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Abstract

This paper presents a rewriting strategy for the analysis and the verification of com-
munication protocols. In a way similar to the approximation technique defined by
Genet and Klay, a rewrite system R specifies the protocol and a tree automaton A
describes the initial set of communication requests. Given a term t that represents
a property to be proved, a rewriting strategy is defined that suitably expands and
reduces t using the rules in R and the transitions in A to derive whether or not t

is recognized by an intruder. This is done by simulating a completion process in a
bottom-up manner starting from t and trying to derive a transition t → qf from
critical pairs, where qf is a final state of the tree automaton. The rewriting strategy
is defined through a set of inference rules and used for reasoning about the authen-
tication and secrecy properties of the Needham-Schroeder public-key protocol.

1 Introduction

The analysis and the verification of communication and security protocols
have recently become an important subject of research, mostly due to the
development of the Internet and related electronic commerce services. Sev-
eral approaches have been applied to protocol specifications in order to for-
mally prove various properties of interest, such as authentication, secrecy or
confidentiality, freshness of nonces, etc. These approaches range from model
checking [17,19] to theorem proving [18,25,26,28] through rewriting techniques
and strategies [2,6,14] combined with tree automata and abstract interpreta-
tion [9,11,20]. There is also ongoing work on combining different approaches,
such as the combination of Genet and Klay’s approximation technique with
Paulson’s inductive method in Isabelle [22,23].
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We are interested in the approach based on the approximation technique
developed in [8,9,11] that uses rewrite systems and tree automata to specify
and verify properties of security protocols. This technique aims at finding
that there are no attacks on a protocol, rather than at discovering attacks.
The protocol is operationally specified through a rewrite system R, while the
initial set E of communication requests is described through a tree automaton
A such that L(A)⊇E. Starting from R and A, the approximation technique
by Genet and Klay builds a tree automaton which over-approximates the
set of the messages exchanged among the protocol agents. In other words,
the language recognized by the resulting approximation automaton TR↑(A)
includes all R-descendants of E. In this way, in order to prove whether a
property p is satisfied, it is sufficient to consider the intersection between the
language of TR↑(A) and the language of a tree automatonAp which models the
negation of p and thus contains the “prohibited” terms. If such intersection
is empty, then p is satisfied.

Like in the approach based on the approximation technique, we consider a
rewrite system R to specify the protocol and a tree automaton A to represent
the initial set E of communication requests. Given a term t that describes a
property to be proved, a rewriting strategy is defined that suitably expands
and reduces t using the rules in R and the transitions in A to derive whether
or not t is recognized by the intruder. This is done by simulating a completion
process in a bottom-up manner starting from t and trying to derive if a transi-
tion t→ qf can be generated from critical pairs, where qf is a final state of A.
If the transition t → qf is derived by the strategy, this means that the term
t is recognized by the intruder and thus the property represented by t is not
satisfied by the protocol. If t→ qf is not derived, then the property given by
t is true. Note that no approximation is carried out on the transitions when
applying the bottom-up derivation process.

The strategy is inspired by a previously defined rewriting strategy to deal
with the problem of divergence of the completion process [12,13]. The au-
tomaton TR↑(A) resulting from the approximation technique is characterized
by a finite set of transitions, but their number can be very high. We think
that also in this case it can be worth applying the bottom-up strategy, as it
generates a small subset of transitions for any given input term t. Moreover,
the strategy can help finding attacks when the language intersection is not
empty and there may be an attack.

The protocol specification under consideration is the Needham-Schroeder
Public-Key protocol [21] (NSPK from now on), which is the typical first case
study of protocol verification. This simple protocol, developed in 1978, was
proved insecure only many years later by Lowe [16] and Meadows [18].

The paper is organized as follows. Section 2 describes the NSPK and its
formalization as a rewrite system. In Section 3 the approximation technique
is briefly recalled and discussed. The rewriting strategy is introduced and
defined by means of inference rules in Section 4 and then shown to be correct,



terminating and complete. In Section 5 the strategy is applied to the specifi-
cation of the NSPK for proving the properties of secrecy and authentication.
The paper ends with some concluding remarks and directions for future work.

2 The NSPK Protocol

The NSPK [21] aims at the mutual authentication of two agents communicat-
ing through an insecure network. Every agent A has a public key KA, that is
known to any agent and can be obtained from a key server, and a secret key
K−1

A , the inverse of KA, that is supposed to be known only to A. A message
m crypted with a key K is denoted {m}K . Thus, any agent can encrypt a
message m with the public key of any other agent A by producing {m}KA

, but
only A can decrypt such a message using her/his private key K−1

A (if the se-
crecy of the private key is guaranteed). The protocol is based on the exchange
of messages made of nonces NA, NB, . . . (random numbers freshly generated)
where the index denotes the agent that has created the nonce. Given two
agents A and B, the NSPK protocol (without key server) can be described as
follows:

1. A −→ B : {NA, A}KB

2. B −→ A : {NA, NB}KA

3. A −→ B : {NB}KB

The agent A (initiator of the communication) sends a message (crypted with
the public key of B) to the agent B. The message of A contains a nonce NA

and her/his identity. The responder B can decrypt the message and sends
back to A a message encrypted with the public key of A, containing the nonce
NA that B has received and a nonce NB. In the last step of the protocol, A
returns the nonce NB to B.

This version of the NSPK has been proved insecure by Lowe [16] and
Meadows [18]. In particular, the property of authentication (the form of au-
thentication called entity authentication in [27]) fails. As shown by Lowe
in [16], the attack involves two parallel interleaving executions of the proto-
col, where in the first session the agent A establishes a communication with
the intruder I, and in the second session I impersonates A and establishes a
valid communication with the agent B. At the end of the executions of the
protocol, B thinks (s)he has established a communication with A, while (s)he
is communicating with I that has impersonated A.

The corrected version of the NSPK proposed by Lowe [17] is the following:

1. A −→ B : {NA, A}KB

2. B −→ A : {NA, NB, B}KA

3. A −→ B : {NB}KB



It introduces the identity of the responder B in the message exchanged in the
second step of the protocol, and the initiator A checks this identity against
that of the agent with whom A has started the communication. In this way
an intruder I cannot send along a message from B to A as if it was her/his
own.

The NSPK can be operationally described by a rewrite system R [9]. 3

Every protocol step is formalized by means of a rewrite rule whose left hand
side expresses a condition on the current state of the protocol (received mes-
sages and communication requests), and the right hand side is the message
to be sent if the condition is satisfied. The rewrite system R we have been
using for experimenting our strategy on the insecure NSPK is given below.
We have R = RP ∪RI , where the rules in RP = (1)÷(5) describe the steps
of the protocol, and the rules in RI = (6)÷(10) define the intruder’s ability
of decomposing and decrypting messages.

goal(agt(a), agt(b)) (1)

→ mesg(agt(a), agt(b), encr(pubkey(agt(b)), agt(a), cons(N(agt(a), agt(b)), agt(a))))

mesg(agt(a4), agt(b), encr(pubkey(agt(b)), agt(a3), cons(a1, agt(a)))) (2)

→ mesg(agt(b), agt(a), encr(pubkey(agt(a)), agt(b), cons(a1, N(agt(b), agt(a)))))

mesg(agt(a6), agt(a), encr(pubkey(agt(a)), agt(a5), cons(N(agt(a), agt(b)), a2))) (3)

→ mesg(agt(a), agt(b), encr(pubkey(agt(b)), agt(a), a2))

mesg(agt(a6), agt(a), encr(pubkey(agt(a)), agt(a5), cons(N(agt(a), agt(b)), a2))) (4)

→ c init(agt(a), agt(b), agt(a5))

mesg(agt(a8), agt(b), encr(pubkey(agt(b)), agt(a7), N(agt(b), agt(a)))) (5)

→ c resp(agt(b), agt(a), agt(a7))

∪(cons(x, y), z)→ x (6)

∪(cons(x, y), z)→ y (7)

encr(pubkey(agt(0)), y, z)→ z (8)

encr(pubkey(agt(s(x))), y, z)→ z (9)

mesg(x, y, z)→ z (10)

Let F denote the signature of R. Let Lagt be an infinite set of agent
labels. We are interested in the behaviour of two agents A and B, and all
other agents are coded through natural numbers built using the construc-
tors 0 and s. Thus, Lagt = {A,B}∪N. agt(l) denotes an agent whose la-
bel is l∈Lagt. mesg(x, y, c) denotes a message from x to y with contents c.
pubkey(a) represents the public key of an agent a and encr(k, a, c) denotes
the result of encrypting c with the key k (a is a flag that stores the agent that

3 We refer to [1,7] for more details about rewrite systems and to [5] for the theory of tree
automata.



did the encryption). A term N(x, y) denotes a nonce generated by agent x
for communicating with agent y. goal(x, y) denotes that x tries to establish
a communication with y. c init(x, y, z) represents the fact that x thinks of
communicating with y but in fact x has established a communication with
z. c resp(x, y, z) denotes that x thinks (s)he has replied to a communication
requested by y but in fact (s)he has replied to a communication requested by
z. A list made of x and y is represented by cons(x, y).

Note that R is slightly different from the system given in [9,22,23]. In
particular, the LHS operator, that keeps track of the steps applied to yield a
certain term, and the add operator are omitted, and the ∪ operator is removed
from some rewrite rules, except for rules (6) and (7).

3 The Approximation Technique

Many approaches to the verification of security protocols have proved the
authentication property (besides other properties) for the corrected version
of the NSPK. The approach based on the approximation technique [8,9,11]
is one of them. This technique allows one to automatically compute an
over-approximation of the set R∗(E) of the R-descendants of a set of terms
E, where E is described through a tree automaton A such that L(A)⊇E.
The approximation automaton TR↑(A) is such that L(TR↑(A))⊇R

∗(E). The
quality of the approximation depends on an approximation function γ which
defines the so-called folding positions, i.e. subterms that can be approximated.

We recall the idea of the approximation technique very briefly. Starting
from A0=A, the technique builds a finite number of tree automata Ai with
transitions ∆i such that for all i≥ 0 we have L(Ai)⊂L(Ai+1) until an au-
tomaton Ak is obtained such that L(Ak)⊇R

∗(L(A0)), i.e. L(Ak)⊇R
∗(E).

The approximation technique can be seen as a particular completion process
between the rules in R and the transitions ∆i of Ai. In fact, in order to build
Ai+1 from Ai, a critical pair is computed between a rewrite rule in R and the
transitions in ∆i. The rule derived from the critical pair is a new transition
that is normalized using the approximation function γ and then added to ∆i,
thus yielding ∆i+1.

The approximation technique, initially given for left linear rewrite sys-
tems [8], has then been extended to AC non-left linear rewrite systems in [9].
Given TR↑(A), reachability properties on R and E can be proved by checking
whether the intersection between L(TR↑(A)) and a set of terms, that must
not be reached from E through R, is empty. In the case of protocol verifi-
cation, the negation of the property p to be proved is described through a
tree automaton Ap, whose language contains those terms that must not be
recognized by the intruder. If the intersection L(TR↑(A))∩L(Ap) is empty,
then the property p is satisfied. On the contrary, whenever such intersection
is not empty, we cannot say that there is an attack. Actually, this approach
has been designed for proving that there are no attacks on a protocol, rather



than for detecting them. The fact is that the quality of the approximation
automaton depends on the approximation function γ and, in spite of further
studies on γ and its automation [24], whenever the intersection is not empty,
it is not possible to distinguish whether there is an attack on the protocol or
the function γ is too “large” and TR↑(A) defines a language that also includes
terms of L(Ap). Hence, the approximation technique is not able to discover
the attack on the insecure version of the NSPK, while it demonstrates the
properties of authentication and secrecy on the corrected version [9,11].

4 The Rewriting Strategy

The implementation of the approximation technique we have been using for
our experimentation is the one in Timbuk [10,11], a library of Objective
Caml [15] for manipulating tree automata. Oehl has kindly provided us with
his Timbuk files for both the insecure and the corrected versions of the NSPK,
together with his approximation functions γ. We were primarily interested in
running the approximation technique on the insecure version of the NSPK
and understanding why the language intersection is not empty for both se-
crecy (nonces must be kept secret) and authentication of agents.

The rewrite system R specifying the insecure NSPK has been given in
Section 2. The tree automaton A = 〈F ,Q,Qf ,∆〉 describing the initial set
E of communication requests is taken from [9], where Qf = {qf} and the
transitions in ∆ are as follows:

0→ qint

s(qint)→ qint agt(qint)→ qagtI

A → qA agt(qA)→ qagtA

B → qB agt(qB)→ qagtB

goal(qagtA, qagtB)→ qf goal(qagtA, qagtA)→ qf communication requests

goal(qagtB , qagtA)→ qf goal(qagtB , qagtB)→ qf

goal(qagtA, qagtI)→ qf goal(qagtI , qagtA)→ qf

goal(qagtB , qagtI)→ qf goal(qagtI , qagtB)→ qf

goal(qagtI , qagtI)→ qf ∪(qf , qf )→ qf

agt(qint)→ qf pubkey(qagtI)→ qf intruder’s initial knowledge

agt(qA)→ qf pubkey(qagtA)→ qf

agt(qB)→ qf pubkey(qagtB)→ qf

mesg(qf , qf , qf )→ qf N(qagtI , qagtI)→ qf

cons(qf , qf )→ qf N(qagtI , qagtA)→ qf

encr(qf , qagtI , qf )→ qf N(qagtI , qagtB)→ qf

Let t be a term that describes a property to be proved or disproved. We
consider the problem of checking whether t can be recognized by the approxi-
mation automaton TR↑(A). This means checking whether a transition t→ qf



can be generated from critical pairs, where qf is a final state of A. We do
not build TR↑(A), but starting from t we simulate a completion process in a
bottom-up manner guided by the critical pairs, thus reconstructing the rewrit-
ing path that has led to the intruder’s knowledge of t, if any. If t→ qf can be
generated during this process, the property represented by t is not satisfied.
Moreover, by going up along the critical pairs we get to know which terms
have been previously (in the completion process) recognized by the intruder,
thus getting some feedback on the error location. This strategy is similar to
a rewriting strategy defined in [12,13] to deal with the problem of divergence
of the completion process, where the bottom-up strategy allows one to com-
pute the normal form of a term with respect to the infinite canonical rewrite
system.

The critical pairs between the rules inR and the transitions in ∆ computed
by the approximation technique are generated by the strategy in a bottom-up
manner, by applying an expansion process on terms with respect to R and
then checking the (instances of the) resulting terms for recognizability using
only the intruder’s initial knowledge ∆. Moreover, a notion of well-formedness
of terms is used for ensuring the termination of the expansion process.

A term t is expanded with R if t unifies with the right hand side of a rule
of R: expansion(t,R) = {s = σ(t[l]p) | ∃ l → r∈R, p∈Pos′(t) and σ =
mgu(t|p,r)}. Thus, an expansion step is a narrowing step with a reversed rule
of R. The expansion process may introduce occurrences of “new” variables
in s. These variables are considered as implicitly universally quantified and
will be then instantiated by means of a finite set of ground terms Inst =
{c1, . . . , ck}, thus getting the instance set I(t, Inst) = {σ(t) | σ : Var(t) →
Inst}. Inst is a parameter of the strategy and can be typically chosen as a
(finite) set of agent labels needed for instantiating the agent variables in R.
For the NSPK it will be sufficient to take Inst = {A,B, 0}.

A term t is recognizable by the intruder if qf can be derived from t using
the transitions in ∆. As the strategy simulates a completion process that
would produce the intruder’s incremental knowledge, whenever t is not directly
recognizable using ∆, the strategy is applied to those subterms of t that are
not recognizable in ∆. Based on the following proof system `A, we define a
function rec(t) = ∅ if t `A qf , otherwise rec(t) = {ti | t = C[ti] for some
context C and ti 6`A qf}, thus yielding those subterms of t labelling the leaves
of the proof tree of t in `A that remain unsolved.

t
∗
→∆ q q∈{qf ,qagtI}

t`A q

t1 `A qf t2 `A qf

∪(t1,t2)`A qf

t1 `A qf t2 `A qf t3 `A qf

mesg(t1,t2,t3)`A qf

t1 `A qf t2 `A qf

cons(t1,t2)`A qf

t1 `A qagtI t2 `A qf

N(t1,t2)`A qf

t1 `A qf t2 `A qagtI t3 `A qf

encr(t1,t2,t3)`A qf

The notion of well-formedness of terms is based on the following intuition.
A term t is well-formed if it “agrees” with the syntactic structure of the rewrite



system that specifies the protocol. For example, given the system R for the
insecure NSPK, t1 = N(agt(a1), agt(a2)) is well-formed for any variables or
agent labels a1, a2, while the term t2 = N(agt(a1), pubkey(agt(a2))) is not, as
there is no term t in R such that root(t) = N and the second argument of t
starts with pubkey. One could also talk of well-sorted or well-typed terms, in
the sense that when considering the function associated to, for example, the
symbol N , this function is expected to take as input two terms of type agent,
thus the type-checking of t2 will fail.

The terms describing the authentication and secrecy properties are well-
formed in the sense above. Moreover, during the expansion phase of the
strategy, only well-formed terms will be considered and the non-well-formed
ones will be cut out of the search space. This is not enough for ensuring the
termination of the expansion process. In fact, rule (3) of R can be applied as
a reversed rule infinitely many times to produce well-typed terms that contain
subterms of the form t = cons(x1, cons(y1, cons(z1, . . .))). Due to the structure
of the contents of messages in the NSPK and of the terms in the language
describing the properties to be checked, it is not needed to derive such terms
by expansion as they cannot be the vertex of any interesting critical peak.
Hence, expansion by rule (3) is stopped by defining that terms containing
instances of t above are not well-formed. The predicate of well-formedness
is a parameter for the strategy: whenever other protocols and/or different
properties are considered, the definition of the well-formedness of terms might
have to be changed accordingly. For the insecure NSPK we give the following
definition.

A term t∈T (F ,X ) is well-formed , written wf(t), if (i) t∈X ∪F 0 or (ii)
t= f(t1, . . . , tn) with f ∈Fn (n> 0) and either ti ∈X or ti satisfies the follow-
ing conditions based on the value of f (i = 1, . . . , n):

• f = agt and t1 ∈Lagt;

• f = goal, root(ti) = agt and wf(ti) for i = 1, 2;

• f = mesg, root(ti) = agt and wf(ti) for i = 1, 2, root(t3) = encr and wf(t3);

• f = encr, root(t1) = pubkey, root(t2) = agt, root(t3)∈{cons,N, agt} and
wf(ti) for i = 1, 2, 3;

• f = pubkey, root(t1) = agt and wf(t1);

• f = cons, root(ti)∈{N, agt} and wf(ti) for i = 1, 2;

• f = N , root(ti) = agt and wf(ti) for i = 1, 2;

• f ∈{c init, c resp}, root(ti) = agt and wf(ti) for i = 1, 2, 3;

• f = ∪ and wf(ti) for i = 1, 2.

The input to the strategy is given by the rewrite system specifying the
protocol R = RP ∪RI , the predicate wf, the instantiation set Inst, the in-
truder’s initial knowledge ∆ in A, and the well-formed term tin describing the
property under consideration. The strategy is defined through the set of in-



ference rules given in Figure 1. An inference rule is a binary relation between
configurations , which are either (finite) sets of well-formed terms or elements
of the set {success, failure}. Thus, the inference rules either map a set of
well-formed terms into another such set (E ` E ′) or terminate the derivation
process (E ` success or E ` failure). The initial configuration is E0 = {tin}.
The predicate subterm(t, t′) is true if t′ is a subterm of t.

Well-formed Expansion:

t∈E expansion(t,R) = E ′

E \ {t} ∪ {t′ ∈E ′ | wf(t′)}

Failure:
E = ∅

failure

Success1:
t∈E ∃t′.subterm(t, t′) ∧ root(t′) = goal

success
Cut:

t∈E expansion(t,RP ) = ∅ subterm(t, tin)
∃t′.subterm(t, t′) ∧ root(t′) = mesg

E \ {t}

Success2:
t∈E expansion(t,RP ) = ∅ not(subterm(t, tin))

∃t′.subterm(t, t′) ∧ root(t′) = mesg
I(t, Inst) = E1 ∃t1 ∈E1. rec(t1) = ∅

success
Split:

t∈E expansion(t,RP ) = ∅ not(subterm(t, tin))
∃t′.subterm(t, t′) ∧ root(t′) = mesg
I(t, Inst) = {t1, . . . , tk} ∀i.rec(ti) 6= ∅

E \ {t} ∪ rec(t1) ∪ . . . ∪ rec(tk)

Fig. 1. The inference rules of the strategy.

The successful termination of the strategy means that an attack has been
detected, thus the property represented by tin is not satisfied. Termination
with failure means that the strategy has failed in finding an attack, thus the
property represented by tin is satisfied. The rule Well-formed Expansion re-
places a term in E with its well-formed expansions. Whenever there are no
terms left in E, the strategy fails without finding an attack (rule Failure). If
there exists a subterm of t the root of which is goal, then the strategy termi-
nates with success, because every communication request is in the intruder’s
basic knowledge (rule Success1). The remaining inference rules work under
the condition that a term t∈E is selected that cannot be further expanded
with the rules in RP . If there exists a subterm of t the root of which is mesg,
we distinguish on whether the input term tin occurs as a subterm of t. If tin



occurs in t, then t is deleted from E (rule Cut) as expanding t will loop with-
out adding information on the intruder’s knowledge. Otherwise, the instances
of t are checked for recognizability. It is sufficient to have a recognizable in-
stance of t to terminate with success (rule Success2). Whenever all instances
ti of t are not recognizable, rule Split replaces t in E with those subterms of
all ti that are not in the intruder’s basic knowledge, thus looking for possible
further critical peaks in the bottom-up search.

The (non-deterministic) rewriting strategy for protocol verification is then
defined as a regular expression over the names of the inference rules:

((Well-formed Expansion+ Cut)∗.(Failure+ Success1+ Success2+ Split))∗

where r∗ means iteration of the inference rule r, r.r′ means sequencing of r
and r′, and r + r′ means non-deterministic choice between r and r′. Thus,
the rewriting strategy applies well-formed expansions of terms and prunes
the derivation paths (whenever possible) in a non-deterministic way, and then
checks if either conditions for failure/success are satisfied or the inference steps
must be iterated from the terms added to E by rule Split.

Given the rewrite system R, the predicate wf, the instantiation set Inst,
the tree automaton A with transitions ∆ and the negation automaton Ap for
the property to be checked, the correctness, termination and completeness of
the strategy are formalized as follows.

Proposition 4.1 (correctness) Let tin ∈L(Ap).
(i) If {tin} ` success, then tin → qf can be generated from critical pairs.
(ii) If {tin} ` failure, then the transition tin → qf cannot be generated from
critical pairs.

Proof. (Sketch)
(i) Let {tin} ` success be derived by means of a derivation {tin} ` E1 `
. . . ` En ` success. If success is obtained by applying the inference rule Suc-
cess1, this means that tin has been expanded using RI and RP until a term
t′[t′′]p ∈En has been obtained such that root(t′′) = goal. As all communi-
cation requests goal(x, y) are in the intruder’s initial knowledge, the critical

peak tin
∗
←R t′

∗
→∆ qf produces the transition tin → qf .

If success is obtained by applying the inference rule Success2, then the situ-
ation is as follows. The term tin has been expanded using RI and RP until
a term t′ ∈Ek for some k≤n is derived such that either Success2 or Split
can be applied. The instance set I(t′, Inst) is thus computed using Inst. If
rule Success2 can be applied, this means that there exists an instance t′′ of
t′ which is a vertex of a critical peak as t′′ can be reduced to tin in R and is
recognizable by the intruder, i.e. t′′

∗
→∆ qf . Hence, the transition tin → qf is

generated. The application of rule Split means that all instances of t′ cannot
be recognized based on the intruder’s initial knowledge, thus further critical
pairs must be searched in a bottom-up manner by iterating the application of
the strategy.



(ii) Let {tin} ` failure be derived by means of a derivation {tin} ` E1 `
. . . ` En ` failure, where En = ∅ (rule Failure). Terms have been expanded
and possibly instantiated using Inst and split, until terms have been derived
that are not well-formed (no terms are added to the expansion set E and the
expanded terms are removed from E by the rule Well-formed Expansion) or
contain the input term tin (they can be deleted using the rule Cut without
losing information about the intruder’s knowledge). Any such term cannot be
the vertex of a critical peak, thus the transition tin → qf cannot be generated
from critical pairs. 2

Proposition 4.2 (termination) The rewriting strategy terminates on any in-
put term tin ∈L(Ap).

Proof. (Sketch) The set E only contains well-formed terms. Given any well-
formed tin ∈L(Ap), the well-formed expansion process terminates because the
repeated application of the rules of R as expansion rules will eventually pro-
duce only terms that do not satisfy the well-formed predicate. In fact, well-
formedness ensures that there cannot be infinite expansions by RI , while in-
finite expansions by RP cannot occur because terms will eventually not unify
any more with any of the right hand sides of RP . Thus, the expansion process
along the several different derivation paths terminates because the terms on
each path are all well-formed and each path ends with a term that cannot
be further expanded in a well-formed way. If the strategy does not derive
success, then the set E decreases till it becomes empty (rule Failure), because
the rule Cut is repeatedly applied along the different paths or the expanded
terms are removed from E and not replaced by other well-formed terms (rule
Well-formed Expansion). 2

Corollary 4.3 (completeness) Let tin ∈L(Ap).
(i) If the transition tin → qf can be generated from critical pairs, then {tin} `
success.
(ii) If the transition tin → qf cannot be generated from critical pairs, then
{tin} ` failure.

Proof. It follows from the termination (Proposition 4.2) and the correctness
(Proposition 4.1) of the strategy. 2

5 A Verification Example

Let us consider the property of secrecy for the NSPK. Given the system R
(Section 2), let t = N(agt(B), agt(A))∈L(As), where L(As) denotes the nega-
tion automaton for the property of secrecy of nonces. 4 We want to prove
whether the nonce t is recognizable by the intruder, thus attacking the se-

4 Due to the definition of tree automaton, t is actually the term N(qagtB , qagtA) that gets
expanded into N(agt(B), agt(A)). In the example we will abstract from these details.



crecy of the NSPK. By abstracting from some details, we get the following
derivation steps:

{N(agt(B), agt(A))}

` {∪(cons(N(agt(B), agt(A)), y1), z1),∪(cons(x1, N(agt(B), agt(A))), z1), encr(pubkey(agt(0)), y1,

N(agt(B), agt(A))), encr(pubkey(agt(s(x))), y1, N(agt(B), agt(A))), mesg(x1, y1, N(agt(B), agt(A)))}.

By expanding the third term in the current configuration, we obtain:

encr(pubkey(agt(0)), y1, N(agt(B), agt(A)))

` mesg(x2, y2, encr(pubkey(agt(0)), y1, N(agt(B), agt(A))))

` mesg(agt(a6), agt(a), encr(pubkey(agt(a)), agt(a5), cons(N(agt(a), agt(0)), N(agt(B), agt(A)))))

` mesg(agt(a4), agt(B), encr(pubkey(agt(B)), agt(a3), cons(N(agt(A), agt(0)), agt(A)))).

This term cannot be further expanded and does not have the initial term as
subterm. Thus, its variables are instantiated through Inst. Among the various
(finite) possible instances, let us consider the substitution σ = {A/a4, 0/a3},
thus yielding the term

mesg(agt(A), agt(B), encr(pubkey(agt(B)), agt(0), cons(N(agt(A), agt(0)), agt(A)))).

By computing the function rec on t, we have that N(agt(A), agt(0)) is a non-
recognizable subterm of t, i.e. N(agt(A), agt(0)) does not belong to the in-
truder’s basic knowledge. Thus, the rule Split adds N(agt(A), agt(0)) to the
expansion set E and the following derivation is obtained:

N(agt(A), agt(0)) ` encr(pubkey(agt(0)), y′
1
, N(agt(A), agt(0))))

` mesg(x′
2
, y′
2
, encr(pubkey(agt(0)), y′

1
, N(agt(A), agt(0))))

` mesg(agt(a′
6
), agt(a′), encr(pubkey(agt(a′)), agt(a′

5
), cons(N(agt(A), agt(0)), N(agt(A), agt(0))))

` mesg(agt(a′
4
), agt(A), encr(pubkey(agt(A)), agt(a′

3
), cons(N(agt(0), agt(0)), agt(0)))).

The last term cannot be further expanded. Using the function rec on an
instance of such a term (for example, σ′ = {0/a′4, 0/a

′
3}), qf is derived and

the strategy terminates with success . Hence, we have N(agt(A), agt(0))→ qf

and the transition N(agt(B), agt(A))→ qf can also be generated from critical
pairs. Thus, t is recognizable by the intruder and the property of secrecy
of nonces is not true for the NSPK. It is worth noting that the transition
N(agt(B), agt(A)) → qf derives from a critical pair involving the transition
N(agt(A), agt(0))→ qf which is, in turn, generated by a critical pair with the
basic transition N(agt(0), agt(0))→ qf .

If we take as R the rewrite system for the corrected version of the NSPK
and run the strategy on the term t = N(agt(B), agt(A)), the strategy ter-
minates with failure. In fact, the expansion set E becomes empty without
deriving any transition t→ qf . In order to prove that the secrecy of nonces is
true for the protocol, the strategy must be applied to all terms in the (finite)
language of As.

In a similar way it can be proved that the property of authentication is true
for the corrected version of the NSPK, while it fails on the insecure version.
In fact, given t = c init(agt(B), agt(A), agt(0)), the strategy derives success .
Note that, when verifying the authentication and secrecy properties for the
corrected version of the NSPK, the predicate wf needs to be slightly modified



in order to allow more expansion steps and preserve the completeness of the
strategy.

6 Concluding Remarks and Further Research

This paper has presented an approach to the analysis and the verification of
protocol specifications based on a bottom-up rewriting strategy. Our experi-
mentation with the authentication and secrecy properties on both the insecure
and the corrected versions of the NSPK has shown that the strategy is able
to detect the attacks in the insecure version, and derive that the properties
hold for the corrected version of the protocol. The correctness, termination
and completeness of the strategy depend on a notion of well-formedness on
terms, which allows one to reduce the search space of the strategy. More
study is needed on the relationship between the rules describing a protocol
and the languages characterizing the properties under consideration. We need
to better characterize well-formedness, extend it to other protocols and pro-
vide more general criteria for ensuring the correctness and the termination of
the strategy.

With respect to the approach based on the approximation technique, the
strategy carries out a bottom-up completion driven by the term representing
the property to be proved, without generating the whole approximation au-
tomaton. Moreover, the strategy is able to say whether a property is satisfied
or not, as it does not depend on any approximation function, and feedback
on error location can be obtained in case of attacks by going back along the
critical pairs in the bottom-up search.

The approximation technique provides an automatic manner for checking
whether there are no attacks on a protocol specification, but has limitations
on the set of properties that can be checked and is not able to assert that a
property is not satisfied by a protocol due to the approximation function. On
the contrary, using induction in Isabelle, Paulson has proved (or disproved)
many properties of several kinds of security protocols using both a certain de-
gree of automation and some interaction with the system. The knowledge and
experience that a user needs to have in order to carry out some verification
tasks on protocol specifications is much more relevant when using the induc-
tive approach in Isabelle, than using the approximation technique in Timbuk.
This evidence is the starting point for the combination of the two approaches
presented in [22,23]. This simply consists in first applying the approximation
technique to prove a property. If the property is satisfied, then this result is
used as an axiom in Paulson’s inductive method. Whenever the intersection
between the languages of the tree automata is not empty, then the logical
theories developed in Isabelle are used to prove or disprove the property. To
make easier the link between the two systems, a translation is given from
the Isabelle files to the input files for Timbuk. With respect to these two
verification methods, the strategy illustrated in this paper can be seen as a



compromise between the full efficiency of the approximation technique and
the full expressive power of Paulson’s approach based on theorem proving.

The authentication and secrecy properties of the NSPK have already been
extensively studied in the literature. However, by applying our approach to
the NSPK we have considered what is called in [27] (page 101) “a major test
bed, sometimes even a rite of passage, for every new protocol verification
tool”. We are currently working on applying our strategy to other protocols,
e.g. the Woo-Lam and Otway-Rees protocols, that can be formalized in a way
similar to the NSPK. Future work includes the application of the approach to
other classes of protocols and the extension of the strategy to checking other
properties of interest. This will mean to enrich the signature and the rules
of the protocol specification. Furthermore, we are interested in implementing
the strategy by defining it in a more expressive strategy language, e.g. the one
of the systems ELAN [3] and Maude [4].
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