Laboratorio di Compilatori

Generazione automatica di parser per linguaggi non lineari

— Linguaggi simbolici bidimensionali
~ Grammatiche posizionali e relazioni spaziali
- Uso di Yacc con grammatiche posizional

7

Lingvager Liveae oy Liwsvace, N Liwveat

§ G M o fa :K’M%) s G

¥ Lt AN {un (.‘-‘,'ﬂ"(/:} (?{) LA b{:)
3 "y N F /1’} . i
‘ ol }\ZL& '1/"; :?(" oA .WIMG ‘(J«

B o e P T

f\{x,; &%W(&i;uwfv{ f«tv sty
[J‘L }«‘,WL) 3(}'\ G-A*"JIL) r:—“fy SNAnG IM /i . «;[/l‘m.ett o Vel

. Wy
/; ,\'/Q/Ifw‘;mé\' f e ael— })\‘: g—,{“\olfo,.'al\ i

. { »y . A e A2
L. va&a« Wl ok f_r_g&f_méi_f __‘1_‘_““"

. e
s e .;;(;-s' 4 bAV‘ L

V‘U‘UQ- F ,10_4,,4,0 (Ou frustad

772

.4

) s e -
L oen blia i MBol e DimEp oAl

ekt ¥ de geamboli wwxw{}/\a*"'\/
4] , 1
N (YR {\/ﬁ,f’t—pva_ﬁ/fg fo{

=2 Jemg

9 - o unck Potad

?
i
D
U

j..._

SIMBoLy , RELAZWAL JPAZAL

et

o SIMB(@ = edfie (me,u ﬁsiwﬂ,) %:ei»i.,z-fow (&}’J)

C@» / (% ‘?’*y

; (b, @h)

c (¢, (&)

o RELAzC FaaiE = odpie diowfae (mm]

Dﬁ)@ o /u-,()AgMW .Jl’ae,@e/ﬁ REL = (m«f@j) A
@\)W‘ Pl‘/m{ac»&’ & x b Cuv™ !)«.M FICTIV (i) J 'l
(k, k) wispbove et Moe.

o RiL b vils = K= Tam
= TEM

Esen i

RUGHT = [4,0]
DowhN = [b!'g
[2/8)
R

Y1

ve

S

by

Lo adsyvin [9;0] ~ (a"f“'c\){(aa (tW%OWF d- JJAM%&)

- bl (ool fldnale fwmm)

\ . fm{gﬂ’
Unele, “ﬁ“yﬂm ' EJ"O]

RAPPRESEA M ZONE RELATWVA . ASfoluTh

SEATEN LA

RAPPAE SEn TR 2iopE APV TA

i scnie RERA
E Vnwe s*Tc\i»«é,o, e RN vins E ove 03 R4 TN o boti o N
Foholl o 'LL;“\JJAMA& da Colors Es‘/&'mM Ml fa £ atown
wWheaond spels

v [;M s Lon

@)\(0&\ 1: Q/W;tna_
L ow' o RGHT ¢ s

L ouet e DAL C
o Dows b RGHT " ¢ C 2 ‘ﬂ

\ o

: Abstract
While in a string grammar the only possible spatial
relation is the siring concalenation, in @ positional
grammnar other spatial relations can be defined and then
used for describing high dimensional languages. In this
paper we characterize a new class of positional gramars,
the extended pLALR grammars, which can be translated
into traditional LALR context free grammnars with
positional actions. A positional action Is a procedure

implementing a spatial relation. In this way, the parser for |
an extended pLALR language can be generated

automatically by the tool Yacc with no more efforts.
Moreover, we show that the class of extended pLALR
grammars properly contains the class of pSLR granunars
for which a Yacc implemeniation has already been given.

1. Introduction

Recently, much of rescarch in ‘ihe area of visual
fanguages {1, 3,4, 8, 11] has focused on the investigation
of formal grammars (6, 7. 9, 12, 15} that aid in the
generation of visual language parsers 15, 6,7, 10, 13, 14,
15].

‘Positional grammars [6, 7] have béen introduced as a
powerful formalism for specifying the syntax of visual
languages and, more ‘generally, of “nulti-dimensional
{anguages. While in a string grammar the only possible
spatial relation is the string concatenation, in a positional
grammar other spatial relations can be defined and thea used
for describing high dimensional languages. Then, in order
to parse a sentence getierated by a positional grammar the
‘raditional parsing techniques have to be extended to take

- into account the spatial relations among the objects of the

sentence. In [6, 7] a parser for positional grammars has
been constructed by adding a colum to the LR parsing
tablé. For each state, this column contains an entry with

the position of the next symbol to be parsed. The main .

difference with the traditional parsers is in the access to the
input which is no longer scquential but driven by the
spatial relations in the column position of the states.

T Ty T A e s

To avoid the efforts that must be accomplished to obtain
positional parsing techniques, in this paper we characterize
& new class of positional grammars (extended pLALR
grammars) which can be automatically translated into
context frec grammars with positional actions. A
positional action is a call to a procedure that implements a

spatial relation. At each step of the parsing process, the

execution of & positional action allows to navigate inside

" the input to reach the next symbol to be parsed.

The translation of an extended pLALR grammar into a
context free grammar with positional actions is carried out
by two phases. First, the positional grammar PG is
translated into a string grammar SG whose LALR parsing
table is shown to be "functionally equivalent® to the
extended pLALR parsing table of PG restricted 10 thé
action and gofo parts. Secondly, positional actions are
inserted in the productions of SG to simulate the role of
the spatial relations corresponding to the entries in the
position past of the extended pLALR parsing table. -

Once 4 context free grammar with posilional actions has
been produced, a parser for the corresponding extended
pLALR two-dimensional language can be geperated
automatically by the tool Yacc with no more efforts. |

The ouly ofhier investigated class of positional grammars
for which'the too] Yacc can automatically genérate a parser
is he clabs'of pSLR grammars presented in [6, 7). We
show that (he class of extended pLALR grammars properly
contains ihe class of pSLR grammars. -~ :

The fidper is ofganized ad follows. In Section 2 the
definition of positional grammar is recalled. In Section 3
we charactérize the class of exténdéd pLALR grammars
givitly ‘algorithms for the generation of the éxtended
pLALR passer. In Section 4 we show how it is possible to
translate an extended pLALR grammar into a confext frec

glring grammar with positional actions, and to use Yace for

the automatic generation of the parser. Moreover, an
cxample -showing that the class of extended pLALR
grammars includes the class of pSLR gramumars is given.
The conclusions and further rescarch are outlined in Section
s,

/" 2. \Positional rammars
2

While in a string grammar the only possible spatial
relation is the string concatenation, in g positional
grammer other spatial relations can be defined and then used
for describing high dimensional languages. If we restrict
our attention to symbglig two-dimensional langnages, the
position in the cartesian plane of a symbol with respect o
another one can be described by spatial relations defined as
follows.

Definition 2.] A spatial relation REL is defined by a pair
{m, n) (denoted by REL = R(m‘ n)) where m and 0 are
integers, such that, given tokens a and b with positions
(i, J) and (k, h) respectively, ¢ REL % iff k = i+m and
h=jn.

We assume that every token is associated to one and
only one spatial position, This allows us to construct
spatial operators implementing the spatial relations such
that the spatial operator REL(, j) = (k, h) iff a REL b and
aand b have positions {i, j) and (k, h), respectively,

A context free positional grammar (simply positional
grammar from now on) is defined as follows.

Definition 2.2 A positional grammar PG is specified bya
six-tuple (N, T, S, P, POS, PE) where:

N is a finite non-empty set of non-terminal symbals,

T is a finite non-empty set of ferminal symbols

{or tokens y with NN T = 7,

S &Nis the starting symbol,

P is a finite set of productions,

POS is a finite set of spatial relations,

PE is an evaluation rule.

Each production in P has the following form:
A KIRELIXZRELQ ‘e RELm,lxm

wherem = L AEN, x; ENU T and RELj € POS, with
Isismand 1gj <m-1,

Given a positional grammar, we write o = B if
@ =YAB, A -+ 1 is a production and B = ynd, We write
a =¥ f (B is derived from o) if there exist &g, ... 04y
(m = 0) such that aiw cg => o) = ... => oy = P

The sequence ay, ¢y, ..., 0y is called a derivation of B
from a. A positional sentential form is a siring o =
xi1RELyxoRELj ... RELg, X pWhere x; ENUT and
RI:LJE POS, such that 8 =* a. A positional sentence is
a positional sentential form which does not contain non-
terminal symbols. A pictureis the result of the evaluation
of a positional sentence by applying the evaluation rule
PE. In this paper, we will always refer to the lincar
evaluation rule defined as follows.

Definition 2.3 A linear evaluation rule is a function wh
Input is a positional sentence:

61] R.ELl a2 REIQ REI_m_I am
and its ouiput is a2 picture whose symbals ay, a9, ., 4a

are arranged in the (wo-dimensional space such thal
@ RELja;, 1 for 1si<m-1,

The pictorial language L{PG) is the set of pictures
generated by the positional grammar PG,

Example 2.1 Let us consider the following positiona
grammar for the vertical concatenation of two sirings both
of the type "a ... ab",

N={§,C}

T={a,b)

POS = {HOR, VER} where:

HOR :R(I‘O) and VER = R(O, -1)
PE is the linear evaluation rule

P={ 8§—~ AVERA
A— aHOR A
A= b }
It is easy to verify that the following picture is in the
described language,
aaaaaab
aaaab

.3. Extended pLALR grammars and parsers

I this section we will define a new ¢lass of positional
grammars for which it is possible to construcet a parser by
an automatic translation into string grammars with actions
and the use of the Yace tool. This class extends the pSLR
grammars presented in [6, 7} and overlaps with the class of
inferactive pLALR grammars presented in [14]. Let us
recall the basic concepts.

Definition 3.1 Given a positional grammar PG = (N, T, S,
P, POS, PE}, its augmented positional grammar is PG' =
N T, 8, P, POS', PE) where:

S'EN
N'=NU {8%
P=PU {88}

POS* = POS U {SP, ANY},
where SP and ANY are fictitious spatial relations whose
corresponding spatial operators always return the position
of the first token of the input and the end-of-input marker
“$", respectively.)

Definition 3.2 Let REL be a spatial relation and a be
token. A spatial foken is a pair (REL, a) denoted by
REL_ga. For each spatial token a = REL_a we will denote
by r(a) the first component of the pair, i.e. its spatial
relation part REL, and by t(a) the second component, i.e.

its token part a. Analogously, a spatial non-terminal is a
pair {REL, A) {formed by a spatial relation and a non-
terminai and it will be denoted by REL,_A.

Definition 3.3 Let y be a positional seatential form.
FIRST(Y) is defined as the set of tokens a that begin the
positional sentences derived fr8m y, If v is preceded by a
spatial relation REL, then FIR3T is defined such ihat
FIRST(REL 4} = FIRST(y).

A pLR(1) item of & positional grammar PG consists of
three components. The first component is a spatial
relation; in analogy to {2], the second one is a production
from PG with a dot at some position in the right-kand side
of the production. A dot, however, can never be between a
spatidl relation identifier and the following terminal or non-
terminal on its right. The third component is a spatial
token indicating the look-ahead of the production.

Thus, a production A — x REL; yRELp z yiclds the

following four types of items:

IRELG, A—~ xREL; yRELy 2z, 1]

[RELy. A —+x REL; yREL; 2z, &}

[RELg, A-+ x REL; y RELs 2, a]

[RELg, A — x RELy y RELy z, =]
where the first component RELg is the spatial relation to
reach A, i.e. REL(precedes A in some production of PG
the second component indicates how much of a production
has alrcady-been scanned at & given point in the parsing
process; the third component a, the look-ahead, indicates
which symbol is expected as next and where it is expected,
once the production is completely scanned and reduced.

Before presenting the algorithms for the construction of

an extended pLALR parser, let us give a new definition of
core of a pLR{!) item.

Definition 3.4 Given a set of items I, the extended coreof
is the set of the first two components of each item in I.

For example, if {[HOR, A — E., VER_a], [HOR,
A - E VERe¢, VER_a]}is aset of items, then {{HOR,
A -+ E], [HOR, A —+ E. VER d}} is its extended core.

Note that the previous definition is different from the
non-extended definition given in {14} which did not include
the first component of an item in the core.

The algorithm for the construction of the sets of
extended pLALR(1) items for an augmented positional
grammar PG’ can be easily obtained from the corresponding
one in [14] with the new definition of extended core and
kecping the spatial token formalism only for the look-
ahead symbols. For .completéness the resulting modified
algorithm is given below.

FR

Algorithm 3.1. Construction of the extended pLALR()
items, .

Ioput: An augmented positional grammar PGP,

Ontput; The sets of extended pLALR(1) items.

Method: The items are constructed by the main routine
items which uses the procedures closure and gato

function closure (1),
begin
repeat
for cach item [REL(, A —» o.REL B, s
"with awe or (REL, A — BB, alinl,
cach production B —+ y in PG' and
cach token b in FIRST(®)
such that [REL, B ~+ ., blis not in I, with:
b=a Hpwme
b=REL'_& if pw»eand REL' is the first
spatial relation that appears in B
do add [REL,B ~ y, bjtol;
until no more items can be added to I;
return I
end;

function goto (I, x);
begin
let J = {item | item = [RELy, A — a REL x.B, &) with
awe and [RELg, A+ oRELx §, a]€E} U
{item | item = [REL, A - x.8, a] and
REL,A — x8, al€ 1),
veturn closure (J)
end:;

procedure irems (PG');
begin
C = {closure ({[SP,$' -+ 5, ANY_$1h};
repeat
for each set of items | in C and each grammar symbol x
such that goto (I, X} is not empty and not in C do
add goto (I, x) to C;
unti! no more sets of items can be added to C;
for each extended core of items of items in C do
find alf items having that extended core and
“replace them by their union;
end

The algorithm begins by computing the closure of
(ISP, 8 — .8, ANY_$1}. Since the LALR parsing
technique requires the merging of states with common
cores, the last "{or loop" in procedure items replaces all the
sets having the same extended core by (heir union.

Because of the new definition of core, the extended
pLALR technique will merge a smaller number of items
than the interactive pLALR technigne. However, the two

techniques are not directly comparable, In particular, an
interactive pLALR grammar allows positional conflicts
since they can be successively solved by the user
interaction. In this paper we reduce the parsing of
positional grammars to the traditional LALR parsing
technique in order to exploit the existing tools. The same
has already been done for the subclass of PSLR positional
grammars [6, 7] corresponding to the traditional SLR
string grammars. Since an LAER parsing table does not
allow any conflicts, the position column needed for
extended pLALR parsing tables must contain single
entries.
The following algorithm which constructs an extended
PLALR parsing table is an extension of Algorithm 4.11
“in [2] with the addition of the construction of & colums
position whose entries are spatial relation names. In this
way the corresponding spatial operators to obtain the
position for the next possible input will be associated to
each state of the automaton.

Algorithm 3.2, Construction of the extended pLALR
Parsing Table.
Input. An augmented positional grammar PG,
Output: The extended pLALR parsing table functions
action, goto and position for PG,
Metlod:
I} Construet C = {Ig, Iy, ..., I}, the collection of sets of
extended pLALR(1) items as described in Algorithm 3.1.
2) State i of the parsing table is constructed from I;. The
parsing table actions and positions for state i are determined
as follows:
a) If [RELg, A — «.REL a §, bj,wbplwihawe
or [REL, A -+ .af, aj,..a5] arein I; and gota (J;, a)
= Ij- then set action [i, a] to "stu'ﬂj" and insert REL in
position [i}. Here ‘@' is required to be 2 terminal.
b) If [RELg, A~ «., by, ..bylisin [j and A » 8,
then for cach lock-ahead b k set action {i, tby)] to
"reduces oo " and insert r(by) in position [i]. Here each
'by" 1s required to be a spatial token.
o) If [SP, 8' -+ 8., ANY_$]isin 1. then set action [i, $]
to "accept™.
If there is a parsing-action or parsing-position conflict, the
algorithm fails and the gramumar is said not 1o be extended
pLALR. Note that a double entry {REL, ANY?} in the
column position is not considered to be a conflict.
3) The goto transitions for state i are determined for non-
terminals X using the rule;

if goto (1;, X) = Ij then goto (i, X] =j.

In an extended pLALR parsing table, the entry "accept!
indicates a conditional acceptance and it is actually a call to
a procedure that refurns "success” if and only if all the
tokens of the picture input have been considered in the

parsing process. A spatial relation REL # ANY in the
position column represents a call to the corresponding
spatial operator that takes in input the position of the last
parsed token and caleulates the position of the next token
to parse; in the case no token is in that position, REL
behaves as ANY, i.e., it returns the "position" of the end.
of-input marker $. Hence, every double entry {REL, ANY)
can be replaced with {REL}.

Example 3.1 Let us consider the following positional
graminar:
{1} S— aHOR AHOR 4
(2)$ - b VER A VER ¢
(3YA —~ fVERBHOR h
4)A—~ gVERBHOR {
A~ ¢
B — b
It can be seen that the grammar is extended pLALR with
23 ifems. Items 4, 8, 15 and 18 are shown below:
4 {[HOR, A—+c. ,HOR_d]}
Ig: {[VER, A-+c. ,VER_e]}
Iis: {[VER.B—~+b. _HOR N}
hig: {[VER,B~b. ,HOR_i]}
The items Y15 and I'18 are an example of merging states
according to the extended pLALR(Y) technique,
Note that if the non-extended definition of core given in
[14] 15 used, then also the states I4 and Ig would merge
producing a positional conflict due to a-double eatry
{HOR, VER} in the column position of the merged state.

Exanple 3.2 Let us consider the following positional
prammar:

(1)S—+ AVERB

DA~ a

(3)B—~ AHOR¢

{#B—~ aHORd
Itis an extended pLALR grammar as shown by its extended
PLALR parsing table in Figure 1 and the "goto graph in
the Appendix.

St action golo
Yale [dT3 S TATE S
l0}s2 1]3 8P
11 acc ANY
212 ‘1 JVER
I3]s6 514 JVER
14 1l ANY
Is 57 HOR}
16 121 8 HOR
I7 3 ANY
18 4 ANY

Figure 1. An extended pLALR paraing table

To conclude this Section we need to provide the parsing
algonithm that takes in input an extended pLALR parsing
table and a picture, and gives in output the parse for the
input, if accepted,

In analogy to the traditional parsing techniques, we can
apply the same general algorithm of positional LR parsing
{o extended pLLALR parsing tables, which have the same
format of the Simple LR parsing tables defined in [6, 71

AT ;

Ct;/.f- Positional grammars as string grammars
E-2

In this section we will show that it is possible to
translate an extended pLALR grammar into a context {ree
grammar with positional actions in order (o create a parser
for it through the tool Yace. A positional action is a call to
a procedure that implements a spatial operator as defined
above.

The translation of an extended pLALR grammar PG into
a conlex! free grammar with positional actions is carried
out by two phases, First, PG is translated into a string
grammar SG whose LALR parsing table will be shown to
be "functionally equivalent" to the extended pLALR
parsing table of PG restricted to the action and goro parts.
Secondly, positional actions are inserted in the productions
of SG to simulate the role of the spatial operators
corresponding to the entries in the position part of the
extended pLALR parsing table.
e
@;l) From extended pLALR grammars to siring
grammars

In order to transiate PG into SG, we first need to define
a function X that allows the translation of the positional
formalism into a linear formalism etnbedding the spatiat
relation names directly in new grammar symbols seen as
spatial tokens and spatial non-terminals.

Definition 4.1 Let o = RELj ag REL| ag ... RELy, o

be a sequence of spatial relations and grammar symbols of

a positional grammar. I is a function which takes in input

o and gives in output the sequence: ‘
RELg agREL)_a; ... RELy, a

formed by spatial tokens and spatial non-terminals.

The next function POSPRECEDE applied to a non-
terminal A, calculates the set of spatial relations that can
appear immediately to the left of A in some positional
sentential form, that is, the set of spatial relations from
which A can be reached.

Definition 4.2 Let P be the set of productions of a
positional grammar. The function POSPRECEDE is
constructed as follows:

1. Place SP in POSPRECEDE(S), where § is the starting
symbol;

2. If there is a production “A — ¢ REL B B" in P, then
REL is placed in POSPRECEDE(B); _

3. If there is a production "A ~+ B o'in P, then
everything in POSPRECEDE(A) is also in
POSPRECEDE(B).

Algorithm 4.1. The translation from PG to SG.

Input: An extended pLALR grammar PG = (N.T, § P,
POS, PE),
Qutput: A string gramamar $G = (N1, Ty, S, P1).
Method: The string gramuar SG is obtained by applying
the following steps:
1. For cach production * (i) A — x &" in P insert in P
the productions:

“(i)) RELy_A — RELj_x a*"

.

“(ig) RELK A — RELy x o*"
where a* = £(a) and REL, ..., RELy are the spatial
relations in POSPRECEDE(A)

2. Set the starting symbol Sy to SP_S, and for cach
spatisl token or spatial non-terminal REL_x ocowring in a
production of Py imsert REL_x in Ny if xEN, orin Tyif
xeT.

Example 4.1 Let us consider the extended pLALR grammar
of Example 3.2. The function POSPRECEDE for the non-
terminals of (hat grammar is defined as follows:
POSPRECEDI(S) = {SP},
POSPRECEDE(A) = {SP, VER},
POSPRECEDE®B) = {VER}.
The corresponding strittg grammar is then:

(I) SP_S- SP_AVERB

(21} SP_A ~ 8SP_a

(22) VER_A =+ VER a

(3) VER B~ VER_AHOR ¢

@ VER B-- VER_a HOR_J

4.2, Results of equivalence

In this subsection we give some intuitive results of
equivalence between the class of extended pLALR
grammars and the one produced by applying Algorithm
4.1. L

Using the Algorithm ‘4.9 in {2, it is possible to
construct the sets of LR(1) items and the goto graph for the
string grammar SG.

Given a positional grammar PG and the string grammar
8G derived from PG by the previous algorithm, it can be
verified that the corresponding pLR(1) and LR(1) sets of
items and goto graphs, Gpgs and GsG, are equivalent in

the sense that & pLR(1) ftem [REL, A — x. ¢, &]isin
GpG iff an LR(1) item [REL_A — REL_x . o*, a],with
a*=Z(a), is in G§G. Moreover, every edge (1, Ij}in
GPG has label ' iff the corresponding edge (1Y, Fpin
Gs@ has label 'REL_x', where REL is the spatial relation
in position{I;]. e,

Due to the extended core definition, the merges produced
by the extended pLALR technique on PG will be the same
as the ones produced by the LALR technique on SG.
Hence, the extended plLALR graph for PG and the LALR
graph for SG are stil equivalent. Note that this is not true
int the case of a non-extended definition of the core since
more merges would be allowed in GpG than in G

At this point, it is easy to verify that the LALR parsing
table of a string grammar SG derived by a positional
grammar PG as shown above is functionally equivalent to

the extended pLALR parsing table of PG restricted to the
action and goto pacts,

Further, the LALR parsing table for SG becomes the
cxtended pLALR parsing table for PG, restricted to the
action and goto parts, by applying the following simple
transformations, First, every action “reduce ij" is-replaced
withi “reduce i" and then, all the columns referring to
spatial tokens (non-terminals) REL1_x, .., RELy_x with
the same token (non-terminal) part are unified under only
one column named x. The last transformation will not
-cause conflicts. In fact, any state of the LALR parsing
table cannol present actions for REL{_x and REL;_x
simultancously, otherwise the corresponding state in the

~ extended pLALR parsing table would have a double entry
{REL1, REL3} in the columa position.

action ' golo
StUSP-a ViR _a HOR_GIOR_dWNY. 8 | 5P.S |3P A ViR AViR B
Iof &2 1 3
11 ace
12 2
I3 % 5 4
I4 1
15) 1 87 ‘
{3 129 { B
17 13
i il

. Figure 2, An LALR parsing table

The equivalence between the PG and SG parsing tables
is clear when comparing Figure 1 and Figure 2, which
show the extended pLALR and the LAIR parsing tables of
the corresponding grammars defined in the Examples 3.2
and 4.1, respectively. T

@ Insertion of the positiona]l actions in SG

To be complete, the translation of PG must involve also
the information specified by the spatial refations. Thus, the
next step consists in the addition of positional actions in
the right-hand side of the productions of $G.

The final transiation algorithm uses the following
function RFOLLOW which is defined similarly to the
function FOLLOW in [2].

Definition 4.3 Let 8G = (Ny, Ty, 81, P1) be a string
grammar produced by Algorithm 4.1, The function
RFQLLOW on S3G is constructed as follows:, .
1. Place ANY in RFOLLOW(SP_S), where SP_S = S1;
2. 1f there is a production:

‘RELi_A — a*RELy B REL3_xf*®

in Py, then REL3 is placed in RFOLLOW(REL2_B);

3. If there is a production "REL]_A — o* REL9 B in
Pj, then everything in RFOLLOW(RELy_A) is also in
RFOLLOW(RELy B).

Algorithm 4.2, The translation from PG (o
string grammar with positional actions,

Input: An extended pLALR grammar PG = (N, T, S, P,

POS, PE) and the set of procedures for the gpatial operators

cotresponding to the spatial relations in POS. -

Quiput: A string grammar SG° = (N°, T°, S°, P°) whose

productions are extended with positional actions.

Method: The string grammar $G° is obtained by applying

the following steps:

L. Apply Algorithm 4.1 to PG to obtain the string

grammar SG = (N1, T, $1, P1). .

2. 8et N° =N, T* T, §° =8y, and P* w Py.

3. Each time a symbol 'x' € T appears as a token part in a

production p: *REL]_A — o*REL2 _x REL3_y f*" of
. P? replace "REL2_x" with "x {REL3()}" in p, where

e T A R ST T

REL3() 15 the procedure corresponding to the spatial -

relation REL3 & POS.

4. Bach time a symbol 'x'& T appears as a token part in a
production p: “REL}_A — «*REL2 _x* of Py, replace

"REL9_x" with “x {REL(Q}* in p, if
RFOLLOW(RELj_A}is equal to {REL} or {REL, ANY}.

Note that, as the original positional grammar is extended
pLALR, RFOLLOW can cdbtain one spatial relation or
two, and in the latter case one of them must be ANY.

Further, the climination of the spatial relation part from
each spatial token in steps 3. and 4. does not modify the
structure of the graph Gg¢ even though it changes the
names of some edge labels from REL,_g into a. This
modification, however, does not lead to any merge of edges
beeause if a state had outcoming edges labeled REL], a and
REL9_a , the spatial relations REL} and REL7 would
produce a positional conflict for the original positional
gramnar.

Example 4.2 Let us consider the extended pLALR grammar
of Example 3.2. Step 1. of the Algorithm 4.2, produces the
string grammar of Example 4.1. The final string gramapar
with positional actions produced by the Algorithm 4.2 is
the following:

SP.§-—+ SP.AVERDB

SP_A -+ a {VERQ}

VER_A — a {HOR()}

VER B —+ VER_Ac {ANY()}

VER_B — a {HOR(}d {ANY(}

Figure 3 shows the parse tree o the picture: @
ac
with SP pointing (o the upper a.

SP.8

7N

SPA

N /N

{VER(Q} VER A ¢ {ANYO}

N

{HOR(}

A

Figure 3. Parge tree with positional actions

Fach positional éction is attached as the appropriate
child of the node corresponding to the left side of their
production. Actually, the actions are treated as though they

are terminal symbols. This is important to establish when
the actions are (o be executed,

In the parsing process, the first symbol to be analyzed is
the upper symbol « pointed by SP, and whenever a
positional action is executed (he position of the next input
symbol to be parsed is calculated, according to the
specification of the implemented spatial relation.

As a matter of fact, the parser navigates through the
input setting a linear order on the tokens. In this way,
while parsing, the input is converted in a 2D "string-like"
sequence of tokens,

It can be noted that the grammars produced by the
Algorithm 4.2 are in Yace format. This means that a parser
for the ‘extended pLALR two-dimensional languages can be
generated automalicatly with no more efforts.

The only other investigated class of positional grammars
for which the tool Yacc can automatically gencrate a parser
15 the class of pSLR grammars presented in [6, 7). The
main difference between the pSLR and the extended pLALR
classes is that no lookahead is considered in the
construction of the pSLR parser. This is analogous to the
difference between the traditional SLR and LALR grammar
classes.

Moreover, in the pSLR Yacc implementation, the
positional actions are inserted directly into the productions
of the original positional grammar without the application
of Algorithm 4.1.

As an example, it can be seen that the extended pLLALR
grammar of Example 3.2 is not pSLR, in fact the pSLR
technique produces 2 string grammar with conflicting
positional actions:

S— AB

A - a {HOR(), VER{)}

B-+ Ac {ANY()}

B— g {HORO} 4 {ANY(}

Note that the second production contains (wo spatial
operators after the token a. An immediate consequence of
this is that Yacc cannot be used without giving
disambiguating rules.

5. Conclusions and further research

In this paper, we bave characterized the class of extended
pLALR grammars. Algorithms for the automatic
generation of the parser have been given. Further, this class
has been shown to be larger than the only one other class
of positional grammars for which a Yacc implementation
has been given,

Cun the basis of the equivalence results shown, we arpuc
that the extended pLALR grammars are (he largest class of
positional grammars for which it is possible to automate
the parser generation by existing tools,

