in Ter/E. Syntactic unification
is the particular case when E = ∅. E-unification is also said semantic unifi-
cation. The usual notions on unification are reformulated as follows, starting
from the subsumption orderings on terms and substitutions.

Definition 26 Let s, t∈T (Σ, V ) and σ, δ, γ substitutions.

• s ≤E t if there exists σ such that σ(s) =E t. The substitution σ is said
a matching substitution modulo E or E-match of s and t.

• σ ≤E δ if there exists γ such that γ(σ(x)) =E δ(x) for each variable x.

• σ =E δ if σ(x) =E δ(x) for each x.
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• σ ≈E δ if σ ≤E δ and δ ≤E σ.

Note that in general σ ≤E δ and δ ≤E σ does not imply σ =E δ, as illustrated
in the following example.

Example 18: Let E = {f(x, x) = x} = I (idempotency), σ = {y/x} and
δ = {f(y, z)/x}. We have that σ ≈E δ because σ ≤E δ with γ = {f(y, z)/y}
and δ ≤E σ with γ = {y/z}, but σ(x) 6=E δ(x). •

Definition 27 Two terms s, t∈T (Σ, V ) are E-unifiable if and only if there
exists a substitution σ such that σ(s) =E σ(t). The substitution σ is called
E-unifier of s and t.

In general, there is no unique (modulo variable renaming) E-mgu, thus
sets of E-unifiers must be considered as follows.

Definition 28 Let s, t∈T (Σ, V ) and U be a set of E-unifiers of s and t,
that is U ⊆ UE(s, t).

• U is minimal, written MU , if for all σ, σ′ ∈U σ ≤E σ′ =⇒ σ =E σ′.

• U is complete, written CU , if for every E-unifier δ of s and t there
exists σ ∈U such that σ ≤E δ.

• U is CMU if it is minimal and complete.

All idempotent semigroups do not have complete sets of E-unifiers.

Example 19:

• Let E = {x + y = y + x} = C (commutativity of +), s = 0 + x
and t = y + z. We have 0 + x =E y + z through θ1 = {0/y, x/z}.
Given x + 0 =E y + z, also θ2 = {x/y, 0/z} is an E-unifier of s and
t, where θ1 6≤E θ2 and θ2 6≤E θ1. Moreover, for any other E-unifier δ
(e.g. δ = {0/x, 0/y, 0/z}) θ1 ≤E δ and θ2 ≤E δ. Thus, {θ1, θ2} is CMU .

• Let E = {x+(y + z) = (x+ y)+ z} = A (associativity of +), s = x+1
and t = 1 + x. We have that CMU = {θ1 = {1/x}, θ2 = {1 + 1/x},
. . . , θn = {1 + 1 + . . . + 1/x}, . . . } is an infinite set.

•
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E-unification is in general undecidable. A well-known example is given
by the Diophantine equations p1(x) =E p2(x), where the polynomials pi(x)
(i = 1, 2) have coefficients in Z and we search for solutions in Z. This is
also known as Hilbert’s tenth problem, solved in a negative way in 1970 by
Matijasevic.

Many problems on the decidability of E-unification are open. There are
several E-unification algorithms for classes of axioms of various kinds. A
fairly general case is the following: if the set of axioms E admits an equiv-
alent canonical rewrite system, then E-unification is semi-decidable (i.e. the
procedure may not terminate in some cases).
At this point we need to define the notion of ‘narrowing’.

8.2 Narrowing

If instead of instantiating a rewrite rule for rewriting a reducible term, such
term is unified with the left-hand side of the rule and then the rule is applied,
we get a narrowing relation, written ;. Let us consider an example.

Example 20: The term h(f(y, a)) cannot be reduced with f(a, x) −→ g(b),
but if the subterm f(y, a) is unified with the left-hand side of the rule, the
values of y get restricted to the value a and the resulting restricted (narrowed)
term h(f(a, a)) can be rewritten using the rule to the term h(g(b)). •

From the point of view of programming languages, when replacing match-
ing with unification, we move from functional programming towards logic
programming (see Section 8.5).

Definition 29 (narrowing) Let t∈T (Σ, V ). Let p∈Pos′(t) and l −→ r be
a rule in R such that t|p unifies with l, i.e. there exists an mgu σ such that
σ(l) = σ(t|p). We say that the term t reduces via narrowing to the term
t′ = σ(t)[σ(r)]p = σ(t[r]p) and write t;R t′, where ;R is the narrowing
relation on T (Σ, V ) defined by R.

Let us introduce a fresh new symbol || that does not occur in the signature
Σ of the language under consideration. Given s, t∈T (Σ, V ), ||(s, t) denotes
a new term, where narrowing is indifferently applied to either s or t, so that
we write the narrowing sequence

||(s, t); ||(s1, t1); ||(s2, t2); . . .
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Often, reductions by narrowing do not terminate. The reduction graph re-
sulting from the application of the narrowing relation may be very large,
thus several optimizations have been developed that do not compromise the
completeness of the procedure. Here, we consider:

• Basic narrowing
Narrowing is not applied on a term resulting from a previous application
of narrowing.

• Normal narrowing
Narrowing is applied only on terms that are in normal form with respect
to the rewrite system R.

Let us first consider the normal narrowing.

8.3 The E-unification procedure

The basic idea of the E-unification procedure defined by Fay, Hullot and
Lankford is that in

||(s, t); ||(s1, t1); ||(s2, t2); . . .; ||(sn, tn)

if sn and tn are syntactically unifiable, then s and t are E-unifiable by means
of the substitution resulting from the composition of the n narrowing unifying
substitutions and the syntactic unifier, according to their order of application.

The input to the E-unification procedure is given by the canonical rewrite
system R equivalent to the equational theory E and the initial goal s =E t
with the empty substitution id, written (||(s, t), id).
Let σi the i-th composed substitution of normal narrowing, that is at the i-th
step we have (||(si, ti), σi). The steps of the procedure are as follows:

||(si, ti) is in normal form in R and si and ti are syntactically unifiable with
mgu θ.
Then, θ◦σi is an E-unifier of s and t.

||(si, ti) is in normal form in R and is not unifiable with the left-hand side
of any rule in R.
Then, si and ti are not E-unifiable.
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||(si, ti) is in normal form in R and can be reduced via narrowing with a
rule in R and substitution σ.
Then, (||(si, ti), σi) is transformed into (||(si+1, ti+1), σ◦σi).

This procedure enumerates the E-unifiers of two terms and terminates if
such terms are E-unifiable. Correctness and completeness of the procedure
are stated by the following result:

Theorem 6 Let E be an equational theory that admits a canonical rewrite
system R. Let s, t∈T (Σ, V ) and consider the auxiliary term ||(s, t). If in

||(s, t); ||(s1, t1); ||(s2, t2); . . . ; ||(sn, tn)

||(sn, tn) is such that sn and tn are syntactically unifiable with mgu θ, then
s and t are E-unifiable by means of the substitution resulting from the com-
position of the n narrowing unifying substitutions and the syntactic unifier θ
(according to their order of application).
The set of substitutions computed in this way is a complete but not minimal
set of E-unifiers of s and t.

Example 21: Let E be the equational theory:

+(0, x) = x

+(s(x), y) = s(+(x, y))

By applying the completion procedure, we get that the canonical rewrite
system equivalent to E is simply given by the two rules obtained by orienting
the equations of E from left to right with respect to an rpo based on the
precedence + > s:

+(0, x) −→ x

+(s(x), y) −→ s(+(x, y))

Let +(x, x) = s(s(0)) be an equation that we want to solve modulo E using
the E-unification procedure based on normal narrowing. The initial term
(also referred to as goal) is written ||(+(x, x), s(s(0))). The terms of the
equation are in normal form in R. Starting from the initial goal, the following
reductions via narrowing are possible, both at position p = 1:

||(+(x, x), s(s(0))) ; ||(0, s(s(0)))

||(+(x, x), s(s(0))) ; ||(s(+(x1, s(x1))), s(s(0)))
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by means of, respectively, the first (renamed) rule +(0, x1) −→ x1 with
mgu σ1 = {0/x, 0/x1}, and the second (renamed) rule +(s(x1), y1) −→
s(+(x1, y1)) with mgu σ1 = {s(x1)/x, s(x1)/y1}.
The term ||(0, s(s(0))) (in normal form in R) is not unifiable with any of
the rules in R, and the two terms 0 and s(s(0)) are not syntactically unifi-
able. Hence, we have failure along this path of the narrowing tree. The
term ||(s(+(x1, s(x1))), s(s(0))) (in normal form in R) is unifiable at position
p = 1.1 with the left-hand side of both rules in R, thus yielding the following
reductions via narrowing:

||(s(+(x1, s(x1))), s(s(0))) ; ||(s(s(0)), s(s(0)))

||(s(+(x1, s(x1))), s(s(0))) ; ||(s(s(+(x2, s(s(x2))))), s(s(0)))

using the rule +(0, x2) −→ x2 with mgu σ2 = {0/x1, s(0)/x2}, and the
rule +(s(x2), y2) −→ s(+(x2, y2)) with mgu σ2 = {s(x2)/x1, s(s(x2))/y2}.
The two terms of the current goal ||(s(s(0)), s(s(0))) syntactically unify with
mgu θ = id. By composing the unifying substitutions σ1, σ2 and θ, we get
the solution x = s(x1) = s(0). Indeed, if we replace x with s(0) in the
initial equation +(x, x) = s(s(0)), we have +(s(0), s(0)) = s(s(0)) that is
true modulo E (the normal form in R of +(s(0), s(0)) is s(s(0))).
Starting from the other current goal ||(s(s(+(x2, s(s(x2))))), s(s(0))), it is
instead possible to apply further narrowing steps at position p = 1.1.1 and
then again in more nested positions of the resulting terms without deriving
other solutions for the initial equation.
The tree with the narrowing derivations is as follows:

||(+(x, x), s(s(0)))

À JĴ

Failure ||(s(+(x1, s(x1))), s(s(0)))

À JĴ

Success ||(s(s(+(x2, s(s(x2))))), s(s(0)))

À JĴ

Failure . . .

•

The set of E-unifiers is in general complete but not minimal.
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In Section 8.2 we have introduced basic narrowing, where reductions via
narrowing are not applied on those terms that have been derived by means
of previous applications of narrowing. This leads to a restriction of the
search space in the E-unification procedure without losing correctness and
completeness [9]. The procedure is modified by restricting the term positions
on which narrowing steps can be applied. The basic positions are a subset
of the non-variable positions considered in Definition 29 and are defined as
follows. Given the initial term ||(s, t), the set of positions pos0 coincides with
Pos′(||(s, t)). At the next iterations, given the term ||(si, ti) resulting from
the application of a narrowing step at position p using rule l −→ r, we have:

posi+1 = (posi \ {q | p ≤ q}) ∪ {p.q | q ∈Pos′(r)}

Hence, the positions lower (or deeper) than position p (p included) are re-
placed by the non-variable positions of the right-hand side (not instantiated)
of the rule used at the previous narrowing step.

8.4 Equational theories and E-unification: a summary

This section has not been presented at the lectures of the course, thus is not
part of the programme

In the literature the problem of unification modulo an equational theory
has been studied for several theories. The most well-known theories are the
following:

- E = {f(x, y) = f(y, x)} = C (commutativity)

- E = {f(x, f(y, z)) = f(f(x, y), z)} = A (associativity)

- E = A ∪ C = AC

- E = {f(x, x) = x} = I (idempotency)

- E = A ∪ I = AI

- E = {g(x, f(y, z)) = f(g(x, y), g(x, z))} = Ds (left distributivity)

- E = {g(f(y, z), x) = f(g(y, x), g(z, x))} = Dd (right distributivity)

- E = Ds ∪Dd = D (distributivity)
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- E = A ∪D = AD

Given two terms s and t and an equational theory E, let UE(s, t) be a
complete and minimal set of E-unifiers of s and t. |S| denotes the cardinality
of a set S. The unification modulo E is:

- unitary if |UE(s, t)| ≤ 1;

- finitary if |UE(s, t)| < ω;

- infinitary if |UE(s, t)| = ω;

- nullary if UE(s, t) does not exist.

We know that syntactic unification (E = ∅) is unitary (Section 2.5.2).
Moreover, we have seen in Example 19 that the theory C of commutativity
is finitary and the theory A of associativity is infinitary. The results regarding
unification modulo the above equational theories are summarized as follows:

- E = ∅ unitary;

- C finitary;

- A infinitary;

- AC finitary;

- I finitary;

- AI nullary;

- Ds unitary;

- Dd unitary;

- D infinitary;

- AD infinitary.

For more details on E-unification modulo these equational theories and
the related algorithms we refer to [1].
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8.5 Comparison with SLD-resolution

This section has not been presented at the lectures of the course, thus is not
part of the programme. The students who are familiar with SLD-resolution
might find it interesting to read this comparison.

Let us see, through an example, how equations can be solved modulo an
equational theory E using the SLD-resolution in Prolog [5, 11].

Example 22: The equational theory E given in Example 21 can be for-
malized by means of the following Horn clauses:

plus(0, x1, x1). (4)

plus(s(x2), y2, s(z2)) :− plus(x2, y2, z2). (5)

The equation +(x, x) = s(s(0)) to be solved modulo E becomes the goal:

:− plus(x, x, s(s(0))).

This goal unifies with the head of clause (5) with unifier {s(x2)/x, s(x2)/y2,
s(0)/z2}. The new goal is

:− plus(x2, s(x2), s(0)).

that unifies with the head of clause (4) with unifier {0/x2, s(0)/x1}. Thus,
we obtain the empty clause

2.

and by composing the substitutions we get the answer substitution x =
s(x2) = s(0).
The SLD-tree is the following:

:− plus(x, x, s(s(0))).

JĴ

:− plus(x2, s(x2), s(0)).

À JĴ

Success Failure
•

This example shows that E-unification based on narrowing and SLD-
resolution are different approaches to solving equations modulo an equational
theory. Narrowing and resolution are inference rules based on the same kind
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of mechanism, as they both try to unify a part of the goal (in narrowing it is
a subterm of a side of the equation, while in resolution it is a literal) with a
part of a rule (in narrowing it is the left-hand side of a rewrite rule, while in
resolution it is the head of a clause). Both narrowing and resolution apply
the unifying substitution to the whole goal and the whole rule/clause, and
derive a new goal by taking the instances of the remaining parts of the goal
and of the rule/clause.

The difference between narrowing and resolution is in the fact that nar-
rowing, when trying to unify, considers all possible subterms on which a
narrowing step can be applied, while resolution considers the whole literal
with all its arguments. It follows that in narrowing all possible choices of
subterms are investigated, while in resolution only the paths starting from
the application of a resolution step on the selected literal are explored. This
implies that narrowing has a much larger search space than resolution and
takes more time. In Examples 21 and 22 we can already observe a difference
between the search spaces. At the first step narrowing tries (as it is possible)
the application of both rules in R. The application of the first rule leads to
failure, while the application of the second rule results in a goal on which it
is still possible to apply both rules: the first one gives success, whereas the
second one leads to an infinite number of failures and the non-termination of
the procedure of E-unification based on narrowing. This procedure searches
for a complete set of E-unifiers, without recognizing that such a set is rep-
resented by the only substitution {s(0)/x}. Resolution instead, at the first
step, can only apply clause (5) and on the resulting goal can apply both (4)
and (5). Prolog SLD-resolution applies (4) and terminates with success. The
application of (5) derives a goal on which no clauses can be applied, thus
yielding failure and termination.

41



References

[1] F. Baader and T. Nipkow, ‘Term Rewriting and All That ’, Cambridge
University Press, Cambridge, 1998.

[2] B. Buchberger, ‘History and Basic Features of the Critical Pair / Com-
pletion Procedure’, Journal of Symbolic Computation 3, 1987, pp. 3–38.

[3] N. Dershowitz and J.-P. Jouannaud, ‘Rewrite Systems’, in Handbook of
Theoretical Computer Science, Volume B: Formal Models and Seman-
tics, J. van Leeuwen ed., North-Holland, 1990, pp. 243-320.

[4] N. Dershowitz, L. Marcus and A. Tarlecki, ‘Existence, uniqueness and
construction of rewrite systems’, SIAM Journal of Computing 17, 1988,
pp. 629–639.

[5] J. H. Gallier, ‘Logic for Computer Science: Foundations of Automatic
Theorem Proving ’, Computer Science and Technology Series, Harper
and Row, 1986.

[6] J. Gallier, P. Narendram, D. Plaisted, S. Raatz and W. Snyder, ‘An algo-
rithm for finding canonical sets of ground rewriting rules in polynomial
time’, Journal of ACM 40, 1993, pp. 1–16.

[7] G. Huet, ‘Confluent Reductions: Abstract Properties and Applications
to Term Rewriting Systems’, Journal of ACM 27, No. 4, October 1980,
pp. 797–821.

[8] G. Huet, ‘A Complete Proof of Correctness of the Knuth-Bendix Com-
pletion Algorithm’, Journal of Computer and System Sciences 23, 1981,
pp. 11–21.

[9] J.-M. Hullot, ‘Canonical Forms and Unification’, in Proceedings of 5th
CADE, Lecture Notes in Computer Science 87, Springer-Verlag, 1980,
pp. 318–334.

[10] P. Inverardi, M. Nesi and M. Venturini Zilli, ‘Sistemi di Riscrittura per
Termini del Prim’Ordine’, Technical Report No. 35, Dipartimento di
Matematica Pura e Applicata, Università degli Studi di L’Aquila, July
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