
1

Texas Tech University Knowledge Representation Group

REASONING IN DYNAMIC

DOMAINS

So far we considered only knowledge bases de-

scribing static unchanging worlds. In this sec-

tion we discuss how to represent the change.

We will start with a simple example and con-

tinue to build a methodology of representing

knowledge in dynamic domains.

2

Texas Tech University Knowledge Representation Group

The Blocks World

Consider a collection of blocks, b1, . . . , bn, form-

ing towers on table t as in Assignment 2. In

addition let us imagine a robot’s arm capable

of moving block B to location L. Of course the

arm can only perform this action if both, B

and L are clear.

We would like to be able to describe the trans-

formation of the domain caused by the arm’s

activity, i.e. given an initial positions σ0 of

blocks and a sequence α of actions we should

be able to predict the position of blocks after

the execution of α.

3

Texas Tech University Knowledge Representation Group

Objects of the Domain

1. Discrete Time (SMODELS syntax)

const n = 8. step(0..n).

2. As before we will have blocks and locations

which do not depend on time:

(a) Blocks: block(a). block(b). block(c). etc.

(b) Locations: (blocks and the table)

location(L) :- block(L).

location(t).

3. Relation on however does depend on time

and hence acquire an extra parameter, T . Re-

lations whose truth value depends on time are

often called ’fluents’.

on(B, L, T) - at time T block B is located on L.

4. Finally we have actions: put(B,L, T) - at

time T , B is put on L.

4

Texas Tech University Knowledge Representation Group

The Initial Configuration

1. initial configuration of blocks, e.g.

2 7

3 4 6

0 1 5

can be described by

(a) collection of atoms

on(b0, t, 0). on(b3, b0, 0). on(b2, b3, 0). on(b1, t, 0).

on(b4, b1, 0). on(b5, t, 0). on(b6, b5, 0). on(b7, b6, 0).

and closed world assumption

−on(B, L, 0) :- not on(B, L, 0)

B stands for blocks, L for locations and T for

time.

5

Texas Tech University Knowledge Representation Group

Effects of Actions

Let us assume that every action takes one unit

of time. Then the axiom

1. on(B,L, T + 1) :- put(B, L, T).

describes the effect of put. We assume here

that the robot never drops the block and is

otherwise perfect ’executor’ of action.

Rule (1) can be viewed as a special case of a

dynamic causal law - statement of the form

a causes f if p

which says that action a executed in a state

satisfying conditions p causes fluent f to be-

come true in the resulting state.

6

Texas Tech University Knowledge Representation Group

Effects of Actions

The new location of B can be viewed as a ’di-

rect’ effect of action put. There are also ’in-

direct’ effects caused by relationships between

fluents of the domain, e.g. a block can only

occupy a single location, and no block can sup-

port more than two other blocks. This can be

expressed by axioms

2. − on(B, L1, T) :- on(B, L2, T), L1 6= L2.

3. − on(B2, B, T) :- on(B1, B, T), B1 6= B2.

Rules (2,3) can be viewed as a special case of

a static causal law (also referred to as state

constraints) - statement of the form

f if p

which says that every state satisfying p must

satisfy f .

7

Texas Tech University Knowledge Representation Group

Effects of Actions

The above causal laws describe the changes

caused by execution of an action. We also need

to describe what is not changed. To do that

we introduce a predicate moved(B, T) - ’block

B is moved at time T ’:

4a. moved(B, T) :- put(B, L, T).

The rules

4b. on(B, L, T + 1) :- on(B, L, T), not moved(B, T).

4c. −on(B, L, T+1) :- −on(B, L, T), not moved(B, T).

say that positions of all other blocks are un-

changed. Axioms (1–4) give a complete de-

scription of a state σ1 which results from exe-

cuting action put(B, L, T) in state σ0. Later we

study how to define ’successor’ states in more

complex domains.

8

Texas Tech University Knowledge Representation Group

Effects of Actions

The next two axioms are constraints on exe-

cutability of actions.

5a. :- put(B1,B,T),

on(B2,B,T).

5b. :- put(B,L,T),

on(B1,B,T).

Now we have a simple theory of the blocks

world. To extract the state of the world af-

ter block 2 is moved on the table and 7 is put

on 2 we need to compute the answer set of the

above program, BW , augmented by

put(2, t, 0). put(7, 2, 1).

Atoms on(B, L, 2) will give complete description

of the new state.

9

Texas Tech University Knowledge Representation Group

Using the Theory: Planning

Given: Planning Problem

1. initial configuration of blocks, e.g.

2 7

3 4 6

0 1 5

2. final configuration of blocks, e.g.

7 5

3 2 0

4 6 1

Find: a plan (sequence of actions) to move

from initial to final configuration.

10

Texas Tech University Knowledge Representation Group

Describing the Goal

There are many different ways to represent a

final configuration. We use a simple rule

goal(T) :-

on(4,t,T), on(6,t,T), on(1,t,T),

on(3,4,T), on(7, 3,T), on(2,6,T),

on(0,1,T), on(5,0,T).

defining the goal state T . To achieve the goal

we need to find such T , i.e. to satisfy the two

rules below:

success :- step(T),goal(T).

:- not success.

11

Texas Tech University Knowledge Representation Group

Generating the Candidate Plans

Recall that to use answer set programming

methodology we had to restrict ourselve to a

finite time interval [0..n], This means that we

can only look for plans of no more then n con-

sequitive steps. Candidate plans will be gen-

erated by choice rule:

1{put(B,L,T) : block(B) : loc(L)}1 :- step(T),

not goal(T),

T < n.

For any step from 0 to n-1 which does not sat-

isfy the goal the rule will select a candidate

action. Answer sets of the program will corre-

spond to plans, i.e. sequences of actions satisfy

success.

12

Texas Tech University Knowledge Representation Group

The Program’s Output

Statements hide. and show put(B, L, T).

extract the plans from the corresponding an-

swer sets. Here is the output of the call:

lparse −−true−negation file | smodels | mkatoms

put(7, t, 0) put(4, t, 1) put(6, t, 2) put(2, 6, 3)

put(3, 4, 4) put(7, 3, 5) put(0, 1, 6) put(5, 0, 7)

Run the program with

(a) smodels 0

(b) n = 9

and explain the results.

13

Texas Tech University Knowledge Representation Group

Comments

• The above program, P1, is a typical example

of Answer Set Planning. The program consists

of the theory of blocks world, description of

the goal, and ’the planning module’ - in our

case a simple choice rule. Note that the blocks

theory is independent from planning - it can

be used for multiple purposes.

• Answer set planning does not require any

specialized planning algorithm. The ’planning’

query is answered by the reasoning mechanism

used for other types of queries.

• The planning program can be easily general-

ized and improved.

14

Texas Tech University Knowledge Representation Group

Modifying the Planner – Concurrent

Actions.

So far we dealt with one arm domain. Suppose

now that we have two robot arms capable of

avoiding collisions in the air. Let us show that

the planner can be easily modified to allow for

this situation and hence for parallel actions.

To adopt P1 to this case we need to:

1. add more constraints needed to allow par-

allel actions. In particular we prohibit putting

things on moving blocks.

:- block(B1),block(B2),

loc(L), step(T),

put(B1,L,T),

put(B2,B1,T).

15

Texas Tech University Knowledge Representation Group

2. replace our old ’generator’ rule by the new

one:

1{put(B,L,T) : block(B) : loc(L)}2 :- step(T),

not goal(T),

T < n.

By decreasing the number of steps in the pro-

gram we will be able to find plans of better and

better quality, with a significant improvement

in efficiency of search. With n=5 SMODELS

produced a plan;

put(2, t, 0); put(4, t, 0);

put(3, 4, 1); put(7, t, 1);

put(0, 1, 2); put(6, t, 2);

put(2, 6, 3); put(5, 0, 3);

put(7, 3, 4).

There is no plan for n=4.

16

Texas Tech University Knowledge Representation Group

Adding Heuristic Information

The previous solutions didn’t contain any in-

formation distinguishing between ’good’ and

’bad’ moves of blocks. Information of this sort

is often called heuristics or control informa-

tion. In many cases it helps to dramatically

reduce the search space of the problem. Let

us supply our sequential search problem in the

blocks world with DO NOT DESTROY A GOOD

TOWER heuristics. To encode this heuristics

in A-Prolog we expand the problem descrip-

tion by a new representation of the goal

want(4,t). want(6,t). want(1,t).

want(3,4). want(7,3). want(2,6).

want(0,1). want(5,0).

17

Texas Tech University Knowledge Representation Group

Do not destroy good towers

The relation out of place(B, T) holds if after T

steps block B is not yet put in its proper po-

sition. As always, B’s, L’s and T ’s in the rules

below stand for blocks, locations and steps.

out_of_place(B,T) :- want(B,L),

not on(B,L,T).

out_of_place(B,T) :- on(B,B1,T),

out_of_place(B1,T).

out_of_place(B2,T) :- want(B1,B),

on(B2,B,T),

neq(B2,B1).

:- not out_of_place(B,T),

put(B,L,T).

Test the heuristics. Invent and encode other

heuristics.

