
A Logic-Based Infrastructure
for Reconfiguring Applications ?

Marco Castaldi Stefania Costantini Stefano Gentile Arianna Tocchio

Universit̀a degli Studi di L’Aquila
Dipartimento di Informatica

Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy
{castaldi, stefcost, gentile, tocchio }@di.univaq.it

Abstract. This paper proposes the DALI Multiagent System, which is a logic
programming environment for developing agent-based applications, as a tool for
component-based software management based on coordination. In particular we
show the usefulness of the integration between DALI and the agent-based Lira
system, which is a Light-weight Infrastructure for Reconfiguring Applications.
We argue that using intelligent agents for managing component-based software
systems makes it possible to: (i) perform monitoring and supervision upon com-
plex properties of a system, such as for instance performance; (ii) perform global
reconfigurations dynamically through the cooperation of intelligent agents.

1 Introduction

After a long predominance of imperative and object oriented languages in the software
development process, declarative languages, thanks to new efficient implementations,
have recently regained attention as an attractive programming paradigm for the devel-
opment of complex applications, in particular related to the Internet, or more generally
to distributed application contexts. Declarative methods exhibit important well known
advantages: (i) the reduction, also in terms of “lines of code”, of the effort required
for solving a problem, (ii) the actual reduction of errors introduced in the application,
(iii) the fast prototyping of complex applications, that reduces “time to market” and
development costs of business applications. In many cases, these applications are better
implemented by using agents technology: declarative languages make the implemen-
tation of intelligent agents easier and effective. In our opinion, agent-based distributed
applications give really a chance to Artificial Intelligence to show its usefulness in prac-
tical contexts.

In this paper we show how DALI, a new logic-based declarative language for agents
and multi-agent systems, supports the development of innovative agent-based applica-
tions. We consider the topic of distributed component management in the context of

? We acknowledge the support of MIUR 40% projectAggregate- and number-reasoning for
computing: from decision algorithms to constraint programming with multisets, sets, and maps
and by theInformation Society Technologies programme of the European Commission, Future
and Emerging Technologiesunder the IST-2001-37004 WASP project.



Large Scale Distributed Component Based Applications (LSDCBA). The role of agents
is that of monitoring and reconfiguring the system, in order to dynamically maintain
some critical non-functional properties such as performance, high availability or secu-
rity. The possibility of keeping a complex system under control while running is often a
key factor for the success of complex and expensive systems. Several so-called “infras-
tructures” are being proposed to this purpose. In particular, as an interesting example
we consider Lira, an agent-based infrastructure created for dynamic and automatic re-
configurations. As a case study, we have integrated Lira and DALI to create agents able
to manage heterogeneous software components.

The DALI language [8] [9] is a Prolog-like logic programming language, equipped
with reactive and proactive capabilities. The definition of DALI formalizes in a declar-
ative way different basic patterns for reactivity, proactivity, internal “thinking”, and
“memory”. The language introduces different classes of events: external, internal,
present and past. Like Prolog, DALI can be useful and effective for rapid prototyping
of light applications.

Lira [5] [11] [7] [6] has been recently defined (and fully implemented as a pro-
totypical version in Java) to perform application reconfiguration in critical domains,
such as for instance mobile and wireless systems and networks, risk management, e-
government, environment supervision and monitoring. Each application/component of
a complex system is managed by an attached agent, and there is a hierarchy of agents
performing different tasks. Reconfigurations are dynamic and automatic: they are per-
formed while the application is running and as a reaction to some specified events.
However, Lira only allows the agents to execute the orders of a Manager, without any
kind of internal reasoning, preventinga priori any autonomous decision. Moreover, the
hierarchical structure of Lira makes the coordination and cooperation among the agents
very difficult to implement, thus reducing the applicability in many real contexts.

The problems that we have found when trying to use Java for implementing agents
in the context of a critical system (ensuring security of a bank application) suggested
us the idea of using DALI instead of Java. In fact, the features of DALI are suitable
for enhancing Lira agents by implementing a form of intelligence in the agents. Thus
enhanced, Lira may perform reconfigurations in a more flexible and adaptable fashion:
not only under predefined conditions, but also proactively, in order to reach some kind
of objective, for instance to ensure some properties of the managed system. To this aim,
DALI agents managing different components can communicate and cooperate. The In-
telligent agents (IAs), created by integrating DALI and Lira, are able to learn, interact
and cooperate in order to: (i) perform monitoring and supervision upon complex prop-
erties of a system, such as performance; (ii) perform global reconfigurations through
the cooperation of intelligent agents in order to fulfill the required properties.

We argue that Lira/DALI agents are light, easy to write, and independent of any
specific agent architecture. We support our argument by presenting as a Case Study
a practical experience of use of the enhanced infrastructure. In particular, we show
how to implement in Lira+DALI the remote management of web sites in a web host-
ing provider that runs on a Windows 2000 Server. By using the features provided by
Lira/DALI agents, the web sites management becomes easier, and it is possible to per-
form supervision and automatic reconfiguration in order to optimize bandwidth and



space usage. The Case Study demonstrates how a declarative language like DALI has
a significant impact in the developing process of complex applications in the practical
and real context of LSDCBA. The agents created by the integration of DALI and Lira
constitute in our opinion a significant advance in terms of supported functionalities,
readability, modifiability and extensibility.

The paper is organized as follows: we start by describing the features of both DALI
and Lira, respectively in Sections 3 and 4. In Section 4.5 we elicit some problems
found when using Lira infrastructure. Then, in Section 5 we discuss the motivations
of using DALI, an then we introduce the general architecture of the Lira/DALI agents.
Section 6 describes the Case Study. Finally, we summarize the results in Section 8.

2 Motivations

Many approaches of dynamic reconfiguration for component based applications have
been proposed in the last years

A dynamic reconfiguration is defined as any change in the component configuration
or application topology performed while the system is running [?]. Dynamic reconfig-
uration comes in many forms, but two extreme approaches can be identified:internal
andexternal[?].

Internal reconfiguration relies on the programmer to build into a component the
facilities for its reconfiguration. For example, a component might observe its own per-
formance and switch from one algorithm or data structure to another when some per-
formance threshold has been crossed. This form of reconfiguration is sometimes called
“programmed” or “self-healing” reconfiguration [?,?].

External reconfiguration, by contrast, relies on some entity external to the compo-
nent to determine when and how the component is reconfigured. For example, an ex-
ternal entity might monitor the performance of a component and perform a wholesale
replacement of the component when a performance threshold has been crossed.

An approach of self-adaptation which uses internal reconfiguration presents differ-
ent problems: firstly, the reconfiguration policies are programmed within the compo-
nents, then they cannot be modified or extended without changing the component itself,
reducing the reusability of such policies [17]. Secondly, in the presence of component
based applications with many heterogeneous components, each component likely has a
different reconfiguration/adaptation policy, sometimes incompatible or conflicting with
the policies of other components.

It seems clear that an approach of self-adaptation where an external infrastructure
provides reconfiguration features to the application presents many points of interest to
provide non functional properties such as performance, dependability or fault tolerance.

3 DALI Multiagent System

DALI [8] [9] is an Active Logic Programming language, designed for executable spec-
ification of logical agents. DALI allows the programmer to define one or more agents,



interacting either among themselves, or with an external environment, or with a user.
A DALI agent is a logic program containing special rules and classes of events (rep-
resented by special atoms) which guarantee thereactiveandproactivebehavior of the
agent. The kinds of events are: external, internal, present, past.

Proactivity makes an agent able to initiate a behavior according to its own internal
reasoning, and not only as a reaction to some external event. Reactivity determines
actions that the agent will perform when some kind of event happens. Actions can be
messages to other agents and/or interaction with the environment.

An agent is able to manipulate its knowledge base, to have temporary memory,
to perceive an environment and consequently to make actions. Moreover, the system
provides a treatment of time: the events are kept or “forgotten” according to suitable
conditions.

DALI provides a complete run-time support for development of Multiagent Sys-
tems. A DALI Multiagent System is composed by communicating environments, and
each environment is composed by one server and more agents. Each agent is defined by
a .pl file, containing the agent’s code written in DALI.

The new approach proposed by DALI is compared to other existing logic pro-
gramming languages and agent architectures such as ConGolog, 3APL, IMPACT,
METATEM, BDI in [9]. However, it is useful to remark that DALI is a logic program-
ming language for defining agents and multi-agent systems, and does not commit to
any agent architecture. Differently from other significant approaches like, e.g., DE-
SIRE [10], DALI agents do not have pre-defined submodules. Thus, different possible
functionalities (problem-solving, cooperation, negotiation, etc.) and their interactions
are specific to the particular application. DALI is in fact an “agent-oriented” general-
purpose language that provides, as discussed below, a number of primitive mechanisms
for supporting this paradigm, all of them within a precise logical semantics.

The declarative semantics of DALI is anevolutionary semantics,where the meaning
of a given DALI programP is defined in terms of a modified programPs, where reac-
tive and proactive rules are reinterpreted in terms of standard Horn Clauses. The agent
reception of an event is formalized as a program transformation step. The evolutionary
semantics consists of a sequence of logic programs, resulting from these subsequent
transformations, together with the sequence of the Least Herbrand Model of these pro-
grams. Therefore, this makes it possible to reason about the “state”of an agent, without
introducing explicitly such a notion, and to reason about the conclusions reached and
the actions performed at a certain stage. Procedurally, the interpreter simulates the pro-
gram transformation steps, and applies an extended resolution which is correct with
respect to the Least Herbrand Model of the program at each stage.

DALI is fully implemented in Sicstus Prolog [14]. The implementation, together
with a set of examples, is available at the URL http://gentile.dm.univaq.it/dali/dali.htm.

3.1 Events Classes

In DALI, events are represented as special atoms, calledevents atoms. The correspond-
ing predicates are indicated by a particular prefix.



– External Events.When something happens in the “external world” in which the
agent is situated, and the agent can perceive it, this is anexternal event. If an agent
receives an external event, it can decide to react to it. In order to define rules that
specify the reaction, the external event is syntactically indicated by the prefixeve.
For instance,eve(alarm clock rings) represents an external event to which the
agent is able to respond. When the event happens, the corresponding atom becomes
true and, if in the DALI logical program that defines the agent there is a rule with
this atom in the head, then the reaction defined in the body of the rule is triggered.
The external events are recorded, in the arrival order, in a list calledEV and are
consumed whenever the correspondent reactive rule is activated (i.e., upon reaction
the event is removed fromEV).
In the implementation, events are time-stamped, and the order in which they are
“consumed” corresponds to the arrival order. The time-stamp can be useful for
introducing into the language some (limited) possibility of reasoning about time.
The head of a reactive rule can contain several events: in order to trigger reaction,
they must all happen within an amount of time that can be set by a directive.
Attached to each external event there is also the indication of the agent that has
originated the event For events likerainsE there will be the default indication
environment. Then, an event atom can be more precisely seen as a triple:

Sender : Event Atom : Timestamp

TheSender andTimestamp fields can be omitted whenever not needed.
– Internal Events. The internal events define a kind of “individuality” of a DALI

agent, making it independent of the environment, of the user and of the other agents,
and allowing it to manipulate and revise its knowledge. An internal event is indi-
cated by the prefixevi. For instance,evi(food is finished) is a conclusion that
the prefixevi interprets as an internal event, to which the agent may react, for in-
stance by going to buy food. Internal events are attempted with some frequency
(customizable by means of directives in an initialization file). Whenever one of
them becomes true, it is inserted in a setIV . Similarly to external events, internal
events are extracted from this set to trigger reaction. In more detail, the mecha-
nism is the following: if goalG has been indicated to the interpreter as an internal
event by means of a suitable directive, from time to time the agent attempts the
goal (at the given frequency). If the goal succeeds, it is interpreted as an event, thus
determining the corresponding reaction. I.e., internal events are events that do not
come from the environment. Rather, they are goals defined in some other part of
the program.
There is a default frequency for attempting goals corresponding to internal events,
that can be customized by the user when the agent is activated. Also, priorities
among different internal events that could be attempted at the same time can be
specified. At present, this frequency cannot be dynamically changed by the agent
itself, but a future direction is that of providing this possibility, so as the agent will
be able to adapt to changing situations.

– Present Events.When an agent perceives an event from the “external world”, it
doesn’t necessarily react immediately: it has the possibility of reasoning about the
event, before (or instead of) triggering reaction. Reasoning also allows aproactive
behavior. In this situation, the event is calledpresent eventand is indicated by the



prefixen. For instance,en(alarm clock ring), represents a present event to which
the agent has not reacted yet.

– Past Events.Past events represent the agent’s “memory”, that makes it capable
to perform its future activities while having experience of previous events, and
of its own previous conclusions. A past event is indicated by the prefixevp. For
instance,evp(alarm clock ring) is an event to which the agent has reacted and
which remains in the agent’s memory. Memory of course is not unlimited, neither
conceptually nor practically: it is possible to set, for each event, for how long it
has to be kept in memory. The agent has the possibility to keep events in memory
either forever or for some time or until something happens, based on directives. In
fact, an agent cannot keep track ofeveryevent and action for an unlimited period
of time. Moreover, sometimes subsequent events/actions can make former ones no
more valid.
In the implementation, past events are kept for a certain default amount of time, that
can be modified by the user through a suitable directive. The user can also express
a condition of the form:

keep evp(A) until HH:MM.

The past event will be removed at the specified time. Alternatively, one can specify
the terminating condition. As soon as the condition is fulfilled (i.e. the correspond-
ing goal is proved) the event is removed.

keep evp(A) until Cond.
In particular cases, an event should never be dropped from the knowledge base, like
in the example below:

keep evp(born(daniele)) : 27/Aug/1993forever.

Implicitly, if a second version of the same past event arrives, with a more recent
timestamp, the “older” event is overridden, unless this violates a directive.

3.2 Actions: Reactivity in DALI

Actions are the agent’s way of affecting its environment, possibly in reaction to an
external or internal event. In DALI, actions can have or notpreconditions: in the former
case, the actions are defined byactions rules, in the latter they are just action atoms.
In actions rules, success of preconditions determine the execution of the action: only
when all preconditions are verified, then the corresponding action is performed. These
preconditions are indicated by the prefixcd. In the case ofaction atoms, the actions
always succeed. An action is indicated by prefixa. An example:

eve(saturday):- a(go to the supermarket).

fridge full :- evp(goto the supermarket).

evi(fridge full) :- a(preparea snack).

eve(child(I), weare hungry)):- assert(childrenare hungry).

cd (preparea snack):- children are hungry..

When the external eventeve(saturday)occurs, the agent reacts by performing the
actiongo to the supermarket. Since the reaction is recorded as a past event (indicated



by evp(go to the supermarket)), the recollection triggers the proactive rule and al-
lows the internal eventevi(fridge full). The actiona(prepare a snack) is executed if
the preconditioncd(children are hungry) is true. This is conditioned by the exter-
nal eventeve(we are hungry) coming from agentchild(I). As soon as it is observed,
DALI executes the subgoal in the body of the rule, that consists in a predefined predicate
(namelyassert) that records the event.

Similarly to events, actions are recorded aspast actions, with prefixpa. The follow-
ing example illustrates how to exploit past actions. In particular, the action of opening
(resp. closing) a door can be performed only if the door is closed (resp. open). The win-
dow is closed if the agent remembers to have closed it previously. The window is open
if the agent remembers to have opened it previously.

a(openthe door) :- door is closed.

door is closed:- pa(closethe door).

a(closethe door) :- door is open.

door is open:- pa(openthe door).

External events and actions are used also for expressing communication acts. An
external event can be a message from another agent, and, symmetrically, an action can
consist in sending a message. Presently we do not commit to any particular agent com-
munication language, that we consider as a customizable choice that can be changed
according to the application domain.

4 Lira

In the context of Large Scale Distributed Systems we usually deal with: (i) thousands
of components that are part of one or more Applications; (ii) single Applications that
are part of bigger systems, distributed over a wide area network. A basic objective
of remote control is that of making the Java managed system flexible, highly modifi-
able at run time and stable with respect to many different faults. To these aims, remote
(re)configuration should be dynamic: i.e., should be performed while a system is run-
ning, possibly as an automatic reaction when some event happens.

Lira (Light-weight Infrastructure for Reconfiguring Applications) [5] [11] [7] [6] is
a system that performs remote control and dynamic reconfigurations [13] [3] over single
components or applications. It uses and extends the approach of Network Management
[12] architectures and protocols, where an agent controls directly the managed device
and a Manager orders the reconfigurations. The decision maker could be an Adminis-
tration Workbench with a graphical interface, or, in a more interesting case, a program
that has the necessary knowledge to decide, when a specified precondition is verified,
what kind of reconfigurations must be performed.

With component reconfiguration we mean any allowed change in the component’s
parameters (component re-parametrization): the addressed components are usually
black-boxes, so Lira is able to dynamically change the values of the provided param-
eters. An Application reconfiguration [2] can be: (i) any change of the Application in



terms of number and location of components; (ii) any kind of architectural modification
[16].

Lira has been designedlight-weight [5], given that components can be very small
in size and might be run on limited-resource devices such as mobile phones or PDA.
It provides a general interface for interacting with components and applications: this
interface is realized using a specified architecture and a very simple protocol that allows
oneto set and get variable valuesandto call functions.

Lira has been created to provide the minimal amount of functionalities necessary
to perform components reconfiguration and deployment. There are many others ap-
proaches of components reconfiguration, based on heavy weight infrastructures that
manage also application dependencies and consistence. A complete description of the
existing infrastructures with respect to the Lira approach is provided in [5].

The Lira architecture specifies three main actors: theReconfiguration Agent,
which performs the reconfiguration; theMIB , which is a list of variables and func-
tions that an agent exports in order to reconfigure the component; theManagement
Protocol, that allows agents to communicate.

There are different kinds of agent, depending of their functionalities: theCompo-
nent Agent is associated to the reconfigurable component; theHost Agent manages
installation and activation of components and agents on the deployment host; theAp-
plication Agent is a higher-level agent able to monitor and reconfigure a set of com-
ponents or a subsystem (for details see [6]); finally theManager is the particular agent
providing the interface with the decision maker, having the role to order reconfigura-
tions to other agents.

In the next subsections we will describe the Lira features relevant for the proposed
integration.

4.1 Component Agent

The Component Agent (CompAgent) is the most important part of the Lira infrastruc-
ture: it directly controls and manages the component. To keep the system general, Lira
does not specify how the component is attached to the agent, but it only assumes that the
agent is able to act on the component. The CompAgent is composed by a generic part
(calledProtocol Manager) which manages the agent communication, and by a local
part (calledLocal Agent) which is the actual interface between the agent and the com-
ponent. This interface is component-specific and it implements the following functions
for the component’s life-cycle management:

– void start(compParams) : starts the component.
– void stop() : stops the component.
– void suspend() : suspends the component.
– void resume() : resumes the component.
– void shutdown() : stops the component and kills the agent.

Moreover, each CompAgent exports the variables:



– STATUS: maintains the current status of the component. It can assume one of the
following values:starting, started, stopping, stopped, suspending, suspended,
resuming.

– NOTIFYTO: contains the address of the agent that has to be notified when a speci-
fied event happens.

All the variables exported for the specific component must be declared in the MIB
(Section 3.3).

A very important property of a Lira-based reconfiguration system is thecompos-
ability of the agents: they may be composed in a hierarchical way [15], thus creating a
higher level agent which performs reconfigurations at application level, by using vari-
ables and functions exported by lower level agents. The Application Agent is a Manager
for the agents in the controlled components, but it is a reconfigurations actuator for the
global (if present) Manager.

4.2 Manager

The Manager orders reconfigurations on the controlled components through the associ-
ated CompAgents. The top-level manager of the hierarchy constitutes the Lira interface
with the Decision Maker. It exports theNOTIFYTOvariable, like every other agent.
The Manager is allowed to send Lira messages, but may also receive SET, GET, CALL
messages: it means that different Managers can communicate with each other.

4.3 MIB

This description represents the agreement among agents that allows them to communi-
cate in a consistent way.

The description provides the list of variables and functions exported by the agent. In
particular, the MIB contains the variables and functions always exported by the agent,
such as the STATUS or the start() ones, as well as variables and functions specific for
the managed components, that are component dependent.

Finally, the MIB specifies constraints to bind declared variables and performed ac-
tions to obtain the specified behavior [7].

4.4 Management Protocol

The management protocol has been designed to be as simple as possible, in order to
keep the systemlight. Based on TCP/IP, it specifies seven messages, of which six are
synchronous, namely:

– SET(variable name, variablevalue) / ACK(messagetext)
– GET(variable name) / REPLY(variable name, variablevalue)
– CALL( functionname, parameterslist) / RETURN(return value)

and one is asynchronous, namely:

– NOTIFY(variable name, variablevalue, agentname)



4.5 Some problems with using Lira

The current Lira version specifies a very clean, powerful and effective architecture. The
Java prototype works well in the test examples proposed in [4] [5] [11] [6]. Neverthe-
less, there are still problems to solve, related to both the specification and the imple-
mentation.

From the implementation point of view, an object-oriented language such as Java al-
lows one to easily create every kind of Lira agent by inheritance from specified classes,
thus encouraging agent’s reuse. Also, it provides a direct interface with the managed
component. However, it is not so immediate to implement in Java mechanisms to pro-
vide agents with some kind of intelligence, such as “internal thinking” or “memory”.
This is demonstrated by the fact that Java-based frameworks for agent development like
JADE [1] have built-in reactive capabilities, but do not directly provide proactivity.

Moreover, the hierarchical structure of Lira inherited by the network management
architecture model is useful and powerful but very strict. In fact, a hierarchical manage-
ment is effective for rigidly structured domains, while it makes agents implementation
very hard when coordination and cooperation is needed. In this way, the applicability
of Lira is reduced.

5 The integration

In this research, we have tried to overcome Lira problems by implementing a part of
Lira agents using DALI.

There are several motivations to propose DALI as a formalism for the implemen-
tation of intelligent reconfiguration Lira agents. Firstly, DALI’s proactive capabilities
allow the agents to timely supervise component -and application- behavior, by using
Internal events. Secondly, by usingExternal eventsthe agents are able to communicate
with each other so that they can synchronize and adapt their behavior in a changing
environment (e.g., in case of applications oriented to mobile devices). Thirdly, by using
Past Eventsthe agents have amemoryand can perform actions automatically whenever
a well-known situation occurs. Therefore, the resulting infrastructure is flexible and
allows run-time event-driven reconfiguration.

A good reason to keep a Java part of Lira agents is that DALI infrastructure can-
not act directly on the component to perform reconfiguration. In fact, DALI does not
provide high level mechanisms to interact with the components, while Lira is specified
with that purpose.

The agents created by integrating DALI and Lira, that we have called Intelligent
Agents (IA) for dynamic reconfiguration, have an intelligent part provided by DALI
and a managing part provided by Lira. In other words, we can say that DALI constitutes
the “mind”, and Lira the “hand” for performing reconfigurations.

Fig. 1.The architecture of the Intelligent agents



The general architecture of the IA is shown in Figure 1. The interface between DALI
and Lira is provided by a SICTUS Prolog library calledJasper, which allows one to call
the specified Java method inside Prolog code.

Lira loses the TCP message management, but it still provides the access to the ex-
ported variables and functions through the following methods:

ACKmsg msgSET (varName, varV alue)
REPLY msg msgGET (varName)
RETURNmsg msgCALL(funcName, parList)

void msgNOTIFY (varName, varV alue)

The communication among IAs is implemented by using DALI messages, and is
managed by its run time support. The Java methods are called by the DALI envi-
ronment through the Jasper interface whenever the corresponding DALI message is
received.

In DALI, the reception of a Lira message is implemented by using anexternal event.
When the event is received, the agent performs a specific action which hides the Jasper
predicate. For example, the reception of the Lira messageCALL(”STOP”, ””) is im-
plemented as:

eve(CALL(”STOP”, void) : −a(daliCALL(stop, void))

wheredaliCALL is a macro which hides all the steps (objects creation, method call
etc) necessary to actually invoke the Java method.

In the sample DALI code that we will present in the next subsections, all the op-
erations for getting and setting values or more generally for affecting the supervised
component are implemented in a similar way.

The reactive capabilities provided by DALI make the IA’s able to dynamically per-
form reconfigurations either upon certain conditions, or upon occurrence of significant
events. In some cases reconfigurations can be decided and performed locally (on the
controlled component), whenever the managing agent has sufficient knowledge, other-
wise they can be decided by means of a process of cooperation and negotiation among
the different agents.

Also, the Lira/DALI IA’s can manage and exchange meta-information about system
configuration and functionality. In perspective, they may have knowledge and compe-
tence to detect critical situations, and to activate dynamic security processes in order to
ensure system consistency also in presence of faults or attacks.

Finally, by using DALI primitives the agents are able to learn from past situations,
for example to repeat the same kind of reconfiguration upon the same conditions, or to
retry the same kind of negotiation.

6 The Case Study

The case study proposed here is remote management of web sites in a web hosting
provider that runs on a Windows 2000 Server. This particular environment manages



single web sites as independent components, allowing the administrator to start and
stop web sites independently from the actual web server that hosts them.

The features of the example are the following: we have a general serverW that
manages the web sitesWi through the IAsIAi. Each agent can communicate with the
other agents and with the Manager. In particular, for each web site we are interested to
supervise the disk space and the bandwidth.

Fig. 2.The hosting web provider

In order to show the flexibility of these new IA’s, we propose (a sketch of) the
implementation of two different policies of reconfiguration, aimed at optimizing space
and bandwidth usage.

The space is managed by using a hierarchical model, where a Manager maintains
the global knowledge about the space usage, and eventually orders the reconfigurations
to the agents.

A high quality of service for each web site is guaranteed through a dynamic distribu-
tion of the available bandwidth. We employ to this purpose a cooperative model, where
an agent that needs more bandwidth asks other agents for obtaining the possibility to
increase its own usage.

The details of these policies are described in the Sections 6.1 and 6.2.

In order to act on the component (web site) and perform the reconfigurations, the
IA exports the following variables and functions. USEDSPACE, that contains the used
space; MAXSPACE, i.e., the max space allowed; USEDBAND, i.e., the band used;
MAX BANDWIDTH, i.e., the max bandwidth allowed; STATUS, which is the state of
the web site; NOTIFYTO, i.e., the agent that must be notified. ERASE(fileType, space)
erases the specified files, thus freeing some space on the disk. COMPRESS(files, space)
compresses the specified files thus making available a larger space quota on the disk.

6.1 Space Management

DALI definition of the Manager agent

Implementation of Site Maintenance
The manager starts the maintenance of a web site managed by anIA when-
ever a certain timeout has expired. The exact mechanism in DALI is that the
predicateactivate maintenance is automatically attempted at a predefined (cus-
tomizable) frequency, and succeeds as soon as the timeout is expired. Since this
predicate is an internal event, its success triggers the proactive clause with head
evi(activate maintenance(IA)), thus executing the body, and sends messages toIA
to stop the web site, and perform the maintenance. At the end, the site is restarted.



activate maintenance(IA) : −timeout expired(IA).
evi(activate maintenance(IA)) : −a(message(IA,CALL(”STOP”, void))),

a(message(IA, perform maintenance(IA))).
eve(maintenance terminated(IA)) : −a(message(IA,CALL(”START”, void))).

Remote Reconfiguration
If an IA that manages a web site asks for more disk space, the manager assigns more
space to this web site if available. Only asextrema ratiothe Manager eliminates old
web sites with expired life time.

eve(space not recovered(IA)) : −once(find space(IA)).
find space(IA) : −a(message(IA, SET (MAX SPACE,New space))).
cd(message(IA, SET (MAX SPACE,New space))) : −space available(New space).
find space(IA) : −once(check accounts(IA)).
check accounts(IA) : −a(erase expired web site).
cd(erase expired web site) : − . . .

DALI Intelligent agent definition for the Web Sites

Site Maintenance
The following piece of code defines howIA becomes aware of the orders by the
manager of stopping/starting the site, and of performing maintenance. Notice thatIA
knows that maintenance is finished as soon asperform maintenance becomes a past
event (prefixevp), i.e., as soon as actiona(perform maintenance) has been done.
If so, end maintenance becomes true, and, since it is an internal event, it triggers a
reaction that sends a message to the manager to signal that maintenance is over.

eve(CALL(”STOP”, void)) : −a(daliCALL(stop, void)).
eve(CALL(”START”, void)) : −a(daliCALL(start, void)).
eve(perform maintenance) : −a(perform maintenance).
end maintenance(IA) : −evp(perform maintenance).
evi(end maintenance(IA)) : −a(message(M,maintenance over(IA)).

Managing lack of space
As an example of adaptive behavior, the following piece of code included in the defi-
nition of a local agent specifies that if the used space of the managed web site is close
to MAX SPACE, thenIA tries to find more space. First, the agent tries to recovery
space locally, by either erasing or compressing files. If this is impossible, then it asks
the manager. These local attempts of reconfigurations can be done only if they have not
been performed recently, i.e., only if the corresponding past events (prefixevp) are not
present (notice that the past events expire after a pre-set, customizable amount of time).
Otherwise, the manager is informed by sending the messagespace not recovered.



more space needed : −a(daliGET (MAX SPACE)),
a(daliGET (USED SPACE)),
MAX SPACE − USED SPACE ≤ threshold.

evi(more space needed) : −recovery space(IA).
recovery space(IA) : −a(erase useless files(IA)).
cd(erase useless files) : −not(evp(erase useless files(IA))).
recovery space(IA) : −a(compress files(IA)).
cd(compress files) : −not(evp(compress files(IA))).
recovery space(IA) : −a(message(M, space not recovered(IA))).

Updating space limit
If asked, the manager can give three different answers, corresponding to the following
external events: (i) send an enlarged valuenew space of MAX SPACE; (ii) order to
erase all files; (iii) stop the web site.

eve(SET (MAX SPACE, new space)) : −a(daliSET (MAX SPACE, new space)).
eve(CALL(ERASE, all files)) : −a(daliCALL(ERASE, all files)).
eve(CALL(KILL, void)) : −a(daliCALL(KILL, void)).

6.2 Bandwidth management

In order to exhibit a good performance to the end user, the Intelligent Agents cooperate
for a dynamic band distribution according to the component needs. In particular, when
an IA detects that the available band is less than the bandwidth needed, the internal
eventseek band triggers a reaction: the agent checks which agents are present in the
system and creates a list. Then it takes the first one and sends a request for a part of the
band. If the agent receives the external event that indicates that more band is available,
it sets the Lira variable MAXBANDWIDTH, while the giving agent reduces its max
bandwidth by taking off the given value. If the bandwidth is still insufficient, the agent
keeps asking for band to the other agents are present in the system.

seek band : −band insufficient.
band insufficient : − . . .
evi(seek band) : −findallagents(Askable agents list), askfb(Askable agents list).
askfb(Askable agents list) : −member(IA1, Askable agents list),

a(message(IA1, ask for band(IA, IA1))).
. . .

Symmetrically, ifIA is asked for some band, it checks if it is actually in the condition to
give it. When the external eventask for band arrives, the agent checks its bandwidth.
If it has some unused band (the USEDBAND is minor of the MAX BANDWIDTH)
it keeps 80% of its band, and offers the remaining amountBt to the other agent.
Otherwise, the agent sends the messageimpossible to transfer band.



eve(ask for band(IA, IA1)) : −check available band(Bt).
check available band(Bt) : − . . .
evi(check available band(Bt)) : −Bt 6= 0, a(message(IA1, offer band(Bt, IA)).
evi(check available band(0)) : −a(message(IA1, impossible to transfer band)
. . .

7 Discussion and Related Work

In [17], Garlan et al. proposed a methodology and a framework for performance op-
timization of a network component based application. In the proposed approach the
software architecture of the application plays a central role: the managed application
is continuously monitored and, when necessary, it is reconfigured at architectural level.
The new configuration is chosen as result of the online evaluation of a components-
connectors models. As well as our intelligent agents, thegaugesproposed in [17] pro-
vide the monitored information to the manager, but, differing from the IAs, they are
not provided of intelligence, and they cannot take any form of decision. The IAs, in-
stead, have internal reasoning and memory, which allow the agents to activate alocal
reconfiguration without asking the manager.

In [11], the decisions about reconfiguration are taken by using the feedback pro-
vided by the online evaluation of a Petri Nets model representing the system. Even if
effective in the context of dependability provision, the impossibility for agents and man-
ager torememberthe previous decision taken in similar situations forces an expensive
model evaluation at every step of the decision. The memory mechanisms provided by
DALI, instead, allows the agents to learn from the past configurations, adapting their
behavior to the new situations.

In the current version of our framework, the Intelligent Agents and the Manager
decide the best reconfiguration for the managed system by applying he defined recon-
figuration policies, in a purely reactive way. Following the approach proposed by Son et
al. in [18], the DALI/Lira framework can be modified to use planning mechanisms for
the choice of the best reconfiguration. Each reconfiguration can be specified in terms of
a plan to reach a specified goal, and the best one is chosen among the not failed plans.
Currently, we are working on adding planning capabilities to the DALI language, and
we foresee to upgrade the functionalities of the manager to have also thisplan-based
decision making.

The framework described in this paper is fully implemented, but it is a preliminary
version. The current implementation suffers of many problems due to the technologies
used for its development. Firstly, the Sictus prolog [14] used to implement DALI has a
very heavy runtime support (a 10 Mbytes process for each agent), which creates many
problems for the actual deployment of the Intelligent Agents within a limited resource
device. Moreover, the library used for the integration between the Lira and the DALI
agents, namely Jasper, does not provide a confortable support for many Java types,
making the implementation of the Prolog-Java interface not easy at all. Then, we are
planning to use tuProlog [20] as the base for DALI: tuProlog is characterised by a min-
imal yet efficient Prolog engine, created for infrastructures where software thickness



and overloading is simply unacceptable [19]. tuProlog is written in Java, thus allowing
an easy interface with the Lira infrastructure.

8 Concluding Remarks

In this paper we have proposed our practical experience of using the logic programming
language DALI for enriching the functionalities of Lira, an infrastructure for managing
and reconfiguring Large Scale Component Based Applications.

The advantage of Lira is that of being lightweight, although able to perform both
component-level reconfigurations and scalable application-level reconfigurations. The
key design choice of Lira has been that of providing a minimal basic set of function-
alities, while assuming that advanced capabilities are implemented in the agents, ac-
cording to the application at hand. This has allowed us to gracefully integrate Lira with
DALI, by replacing Java agents with DALI agents. To the best of our knowledge, this
is the first running prototype of a logic-based infrastructure.

We have argued that DALI brings practical advantages under several respects. (i)
The task of developing agents with memory and reasoning capabilities becomes easier,
and the resulting agent programs are easier to understand, extend and modify. (ii) Re-
activity, proactivity and learning capabilities of logical agents make the system more
powerful through the intelligent cooperation among logical agents that can supervise
and solve critical situations. (iii) Intelligent agents with reasoning abilities can coop-
eratively perform many tasks and reach overall objectives, also by means on suitable
forms of delegation and learning. The coordination and cooperation among agents that
are difficult to implement with Lira because of its hierarchical architecture can be easily
realized by using Lira/DALI intelligent agents. This makes the resulting infrastructure
powerful and effective, especially in real-time contexts.

Both DALI and Lira are fully implemented, and the Intelligent Agents have been
successfully experimented. Future applications are being specified, in challenging con-
texts such as system security in critical applications.

References

1. F. Bellifemine, A. Poggi and G. Rimassa. “JADE A FIPA-compliant agent frame-
work”. Proceedings of PAAM’99, held in London, April 1999, pp.97-108. Project
URL: http://sharon.cselt.it/projects/jade/

2. L. Bellissard, N. de Palma and M. Riveill. “Dynamic Reconfiguration of agent-
Based Applications”. Proceedings of European Research Seminar on Advances in
Distributed systems, April 1999.

3. C. Bidan, V. Issarny, T. Saridakis and A. Zarras. “A Dynamic Reconfiguration
Service for CORBA”. In Proc. of the 4th International Conference on Configurable
Distributed Systems, May 1998, Annapolis, Maryland, USA, pp. 35–42.

4. M. Castaldi. “Lira: a practitioner approach”. Technical Report, University of
L’Aquila, July 2002.



5. M. Castaldi, A. Carzaniga, P. Inverardi and A. L. Wolf. “A Light-weight Infras-
tructure for Reconfiguring Applications”. Proceedings of 11th Software Configu-
ration Management Workshop, Portland, USA, May 2003.

6. M. Castaldi, G. De Angelis and P. Inverardi. “A Reconfiguration Language for
Remote Analysis and Application Adaptation”. Proceedings of ICSE Workshop
on Remote Analysis and Measurement of Software Systems, Portland, USA, May
2003.

7. M. Castaldi and N. D. Ryan. “Supporting Component-based Development by En-
riching the Traditional API”. Proceedings of 4th European GCSE Young Re-
searchers Workshop 2002, in conjunction with NoDE, to be held in Erfurt, Ger-
many, 7-10 October 2002.

8. S. Costantini. “Towards active logic programming”. In A. Brogi and P. Hill, edi-
tors, Proc. of 2nd International Workshop on component-based Software Develop-
ment in Computational Logic (COCL’99), PLI’99, Paris, France, September 1999.
http://www.di.unipi.it/ brogi/ResearchActivity/COCL99/ proceedings/index.html.

9. S. Costantini and A. Tocchio. “A logic programming language for multi-agent
systems”. Proceedings of JELIA02, 8th European Conference on Logics in Ar-
tificial Intelligence, held in Cosenza, Italy, September 23-26, 2002. LNCS 2424,
Springer-Verlag.

10. C. M. Jonker, R. A. Lam and J. Treur. “A Reusable Multi-Agent Architecture
for Active Intelligent Websites”. Journal of Applied Intelligence, vol. 15, 2001, pp.
7-24.

11. S. Porcarelli, M. Castaldi, F. Di Giandomenico, P. Inverardi and A. Bondavalli.
“An Approach to Manage Reconfiguration in Fault-Tolerant Distributed Systems”.
Proceedings of ICSE Workshop on Software Architectures for Dependable Systems,
Portland, USA, May 2003.

12. M. T. Rose. “The Simple Book: An Introduction to Networking Management”.
Prentice Hall, April 1996.

13. S.K. Shrivastava and S.M. Wheater. “Architectural Support for Dynamic Re-
configuration of Large Scale Distributed Applications”. Technical Report 645, pp.
1-14, Department of Computing Science, University of Newcastle upon Tyne, 1998.

14. SICStus home page. http://www.sics.se/sicstus/.
15. M. Wermelinger. “A Hierarchical Architecture Model for Dynamic Reconfigura-

tion”. In Proc. of the 2nd Intl. Workshop on Software Engineering for Parallel
and Distributed Systems, IEEE Computer Society Press, 1997, pp. 243–254.

16. M. Wermelinger, A.Lopes and J.Fiadeiro. “A Graph Based Architectural
(Re)configuration Language”. In Proc. of ESEC/FSE’01, ACM Press, 2001.

17. David Garlan, Bradley Schmerl and Jichuan Chang. “Using Gauges for
Architecture-Based Monitoring and Adaptation”. In Proc. of Working Conference
on Complex and Dynamic Systems Architecture, Brisbane, Australia, December
2001.

18. C. T. Son, E. Pontelli, D. Ranjan, B. Milligan and G. Gupta. “An Agent-based
Domain Specific Framework for Rapid Prototyping of Applications in Evolutionary
Biology”. In Workshop Notes of Declarative Agent Languages and Technologies,
First International Workshop (DALT 2003). Melbourne, Victoria, July 15th, 2003.

19. tuProlog web page. In http://www.lia.deis.unibo.it/Research/2P/.
20. Enrico Denti, Andrea Omicini and Alessandro Ricci. “tuProlog: A Light-Weight

Prolog for Internet Applications and Infrastructures”. In Proc. of Third Interna-
tional Symposium on Practical Aspects of Declarative Languages (PADL), Las
Vegas, Nevada, March 2001.




