
A Declarative Framework for Adaptable Applications in
Heterogeneous Environments

P.Inverardi, F.Mancinelli, M.Nesi
Dipartimento di Informatica

Via Vetoio, 1
67010 L’Aquila - ITALY

{inverard,mancinel,monica}@di.univaq.it

ABSTRACT
In this paper we present an approach for developing adapt-
able software applications. The problem we are facing is that
of a (possibly mobile) user who wants to download and exe-
cute an application from a remote server. The user’s hosting
device can be of different kinds (laptops, personal digital as-
sistants, cellular phones, communicators, etc.) with specific
hardware and software capabilities. The problem is to be
able to decide whether the user’s current device character-
istics are compatible with the application requirements in
order to prevent execution failures. In the negative case we
want to identify the reasons that determined the incompat-
ibility and perform an automatic adaptation of the applica-
tion, so that it can match the user’s device capabilities. We
adopt a declarative approach: we provide each device with
a declarative description of its characteristics and, possi-
bly, context constraints. Inspired by Proof Carrying Code
(PCC), we use first-order logic formulae to model both the
behavior of the code, with respect to the properties of inter-
est, and the execution context. The adaptation process is
carried out by using theorem proving techniques, in particu-
lar, the proof assistant HOL4. The aim is to derive a formal
proof which asserts that the behavior of the code can be cor-
rectly adapted to the given context. By construction, the
proof, if it exists, gives information on how the adaptation
has to be done. On the application side, Java2 Micro Edi-
tion (J2ME) is the chosen reference application development
environment.

1. INTRODUCTION
The current panorama of communication infrastructures

lets us foresee that several kinds of integrated transmission
and communication infrastructures will be available in the
near future. In such a scenario there will be a shift from
the classical desktop-centric computing paradigm to a more
dynamic one. Applications will run, above all, on mobile
devices (laptops, personal digital assistants, cellular phones,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04 Nicosia, Cyprus
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

communicators, etc.) and the communication infrastruc-
ture will enable communication among each other and with
the surrounding environment. In such a setting applica-
tions must be aware of two kinds of heterogeneity. The first
one relates to the computational environment offered by the
context in which they are running: think, for example, of
the bandwidth offered by the communication medium. The
second one concerns the device itself: the same communica-
tion infrastructure can be accessed by a large variety of de-
vices which are all homogeneous in terms of basic resources
and functionalities, but different with respect to quantita-
tive and qualitative characteristics (e.g., memory size, com-
putational power, display capabilities, supported protocols,
etc.). Moreover, considering that in the next future comput-
ing capabilities will be exploited in many non-conventional
domains (e.g. home appliances, wearable computers), we ex-
pect this heterogeneity to grow more and more. What today
is seen as a discrete set of well-characterized different types
of devices, tomorrow will become a virtually infinite range
of heterogeneous devices, each one with its own set of capa-
bilities. This means that applications must be aware of this
potentially infinite variability in order to prevent execution
failures.

Our research addresses the problem of dealing with the
second kind of heterogeneity, with a focus on the application
side. We aim at developing applications which are generic
and can be correctly adapted with respect to a dynamically
provided context. We chose to attack this problem by using
a declarative and deductive approach, that enables the con-
struction of a generic and adaptable application code and its
correct adaptation. Inspired by Proof Carrying Code (PCC)
[7] techniques, we use first-order logic formulae to model the
code behavior with respect to the properties of interest, and
to characterize the execution context. The adaptation pro-
cess is carried out by using theorem proving techniques in
order to formally prove that the code behaviour can be cor-
rectly adapted to the given context. Provided that such a
proof exists, by construction it gives information on how
the adaptation has to be done. We believe that the use of
a deductive approach in this context enables us to flexibly
and efficiently reason about the adaptation and to cope with
the increasing growth of highly heterogeneous contexts. The
practical setting in which we are experimenting our ideas is
Java2 Micro Edition (J2ME) [10] for the application side,
and the proof assistant HOL4 [4] (from now on simply re-
ferred to as HOL) for the declarative and reasoning side.

In the following sections we set the context of our work,

by briefly introducing the technologies we refer to (namely
J2ME, HOL and PCC), and provide a description of our
framework by means of a working example. Section 7 dis-
cusses related work, and Section 8 summarizes our contri-
bution and outlines future work directions.

2. SETTING THE CONTEXT
We are considering the context in which a (possibly) mo-

bile device requests an application. Since it is not possible,
for the requested application, to have a priori information
about the characteristics of the runtime environment, the
application code may execute incorrectly or even fail. In or-
der to avoid failures, the application must be able to adjust
its behavior, according to the runtime environment in which
it will be deployed. Applications with this ability are called
adaptable applications. The future home appliances scenario
will provide a fertile ground for this kind of applications [1].
Imagine, for example, a microwave oven which is able to
download food recipes and use them to cook some food. In
such a scenario a recipe would be a mobile code which con-
tains all the instructions to cook the food. Even though
many microwave ovens offer the same functionalities, there
might be some differences among them. For example, the
cooking power could be different from one model to another.
A recipe must take care of those differences in order to, for
example, correctly adjust the cooking time with respect to
the available cooking power. Some recipes might also fail on
some ovens because of the lack of a grilling facility, and so
on.

In such a context, we consider two different types of adapt-
able applications:

• Self-contained : applications that embody the adapta-
tion logic as a part of the application itself.

• Tailored : applications that are the result of an adap-
tation process, which has been previously applied on
a generic version of the application.

Self-contained adaptable applications consist of tangled ap-
plication and adaptation code. The former provides the im-
plementation of the application functionalities, the latter
implements the adaptation logic. Tailored applications, in-
stead, do not contain any adaptation logic, and appear to
be programmed specifically for the environment in which
they are executed. They are the result of an adaptation
process that, starting from a generic version of the applica-
tion code, produces the final customized application. There
are pros and cons in using either kinds of adaptable applica-
tions. Self-contained adaptable applications are inherently
dynamic in their nature. Since the code which performs the
adaptation is embedded in the application itself, it can han-
dle dynamic changes in the environment by reacting to them
at runtime. The pay-off is the inevitable overhead imposed
by the adaptation code. Thinking of the microwave oven,
a self-contained adaptable recipe should contain the logic
to handle all the possible (expected) oven characteristics.
This overhead could be a problem since an oven is, after all,
a limited device. Moreover, the adaptation logic in a self-
contained adaptable application does not scale well when
considering multiple, possibly interfering, characteristics. In
fact, a typical adaptation logic would consist of isolated and
locally enabled switch statements which provide alternatives
that might be used to handle changes in the environment.

Considering those statements globally would require com-
binatorial conditions to be provided and, consequently, in-
creased code complexity. On the contrary, tailored adapt-
able programs are the result of an adaptation process which
produces a customized application for the target execution
environment. Since the process which produces such appli-
cations is external to the application itself, it might allow
a very effective way of reasoning on how the application
should be adapted. However, tailored adapted applications
are dynamic only with respect to the deployment environ-
ment. They are static with respect to the actual execution,
i.e. they cannot adapt to runtime changes in the execu-
tion environment. Even though our approach is inherently
static, we may think that the generic application may con-
template an adaptation which provides some dynamic adap-
tation logic, which is able to recognise changed conditions in
the execution environment and trigger further adaptations.

Our approach deals with tailored adaptable applications
and exploits deductive methods to find the right way to
globally adapt an application. The aim is to derive a formal
proof that the behavior of the code can be correctly adapted
to the given context. By construction, the proof, if it exists,
gives information on how the adaptation has to be done.

For experimentation purposes, we focus on a particular
class of mobile devices available nowadays, namely mobile
phones. Therefore, since the Java2 Micro Edition (J2ME)
platform powers many of these devices, we choose it as the
reference platform. The adaptation process is carried out in
the proof assistant HOL. All these components have been in-
tegrated together in a well-defined architecture for a frame-
work which supports the whole approach.

2.1 Java2 Micro Edition
Java2 Micro Edition (J2ME) [11] is the Java platform for

consumer and embedded devices, such as personal digital
assistants (PDAs), mobile phones and a broad range of em-
bedded devices. The J2ME architecture is a layered archi-
tecture which comprises the following elements: a combi-
nation of a Java Virtual Machine; a minimal set of class li-
braries called configurations; a set of additional APIs, called
profiles, which are stacked over a configuration, and charac-
terizes a broad range of devices with peculiar characteristics.
In our experimentations, we concentrated on the Connected
Limited Device Configuration (CLDC) [12] which provides
a reduced version of the Java Virtual Machine, called Kilo
Virtual Machine (KVM) [10]. Moreover we use the Mobile
Information Device Profile (MIDP) [8] which characterizes
many mobile devices, such as mobile phones and PDAs.

2.2 The proof assistant HOL
The proof assistant HOL [4] is based on the LCF method-

ology for interactive and secure theorem proving by mecha-
nising its logic in the strongly-typed language Moscow ML,
a light-weight implementation of Standard ML. The HOL
logic can be extended in a consistent way by means of de-
rived rules of definition, such as concrete data type defi-
nitions, recursive function definitions and inductive defini-
tions. When using these derived rules, the system performs
all the formal inference necessary to define data types, recur-
sive functions and inductive relations in higher order logic,
and automatically derives an abstract characterization of
data types and relations, including standard theorems such
as induction and case analysis theorems.

Moscow ML is used to prove that certain terms are the-
orems. A theorem Γ ` t is represented by a finite set Γ
of terms called assumptions and a term t called conclusion.
Theorems must either be postulated as axioms or derived
by formal proof. Besides forward proofs, the HOL system
supports goal directed (or backward) proofs. The idea is to
start from the desired result (goal) and manipulate it using
functions called tactics, until it is reduced to a goal which
is true. When a theorem is proved, it can be stored using
several functions.

2.3 Proof-Carrying Code
Proof-Carrying Code (PCC) [7] is an approach that aims

at checking code behavior against safety policies, which de-
fine properties and constraints the code should respect. This
approach is based on theorem proving techniques and makes
use of a Verification Condition Generator (VCGen), which
takes as input an annotated version of the code, and outputs
a safety predicate that models the expected code behavior,
using first-order logic formulae. The VCGen is derived from
an abstract machine that defines the constrained execution
environment, and from a set of safety rules, which include
both classical logic rules and domain specific rules. The
whole approach can be summarized in the following steps:
a code producer generates the application code and anno-
tates it; a safety predicate is generated from the application
code, using the code consumer VCGen; by using the safety
rules, the code producer generates a proof, which validates
the safety predicate and asserts that the code respects the
code consumer constraints; the proof is sent back to the code
consumer, together with the native code, in a bundle called
binary PCC. The consumer is then able to check it using
a proof checker and can, therefore, execute the delivered
application code safely.

3. THE FRAMEWORK REFERENCE AR-
CHITECTURE

Our approach focuses on tailored adaptable applications,
where the adaptation logic is outside the application, and
the final code is the result of an adaptation process. The
approach is supported by a framework which enables the
development and the distribution of adaptable applications.
Figure 1 shows the framework architecture, which is com-
posed of the following components:

• Development environment : this is the environment where
the developer builds the actual adaptable application.
It consists of a set of tools, including a specialized com-
piler which is able to deal with the generic nature of
the application.

• Mobile code: this is the object code of the adaptable
application. It is produced by the tools in the devel-
opment environment, and is an annotated code con-
taining all the information useful for the adaptation
process.

• Declarative description: this is a first-order formula
which characterizes the mobile code with respect to
some properties of interest. It is extracted starting
from the mobile code and provides a declarative de-
scription of the application behavior with respect to
the properties of interest.

Customizer

Mobile
Code Declarative

Description

Execution
environment

Properties

Development Environment

Figure 1: The reference architecture

• Customizer : this component performs the tailoring of
the mobile code with respect to the execution envi-
ronment. The customizer embodies all the deductive
logic needed to explore the space of possible adapta-
tions and to find a suitable version of the application,
if any. The customizer is also able to assemble the final
application code, ready to be deployed.

• Execution environment : this is the physical device which
requests the adaptable application and provides the
runtime support.

• Properties: this is a declarative description of the prop-
erties characterizing the execution environment (in terms
of device capabilities). The customizer uses this infor-
mation, together with the description of the adaptable
program, to reason about the adaptation.

The architecture depicted in Figure 1 does not suggest
any localization of these components on an actual architec-
ture. Depending on the application domain, the components
may be deployed in different ways. For example, a typical
client-server deployment scenario would deploy the execu-
tion environment and its properties on the client side, while
the customizer, the mobile code, its declarative description
and the development environment would be installed on the
server.

4. THE EXPERIMENTATION CONTEXT
We experiment our approach using limited mobile devices,

such as mobile phones, where the runtime environment is
that of J2ME. The reference architecture is deployed on a
client-server architecture as shown in Figure 2.

Our approach spans all the application lifecycle, from de-
velopment to deployment. We start from a generic appli-
cation which allows a suitable adaptation according to the
execution environment. The way this adaptation might take
place is specified by an adaptation policy, which is specified
through one or more of the following elements:

Customizer
(Proof Engine, HOL)

Annotated
Java Bytecode Declarative

Description

Execution
environment

Properties

Development Environment

Extended
Java Compiler VCGen

Server

Client

Figure 2: The framework architecture

• Adaptation points: well-defined source-level code places
where program adaptation may occur.

• Adaptation alternatives: for every adaptation point a
set of alternatives that provides the actual ways in
which the program can be adapted.

A1

A2

BEGIN

END

Figure 3: An adaptable program

Figure 3 shows a graphical representation of an adaptable
program whose adaptation policy is defined by two adap-
tation points A1 and A2, with two and three adaptation
alternatives, respectively.

The adaptation policy is specified at the source level by ex-
tending the source programming language with special syn-
tactical constructs. In our case we have extended Java with
an adapt statement whose syntax is shown in Figure 4.

Each adapt statement defines an adaptation point, and
each ci specifies the piece of code of the adaptation alterna-
tive.

adapt{c1}
use{c2}
...

use{cn}
Figure 4: The adapt construct

The application development will be supported by ad-hoc
tools, that compile the extended Java language to an ex-
tended Java bytecode, which is relocable and annotated.
Relocation information is useful to the customizer for the
tailoring phase, when the generic application has to be as-
sembled in an executable one. Annotations are necessary in
order to reflect the adaptation policy, down to the bytecode
level. Annotations also express properties of the code, like
loop invariants, which allow a declarative description of the
program to be produced.

Once the annotated bytecode has been produced, it is
processed in order to obtain its declarative description. In-
spired by Proof Carrying Code, we chose to use a Floyd style
Verification Condition Generator (VCGen) for this step [3].
Starting from the operational semantics of the Java Kilo
Virtual Machine and from a formalization of the device ca-
pabilities, we specified the VCGen which takes the bytecode
as input and produces a first-order logic formula as output.
This formula is called adaptation predicate and represents
an abstraction of the application behavior with respect to
the properties of interest. Typical properties which can be
considered in this setting are: power consumption, display
capabilities (screen size, number of colors), CPU power, sup-
ported protocols and so on.

The capabilities characterizing the execution environment
are then used as preconditions for the adaptation predicate.
They are formalized as a set of predicates plus a set of sim-
plification axioms. By using theorem proving techniques, we
try to derive a proof of the following formula:

Capabilities ⇒ Adaptation Predicate

A proof system, which comprises classical first-order rules
and property specific rules, is used in order to find a proof
for the previous formula. The adaptation predicate valid-
ity proof, if it exists, gives two kinds of information: on
the one hand it states that the program can correctly run
on the target device, on the other hand it gives informa-
tion on how the program should be adapted. The adapta-
tion predicate, in fact, embeds all the information about the
adaptation policy by means of special indexed OR clauses,
corresponding to the adaptation points. Proving the for-
mula Capabilities ⇒ Adaptation Predicate implies select-
ing correct alternatives for each adaptation point. In the
next section, all the outlined steps will be described in the
scope of the example.

5. THE FRAMEWORK AT WORK
To illustrate our approach we built a small and simple

application for mobile devices called Mobile Product Infor-
mation (MPI). This application can be used in large malls,
where wireless networking is exploited. People with mobile
devices may receive on their terminals information about
the product they are currently looking at. The information
can be of any kind: from textual descriptions to detailed
images and animations, and so on. Advanced functionali-
ties, such as buying by clicking, can also be supported by
the application. In Figure 5(a) we show the “ideal” applica-
tion output for somebody who is interested in buying a spe-
cific mobile phone. This output is “ideal” because different
J2ME compatible devices might run this same application in
different and undesirable ways (Figure 5(b) and 5(c)). With
the current technology, in order to avoid these misbehaviors,
we must have different versions of the application for each

compatible device. Instead, in our approach we produce a
generic code to be customized at the deployment time, that
is when the user gets in the mall with her/his own device.

(a) (b)

(c)

Figure 5: Ideal and actual execution on different devices

An excerpt of the main code for the MPI application is
shown in Figure 6. There are two adaptation points at line
2 and line 14. The first one defines three alternatives, each
one concerning a different bitmap image of the product to
be displayed. The second adaptation point defines two alter-
natives. The first one concerns a scrolling ticker, the second
one is an empty alternative which states that it is correct not
to display any ticker. The fixed part of the program (lines
19-21) consists of the textual description of the product.

Applying the VCGen to the previous code results in the
following adaptation predicate:

OR1(V isible(RECT (0, 0, 180, 180))∧
Available(POWER(HIGH)),
V isible(RECT (0, 0, 64, 64))∧
Available(POWER(HIGH)),
V isible(RECT (0, 0, 64, 64))∧
Available(POWER(MEDIUM)))

∧
OR2(Available(POWER(HIGH)),

true)
∧

Available(POWER(LOW))

RECT is a function which defines the area, say a rect-
angle, needed to display something. V isible is a predicate
which is true if its argument can be entirely shown on the
display. Similarly POWER is a function which expresses

the power consumption of the operations in the program.
Available is a predicate which is true if the amount of avail-
able power level (LOW, MEDIUM and HIGH) in the exe-
cution environment satisfies the power indicated in its argu-
ment.

Each adaptation point is reflected in the adaptation pred-
icate by using an indexed OR predicate. The first OR refers
to the first adaptation point and to its three alternatives,
that have different display and power requirements. The
second OR refers to the second adaptation point whose first
alternative (the ticker) requires a high power level, while
the second alternative is empty and is formalized with true.
The last Available predicate refers to the textual description
which does not have any display requirements (the J2ME
display API is able to automatically layout the text inside
the display boundaries) and has a low power consumption.

Whenever a client requires the application by providing
its capabilities, this adaptation predicate is used to prove
whether or not there exists a correct configuration matching
the client’s characteristics. In the next section we show how
the proof and configuration steps are carried out in HOL.

6. PROVING THE ADAPTATION PREDI-
CATE IN HOL

The first step in the mechanization of the proof system is
the definition of the types for rectangles, power levels and
power. Using the definition mechanism for data types in
HOL, the types are as follows:

Rectangle = RECT of num => num => num => num

Level = LOW | MEDIUM | HIGH

Power = POWER of Level

A binary predicate pLess: Level -> Level -> bool is de-
fined to assert the following ordering on levels:

|- pLess LOW MEDIUM /\

pLess LOW HIGH /\

pLess MEDIUM HIGH

The screen property is formalized in HOL by defining the
predicate Visible on rectangles in an inductive way. The
rules are as follows:

Vbase = |- Visible (RECT 0 0 0 0)

Vind = |- !w x y z.

(?x’ y’ z’ w’.

Visible (RECT x’ y’ z’ w’) /\

x’ <= x /\ z <= z’ /\ y’ <= y /\ w <= w’)

==>

Visible (RECT x y z w)

The base rule asserts that the screen origin is visible, and
the induction rule states that a rectangle is visible whenever
it is included in some visible rectangle.

The predicate Available: Power -> bool is formalized
as a function that has the following property:

|- !x y.

Available (POWER x) /\ pLess y x ==>

Available (POWER y)

This asserts that, given any available power level x, any
smaller (with respect to the level ordering) power level y

1 Form form = new Form(”NOKIA 6100 Light Blue”) ;
2 ADAPT {
3 Image image = Image . createImage (”/ images / l a r g e . png”) ;
4 form . append (image) ;
5 }
6 USE {
7 Image image = Image . createImage (”/ images / smal l . png”) ;
8 form . append (image) ;
9 }

10 USE {
11 Image image = Image . createImage (”/ images /bw . png”) ;
12 form . append (image) ;
13 }
14 ADAPT {
15 Ticker t i c k e r = new Ticker (” Spe c i a l o f f e r s : . . . ”) ;
16 form . s e tT i cke r (t i c k e r) ;
17 }
18 USE {}
19 form . append (”\nPrice : 5 1 9 . 0 0 Euros\n”) ;
20 form . append (”\n−−−−−−−−−−−−−−\n”) ;
21 form . append (”\n . . . ”) ;

Figure 6: MPI generic Java code

is also available. By instantiating on the level values and
using the definition of the predicate pLess, the following
theorem power deriv thm is obtained that is useful when
proving properties involving the predicate Available:

|- (Available (POWER MEDIUM) ==>

Available (POWER LOW)) /\

(Available (POWER HIGH) ==>

Available (POWER MEDIUM)) /\

(Available (POWER HIGH) ==>

Available (POWER LOW))

Finally, the indexed predicate OR in the adaptation predi-
cate generated by the VCGen is simply defined as a recursive
function on lists of predicates with the extra argument of the
adaptation index, that will be useful to derive the adapted
code:

OR_def = |- (!n. OR n [] = F) /\

!n f l. OR n (f::l) = f \/ OR n l

Proving adaptation predicates containing the predicate
Visible usually involves induction proofs. A simple the-
orem tactic can be applied when reasoning about Visible:

fun rtacF thm =

RULE_TAC Vind

THEN ASM_EXISTS_TAC thm

THEN DECIDE_TAC;

where ASM EXISTS TAC is a theorem tactic that makes use
of the supplied theorem, typically an assumption (in this
case, the precondition concerning the screen capability of
the execution environment), to reduce existentially quanti-
fied goals. The following tactic is able to prove adaptation
predicates involving only the property Visible:

fun vtac thm =

(ARW_TAC [OR_def] THEN

REPEAT ((DISJ1_TAC THEN rtacF thm)

ORELSE DISJ2_TAC)

THEN rtacF thm)

ORELSE FAIL_TAC "no alternatives possible";

where ARW TAC is a simplification tactic for standard arith-
metics. The tactic vtac fails whenever there is no combina-
tion of alternatives that is true.

Adaptation predicates involving both Visible and Available

can be proved by means of an extended version of the tac-
tic vtac that suitably enriches the assumptions about the
availability of power:

fun pvtac thm = IMP_RES_TAC power_deriv_thm

THEN vtac thm;

Thus, given the following goal formalizing in HOL the adap-
tation predicate for the MPI application, with the precon-
ditions of a visible screen of dimensions 100×100 and of the
availability of a high power level,

- set_goal([--‘Visible(RECT 0 0 100 100)‘--,

--‘Available(POWER HIGH)‘--],

--‘OR 1

[Visible(RECT 0 0 180 180) /\

Available(POWER HIGH);

Visible(RECT 0 0 64 64) /\

Available(POWER HIGH);

Visible(RECT 0 0 64 64) /\

Available(POWER MEDIUM)]

/\

OR 2 [Available(POWER HIGH); T]

/\

Available(POWER LOW)‘--);

and by applying pvtac with the assumption on the screen
visibility to solve the Visible predicates,

- e (pvtac

(ASSUME (--‘Visible(RECT 0 0 100 100)‘--)));

the adaptation predicate is proved:

OK..

> val it =

Initial goal proved.

If the available power level is low, then there is no combina-
tion of alternatives that is true, as the first OR is false, and
the application of pvtac fails.

From the proof of the adaptation predicate is then easy
to extract the information needed to perform the actual ap-
plication tailoring. The tactics shown above for proving
adaptation predicates, with respect to the constraints on
the screen visibility and power availability of the execution
environment, simply check if there exists at least one combi-
nation of alternatives of the various adaptation points that
is true. For the configuration step, based on these tactics, we
have implemented a function that, given an adaptation pred-
icate, returns the set of all combinations of alternatives that
are true. This set is the basis for developing various config-
uration strategies that can dynamically reflect the client’s
preferences. For example, a client, although characterized
by the same preconditions, in different moments can choose
different configuration strategies.

7. RELATED WORK
Our framework architecture shares many elements with

PCC [7]. However, our approach differs from it in the fol-
lowing aspects. First of all, PCC focuses on security as-
pects of code mobility while we concentrate on adaptation
issues. In our approach, the proof is not used to guarantee,
on the client side, that the application is correct with re-
spect to some safety policy but is used, on the server side,
to assemble a correct application with respect to the client’s
capabilities. Checking the conformance of the received ap-
plication according to the proof is beyond the aims of our
approach. PCC does not put any constraints on the proof
system, its main concern is correctness since the whole ap-
proach is based on the assumption that a proof can be built.
Our setting is more demanding since we use the proof sys-
tem to establish the correctness of the adaptation process.
PCC is entirely based on the machine code while we apply
our process on Java bytecode.

A different approach to adaptability of software applica-
tions is presented in [6, 5]. These papers propose an ap-
proach for Dynamic Software Update which uses verifiable
native code, such as PCC or TAL, to deliver correct patches
which could be applied at runtime to software with avail-
ability requirements. The approach requires the code to be
written so that it can be dynamically updated. It deals
with dynamic linking in order to patch executable code on
the fly and with code verification in order to assure that the
received patch is correct with respect to some safety prop-
erties. This approach combines PCC-like techniques with
dynamic linking, thus the adaptation is carried out at run-
time. The focus there is on correct dynamic linking rather
than on correct tailoring of generic applications.

Aspect Oriented Programming (AOP) techniques may be
considered with respect to adaptation issues. In particular
approaches like PROSE [9] enables dynamic adaptation of
Java programs, specified using aspect oriented mechanisms.
While with our approach we may surely benefit from AOP
for specifying adaptation alternatives and dynamic AOP to
carry out the adaptation process, we go further by providing
a formal framework in which reason about program proper-

ties and correct adaptation with respect to these properties.
It is also interesting to mention a new research project

called Resource Aware Programming (http://www.cs.rice.
edu/~taha/RAP/) that focuses on functional programming.
In particular, its authors’ aim is “to strengthen traditional
multi-stage type systems using (mainly) foundational tech-
niques from type theory and functional reactive program-
ming (FRP) to create a paradigm of resource-aware multi-
stage programming”.

8. CONCLUSIONS
In this paper we have presented a declarative framework to

tailor applications for mobile devices. The approach makes
use of theorem proving techniques to support the formal
reasoning on the adaptation process and of J2ME as the
application development environment. A basic assumption
underlying our approach is that the device heterogeneity
will increasingly grow in the next future, thus introducing
unknown requirements on the application programmer side.
We believe that more and more often application program-
mers will produce code in absence of well-established stan-
dards for the characteristics of the target device. This sit-
uation demands new ways of producing and deploying ap-
plication software. Our belief is that a declarative approach
like the one we propose can be very effective. In our ap-
proach the application programmer is only concerned about
“local” adaptation constraints. The whole burden of the
global adaptation logic is managed outside the application
and can dynamically fit the client’s needs.

A theorem prover like HOL provides the possibility of pro-
gramming tools for the analysis and verification of properties
in a very flexible and modular manner [2]. Its higher order
capabilities are necessary in order to allow the definition
of expressive configuration policies based on dependencies
and/or interferences among properties.

Future work concerns extending the VCGen beyond the
core semantics of KVM, refining the proof system for a larger
set of properties, providing more functionalities to support
the proof and the configuration processes, and realizing a
complete set of tools for the development of adaptable ap-
plications.

9. REFERENCES
[1] N. Amano and T. Watanabe. A Software Model for

Flexible and Safe Adaptation of Mobile Code
Programs. In Proceedings of IWPSE, pages 57–61.
ACM Press, 2002.

[2] L. A. Dennis, G. Collins, M. Norrish, R. Boulton,
K. Slind, G. Robinson, M. Gordon, and T. Melham.
The PROSPER Toolkit. In Proceedings of TACAS
2000, volume 1785 of Lecture Notes in Computer
Science, pages 78–92. Springer-Verlag, 2002.

[3] R. W. Floyd. Assigning Meaning to Programs. In
American Mathematics Society Symposia in Applied
Mathematics, volume 19, 1967.

[4] M. J. C. Gordon and T. F. Melham. Introduction to
HOL: a theorem proving environment for higher order
logic. Cambridge University Press, 1993.

[5] M. Hicks, S. Weirich, and K. Crary. Safe and Flexible
Dynamic Linking of Native Code. In Proceedings of
TIC 2000, volume 2071 of Lecture Notes in Computer
Science, pages 147–176. Springer-Verlag, 2001.

http://www.cs.rice.edu/~taha/RAP/
http://www.cs.rice.edu/~taha/RAP/

[6] M. W. Hicks, J. T. Moore, and S. Nettles. Dynamic
Software Updating. In SIGPLAN Conference on
Programming Language Design and Implementation,
pages 13–23, 2001.

[7] G. C. Necula and P. Lee. Proof-Carrying Code.
Technical Report CMU-CS-96-165, School of
Computer Science, Carnegie Mellon University, Sept.
1996.

[8] J. E. V. Peursem. Mobile Information Device Profile.
SUN Microsystems, 2002.

[9] PROSE, On Dynamic AOP. http:
//prose.ethz.ch/Wiki.jsp?page=OnDynamicAOP.

[10] SUN Microsystems. Java2 Platform Micro Edition
Technology for Creating Mobile Devices. SUN
Microsystems, 2000.

[11] SUN Microsystems. Java2 Platform, Micro Edition.
SUN Microsystems, 2003.

[12] A. Taivalsaari. Connected Limited Device Specification
(Version 1.1). SUN Microsystems, 2003.

http://prose.ethz.ch/Wiki.jsp?page=OnDynamicAOP
http://prose.ethz.ch/Wiki.jsp?page=OnDynamicAOP

	Introduction
	Setting the context
	Java2 Micro Edition
	The proof assistant HOL
	Proof-Carrying Code

	The framework reference architecture
	The experimentation context
	The framework at work
	Proving the adaptation predi-cate in HOL
	Related work
	Conclusions
	REFERENCES -9pt

