
Answer Set Programming:
an Introduction

Stefania Costantini

Dipartimento di Informatica
Universita’ degli Studi di L’Aquila

via Vetoio Loc. Coppito, I-67100 L’Aquila (Italy)
stefcost@di.univaq.it



Example: 3-coloring in Logic Programming

Problem: assigning colors red/blue/green to vertices of a
graph, so as no adjacent vertices have the same color.

Logic programming representation of the graph:

node(0..3).

col(red).
col(blue).
col(green).

edge(0, 1).
edge(1, 2).
edge(2, 0).
edge(1, 3).
edge(2, 3).

. . . Inference Engine . . .

Expected solutions:

{color(0, red), color(1, blue), color(2, green), color(3, red)}
{color(0, red), color(1, green), color(2, blue), color(3, red)}
{color(0, blue), color(1, red), color(2, green), color(3, blue)}
{color(0, blue), color(1, green), color(2, red), color(3, blue)}
{color(0, green), color(1, blue), color(2, red), color(3, green)}
{color(0, green), color(1, red), color(2, blue), color(3, green)}



3-coloring in Prolog

graph coloring(G, L) : −gr col(G, [], L).

gr col([], L, L) : −!.
gr col([N |R], P, L) : −vertex color(N, C, P ), gr col(R, [color(N, C)|P ], L).

vertex color(N, C, P ) : −col(C), ok color(N, C, P ).
neighbourhood(N, B, L) : −(edge(N, N1); edge(N1, N)),
member(N1, B), !,
neighbourhood(N, [N1|B], L).
neighbourhood( , L, L).

ok color(N, C, P ) : −neighbourhood(N, [], L), check color(L, C, P ).

check color([], , ) : −!.
check color([N1|B], C, P ) : − \+member(color(N1, C), P ), !,
check color(B, C, P ).

member(E, [E|X]) : −!.
member(E, [ |X]) : −member(E, X).

?− consult[3col.pro]
?− graph coloring([0, 1, 2, 3], L).
L = [color(0, red), color(1, blue), color(green), color(3, red)];
L = [color(0, red), color(1, green), color(blue), color(3, red)]
. . .



3-coloring in Answer Set Programming

color(X, red)|color(X, blue)|color(X, green) : −node(X).

: −edge(X, Y ), col(C), color(X, C), color(Y,C).

hide node(X).
hide edge(X, Y ).
hide col(C).

Using the SMODELS inference engine we obtain:

lparse < 3col.txt | smodels 0

Answer1
{color(0, red), color(1, blue), color(green), color(3, red)}
Answer2
{color(0, red), color(1, green), color(blue), color(3, red)}
. . .



Horn Logic Programming

Unification + SLD-Resolution

Least (Herbrand) model semantics

No negation but, implicitly, equality (as identity) and
disequality.

not member(E, []).
not member(E, [T |X])← E 6= T, not member(E, X).



Least Herbrand Model: Example

p← g, h.

g ← r, s.

r ← f.

s.

f.

h.

Step 1: facts

M0 = {s, f, h}

Step 2: M1 = M0 plus what I can derive from facts

M1 = {s, f, h, r}

Step 3: M2 = M1 plus what I can derive from M1

M2 = {s, f, h, r, g}

Step 4: M3 = M2 plus what I can derive from M2

M2 = {s, f, h, r, g, p}

If I try to go on, no more added conclusions: fixpoint
(Least Herbrand Model, in this case finite)



Least Herbrand Model: Example

nat(0).
nat(s(X))← nat(X).

Step 1: facts

M0 = {nat(0)}

Step 2: M1 = M0 plus what I can derive from facts

M1 = {nat(0), nat(s(0))}

Step 3: M2 = M1 plus what I can derive from M1

M2 = {nat(0), nat(s(0)), nat(s(s(0)))}

Step 4,5,6... add nat(s . . . s(0) . . .)

Least Herbrand Model, in this case infinite, fixpoint after
an infinite (denumerable) number of steps.



Horn Logic Programming

Function symbols and recursive definitions
(infinite Herbrand Universe)

Expressivity: Church-Turing computability

DATALOG: no function symbols
(finite Herbrand Universe, finite program grounding)

Expressivity: proper subset of P



Datalog

Datalog Program

p(X)← r(X), q(X).
r(Z)← s(Z).
s(a).
s(b).
q(b).

Its grounding

p(a)← r(a), q(a).
p(b)← r(b), q(b).
r(a)← s(a).
r(b)← s(b).
s(a).
s(b).
q(b).

Its Least Herbrand Model

M = {s(a), s(b), q(b), r(a), r(b), p(b)}



Datalog

A shortcut

p1← r1, q1.
p2← r2, q2.
r1← s1.
r2← s2.
s1.
s2.
q2.

M = {s1, s2, q2, r1, r2, p2}

Terminology: p← q, not r is a rule, where p is the head, or
conclusion, and q, not r is the body, or the conditions. p, q

and r are atoms. Atoms which occur positively in the rule
are positive literals, and the negations are negative literals.
The same atom can occur in a rule both as a positive literal,
and inside a negative literal (e.g. rule p← not p).



Negation in Logic Programming

Negation operator not (\+)
Procedural meaning in Prolog:

Negation As (finite) Failure
Declarative semantics:

based on Closed World Assumption

No problem, procedurally, for so-called stratified programs

q ← not r.

r ← not g.

g ← not h.
But declaratively? Two minimal models

{r, h} (not intended) and
{q, g} (intended)

Unique least model no longer guaranteed!



Negation in Logic Programming

Procedural problems also possible:

p← q, not s.

q.

r ← a.

r ← b.

a← not b.

b← not a.
Classical models {p, q, r, a} and {p, q, r, b}, {s, q, r, a} and
{s, q, r, b}, procedurally, loop a− b

Empty least model possible

p← not p.

q ← p.
Classical least model {}.



Negation in Logic Programming: Semantics

First group of semantic proposals:
keep a single intended model

By narrowing class of programs:
perfect model (stratification) (Apt, Blair & Walker),

only stratified programs allowed

By weakening semantics (3-valued models):
well-founded model WFS = 〈T ; F 〉

(Van Gelder, Ross & Schlipf)
In the example:

〈T = {p, q}; F = {f}〉
all the other atoms are ”undefined”, i.e., U = {a, b, r}

Atoms which are classical logical consequences can be un-
defined! (r in the example)

Second group of semantic proposal:
collection of intended models

• supported models (Clark)

• stable models (Gelfond & Lifschitz)



Answer Set/Stable model semantics

p :−not p.

Classical minimal model {p} NOT STABLE: no stable
models!

a :−not b.

b :−not a.
Classical minimal models {a}, {b} STABLE

p :−not p, not a.

a :−not b.

b :−not a.

Classical minimal models

{b, p} NOT STABLE
{a} STABLE

p :−not p.

p :−not a.

a :−not b.

b :−not a.
Classical minimal models

{b, p} STABLE
{a, p} NOT STABLE

Stable Models = Answer Sets
Stable Model Semantics = Answer Set Semantics.



Answer Set semantics

p← q, not s.

q.

g ← s, q.

r ← a, q.

r ← b, not s.

a← not b.

b← not a.
Classical minimal models {p, q, r, a}, {p, q, r, b},
{s, q, g, r, a} and {s, q, g, r, b}.

Answer Sets {p, q, r, a} and {p, q, r, b}.

Relation to classical logic:
every answer set is a minimal model

not all minimal models are answer sets.

Relation to WFS: for every answer set S, T ⊆ S,
i.e., the Answer Set Semantics
assigns a truth value to undefined atoms.

Here, WFS = 〈T = {p, q}; F = {s, g}〉.



How to find answer sets

Underlying concept: a minimal model is an answer set only
if no atom which is true in the model depends (directly or
indirectly) upon the negation of another atom which is true
in the model.

How to find answer sets: there are various ways.

If you have a classical minimal model M of program P

where P has no positive cycles: check if it is supported
∀A ∈M ∃ rule ρ ∈ P with head A such that all conditions
of ρ are true in P .

p← q, not s.

q.

g ← s, q.

r ← a, q.

r ← b, not s.

a← not b.

b← not a.

Check minimal model {p, q, r, a}:
supported, then it is an answer set.

Check minimal model {s, q, g, r, a}:
not supported, then it is not an answer set



How to find answer sets

If you have just an interpretation I, apply the Gelfond-
Lifschitz Γ operator by steps (i-iii) below:
(i) cancel from P all rules whose conditions are false in I;
(ii) cancel the negative literals in all the other rules;
(iii) find the Least Herbrand model of the residual positive
program.
Then, I is an answer set iff I = Γ(I).

p← q, not s.

q.

g ← s, q.

r ← a, q.

r ← b, not s.

a← not b.

b← not a.

Check interpretation {s, q, g, r, a}, residual program is

q.

g ← s, q.

r ← a, q.

a.

Its Least Herbrand Model is {q, r, a}, then this is not an
answer set.



How to find answer sets

Simplify the program w.r.t. the WFS = 〈T ; F 〉, by steps
(a-c) below:

(a) cancel all rules with a condition false w.r.t. the WFS;
(b) cancel from all the other rules all literals which are true
w.r.t. the WFS;
(c) remove facts.

Then, all the other atoms in the residual program are un-
defined w.r.t. the WFS.
Try to find answer sets of this residual program.
Add the set T , for finding the answer sets of the original
program.

Many ASP solvers use this method, and adopt various
strategies for finding the answer sets of the residual pro-
gram.



How to find answer sets

p← q, not s.

q.

g ← s, q.

r ← a, q.

r ← b, not s.

a← not b.

b← not a.

WFS = 〈T = {p, q}; F = {s, g}〉. Residual program is:

r ← a.

r ← b.
a← not b.

b← not a.



Drawbacks of Answer Set semantics

Fix-point definition:
interpretation I is an answer set iff I = Γ(I)

No Relevance :
for atom A, REL RUL(A) may have answer sets where A

is true/false, while the overall program does not.

Example :
p :−not p, not a.

q :−not q, not b.

a :−b.

b :−a.

REL RUL(a) = {a :−b. b :−a.}
with answer sets {a} and {b}.

Overall program: no stable models.

P1 with answer sets, P2 with answer sets
P1 ∪ P2 may not have answer sets.



Stable Model Semantics (Answer Sets Semantics)

Nice formal features:
related to well-founded semantics, and default logic

Difficult to reconcile with query-based logic programming
(skeptical semantics? unique stable model? Too complex!)

Solution: new logic programming paradigm

• SLP: Stable Logic Programming
(Marek & Truszczynski)

• ASP: Answer Set Programming (Gelfond & Lifschitz)

for for DATALOG plus negation (no function symbols, or
limited use)

Solutions are represented by stable models (answer sets),
and not by answer substitutions in response to a query.

Inference engine: answer set solvers
SMODELS, Dlv, DeRes, CCalc

Complexity: existence of a stable model NP-complete

Expressivity:

• all decision problems in NP and

• all search problems whose associated decision problems
are in NP (claim!)



Answer Set Programming

Constraints

:−v, w, z.

rephrased as

p :−not p, v, w, z.

Disjunction

v|w|z.
rephrased as

v :−notw, not z.

w :−not v, not z.

z :−not v, notw.

XOR

v + w + z.

rephrased as

v|w|z.
:−w, z.

:−v, z.

:−v, w.



Answer Set Programming

Classical Negation ¬p

−p :−q, r.

rephrased as

p′ :−q, r.

:−p, p′

Example

mushroom(boletus edulis).
mushroom(amanita phalloides).

eat(M) :−mushroom(M),−poisonous(M).

not poisonous would be hazardous!

discard(M) :−mushroom(M), poisonous(M).

poisonous(M) :−not − poisonous(M).
−poisonous(boletus edilis).



Answer Set Programming (SMODELS)

Choice rules

n{p(X, Y ) : q(Y )}m :−r(X).

Meaning: forall X such that r(X) holds, each answer set
must contain from n to m literals of the form p(X, Y ), given
that q(Y ) holds. r and q define the domains of variables X

and Y respectively.

Interesting special case, when only one p(X, Y ) is allowed:
Unique solution allowed

1{p(X, Y ) : q(Y )}1 :−r(X).

Examples

1{lives(X, Y ) : place(Y )}1 :−person(X).

1{enrolled(X, Y ) : course(Y )}n :−student(X).



Answer Set Programming: deals with Uncertainty

new(n1).
new(n2).
source(n1, a1).
association(a1).
source(n2, government).

economical(N) : −new(N), source(N, A),
economical association(A).

cultural(N) : −new(N), source(N, A), cultural association(A).
political(N) : −new(N), source(N, government).

cultural association(A) : −association(A),
not economical association(A).

economical association(A) : −association(A),
not cultural association(A).

economical(N) : −new(N), not cultural(N).
cultural(N) : −new(N), not political(N), not economical(N).
political(N) : −new(N), not cultural(N).



Answer Set Programming: deals with Uncertainty

Prolog:

?− economical(n1).
?− political(n1).
?− cultural(n1)

infinite loop!

?− economical(n2).
?− cultural(n1)

infinite loop!

?− political(n2). yes

Well-Founded Semantics:
truth value undefined instead of infinite loop

Answer Set Solver (SMODELS):
Answer1
{political(n2), economical(n2), cultural(n1), cultural association(a1)}
Answer2
{political(n2), economical(n2), political(n1), political association(a1)}

Each Answer Set makes a different (consistent) hypothesis
on association a1 (political/cultural).



Answer Set Programming and Intelligent Agents

Planning oriented Agents: cycle observe-think-act

• observe: collect new facts;

• think: answer set programming for making a plan;

• act: execute the plan.

Reactive/proactive agents: cycle event-condition-action

• Reactive: events come asynchronously form the out-
side, or from the inside;

• Proactive: conditions are internal inference processes,
possibly involving answer set programming for check-
ing constraints, resolving uncertainty, making a plan;

• Able to act, and affect the environment;

• Able to remember, past events, conditions and actions
can be used in further inference.


