
Meta-reasoning: a Survey

Stefania Costantini

Dipartimento di Informatica
Universit�a degli Studi di L'Aquila,

via Vetoio Loc. Coppito, I-67100 L’Aquila, Italy
stefcost@univaq.it

Abstract. We present the basic principles and possible applications of
systems capable of meta-reasoning and reflection. After a discussion of
the seminal approaches, we outline our own perception of the state of the
art, mainly but not only in computational logic and logic programming.
We review relevant successful applications of meta-reasoning, and the
basic underlying semantic principles.

1 Introduction

The meaning of the term “meta-reasoning” is “reasoning about reasoning”. In a
computer system, this means that the system is able to reason about its own op-
eration. This is different from performing object-level reasoning, which refers in
some way to entities external to the system. A system capable of meta-reasoning
may be able to reflect, or introspect, i.e. to shift from meta-reasoning to object-
level reasoning and vice versa.

We present the main principles and the possible applications of meta-
reasoning and reflective systems. After a review of the relevant approaches,
mainly in computational logic and logic programming, we discuss the state of
the art and recent interesting applications of meta-reasoning. Finally, we briefly
summarize the semantic foundations of meta-reasoning. We necessarily express
our own partial point of view on the field and provide the references that we
consider the most important.

There are previous good reviews on this subject, to which we are indebted
and to which we refer the reader for a wider perspective and a careful discussion
of problems, foundations, languages, approaches, and systems. We especially
mention [1], [2], [3]. Also, the reader may refer, for the computational logic
aspects, to the Proceedings of the Workshops on Meta-Programming in Logic
[4], [5], [6], [7], [8]. Much significant work on Meta-Programming was carried out
in the Esprit funded European projects Compulog I and II. Some of the results
of this work are discussed in the following sections. For a wider report we refer
the reader to [9].

More generally, about meta-reasoning in various kinds of paradigms, includ-
ing object-oriented, functional and imperative languages, the reader may refer
to [10] [11], [12].

Research about meta-reasoning and reflection in computer science has its
roots in principles and techniques developed in logic, since the fundamental
work of Gödel and Tarski, for which it may be useful to refer to the surveys
[13], [14]. In meta-level approaches, knowledge about knowledge is represented
by admitting sentences to be arguments of other sentences, without abandoning
the framework of first-order logic.

An alternative important approach to formalize knowledge about knowledge
is the modal approach that has initially been developed by logicians and philoso-
phers and then has received a great deal of attention in the field of Artificial
Intelligence. It aims at formalizing knowledge by a logic language augmented
by a modal operator, interpreted as knowledge or belief. Thus, sentences can be
expressed to represent properties of knowledge (or belief). The most common
modal systems adopt a possible world semantics [15]. In this semantics, knowl-
edge and belief are regarded as propositions specifying the relationship between
knowledge expressed in the theory and the external world. For a review of modal
and meta-languages, focused on their expressivity, on consistency problems and
on the possibility of translating modal languages into a meta-level setting, the
reader may refer to [16].

2 Meta-programming and Meta-reasoning

Whatever the underlying computational paradigm, every piece of software in-
cluded in any system (in the following, we will say software component) manipu-
lates some kind of data, organized in suitable data structures. Data can be used
in various ways: for producing results, sending messages, performing actions, or
just updating the component’s internal state.

Data are often assumed to denote entities which are external to the software
component. Whenever the computation should produce effects that are visible
in the external environment, it is necessary to assume that there exists a causal
connection between the software system and the environment, in the sense that
the intended effect is actually achieved, by means of suitable interface devices.
This means, if the software component performs an action in order, for instance,
either to print some text, or to send an e-mail message, or to switch a light on,
causal connection should guarantee that this is what actually happens.

There are software components however that take other programs as data. An
important well-known example is a compiler, which manipulates data structures
representing the source program to be translated. A compiler can be written
in the language it is intended to translate (for instance, a C compiler can be
written in C), or in a different language as well. It is important to notice that in
any case there is no mixture between the compiler and the source program. The
compiler performs a computation whose outcome is some transformed form of
the source program. The source program is just text, recorded in a suitable data
structure, that is step by step transformed into other representations. In essence,
a compiler accepts and manipulates a description of the source program.

In logic, a language that takes sentences of another language as its objects
of discourse is called a meta-language. The other language is called the object
language. A clear separation between the object language and the meta-language
is necessary: namely, it consists in the fact that sentences written in the meta-
language can refer to sentences written in the object language only by means
of some kind of description, or encoding, so that sentences written in the ob-
ject language are treated as data. As it is well-known, Kurt Gödel developed a
technique (gödelization) for coding the formulas of the theory of arithmetic by
means of numbers (gödel numbers). Thus, it became possible to write formulas
for manipulating other formulas, the latter represented by the corresponding
gödel numbers.

In this view a compiler is a meta-program, and writing a compiler is more than
just programming: it is meta-programming. The language in which the compiler
is written acts as a meta-language. The language in which the source program
is written acts as the object language. More generally, all tools for program
analysis, debugging and transformation are meta-programs. They perform a kind
of meta-programming that can be called syntactic meta-programming.

Syntactic meta-programming can be particularly useful for theorem proving.
In fact, as first stressed in [17] and [18], many lemmas and theorems are actually
meta-theorems, asserting the validity of a fact by simply looking at its syntactic
structure. In this case a software component, namely the theorem prover, con-
sists of two different parts: one, that we call the object level, where proofs are
performed by repeatedly applying the inference rules; another one, that we call
the meta-level, where meta-theorems are stated.

We may notice that a theorem prover is an “intelligent” system that per-
forms deduction, which is a form of (mechanized) “reasoning”. Then, we can
say that the theorem prover at the object level performs “object-level reason-
ing”. Meta-theorems take as arguments the description of object-level formulas
and theorems, and meta-level proofs manipulate these descriptions. Then, at
the meta-level the system performs reasoning about entities that are internal to
the system, as opposed to object-level reasoning that concerns entities denoting
elements of some external domain. This is why we say that at the meta-level the
theorem prover performs “meta-level reasoning”, or shortly meta-reasoning.

Meta-theorems are a particular kind of meta-knowledge, i.e. knowledge about
properties of the object-level knowledge.

The object and the meta-level can usefully interact: meta-theorems can be
used in order to shorten object-level proofs, thus improving the efficiency of the
theorem prover, which can derive proofs more easily. In this view, meta-theorems
may constitute auxiliary inference rules that enhance (in a pragmatic view) the
“deductive power” of the system [19] [20]. Notice that, at the meta-level, new
meta-theorems can also be proved, by applying suitable inference rules.

As pointed out in [21], most software components implicitly incorporate some
kind of meta-knowledge: there are pieces of object-level code that “do” some-
thing in accordance to what meta-knowledge states. For instance, an object-level
planner program might “know” that near(b,a) holds whenever near(a,b) holds,

while this is not the case for on(a,b). A planner with a meta-level could explic-
itly encode a meta-rule stating that whenever a relation R is symmetric, then
R(a, b) is equivalent to R(b, a) and whenever instead a relation is antisymmetric
this is never the case. So, at the meta-level, there could be statements that near
is symmetric and on is antisymmetric.

The same results could then be obtained by means of explicit meta-reasoning,
instead of implicit “knowledge” hidden in the code. The advantage is that the
meta-reasoning can be performed in the same way for any symmetric and an-
tisymmetric relation that one may have. Other properties of relations might be
encoded at the meta-level in a similar way, and such a meta-level specification
(which is independent of the specific object-level knowledge or application do-
main) might be reused in future applications.

There are several possible architectures for meta-knowledge and meta-
reasoning, and many applications. Some of them are reviewed later. For a wider
perspective however, the reader may refer to [22], [23], [24], [25], [20], [26], [27],
[28], [29], [30], [31], [32], [33] where various specific architectures, applications
and systems are discussed.

3 Reification

Meta-level rules manipulate a representation of object-level knowledge. Since
knowledge is represented in some kind of language, meta-rules actually manipu-
late a representation of syntactic expressions of the object-level language.

In analogy with natural language, such a representation is usually called a
name of the syntactic expression. The difference between a word of the language,
such as for instance ower, and a name, like \ower", is the following: the word
is used to denote an entity of the domain/situation we are talking about; the
name denotes the word, so that we can say that “flower” is composed of six
characters, is expressed in English and its translation into Italian is “fiore”.
That is, a word can be used, while a name can be inspected (for instance to
count the characters) and manipulated (for instance translated).

An expression in a formal language may have different kinds of names that
allow different kinds of meta-reasoning to be made on that expression. Names
are expressions of the meta-language.

Taking for instance an equation such as

a= b� 2

we may have a very simple name, like in natural language, i.e.

“a= b� 2”

This kind of name, called quotation mark name, is usually intended as a constant
of the meta-language.

A name may be instead a complex term, such as:

equation
(left hand side(variable(“a”)),
(right hand side

(binop(minus, firstop(variable(“b”)), secondop(constant(“2”)))))

This term describes the equation in terms of its left-hand side and right-
hand side and then describes the right-hand side as the application of a binary
operator (binop) on two operands (firstop and secondop) where the first operand
is a variable and the second one a constant. “a”, “b” and “2” are constants of
the meta-language, they are the names of the expressions a, b and 2 of the object
language.

This more complex name, called a structural description name, makes it
easier to inspect the expression (for instance to see whether it contains variables)
and to manipulate it (for instance it is possible to transform this name into the
name of another equation, by modifying some of the composing terms).

Of course, many variations are possible in how detailed names are, and what
kind of detail they express. Also, many choices can be made about what names
should be: for instance, the name of a variable can be a meta-constant, but
can also be a meta-variable. For a discussion of different possibilities, with their
advantages and disadvantages, see [34], [35], [36].

The definition of names, being a relation between object-level expressions
and meta-level expressions that play the role of names, is usually called naming
relation.

Which naming relation to choose? In general, it depends upon the kind of
meta-reasoning one wants to perform. In fact, a meta-theory can only reason
about the properties of object-level expressions made explicit by the naming re-
lation. We may provide names to any language expression, from the simplest, to
the more complex ones. In a logic meta-language, we may have names for vari-
ables, constants, function and predicate symbols, terms and atoms and even for
entire theories: the meta-level may in principle encode and reason about the de-
scription of several object-level theories. In practice, there is a trade-off between
expressivity and simplicity. In fact, names should be kept as simple as possible,
to reduce the complexity (and improve the readability) of meta-level expressions.
Starting from these considerations, [37] argues that the naming relation should
be adapted to each particular case and therefore should be definable by the user.

In [38] it is shown that two different naming relations can coexist in the
same context, for different purposes, also providing operators for transforming
one representation into the other one.

The definition of a naming relation implies the definition of two operation:
the first one, to compute the name of a given language expression. The second
one, to compute the expression a given name stands for. The operation of obtain-
ing the name of an object-level expression is called rei�cation or referentiation
or quoting. The inverse operation is called derei�cation or dereferentiation or
unquoting. These are built-in operations, whose operational semantics consists
in applying the naming relation in the two directions.

In [39] it is shown how the naming relation can be a sort of input parameter
for a meta-language. That is, a meta-language may be, if carefully designed,
to a large extent independent of the syntactic form of names, and of the class
of expressions that are named. Along this line, in [36] and [33] a full theory
of definable naming relations is developed, where a naming relation (with some
basic properties) can be defined as a set of equations, with the associated rewrite
system for applying referentiation/dereferentiation.

4 Introspection and Reflection

The idea that meta-knowledge and meta-reasoning could be useful for improving
the reasoning performed at the object level (for instance by exploiting properties
of relations, like symmetry), suggests that the object and the meta-level should
interact. In fact, the object and the meta-level can be seen as different software
components that interact by passing the control to each other.

At the object level, the operation of referentiation allows an expression to
be transformed into its name and this name can be given as input argument to
a meta-level component. This means that object-level computation gives place
to meta-level computation. This computational step is called upward reection,
or introspection, or shift up. Upward because the meta-level is considered to be
a “higher level” with respect to the object level. Reection, or introspection,
because the object level component suspends its activity, in order to initiate a
meta-level one. This is meant to be in analogy with the process by which people
become conscious (at the meta-level of mind) of mental states they are currently
in (at the object level).

The inverse action, that consists in going back to the object-level activity,
is called downward reection, or shift down. The object-level activity can be
resumed from where it had been suspended, or can be somehow restarted. Its
state (if any) can be the same as before, or can be altered, according to the
meta-level activity that has been performed. Downward reflection may imply
that some name is dereferenced and the resulting expression (“extracted” from
the name) given as input argument to the resumed or restarted object-level
activity.

In logical languages, upward and downward reflection can be specified by
means of special inference rules (reflection rules) or axioms (reflection axioms),
that may also state what kind of knowledge is exchanged.

In functional and procedural languages, part of the run-time state of the
object-level ongoing computation can be reified and passed to a meta-level func-
tion/procedure that can inspect and modify this state. When this function ter-
minates, object-level computation resumes on a possibly modified state.

A reection act, that shifts the level of the activity between the object and
the meta-level, may be: explicit, in the sense that it is either invoked by the user
(in interactive systems) or determined by some kind of specification explicitly
present in the text of the theory/program; implicit, in the sense that it is auto-

matically performed upon occurrence of certain predefined conditions. Explicit
and implicit reflection may co-exist.

Both forms of reflection rely on the requirement of causal connection or,
equivalently, of introspective �delity: that is, the recommendations of the meta-
level must be always followed at the object level. For instance, in the procedural
case, the modifications to the state performed at the meta-level are effective and
have a corresponding impact on the object-level computation. The usefulness of
reflection consists exactly in the fact that the overall system (object + meta-
levels) not only reasons about itself, but is also properly affected by the results
of that reasoning.

In summary, a meta-level architecture for building software components has
to provide the possibility of defining a meta-level that by means of a naming
relation can manipulate the representation of object-level expressions. Notice
that the levels may be several: beyond the meta-level there may be a meta-meta-
level that uses a naming relation representing meta-level expressions. Similarly,
we can have a meta-meta-meta-level, and so on. Also, we may have one object
level and several independent meta-levels with which the object level may be
from time to time associated, for performing different kinds of meta-reasoning.

The architecture may provide a reflection mechanism that allows the different
levels to interact. If the reflection mechanism is not provided, then the compu-
tation is performed at the meta-level, that simulates the object-level formulas
through the naming relation and simulates the object-level inference rules by
means of meta-level axioms. As discussed later, this is the case in many of the
main approaches to meta-reasoning.

The languages in which the object level and the meta-level(s) are expressed
may be different, or they may coincide. For instance, we may have a meta-level
based on a first-order logic language, were meta-reasoning is performed about
an object level based on a functional or imperative language. Sometimes the
languages coincide: the object language and the meta-language may be in fact
the same one. In this case, this language is expressive enough as to explicitly
represent (some of) its own syntactic expressions, i.e. the language is capable of
self-reference. An interesting deep discussion about languages with self-reference
can be found in [40] and [41]. The role of introspection in reasoning is discussed
in [42] and [43]. An interesting contribution about reflection and its applications
is [44].

5 Seminal Approaches

5.1 FOL

FOL [19], standing for First Order Logic, has been (to the best of our knowledge)
the first reflective system appeared in the literature. It is a proof checker based
on natural deduction, where knowledge and meta-knowledge are expressed in
different contexts. The user can access these contexts both for expressing and
for inferring new facts.

The FOL system consists of a set of theories, called contexts, based on a
first-order language with sorts and conditional expressions.

A special context named META describes the proof theory and some of
the model theory of FOL contexts. Given a specific context C that we take
as the object theory, the naming relation is defined by attachments, which are
user-defined explicit definitions relating symbols and terms in META with their
interpretation in C.

The connection between C and META is provided by a special linking rule
that is applicable in both directions:

Theorem(“W”)
W

where W is any formula in the object theory C, “W” is its name, and
Theorem(“W”) is a fact in the meta-theory. By means of a special primitive,
called REFLECT, the linking rule can be explicitly applied by the user. Its ef-
fect is either that of reecting up a formula W to the meta-theory, to derive
meta-theorems involving “W”, or vice versa that of reecting down a meta-
theorem “W”, so that W becomes a theorem of the theory. Meta-theorems can
therefore be used as subsidiary deduction rules.

Interesting applications of the FOL system to mathematical problems can be
found in [17], [45].

5.2 Amalgamating Language and Meta-language in Logic
Programming

A seminal approach to reflection in the context of the Horn clause language is
MetaProlog, proposed by Bowen and Kowalski [46]. The proposal is based on
representing Horn clause syntax and provability in the logic itself, by means of
a meta-interpreter, i.e. an interpreter of the Horn clause language written in the
Horn clause language itself. Therefore, also in this case the object language and
the meta-language coincide.

The concept (and the first implementation) of a meta-interpreter was intro-
duced by John McCarthy for the LISP programming language [47]. McCarthy
in particular defined a universal function, written in LISP, which represents the
basic features of a LISP interpreter. In particular, the universal function is able
to: (i) accept as input the definition of a LISP function, together with the list of
its arguments; (ii) evaluate the given function on the given arguments. Bowen
and Kowalski, with MetaProlog, have developed this powerful and important
idea in the field of logic programming, where the inference process is based on
building proofs from a given theory, rather than on evaluating functions.

The Bowen and Kowalski meta-interpreter is specified via a predicate demo,
that is defined by a set of meta-axioms Pr, where the relevant aspects of Horn-
clause provability are made explicit. The Demo predicate takes as first argument
the representation (name) of an object-level theory T and the representation
(name) of a goal A. Demo(\T",\A") means that the goal A is provable in the
theory T .

With the above formulation, we might have an approach where inference
is performed at the meta-level (via invocation of Demo) and the object level
is simulated, by providing Demo with a suitable description “T” of an object
theory T .

The strength and originality of MetaProlog rely instead in the amalgamation
between the object level and the meta-level. It consists in the introduction of
the following linking rules for upward and downward reflection:

T `LA
Pr `M Demo(“T”, “A”)

Pr `M Demo(“T”, “A”)
T `LA

where `M means provability at the meta-level M and `L means provability
at the object level L.

The application of the linking rules coincides, in practice, with the invocation
of Demo, i.e., reflection is explicit. Amalgamation allows mixed sentences: there
can be object-level sentences where the invocation of Demo determines a shift
up to the meta-level, and meta-level sentences where the invocation of Demo
determines a shift down to the object level. Since moreover the theory in which
deduction is performed is an input argument of Demo, several object-level and
meta-level theories can co-exist and can be used in the same inference process.

Although the extension is conservative, i.e. all theorems provable in L+M are
provable either in L or in M alone, the gain of expressivity, in practical terms, is
great. Many traditional problems in knowledge representation find here a natural
formulation.

The extension can be made non-conservative, whenever additional rules are
added to Demo, to represent auxiliary inference rules and deduction strategies.
Additional arguments can be added to Demo for integrating forms of control
in the basic definition of provability. For instance it is possible to control the
amount of resources consumed by the proof process, or to make the structure of
the proof explicit.

The semantics of the Demo predicate is, however, not easy to define (see
e.g. [35], [48], [49], [50]), and holds only if the meta-theory and the linking rules
provide an extension to the basic Horn clause language which is conservative,
i.e., only if Demo is a faithful representation of Horn clause provability. Although
the amalgamated language is far more expressive than the object language alone,
enhanced meta-interpreters are (semantically) ruled out, since in that case the
extension is non-conservative.

In practice, the success of the approach has been great: enhanced meta-
interpreters are used everywhere in logic programming and artificial intelligence
(see for instance [51], or any other logic programming textbook). This seminal
work has initiated the whole field of meta-programming in logic programming
and computational logic. Problems and promises of this field are discussed by
Kowalski himself in [52], [53]. The approach of meta-interpreters and other rel-
evant applications of meta-programming are discussed in the next section.

5.3 3-LISP

3–Lisp [54] is another important example of a reflective architecture where the
object language and meta-language coincide. 3–Lisp is a meta-interpreter for
Lisp (and therefore it is an elaboration of McCarthy’s original proposal) where
(the interesting aspects of) the state of the program that is being interpreted
are not stored, but are passed by as an argument of all the functions that are
internal to the meta-interpreter. Then, each of these procedures takes the state
as argument, makes some modification and passes the modified state to another
internal procedure. These procedures call each other tail-recursively (i.e. the
next procedure call is the last action they make) so as the state remains always
explicit. Such a meta-interpreter is called a meta-circular interpreter. If one
assumes that the meta-circular interpreter is itself executed by another meta-
circular interpreter and so on, one can imagine a potentially infinite tower of
interpreters, the lowest one executing the object level program (see the summary
and formalization of this approach presented in [55]).

Here, the meta-level is accessible from the object level at run-time through a
reflection act represented by a special kind of function invocation. Whenever the
object-level program invokes any function f in this special way, f receives as an
additional parameter a representation of the state of the program itself. Then,
f can inspect and/or modify the state, before returning control to object-level
execution. A reflective act implies therefore the reification of the state and the
execution of f as if it were a procedure internal to the interpreter. Since f might
in turn contain a reflection act, the meta-circular interpreter is able to reify its
own state and start a brand-new copy of itself. In this approach one might in
principle perform, via reflection, an in�nite regress on the reflective tower of
interpreters.

A program is thus able to interrupt its computation, to change something
in its own state, and to continue with a modified interpretation process. This
kind of mechanism is called computational reection. The semantics of compu-
tational reflection is procedural, however, rather than declarative. A reflective
architecture conceptually similar to 3-Lisp has been proposed for the Horn clause
language and has been fully implemented [56].

Although very procedural in nature, and not easy to understand in practice,
computational reflection has been having a great success in the last few years,
especially in the context of imperative and object-oriented programming [11],
[12]. Some authors even propose computational reflection as the basis of a new
programming paradigm [57].

Since computational reflection can be perceived as the only way of performing
meta-reasoning in non-logical paradigms, this success enlights once more how
important meta-reasoning is, especially for complex applications.

5.4 Other Important Approaches

The amalgamated approach has been experimented by Attardi and Simi in
Omega [58]. Omega is an object-oriented formalism for knowledge representation

which can deal with meta-theoretical notions by providing objects that describe
Omega objects themselves and derivability in Omega.

A non-amalgamated approach in logic programming is that of the Gödel
language, where object theory and meta-theory are distinct. Gödel provides
a (conservative) provability predicate, and an explicit form of reflection. The
language has been developed and experimented in the context of the Compu-
log European project. It is described in the book [59]. In [60] a contribution
to meta-programming in Gödel is proposed, on two aspects: on the one hand,
a programming style for efficient meta-programming is outlined; on the other
hand, modifications to the implementation are proposed, in order to improve
the performance of meta-programs.

A project that extends and builds on both FOL and 3–Lisp is GETFOL
[61],[62]. It is developed on top of a novel implementation of FOL (therefore the
approach is not amalgamated: the object theory and meta-theory are distinct).
GETFOL is able to introspect its own code (lifting), to reason deductively about
it in a declarative meta-theory and, as a result, to produce new executable code
that can be pushed back to the underlying interpretation (flattening).

The architecture is based on a sharp distinction between deduction (FOL
style) and computation (3–Lisp style). Reflection in GETFOL gives access to a
meta-theory where many features of the system are made explicit, even the code
that implements the system itself.

The main objective of GETFOL is that of implementing theorem-provers,
given its ability of implementing flexible control strategies to be adapted (via
computational reflection) to the particular situation. Similarly to FOL, the kind
of reasoning performed in GETFOL consists in: (i) performing some reasoning
at the meta-level; (ii) using the results of this reasoning to assert facts at the
object level.

An interesting extension is that of applying this concept to a system with
multiple theories and multiple languages (each theory formulated in its own lan-
guage) [63], where the two steps are reinterpreted as (i) doing some reasoning
in one theory and (ii) jumping into another theory to do some more reasoning
on the basis of what has been derived in the previous theory. These two deduc-
tions are concatenated by the application of bridge rules, which are inference
rules where the premises belong to the language of the former theory, and the
conclusion belongs to the language of the latter.

A different concept of reflection is embodied in Reflective Prolog [39] [64]
[65], a self-referential Horn clause language with logical reflection. The objective
of this approach is that of developing a more expressive and powerful language,
while preserving the essential features of logic programming: Horn clause syntax,
model-theoretic semantics, resolution via unification as procedural semantics,
correctness and completeness properties.

In Reflective Prolog, Horn clauses are extended with self-reference and reso-
lution is extended with logical reflection, in order to achieve greater expressive
and inference power. The reflection mechanism is implicit, i.e., the interpreter of
the language automatically reflects upwards and downwards by applying suit-

able linking rules called reection principles. This allows reasoning and meta-
reasoning to interleave without user’s intervention, so as to exploit both knowl-
edge and meta-knowledge in proofs: in most of the other approaches instead,
there is one level which is “first–class”, where deduction is actually performed,
and the other level which plays a secondary role.

Reflection principles are embedded in both the procedural and the declarative
semantics of the language, that is, in the extended resolution procedure which
is used by the interpreter and in the construction of the models which give
meanings to programs.

Procedurally, this implies that there is no need to axiomatize provability in
the meta-theory. Object level reasoning is not simulated by meta-interpreters,
but directly executed by the language interpreter, thus avoiding unnecessary
inefficiency. Semantically, a theory composed of an object level and (one or more)
meta-levels is regarded as an enhanced theory, enriched by new axioms which
are entailed by the given theory and by the reflection principles interpreted as
axiom schemata. Therefore, in Reflective Prolog, language and metalanguage are
amalgamated in a non-conservative extension.

Reflection in Reflective Prolog gives access to a meta-theory where various
kinds of meta-knowledge can be expressed, either about the application do-
main or about the behavior of the system. Deduction in Reflective Prolog means
using at each step either meta-level or object level knowledge, in a continuous
interleaving between levels. Meta-reasoning in Reflective Prolog implies a declar-
ative definition of meta-knowledge, which is automatically integrated into the
inference process. The relation between meta-reasoning in Reflective Prolog and
modal logic has been discussed in [66].

An interpreter of Reflective Prolog has been fully implemented [67]. It is
interesting to notice that Reflective Prolog has been implemented by means
of computational reflection. This is another demonstration that computational
reflection can be a good (although low-level) implementation tool.

An approach that has been successful in the context of object-oriented lan-
guages, including the most recent ones like Java, is the meta-object protocol. A
meta-object protocol [68] [69] gives every object a corresponding meta-object
that is an instance of a meta-class. Then, the behavior of an object becomes the
behavior of the object/meta-object pair. At the meta-level, important aspects
such as the operational semantics of inheritance, instantiation and method in-
vocation can be defined. A meta-object protocol constitutes a flexible mean of
modifying and extending an object-oriented language.

This approach has been applied to logic programming, in the ObjVProlog
language [70] [71]. In addition to the above-mentioned meta-class capabilities,
this language preserves the Prolog capabilities of manipulating clauses in the
language itself, and provides a provability predicate.

As an example of more recent application of this approach, a review of Java
reflective implementations can be found in [72].

A limitation is that only aspects directly related to objects can be described
in a meta-object. Properties of sets of objects, or of the overall system, cannot

be directly expressed. Nevertheless, some authors [72] argue that non-functional
requirements such as security, fault-tolerance, atomicity, can be implemented by
implicit reflection to the meta-object before and after the invocation of every
object method.

6 Applications of Meta-Reasoning

Meta-reasoning has been widely used for a variety of purposes, and recently the
interest in new potential applications of meta-reasoning and reflection has been
very significant. In this section, we provide our (necessarily partial and limited)
view of some of the more relevant applications in the field.

6.1 Meta-interpreters

After the seminal work of Bowen and Kowalski [46], the most common applica-
tion of meta-logic in computational logic is to define and to implement meta-
interpreters. This technique has been especially used in Prolog (which is probably
the most popular logic programming language) for a variety of purposes.

The basic version of a meta-interpreter for propositional Horn clause pro-
grams, reported in [53], is the following.

demo(T, P) demo(T, P Q), demo(T,Q).
demo(T, P ^Q) demo(T, P), demo(T,Q).

In the above definition, ’^’ names conjunction and ’ ’ names ’ ’ itself.
A theory can be named by a list containing the names of its sentences. In the
propositional case, formulas and their names may coincide without the problems
of ambiguity (discussed below), that arise in presence of variables. If a theory
is represented by a list, then the meta-interpreter must be augmented by the
additional meta-axiom:

demo(T, P) member(T, P).

For instance, query ?q to program

q p, s.
p.
s.

can be simulated by query ?demo([q p ^ s, p, s], q) to the above meta-
interpreter. Alternatively, it is possible to use a constant symbol to name a
theory. In this case, the theory, say t1, can be defined by the following meta-
level axioms:

demo(t1, q p ^ s).
demo(t1, p).
demo(t1, s).

and the query becomes ?demo(t1, q).

The meta-axioms defining demo can be themselves regarded as a theory that
can be named, by either a list or a constant (say d). Thus, it is possible to write
queries like ?demo(d, demo(t1, q)) which means to ask whether we can derive,
by the meta-interpreter d, that the goal q can be proved in theory t1.

In many Prolog applications however, the theory argument is omitted, as in
the so-called “Vanilla” meta-interpreter [35]. The standard declarative formula-
tion of the Vanilla meta-interpreter in Prolog is the following (where ’:�’ is the
Prolog counterpart of ’ ’ and ’&’ indicates conjunction):

demo(empty).
demo(X) :�clause(X,Y), demo(Y).
demo(X&Y) :�demo(X), demo(Y).

For the above object-level program, we should add to the meta-interpreter the
unit clauses:

clause(q, p&s).
clause(p, empty).
clause(s, empty)..

and the query would be :� demo(q).
The vanilla meta-interpreter can be used for propositional programs, as well

as for programs containing variables. In the latter case however, there is an
important ambiguity concerning variables. In fact, variables in the object-level
program are meant to range (as usual) over the domain of the program. These
variables are instantiated to object-level terms. Instead, the variables occurring
in the definition of the meta-interpreter, are intended to range over object-level
atoms. Then, in a correct approach these are meta-variables (for an accurate
discussion of this problem see [34]).

In [35], a typed version of the Vanilla meta-interpreter is advocated and its
correctness proved. In [46] and [65], suitable naming mechanisms are proposed
to overcome the problem.

Since however it is the untyped version that is generally used in Prolog prac-
tice, some researchers have tried to specify a formal account of the Vanilla meta-
interpreter as it is. In particular, a first-order logic with ambivalent syntax has
been proposed to this purpose [73], [74] and correctness results have been ob-
tained [75].

The Vanilla meta-interpreter can be enhanced in various ways, often by mak-
ing use of built-in Prolog meta-predicates that allow Prolog to act as a meta-
language of itself. These predicates in fact are aimed at inspecting, building and
modifying goals and at inspecting the instantiation status of variables.

First, more aspects of the proof process can be made explicit. In the above
formalization, unification is implicitly demanded to the underlying Prolog inter-
preter and so is the order of execution of subgoals in conjunctions. Below is a
formulation where these two aspects become explicit. Unification is performed
by a unify procedure and reorder rearranges subgoals of the given conjunction.

demo(empty).
demo(X) :�clause(H,Y), unify(H,X, Y, Y 1), demo(Y 1).
demo(X&Y) :�reorder(X&Y,X1&Y 1), demo(X1), demo(Y 1).

Second, extra arguments can be added to demo, to represent for instance: the
maximum number of steps that demo is allowed to perform; the actual number of
steps that demo has performed; the proof tree; an explanation to be returned to
a user and so on. Clearly, the definition of the meta-interpreter will be suitably
modified according to the use of the extra arguments.

Third, extra rules can enhance the behavior of the meta-interpreter, by spec-
ifying auxiliary deduction rules. For instance, the rule

demo(X) :�ask(X, yes).

states that we consider X to be true, if the user answers “yes” when explicitly
asked about X. In this way, the meta-interpreter exhibits an interactive behavior.
The auxiliary deduction rules may be several and may interact.

In Reflective Prolog, [65] one specifies the additional rules only, while the
definition of standard provability remains implicit. In the last example for in-
stance, on failure of goal X, a goal demo(X) would be automatically generated
(this is an example of implicit upward reflection), thus employing the additional
rule to query the user about X.

An interesting approach to meta-interpreters is that of [76], [77], where a
binary predicate demo may answer queries with uninstantiated variables, which
represent arbitrary fragments of the program currently being executed.

The reader may refer to [51] for an illustration of the meta-interpreter pro-
gramming techniques and of their applications, including the specification of
Expert Systems in Prolog.

6.2 Theory Composition and Theory Systems

Theory construction and combination is an important tool of software engi-
neering, since it promotes modularity, software reuse and programming-in-the-
large. In [53] it is observed that theory-construction can be regarded as a meta-
linguistic operation. Within the Compulog European projects, two meta-logic
approaches to working with theories have been proposed.

In the Algebra of Logic Programs, proposed in [78] and [79], a program ex-
pression defines a combination of object programs (that can be seen as theories,
or modules) through a set of composition operators. The provability of a query
with respect to a composition of programs can be defined by meta-axioms spec-
ifying the intended meaning of the various composition operations.

Four basic operations for composing logic programs are introduced: encap-
sulation (denoted by �), union ([), intersection (\) and import (�).

Encapsulation copes with the requirement that a module can import from
another one only its functionality, without caring of the implementation. This
kind of behavior can be realized by encapsulation and union: if P is the “main
program” and S is a module, the combined program is:

P [S�

Intersection yields a combined theory where both the original theories are
forced to agree during deduction, on every single partial conclusion.

The operation � builds a module P �Q out of two modules P and Q, where
P is the visible part and Q the hidden part of the resulting module.

The usefulness of these operators for knowledge representation and reasoning
is shown in [78]. The meta-logical definition of the operations is given in [79],
by extending the Vanilla meta-interpreter. Two alternative implementations us-
ing the Gödel programming language are proposed and discussed in [80]. One
extends the untyped Vanilla meta-interpreter. The other one exploits the meta-
programming facilities offered by the language, thus using names and typed
variables. The second, cleaner version seems to the authors themselves more
suitable than the first one, for implementing program composition operations
requiring a fine-grained manipulation of the object programs.

In the Alloy language, proposed in [81] and [82], a theory system is a collection
of interdependent theories, some of which stand in a meta/object relationship,
forming an arbitrary number of meta-levels. Theory systems are proposed for
a meta-programming based software engineering methodology aimed at specify-
ing, for instance, reasoning agents, programs to be manipulated, programs that
manipulate them, etc. The meta/object relationship between theories provides
the inspection and control facilities needed in these applications.

The basic language of theory systems is a definite clause language, augmented
with ground names for every well-formed expression of the language. Each theory
is named by a ground theory term. A theory system can be defined out of a
collection of theories by using the following tools.

1. The symbol ’`’ for relating theory terms and sentences. A theoremhood state-
ment, like for instance t1 ` du1 ` Ψe where t1 and u1 are theory terms, says
that du1 ` Ψe is a theorem of theory t1.

2. The distinguishes function symbol ’�’, where t1 � t2 means that t1 is a meta-
theory of t2.

3. The coincidence statement t1 � t2, expressing that t1 and t2 have exactly
the same theorems.

The behavior of the above operators is defined by reflection principles (in
the form of meta-axioms) that are suitably integrated in the declarative and
proof-theoretic semantics.

6.3 The Event Calculus

Representing and reasoning about actions and temporally-scoped relations has
been for years one of the key research topics in knowledge representation [83].
The Event Calculus (EC) has been proposed by Kowalski and Sergot [84] as a
system for reasoning about time and actions in the framework of Logic Program-
ming. In particular, the Event Calculus adapts the ontology of McCarthy and
Hayes’s Situation Calculus [85] i.e., actions and fluents 1, to a new task: assim-
ilating a narrative, which is the description of a course of events. The essential
1 It is interesting to notice that the fluent/fluxion terminology dates back to Newton

idea is to have terms, called uents, which are names of time-dependent rela-
tions. Kowalski and Sergot however write holds(r(x, y), t) which is understood
as “fluent r(x, y) is true at time t”, instead of r(x, y, t) like in situation calculus.

It is worthwhile to discuss the connection between Kowalski’s work on meta-
programming and the definition of the Event Calculus. In the logic program-
ming framework it comes natural to recognize the higher-order nature of time-
dependent propositions and to try to represent them at the meta-level. Kowalski
in fact [86] considers McCarthy’s Situation Calculus and comments:

Thus we write

Holds(possess(Bob, Book1), S0)

instead of the weaker but also adequate

Possess(Bob, Book1, S0).

In the first formulation, possess(Bob, Book1) is a term which names
a relationship. In the second, Possess(Bob, Book1, S0) is an atomic
formula. Both representations are expressed within the formalism of first-
order classical logic. However, the first allows variables to range over
relationships whereas the second does not. If we identify relationships
with atomic variable-free sentences, then we can regard a term such as
possess(Bob, Book1) as the name of a sentence. In this case Holds is a
meta-level predicate [. . .]

There is a clear advantage with reification from the computational point of
view: by reifying, we need to write only one frame axiom, or inertia law, saying
that truth of any relation does not change in time unless otherwise specified.
Negation-as-failure is a natural choice for implementing the default inertia law.
In a simplified, time points-oriented version, default inertia can be formulated
as follows:

Holds(f, t) Happens(e),
initiates(e, f),
Date(e, ts),
ts < t,
not Clipped(ts, f, t)

where Clipped(ts, f, t) is true when there is record of an event happening between
ts and t that terminates the validity of f . In other words, Holds(f, t) is derivable
whenever in the interval between the initiation of the fluent and the time the
query is about, no terminating events has happened.

It is easy to see Holds as a specialization of Demo. Kowalski and Sadri [87]
[88], discuss in depth how an Event Calculus program can be specified and
assumptions on the nature of the domain accommodated, by manipulating the
usual Vanilla meta-interpreter definition.

Since the first proposal, a number of improved formalization have steamed,
in order to adapt the calculus to different tasks, such as abductive planning,
diagnosis, temporal database and models of legislation. All extensions and ap-
plications cannot be accounted for here, but the reader may for instance refer to
[89], [90], and [91].

6.4 Logical Frameworks

A logical framework [92] is a formal system that provides tools for experiment-
ing with deductive systems. Within a logical framework, a user can invent a
new deductive system by defining its syntax, inference rules and proof-theoretic
semantics. This specification is executable, so as the user can make experiments
with this new system. A logical framework however cannot reasonably provide
tools for defining any possible deductive system, but will stay within a certain
class.

Formalisms with powerful meta-level features and strong semantic founda-
tions have the possibility of evolving towards becoming logical frameworks.

The Maude system for instance [93] is a particular implementation of the
meta-theory of rewriting logic. It provides the predefined functional module
META-LEVEL, where Maude terms can be reified and where: the process of
reducing a term to a normal form is represented by a function meta-reduce; the
default interpreter is represented by a function meta-rewrite; the application of
a rule to a term by meta-apply.

Recently, a reflective version of Maude has been proposed [94], based on the
formalization of computational reflection proposed in [95]. The META-LEVEL
module has been made more flexible, so as to allow a user to define the syntax
of her own logic language L by means of meta-rules. The new language must
however consist in an addition/variation to the basic syntax of the Maude lan-
guage. Reflection is the tool for integrating the user-defined syntax into the proof
procedure of Maude. In particular, whenever a piece of user-defined syntax is
found, a reflection act to the META-LEVEL module happens, so as to apply
the corresponding syntactic meta-rules. Then, the rewriting system Maude has
evolved into a logical framework for logic languages based on rewriting.

The RCL (Reflective Computational Logic) logical framework [33] is an evo-
lution of the Reflective Prolog metalogic language. The implicit reflection of
Reflective Prolog has a semantic counterpart [39] in adding to the given the-
ory a set of new axioms called reection axioms, according to axiom schemata
called reection principles. Reflection principles can specify not only the shift
between levels, but also many other meta-reasoning principles. For instance, re-
flection principles can define forms of analogical reasoning [96], and synchronous
communication among logical agents [97].

RCL has originated from the idea that, more generally, reflection principles
may be used to express the inference rules of user-defined deductive systems. The
deductive systems that can be specified in RCL are however evolutions of the
Horn clause language, based on a predefined enhanced syntax. A basic version

of naming is provided in the enhanced Horn clause language, formalized through
an equational theory.

The specification of a new deductive system DS in RCL is accomplished
through the following four steps.

Step I Definition of the naming device (encoding) for DS. The user definition
must extend the predefined one. RCL leaves significant freedom in the rep-
resentation of names.

Step II After defining the naming convention, the user of RCL has to provide
a corresponding unification algorithm (again by suitable additions to the
predefined one).

Step III Representation of the axioms of DS, in the form of enhanced Horn
clauses.

Step IV Definition of the inference rules of DS as reflection principles.

In particular, the user is required to express each inference rule R as a func-
tion R, from clauses, which constitute the antecedent of the rule, to sets of
clauses, which constitute the consequent.

Then, given a theory T of DS consisting of a set of axioms A and a reflection
principle R, a theory T 0 containing T is obtained as the deductive closure of
A [A0, where A0 is the set of additional axioms generated by R. Consequently,
the model-theoretic and fixed point semantics of T under R are obtained as
the model-theoretic and fixed point semantics of T 0. RCL does not actually
generate T 0. Rather, given a query for T , RCL dynamically generates the specific
additional axioms usable to answer the query according to the reflection principle
R, i.e., according to the inference rule R of DS.

6.5 Logical Agents

In the area of intelligent software agents there are several issues that require the
integration of some kind of meta-reasoning ability into the system. In fact, most
existing formalisms, systems and frameworks for defining agents incorporate, in
different forms, a meta-component.

An important challenge in this area is that of interconnecting several agents
that are heterogeneous in the sense that they are not necessarily uniform in the
implementation, in the knowledge they possess and in the behavior they exhibit.
Any framework for developing multi-agent systems must provide a great deal of
flexibility for integrating heterogeneous agents and assembling communities of
independent service providers. Flexibility is required in structuring cooperative
interactions among agents, and for creating more accessible and intuitive user
interfaces.

Meta-reasoning is essential for obtaining such a degree of flexibility. Meta-
reasoning can either be performed within the single agent, or special meta-agents
can be designed, to act as meta-theories for sets of other agents. Meta-reasoning
can help: (i) in the interaction among agents and with the user; (ii) in the
implementation suitable strategies and plans for responding to requests. These

strategies can be either domain-independent, or rely on domain- and application-
specific knowledge or reasoning (auxiliary inference rules, learning algorithms,
planning, and so forth)

Meta-rules and meta-programming may be particularly useful for coping with
some aspects of the ontology problem: meta-rules can switch between descrip-
tions that are syntactically different though semantically equivalent, and can help
fill the gap between descriptions that are not equivalent. Also, meta-reasoning
can be used for managing incomplete descriptions or requests.

The following are relevant examples of approaches to developing agent sys-
tems that make use of some form of meta-reasoning.

In the Open Agent ArchitectureTM [98], which is meant for integrating a
community of heterogeneous software agents, there are specialized server agents,
called facilitators, that perform reasoning (and, more or less explicitly, meta-
reasoning) about the agent interactions necessary for handling a complex expres-
sion. There are also meta{agents, that perform more complex meta-reasoning so
as to assist the facilitator agent in coordinating the activities of the other agents.

In the constraint logic programming language CaseLP, there are logical
agents, which show capabilities of complex reasoning, and interface agents, which
provide an interface with external modules. There are no meta-agents, but an
agent has meta{goals that trigger meta-reasoning to guide the planning process.

There are applications where agents may have objectives and may need to
reason about their own as well as other agents’ beliefs and about the actions
that agents may take. This is the perspective of the BDI formalization of multi-
agent systems proposed in [99] and [100], where BDI stands for “Belief, Desire,
Intentions”.

The approach of Meta-Agents [101] allow agents to reason about other agents’
state, beliefs, and potential actions by introducing powerful meta-reasoning ca-
pabilities. Meta-Agents are a specification tool, since for efficient implementation
they are translated into ordinary agent programs, plus some integrity constraints.

In logic programming, research on multi-agent systems starts, to the best of
our knowledge, from the work by Kim and Kowalski in [102], [103]. The amal-
gamation of language and meta-language and the demo predicate with theories
named by constants are used for formalizing reasoning capabilities in multi-agent
domains. In this approach, the demo predicate is interpreted as a belief predicate
and thus agents can reason, like in the BDI approach, about beliefs.

In the effort of obtaining logical agents that are rational, but also reactive (i.e.
logical reasoning agents capable of timely response to external events) a more
general approach has been proposed in [82], by Kowalski, and in [104] and [105]
by Kowalski and Sadri. A meta-logic program defines the “observe-think-act”
cycle of an agent. Integrity constraints are used to generate actions in response
to updates from the environment.

In the approach of [97], agents communicate via the two meta-level primitives
tell/told. An agent is represented by a theory, i.e. by a set of clauses prefixed with
the corresponding theory name. Communication between agents is formalized by
the following reflection principle Rcom:

T : told(\S", \A")(RcomS : tell(\T", \A").

The intuitive meaning is that every time an atom of the form tell(\T",\A") can
be derived from a theory S (which means that agent S wants to communicate
proposition A to agent T), the atom told(\S",\A") is consequently derived in
theory T (which means that proposition A becomes available to agent T).

The objective of this formalization is that each agent can specify, by means
of clauses defining the predicate tell, the modalities of interaction with the other
agents. These modalities can thus vary with respect to different agents or dif-
ferent conditions. For instance, let P be a program composed of three agents, a
and b and c, defined as follows.

a : tell(X, \ciao"):- friend(X).
a : friend(\b").

b : happy :-told(\a", \ciao").

c : happy :-told(\a", \ciao").

Agent a says “ciao” to every other agent X that considers to be its friend.
In the above definition, the only friend is b. Agents b and c are happy if a says
“ciao” to them. The conclusion happy can be derived in agent b, while it cannot
be derived in agent c. In fact, we get a : tell(\b",\ciao") from a : friend(\b");
instead, a : tell(\c",\ciao") is not a conclusion of agent a.

In [106], Dell’Acqua, Sadri and Toni propose an approach to logic-based
agents as a combination of the above approaches, i.e. the approach to agents
by Kowalski and Sadri [105] and the approach to meta-reasoning by Costantini
et al. [65], [97]. Similarly to Kowalski and Sadri’s agents, the agents in [106]
are hybrid in that they exhibit both rational (or deliberative) and reactive be-
havior. The reasoning core of these agents is a proof procedure that combines
forward and backward reasoning. Backward reasoning is used primarily for de-
liberative activities. Forward reasoning is used primarily for reactivity to the
environment, possibly including other agents. The proof procedure is executed
within an “observe-think-act” cycle that allows the agent to be alert to the envi-
ronment and react to it, as well as think and devise plans. The proof procedure
(IFF proof procedure proposed by Fung and Kowalski in [107]) treats both inputs
from the environment and agents’ actions as abducibles (hypotheses). Moreover,
by adapting the techniques proposed in [97], the agents are capable of reasoning
about their own beliefs and the beliefs of other agents.

In [108], the same authors extend the approach by providing agents with
proactive communication capabilities. Proactive agents are able to communicate
on their own initiative, not only in response to stimula. In the resulting frame-
work reactive, rational or hybrid agents can reason about their own beliefs as
well as the beliefs of other agents and can communicate proactively with each
other. The agents’ behavior can be regulated by condition-action rules. In this
approach, there are two primitives for communication, tell and ask, treated as

abducibles within the “observe-think-act” cycle of the agent architecture. The
predicate told is used to express both passive reception of messages from other
agents and reception of information in response to an active request.

The following example is taken by [108] and is aimed at illustrating the basic
features of the approach. Let Ag be represented by the abductive logic program
hP,A, Ii with:

P =

told(A,X) ask(A,X) ^ tell(A,X)
told(A,X) tell(A,X)
solve(X) told(A,X)
desire(y) y = car
good price(p, x) p = 0

A =
{

tell, ask, offer
}

I =
{

desire(x) ^ told(B,0good price(0p,0x))
) tell(B,0offer(0p,0x))

}

.

The first two clauses in P state that Ag may be told something, say X,
by another agent A either because A has been explicitly asked about X (first
clause) or because A tells X proactively (second clause). The third clause in P
says that Ag believes anything it is told. The fourth and fifth clauses in P say,
respectively, that the agent desires a car and that anything that is free is at a
good price. The integrity constraint says that, if the agent desires something and
it is told (by some other agent B) of a good price for it, then it makes an offer
to B, by telling it.

The logic programming language DALI [109], is indebted to all previously
mentioned approaches to logical agents. DALI introduces explicit reactive and
proactive rules at the object level. Thus, reactivity and proactivity are modeled
in the basic logic language of the agent In fact, declarative semantics is very
close to that of the standard Horn clause language. Procedural semantics relies
on an extended resolution. The language incorporates tell/told primitives, in-
tegrity constraints and solve rules. An “observe-think-act” cycle can of course
been implemented in a DALI agent, but it is no longer necessary for modeling
reactivity and proactivity.

Below is a simplified fragment of a DALI agent representing the waiter of a
pub, that tries to serve a customer that enters. The customer wants some X.
This request is an external event (indicated with ’E’) that arrives to the agent.
The event triggers a reactive rule (indicated with ’:>’ instead of usual ’:-’), and
determines the body of the rule to be executed. This is very much like any other
goal: only, computation is not initiated by a query, but starts on reception of
the event.

During the execution of the body of the reactive rule, the waiter first checks
whether X is one of the available drinks. If so, the waiter serves the drink: the
predicate serve drink is in fact an action (indicated with ’A’). Otherwise, the
waiter checks whether the request is expressed in some foreign language, for
which a translation is available (this is a simple example of coping with one

aspect of the ontology problem). If this is not the case, the waiter asks the
customer for explanation about X: it expects to be told that X is actually an
Y , in order to try to serve this Y .

Notice that the predicate translate is symmetric, where symmetry is man-
aged by the solve rule. To understand the behavior, one can assume this rule
to be an additional rule of a basic meta-interpreter that is not explicitly re-
ported. A subgoal like translate(beer, V) is automatically transformed into a
call to the meta-interpreter, of the form solve(“translate”(“beer”, “V ”)) (for-
mally, this is implicit upward reflection). Then, since symmetric(“translate”)
succeeds, solve(“translate”(“beer”, “V ”)) is attempted, and automatically re-
flected at the object level (formally, this is implicit downward reflection). Finally,
the unquoted subgoal translate(beer, V) succeeds with V instantiated to birra.

Waiter

request(Customer,\X")E :> serve(Customer,X).

serve(C,X) :- drink(X), serve drink(C,X)A.
serve(C,X) :- translate(X,Y),

drink(Y),
serve drink(C,Y)A.

serve(C,X) :- ask(C,X, Y), serve(C, Y).

ask(C,X,Y) :- ask for explanation(C,\X"),told(C,\Y").

drink(beer).
drink(coke).

translate(birra,beer).
translate(cocacola,coke).
symmetric(\translate").

solve(\P"(\X",\Y")) :- symmetric(“P”), solve(“P”(“Y ”, “X”)).

Agents that interact with other agents and/or with an external environment,
may expand and modify their knowledge base by incorporating new information.
In a dynamic setting, the knowledge base of an agent can be seen as the set of
beliefs of the agent, that may change over time. An agent may reach a stage
where its beliefs have become inconsistent, and actions must be taken to regain
consistency. The theory of belief revision aims at modeling how an agent updates
its state of belief as a result of receiving new information [110], [111]. Belief
revision is, in our opinion, another important issue related to intelligent agents
where meta-reasoning can be usefully applied.

In [32] a model-based diagnosis system is presented, capable of revision of
the description of the system to be diagnosed if inconsistencies arise from ob-
servations. Revision strategies are implemented by means of meta-programming
and meta-reasoning methods.

In [112], a framework is proposed where rational, reactive agents can dynam-
ically change their own knowledge bases as well as their own goals. In particular,
an agent can make observations, learn new facts and new rules from the en-
vironment (even in contrast with its current knowledge) and then update its
knowledge accordingly. To solve contradictions, techniques of contradiction re-
moval and preferences among several sources can be adopted [113].

In [114] it is pointed out that most existing approaches to intelligent agents
have difficulties to model the way agents revise their beliefs, because new in-
formation always come together certain meta-information: e.g., where the new
information comes from? Is the source reliable? and so on. Then, the agent has
to reason about this meta-information, in order to revise its beliefs. This leads
to the proposal of a new approach, where this meta-information can be explic-
itly represented and reasoned about, and revision strategies can be defined in a
declarative way.

7 Semantic Issues

In computational logic, meta-programming and meta-reasoning capabilities are
mainly based on self-reference, i.e. on the possibility of describing language ex-
pressions in the language itself. In fact, in most of the relevant approaches the
object language and the meta-language coincide.

The main tool for self-reference is a naming mechanism. An alternative form
of self-reference has been proposed by McCarthy [115], who suggests that in-
troducing function symbols denoting concepts (rather than quoted expressions)
might be sufficient for most forms of meta-reasoning. But Perlis [40] observes:

“The last word you just said” is an expression that although repre-
sentable as a function still refers to a particular word, not to a concept.
Thus quotation seems necessarily involved at some point if we are to
have a self-describing language. It appears we must describe specific ex-
pressions as carriers of (the meaning of) concepts.

The issue of appropriate language facilities for naming is addressed by Hill
and Lloyd in [35]. They point out the distinction between two possible represen-
tation schemes: the non-ground representation, in which an object-level variable
is represented by a meta-level variable, and the ground representation, in which
object-level expressions are represented by ground (i.e. variable free) terms at
the meta-level. In the ground representation, an object level variable may be
represented by a meta-level constant, or by any other ground term.

The problem with the non-ground representation is related to meta-level
predicates such as the Prolog var(X), which is true if the variable X is not
instantiated, and is false otherwise. As remarked in [35]:

To see the difficulty, consider the goals:

:�var(X) ^ solve(p(X))

and
:�solve(p(X)) ^ var(X)

If the object program consists solely of the clause p(a), then (using the
“leftmost literal” computation rule) the first goal succeeds, while the
second goal fails.

Hill and Lloyd propose a ground representation of expressions of a first-order
language L in another first-order language L0 with three types ω, µ and η.

Definition 1 (Hill and Lloyd ground representation). Given a constant
a in L, there is a corresponding constant a0 of type ω in L0. Given a variable
x in L, there is a corresponding constant x0 of type ω in L0. Given an n-ary
function symbol f in L, there is a corresponding n-ary function symbol f 0 of
type ω � . . . ω �! ω in L0. Given an n-ary predicate symbol p in L, there is
a corresponding n-ary function symbol f 0 of type ω � . . . ω �! µ in L0. The
language L0 has a constant empty of type µ. The mappings a �! a0, x �! x0,
f �! f 0 and p �! p0 are all injective.

Moreover, L0 contains some function and predicate symbols useful for
declaratively redefining the “impure” features of Prolog and the Vanilla meta-
interpreter. For instance we will have:

constant(a01).
. . .
constant(a0n).
8ωx nonvar(x) constant(x).
8ωx var(x) :nonvar(x).

The above naming mechanism is used in [35] for providing a declarative
semantics to a meta-interpreter that implements SLDNF resolution [116] for
normal programs and goals. This approach has then evolved into the meta-
logical facilities of the Gödel language [59]. Notice that, since names of pred-
icate symbols are function symbols, properties of predicates (e.g. symmetry)
cannot be explicitly stated. Since levels in Gödel are separated rather than
amalgamated, this naming mechanism does not provide operators for referen-
tiation/dereferentiation.

An important issue raised in [40] is the following:

Now, it is essential to have also an un-naming device that would
return a quoted sentence to its original (assertive) form, together with
axioms stating that that is what naming and un-naming accomplish.

Along this line, the approach of [36], developed in detail in [117], proposes
to name an atom of the form α0(α1, . . . , αn) as [β0, β1, . . . , βn], where each βi

is the name of αi. The name of the name of α0(α1, . . . , αn) is the name term
[γ0, γ1, . . . , γn], where each γi is the name of βi, etc. Requiring names of com-
pound expressions to be compositional allows one to use unification for con-
structing name terms and accessing their components.

In this approach, we are able to express properties of predicates by using
their names. For instance, we can say that predicate p is binary and predicate q
is symmetric, by asserting binary pred(p1) and symmetric(q1).

Given a term t and a name term s, the expression " t indicates the result of
quoting t and the expression # s indicates the result of unquoting s. The following
axioms for the operators " and # formalize the relationship between terms and
the corresponding name terms. They form an equality theory, called NT and first
defined in [118], for the basic compositional encoding outlined above. Enhanced
encodings can be obtained by adding axioms to this theory. NT states that there
exist names of names (each term can be referenced n times, for any n � 0) and
that the name of a compound term is obtained from the names of its components.

Definition 2 (Basic encoding NT). Let NT be the following equality theory.

– For every constant or meta-constant cn, n � 0,
" cn = cn+1.

– For every function or predicate symbol f of arity k,
8x1 . . . 8xk " (f(x1, . . . , xk)) = [f1, " x1, . . . , " xk].

– For every compound name term [x0, x1, . . . , xk]
8x0 . . . 8xk " [x0, x1, . . . , xk] = [" x0, " x1, . . . , " xk].

– For every term t #" t = t.

The above set of axioms admits an associated convergent rewrite system UN .
Then, a corresponding extended unification algorithm (E-unification algorithm)
UA(UN) can be defined, that deals with name terms in addition to usual terms.
In [118] it is shown that:

Proposition 1 (Unification Algorithm for NT). The E-uni�cation algo-
rithm UA(UN) is sound for NT, terminates and converges.

The standard semantics of the Horn clause language can be adapted, so as
to include the naming device. Precisely, the technique of quotient universes by
Jaffar et al. [119] can be used to this purpose.

Definition 3 (Quotient Universe). Let R be a congruence relation. The quo-
tient universe of U with respect to R, indicated as U/R, is the set of the equiv-
alence classes of U under R, i.e., the partition given by R in U .

By taking R as the finest congruence relation corresponding to UN (that always
exists) we get the standard semantics of the Horn clause language [116], mod-
ulo the naming relation. The naming relation can be extended according to the
application domain at hand, by adding new axioms to NT and by correspond-
ingly extending UN and UA(UN), provided that their nice formal properties

are preserved. What is important is that, as advocated in [37], the approach to
meta-programming and the approach to naming become independent.

It is important to observe that, as shown in [36], any (ground or non-ground)
encoding providing names for variables shows in an amalgamated language the
same kind of problems emphasized in [35]. In fact, let P be the following definite
program, x an object-level variable and Y a meta-variable:

p(x) :-Y =" x, q(Y)
q(a1).

Goal :-p(a) succeeds by first instantiating Y to a1 and then proving q(a1). In
contrast, the goal :-p(x) fails, as Y is instantiated to the name of x, say x1, and
subgoal q(x1) fails, x1 and a1 being distinct. Therefore, if choosing naming mech-
anisms providing names for variables, on the one hand terms can be inspected
with respect to variable instantiation, on the other hand however important
properties are lost.

A ground naming mechanism is used in [49] for providing a declarative se-
mantics to the (conservative) amalgamation of language and meta-language in
logic programming.

A naming mechanism where each well-formed expression can act as a name
of itself is provided by the ambivalent logic AL of Jiang [73]. It is based on the
assumption that each expression can be interpreted as a formula, as a term, as
a function and as a predicate, where predicates and functions have free arity.

Unification must be extended accordingly, with the following results:

Theorem 1 (Termination of AL Unification Algorithm). The uni�cation
algorithm for ambivalent logic terminates.

Theorem 2 (Correctness of AL Unification Algorithm). If the uni�ca-
tion algorithm for ambivalent logic terminates successfully, then it provides an
ambivalent uni�er. If the algorithm halts with failure, then no ambivalent uni�er
exists.

The limitation is that ambivalent unifiers are less general than traditional
unifiers.

Theorem 3 (Properties of Resolution for AL). Resolution is a sound and
complete inference method for AL.

Ambivalent logic has been used in [75] for proving correctness of the Vanilla
meta-interpreter, also with respect to the (conservative) amalgamation of object
language and meta-language. Let P be the object program, LP the language
of P , VP the Vanilla meta-interpreter and LVP the language of VP . Let MP be
the least Herbrand model of P , MVP be the least Herbrand model of VP , and
MVP[P be the least Herbrand model of VP [P . We have:

Theorem 4 (Properties of Vanilla Meta-Interpreter under AL). For all
(ground) A in LVP , demo(A) 2MVP i� demo(A) 2MVP[P ;
for all (ground) A in LP , demo(A) 2MP i� demo(A) 2MVP[P

A similar result is obtained by Martens and De Schreye in [120] and [50] for
the class of language independent programs. They use a non-ground representa-
tion with overloading of symbols, so as the name of an atom is a term, identical to
the atom itself. Language independent programs can be characterized as follows:

Proposition 2 (Language Independence). Let P be a de�nite program.
Then P is language independent i� for any de�nite goal G, all (SLD) computed
answers for P [G are ground.

Actually however, the real practical interest lies in enhanced meta-
interpreters. Martens and De Schreye extend their results to meta-interpreters
without additional clauses, but with additional arguments. An additional argu-
ment can be for instance an explicit theory argument, or an argument denoting
the proof tree. The amalgamation is still conservative, but more expressivity is
achieved.

The approach to proving correctness of the Vanilla meta-interpreter proposed
by Levi and Ramundo in [48] uses the S-semantics introduced by Falaschi et al.
in [121]. In order to fill the gap between the procedural and declarative inter-
pretations of definite programs, the S-least Herbrand model MS

P of a program
P contains not only ground atoms, but all atoms Q(T) such that t = x θ, where
θ is the computed answer substitution for P [f Q(x)g. The S-semantics is
obtained as a variation of the standard semantics of the Horn clause language.
Levi and Ramundo [48] and Martens and De Schreye prove (independently) that
demo(p(t)) 2MS

VP iff p(t) 2MS
P .

In the approach of Reflective Prolog, axiom schemata are defined at the
meta-level, by means of a distinguished predicate solve and of a naming facility.
Deduction is performed at any level where there are applicable axioms. This
means, conclusions drawn in the basic theory are available (by implicit reflection)
at the meta-level, and vice versa. The following definition of RSLD-resolution
[65] (SLD-resolution with reflection) is independent of the naming mechanism,
provided that a suitable unification algorithm is supplied.

Definition 4 (RSLD-resolution). Let G be a de�nite goal A1, . . . , Ak, let
Am be the selected atom in G and let C be a de�nite clause.

The goal (A1, . . . , Am�1, B1, . . . , Bq, Am+1, . . . , Ak)θ is derived from G
and C using mgu θ i� one of the following conditions holds:

i. C is A B1, . . . , Bq
θ is a mgu of Am and A

ii. C is solve(α) B1, . . . , Bq
Am 6= solve(δ)
" Am = α0
θ is a mgu of α0 and α

iii. Am is solve(α)
C is A B1, . . . , Bq# α = A0
θ is a mgu of A0 and A

If the selected atom Am is an object-level atom (e.g p(a, b)), it can be resolved
in two ways. First, by using as usual the clauses defining the corresponding
predicate (case (i)); for instance, if Am is p(a, b), by using the clauses defining
the predicate p. Second, by using the clauses defining the predicate solve (case
(ii), upward reection) if the name " Am of Am and α unify with mgu θ; for
instance, referring to the NT naming relation defined above, we have " p(a, b) =
[p1, a1, b1] and then a clause with conclusion solve([p1, v, w]) can be used, with
θ = fv/a1, w/b1g.

If the selected atom Am is solve(α) (e.g solve([q1, c1, d1])), again it can be
resolved in two ways. First, by using the clauses defining the predicate solve itself,
similarly to any other goal (case (i)). Second, by using the clauses defining the
predicate corresponding to the atom denoted by the argument α of solve (case
(iii), downward reection); for instance, if α is [q1, c1, d1] and thus # α = q(c, d),
by using the clauses defining the predicate q can be used.

In the declarative semantics of Reflective Prolog, upward and downward re-
flection are modeled by means of axiom schemata called reection principles.
The Least Reflective Herbrand Model RMP of program P is the Least Her-
brand Model of the program itself, augmented by all possible instances of the
reflection principles. RMP is the least fixed point of a suitably modified version
of operator TP .

Theorem 5 (Properties of RSLD-Resolution). RSLD-resolution is correct
and complete w.r.t. RMP

8 Conclusions

In this paper we have discussed the meta-level approach to knowledge represen-
tation and reasoning that has its roots in the work of logicians and has played a
fundamental role in computer science. We believe in fact that meta-programming
and meta-reasoning are essential ingredients for building any complex applica-
tion and system.

We have tried to illustrate to a broad audience what are the main principles
meta-reasoning is based upon and in which way these principles have been ap-
plied in a variety of languages and systems. We have illustrated how sentences
can be arguments of other sentences, by means of naming devices. We have
distinguished between amalgamated and separated approaches, depending on
whether the meta-expressions are defined in (an extension of) a given language,
or in a separate language. We have shown that the different levels of knowledge
can interact by reflection.

In our opinion, the choice of logic programming as a basis for meta-
programming and meta-reasoning has several theoretical and practical advan-
tages. From the theoretical point of view, all fundamental issues (including reflec-
tion) can be coped with on a strong semantic basis. In fact, the usual framework
of first-order logic can be suitably modified and extended, as demonstrated by
the various existing meta-logic languages. From the practical point of view, in

logic programming the meta-level mechanisms are understandable and easy-to-
use and this has given rise to several successful applications. We have in fact
tried (although necessarily shortly) to revise some of the important applications
of meta-programming and meta-reasoning.

At the end of this survey, I wish to explicitly acknowledge the fundamental,
deep and wide contribution that Robert A. Kowalski has given to this field.
Robert A. Kowalski initiated meta-programming in logic programming, as well as
many of its successful applications, including meta-interpreters, event calculus,
logical agents. With his enthusiasm he has given constant encouragement to
research in this field, and to researchers as well, including myself.

9 Acknowledgements

I wish to express my gratitude to Gaetano Aurelio Lanzarone, who has been
the mentor of my research work on meta-reasoning and reflection. I gratefully
acknowledge Pierangelo Dell’Acqua for his participation to this research and for
the important contribution to the study of naming mechanisms and reflective
resolution. I also wish to mention Jonas Barklund, for the many interesting
discussions and the fruitful cooperation on these topics.

Many thanks are due to Luigia Carlucci Aiello, for her careful review of the
paper, constructive criticism and useful advice. Thanks to Alessandro Provetti
for his help. Thanks also to the anonymous referees, for their useful comments
and suggestions. Any remaining errors or misconceptions are of course my entire
responsibility.

References

1. Hill, P.M., Gallagher, J.: Meta-programming in logic programming. In Gabbay,
D., Hogger, C.J., Robinson, J.A., eds.: Handbook of Logic in Artificial Intelligence
and Logic Programming, Vol. 5, Oxford University Press (1995)

2. Barklund, J.: Metaprogramming in logic. In Kent, A., Williams, J.G., eds.:
Encyclopedia of Computer Science and Technology. Volume 33. M. Dekker, New
York (1995) 205–227

3. Lanzarone, G.A.: Metalogic programming. In Sessa, M.I., ed.: 1985–1995 Ten
Years of Logic Programming in Italy. Palladio (1995) 29–70

4. Abramson, H., Rogers, M.H., eds.: Meta-Programming in Logic Programming,
Cambridge, Mass., THE MIT Press (1989)

5. Bruynooghe, M., ed.: Proc. of the Second Workshop on Meta-Programming in
Logic, Leuven (Belgium), Dept. of Comp. Sci., Katholieke Univ. Leuven (1990)

6. Pettorossi, A., ed.: Meta-Programming in Logic. LNCS 649, Berlin, Springer-
Verlag (1992)

7. Fribourg, L., Turini, F., eds.: Logic Program Synthesis and Transformation –
Meta-Programming in Logic. LNCS 883, Springer-Verlag (1994)

8. Barklund, J., Costantini, S., van Harmelen, F., eds.: Proc. Workshop on Meta
Programming and Metareasonong in Logic, post-JICSLP96 workshop, Bonn (Ger-
many), UPMAIL technical Report No. 127 (Sept. 2, 1996), Computing Science
Dept., Uppsala Univ. (1996)

9. Apt, K., Turini, F., eds.: Meta-Logics and Logic Programming. The MIT Press,
Cambridge, Mass. (1995)

10. Maes, P., Nardi, D., eds.: Meta-Level Architectures and Reflection, Amsterdam,
North-Holland (1988)

11. Kiczales, G., ed.: Meta-Level Architectures and Reflection, Proc. Of the First
Intnl. Conf. Reflection 96, Xerox PARC (1996)

12. Cointe, A., ed.: Meta-Level Architectures and Reflection, Proc. Of the Second
Intnl. Conf. Reflection 99. LNCS 1616, Berlin, Springer-Verlag (1999)

13. Smorinski, C.: The incompleteness theorem. In Barwise, J., ed.: Handbook of
Mathematical Logic. North-Holland (1977) 821–865

14. Smullyan, R.: Diagonalization and Self-Reference. Oxford University Press (1994)
15. Kripke, S.A.: Semantical considerations on modal logic. In: Acta Philosophica

Fennica. Volume 16. (1963) 493–574
16. Carlucci Aiello, L., Cialdea, M., Nardi, D., Schaerf, M.: Modal and meta lan-

guages: Consistency and expressiveness. In Apt, K., Turini, F., eds.: Meta-Logics
and Logic Programming. The MIT Press, Cambridge, Mass. (1995) 243–266

17. Aiello, M., Weyhrauch, L.W.: Checking proofs in the metamathematics of first
order logic. In: Proc. Fourth Intl. Joint Conf. on Artificial Intelligence, Tbilisi,
Georgia, Morgan Kaufman Publishers (1975) 1–8

18. Bundy, A., Welham, B.: Using meta-level inference for selective application of
multiple rewrite rules in algebraic manipulation. Artificial Intelligence 16 (1981)
189–212

19. Weyhrauch, R.W.: Prolegomena to a theory of mechanized formal reasoning.
Artificial Intelligence (1980) 133–70

20. Carlucci Aiello, L., Cecchi, C., Sartini, D.: Representation and use of metaknowl-
edge. Proc. of the IEEE 74 (1986) 1304–1321

21. Carlucci Aiello, L., Levi, G.: The uses of metaknowledge in AI systems. In: Proc.
European Conf. on Artificial Intelligence. (1984) 705–717

22. Davis, R., Buchanan, B.: Meta-level knowledge: Overview and applications. In:
Procs. Fifth Int. Joint Conf. On Artificial Intelligence, Los Altos, Calif., Morgan
Kaufmann (1977) 920–927

23. Maes, P.: Computational Reflection. PhD thesis, Vrije Universiteit Brussel, Fac-
ulteit Wetenschappen, Dienst Artificiele Intelligentie, Brussel (1986)

24. Genesereth, M.R.: Metalevel reasoning. In: Logic-87-8, Logic Group, Stanford
University (1987)

25. Carlucci Aiello, L., Levi, G.: The uses of metaknowledge in AI systems. In Maes,
P., Nardi, D., eds.: Meta-Level Architectures and Reflection. North-Holland, Am-
sterdam (1988) 243–254

26. Carlucci Aiello, L., Nardi, D., Schaerf, M.: Yet Another Solution to the Three
Wisemen Puzzle. In Ras, Z.W., Saitta, L., eds.: Methodologies for Intelligent
Systems 3: ISMIS-88, Elsevier Science Publishing (1988) 398–407

27. Carlucci Aiello, L., Nardi, D., Schaerf, M.: Reasoning about Knowledge and
Ignorance. In: Proceedings of the International Conference on Fifth Generation
Computer Systems 1988: FGCS-88, ICOT Press (1988) 618–627

28. Genesereth, M.R., Nilsson, J.: Logical Foundations of Artificial Intelligence. Mor-
gan Kaufmann, Los Altos, California (1987)

29. Russell, S.J., Wefald, E.: Do the right thing: studies in limited rationality (Chap-
ter 2: Metareasoning Architectures). The MIT Press (1991)

30. Carlucci Aiello, L., Cialdea, M., Nardi, D.: A meta level abstract description of di-
agnosis in Intelligent Tutoring Systems. In: Proceedings of the Sixth International
PEG Conference, PEG-91. (1991) 437–442

31. Carlucci Aiello, L., Cialdea, M., Nardi, D.: Reasoning about Student Knowledge
and Reasoning. Journal of Artificial Intelligence and Education 4 (1993) 397–413

32. Damásio, C., Nejdl, W., Pereira, L.M., Schroeder, M.: Model-based diagnosis
preferences and strategies representation with logic meta-programming. In Apt,
K., Turini, F., eds.: Meta-Logics and Logic Programming. The MIT Press, Cam-
bridge, Mass. (1995) 267–308

33. Barklund, J., Costantini, S., Dell’Acqua, P., Lanzarone, G.A.: Reflection Princi-
ples in Computational Logic. Journal of Logic and Computation 10 (2000)

34. Barklund, J.: What is a meta-variable in Prolog? In Abramson, H., Rogers, M.H.,
eds.: Meta-Programming in Logic Programming. The MIT Press, Cambridge,
Mass. (1989) 383–98

35. Hill, P.M., Lloyd, J.W.: Analysis of metaprograms. In Abramson, H., Rogers,
M.H., eds.: Meta-Programming in Logic Programming, Cambridge, Mass., THE
MIT Press (1988) 23–51

36. Barklund, J., Costantini, S., Dell’Acqua, P., Lanzarone, G.A.: Semantical proper-
ties of encodings in logic programming. In Lloyd, J.W., ed.: Logic Programming
– Proc. 1995 Intl. Symp., Cambridge, Mass., MIT Press (1995) 288–302

37. van Harmelen, F.: Definable naming relations in meta-level systems. In Pettorossi,
A., ed.: Meta-Programming in Logic. LNCS 649, Berlin, Springer-Verlag (1992)
89–104

38. Cervesato, I., Rossi, G.: Logic meta-programming facilities in 0Log. In Pettorossi,
A., ed.: Meta-Programming in Logic. LNCS 649, Berlin, Springer-Verlag (1992)
148–161

39. Costantini, S.: Semantics of a metalogic programming language. Intl. Journal of
Foundation of Computer Science 1 (1990)

40. Perlis, D.: Languages with self-reference I: foundations (or: we can have everything
in first-order logic!). Artificial Intelligence 25 (1985) 301–322

41. Perlis, D.: Languages with self-reference II. Artificial Intelligence 34 (1988) 179–
212

42. Konolige, K.: Reasoning by introspection. In Maes, P., Nardi, D., eds.: Meta-Level
Architectures and Reflection. North-Holland, Amsterdam (1988) 61–74

43. Genesereth, M.R.: Introspective fidelity. In Maes, P., Nardi, D., eds.: Meta-Level
Architectures and Reflection. North-Holland, Amsterdam (1988) 75–86

44. van Harmelen, F., Wielinga, B., Bredeweg, B., Schreiber, G., Karbach, W., Rein-
ders, M., Voss, A., Akkermans, H., Bartsch-Spörl, B., Vinkhuyzen, E.: Knowledge-
level reflection. In: Enhancing the Knowledge Engineering Process – Contribu-
tions from ESPRIT. Elsevier Science, Amsterdam, The Netherlands (1992) 175–
204

45. Carlucci Aiello, L., Weyhrauch, R.W.: Using Meta-theoretic Reasoning to do
Algebra. Volume 87 of Lecture Notes in Computer Science., Springer Verlag
(1980) 1–13

46. Bowen, K.A., Kowalski, R.A.: Amalgamating language and metalanguage in logic
programming. In Clark, K.L., T̃ärnlund, S.Å., eds.: Logic Programming. Aca-
demic Press, London (1982) 153–172

47. McCarthy, J.e.a.: (The LISP 1.5 Programmer’s Manual)
48. Levi, G., Ramundo, D.: A formalization of metaprogramming for real. In Warren,

D.S., ed.: Logic Programming - Procs. of the Tenth International Conference,
Cambridge, Mass., The MIT Press (1993) 354–373

49. Subrahmanian, V.S.: Foundations of metalogic programming. In Abramson,
H., Rogers, M.H., eds.: Meta-Programming in Logic Programming, Cambridge,
Mass., The MIT Press (1988) 1–14

50. Martens, B., De Schreye, D.: Why untyped nonground metaprogramming is not
(much of) a problem. J. Logic Programming 22 (1995)

51. Sterling, L., Shapiro, E.Y., eds.: The Art of Prolog. The MIT Press, Cambridge,
Mass. (1986)

52. Kowalski, R.A.: Meta matters. invited presentation at Second Workshop on
Meta-Programming in Logic META90 (1990)

53. Kowalski, R.A.: Problems and promises of computational logic. In Lloyd, J.W.,
ed.: Computational Logic. Springer-Verlag, Berlin (1990) 1–36

54. Smith, B.C.: Reflection and semantics in Lisp. Technical report, Xerox Parc
ISL-5, Palo Alto (CA) (1984)

55. Lemmens, I., Braspenning, P.: A formal analysis of smithinsonian computational
reflection. (In Cointe, P., ed.: Proc. Reflection ’99) 135–137

56. Casaschi, G., Costantini, S., Lanzarone, G.A.: Realizzazione di un interprete
riflessivo per clausole di Horn. In Mello, P., ed.: Gulp89, Proc. 4th Italian National
Symp. on Logic Programming, Bologna (1989 (in italian)) 227–241

57. Friedman, D.P., Sobel, J.M.: An introduction to reflection-oriented programming.
In Kiczales, G., ed.: Meta-Level Architectures and Reflection, Proc. Of the First
Intnl. Conf. Reflection 96, Xerox PARC (1996)

58. Attardi, G., Simi, M.: Meta–level reasoning across viewpoints. In O’Shea, T.,
ed.: Proc. European Conf. on Artificial Intelligence, Amsterdam, North-Holland
(1984) 315–325

59. Hill, P.M., Lloyd, J.W.: The Gödel Programming Language. The MIT Press,
Cambridge, Mass. (1994)

60. Bowers, A.F., Gurr, C.: Towards fast and declarative meta-programming. In Apt,
K.R., Turini, F., eds.: Meta-Logics and Logic Programming. The MIT Press,
Cambridge, Mass. (1995) 137–166

61. Giunchiglia, F., Cimatti, A.: Introspective metatheoretic reasoning. In Fri-
bourg, L., Turini, F., eds.: Logic Program Synthesis and Transformation – Meta-
Programming in Logic. LNCS 883 (1994) 425–439

62. Giunchiglia, F., Traverso, A.: A metatheory of a mechanized object theory. Ar-
tificial Intelligence 80 (1996) 197–241

63. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do
without modal logics. Artificial Intelligence 65 (1994) 29–70

64. Costantini, S., Lanzarone, G.A.: A metalogic programming language. In Levi,
G., Martelli, M., eds.: Proc. 6th Intl. Conf. on Logic Programming, Cambridge,
Mass., The MIT Press (1989) 218–233

65. Costantini, S., Lanzarone, G.A.: A metalogic programming approach: language,
semantics and applications. Int. J. of Experimental and Theoretical Artificial
Intelligence 6 (1994) 239–287

66. Konolige, K.: An autoepistemic analysis of metalevel reasoning in logic program-
ming. In Pettorossi, A., ed.: Meta-Programming in Logic. LNCS 649, Berlin,
Springer-Verlag (1992)

67. Dell’Acqua, P.: Development of the interpreter for a metalogic programming
language. Degree thesis, Univ. degli Studi di Milano, Milano (1989 (in italian))

68. Maes, P.: Concepts and experiments in computational reflection. In: Proc. Of
OOPSLA’87. ACM SIGPLAN NOTICES (1987) 147–155

69. Kiczales, G., des Rivieres, J., Bobrow, D.G.: The Art of Meta-Object Protocol.
The MIT Press (1991)

70. Malenfant, J., Lapalme, G., Vaucher, G.: Objvprolog: Metaclasses in logic. In:
Proc. Of ECOOP’89, Cambridge Univ. Press (1990) 257–269

71. Malenfant, J., Lapalme, G., Vaucher, G.: Metaclasses for metaprogramming
in prolog. In Bruynooghe, M., ed.: Proc. of the Second Workshop on Meta-
Programming in Logic, Dept. of Comp. Sci., Katholieke Univ. Leuven (1990)
272–83

72. Stroud, R., Welch, I.: the evolution of a reflective java extension. LNCS 1616,
Berlin, Springer-Verlag (1999)

73. Jiang, Y.J.: Ambivalent logic as the semantic basis of metalogic programming:
I. In Van Hentenryck, P., ed.: Proc. 11th Intl. Conf. on Logic Programming,
Cambridge, Mass., THE MIT Press (1994) 387–401

74. Kalsbeek, M., Jiang, Y.: A vademecum of ambivalent logic. In Apt, K., Turini,
F., eds.: Meta-Logics and Logic Programming. The MIT Press, Cambridge, Mass.
(1995) 27–56

75. Kalsbeek, M.: Correctness of the vanilla meta-interpreter and ambivalent syntax.
In Apt, K., Turini, F., eds.: Meta-Logics and Logic Programming. The MIT Press,
Cambridge, Mass. (1995) 3–26

76. Christiansen, H.: A complete resolution principle for logical meta-programming
languages. In Pettorossi, A., ed.: Meta-Programming in Logic. LNCS 649, Berlin,
Springer-Verlag (1992) 205–234

77. Christiansen, H.: Efficient and complete demo predicates for definite clause lan-
guages. Datalogiske Skrifter, Technical Report 51, Dept. of Computer Science,
Roskilde University (1994)

78. Brogi, A., Mancarella, P., Pedreschi, D., Turini, F.: Composition operators for
logic theories. In Lloyd, J.W., ed.: Computational Logic. Springer-Verlag, Berlin
(1990) 117–134

79. Brogi, A., Contiero, S.: Composing logic programs by meta-programming in
Gödel. In Apt, K., Turini, F., eds.: Meta-Logics and Logic Programming. The
MIT Press, Cambridge, Mass. (1995) 167–194

80. Brogi, A., Turini, F.: Meta-logic for program composition: Semantic issues. In
Apt, K., Turini, F., eds.: Meta-Logics and Logic Programming. The MIT Press,
Cambridge, Mass. (1995) 83–110

81. Barklund, J., Boberg, K., Dell’Acqua, P.: A basis for a multilevel metalogic
programming language. In Fribourg, L., Turini, F., eds.: Logic Program Synthesis
and Transformation – Meta-Programming in Logic. LNCS 883, Berlin, Springer-
Verlag (1994) 262–275

82. Barklund, J., Boberg, K., Dell’Acqua, P., Veanes, M.: Meta-programming with
theory systems. In Apt, K., Turini, F., eds.: Meta-Logics and Logic Programming.
The MIT Press, Cambridge, Mass. (1995) 195–224

83. Shoham, Y., McDermott, D.: Temporal reasoning. (In C., S.S., ed.: Encyclopedia
of Artificial Intelligence)

84. Kowalski, R.A., Sergot, M.: A logic-based calculus of events. New Generation
Computing 4 (1986) 67–95

85. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence 4 (1969) 463–502

86. Kowalski, R.A.: Database updates in the event calculus. J. Logic Programming
(1992) 121–146

87. Kowalski, R.A., Sadri, F.: The situation calculus and event calculus compared.
In: Proc. 1994 Intl. Logic Programming Symp. (1994) 539–553

88. Kowalski, R.A., Sadri, F.: Reconciling the event calculus with the situation cal-
culus. J. Logic Programming 31 (1997) 39–58

89. Provetti, A.: Hypothetical reasoning: From situation calculus to event calculus.
Computational Intelligence Journal 12 (1996) 478–498

90. Dı́az, O., Paton, N.: Stimuli and business policies as modeling constructs: their
definition and validation through the event calculus. In: Proc. of CAiSE’97. (1997)
33–46

91. Sripada, S.: Efficient implementation of the event calculus for temporal database
applications. In Lloyd, J.W., ed.: Proc. 12th Intl. Conf. on Logic Programming,
Cambridge, Mass., The MIT Press (1995) 99–113

92. Pfenning, F.: The practice of logical frameworks. In Kirchner, H., ed.: Trees in Al-
gebra and Programming - CAAP ’96. LNCS 1059, Linkoping, Sweden, Springer–
Verlag (1996) 119–134

93. Clavel, M.G., Eker, S., Lincoln, P., Meseguer, J.: Principles of Maude. (In
Meseguer, J., ed.: Proc. First Intl Workshop on Rewriting Logic, volume 4 of
Electronic Notes in Th. Comp. Sc.)

94. Clavel, M.G., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J.,
Quesada, J.: Maude as a metalanguage. (In: Proc. Second Intl. Workshop on
Rewriting Logic, volume 15 of Electronic Notes in Th. Comp. Sc.)

95. Clavel, M.G., Meseguer, J.: Axiomatizing reflective logics and languages. In
Kiczales, G., ed.: Proc. Reflection ’96, Xerox PARC (1996) 263–288

96. Costantini, S., Lanzarone, G.A., Sbarbaro, L.: A formal definition and a sound
implementation of analogical reasoning in logic programming. Annals of Mathe-
matics and Artificial Intelligence 14 (1995) 17–36

97. Costantini, S., Dell’Acqua, P., Lanzarone, G.A.: Reflective agents in metalogic
programming. In Pettorossi, A., ed.: Meta-Programming in Logic. LNCS 649,
Berlin, Springer-Verlag (1992) 135–147

98. Martin, D.L., Cheyer, A.J., Moran, D.B.: The open agent architecture: a frame-
work for building distributed software systems. Applied Artificial Intelligence
13(1–2) (1999) 91–128

99. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture.
In Fikes, R., Sandewall, E., eds.: Proceedings of Knowledge Representation and
Reasoning (KR&R-91), Morgan Kaufmann Publishers: San Mateo, CA (1991)
473–484

100. Rao, A.S., Georgeff, M.: BDI Agents: from theory to practice. In: Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS-95), San
Francisco, CA (1995) 312–319

101. J., D., Subrahmanian, V., Pick, G.: Meta-agent programs. J. Logic Programming
45 (2000)

102. Kim, J.S., Kowalski, R.A.: An application of amalgamated logic to multi-agent be-
lief. In Bruynooghe, M., ed.: Proc. of the Second Workshop on Meta-Programming
in Logic, Dept. of Comp. Sci., Katholieke Univ. Leuven (1990) 272–83

103. Kim, J.S., Kowalski, R.A.: A metalogic programming approach to multi-agent
knowledge and belief. In Lifschitz, V., ed.: Artificial Intelligence and Mathematical
Theory of Computation, Academic Press (1991)

104. Kowalski, R.A., Sadri, F.: Towards a unified agent architecture that combines ra-
tionality with reactivity. In: Proc. International Workshop on Logic in Databases.
LNCS 1154, Berlin, Springer-Verlag (1996)

105. Kowalski, R.A., Sadri, F.: From logic programming to multi-agent systems. (In:
Annals of Mathematics and Artificial Intelligence) (to appear).

106. Dell’Acqua, P., Sadri, F., Toni, F.: Combining introspection and communication
with rationality and reactivity in agents. In Dix, J., Cerro, F.D., Furbach, U.,
eds.: Logics in Artificial Intelligence. LNCS 1489, Berlin, Springer-Verlag (1998)

107. Fung, T.H., R. A. Kowalski, R.A.: The IFF proof procedure for abductive logic
programming. J. Logic Programming 33 (1997) 151–165

108. Dell’Acqua, P., Sadri, F., Toni, F.: Communicating agents. In: Proc. International
Workshop on Multi-Agent Systems in Logic Programming, in conjunction with
ICLP’99, Las Cruces, New Mexico (1999)

109. Costantini, S.: Towards active logic programming. In Brogi, A.,
Hill, P., eds.: Proc. of 2nd International Workshop on Component-based
Software Development in Computational Logic (COCL’99). PLI’99, Paris,
France, http://www.di.unipi.it/ brogi/ ResearchActivity/COCL99/ proceed-
ings/index.html (1999)

110. Gärdenfors, P.: Belief revision: a vademecum. In Pettorossi, A., ed.: Meta-
Programming in Logic. LNCS 649, Berlin, Springer-Verlag (1992) 135–147

111. Gärdenfors, P., Roth, H.: Belief revision. In Gabbay, D., Hogger, C., Robinson,
J., eds.: Handbook of Logic in Artificial Intelligence and Logic Programming.
Volume 4. Clarendon Press (1995) 36–119

112. Dell’Acqua, P., Pereira, L.M.: Updating agents. (1999)
113. Lamma, E., Riguzzi, F., Pereira, L.M.: Agents learning in a three-valued log-

ical setting. In Panayiotopoulos, A., ed.: Workshop on Machine Learning and
Intelligent Agents, in conjunction with Machine Learning and Applications, Ad-
vanced Course on Artificial Intelligence (ACAI’99), Chania (Greece) (1999) (Also
available at http://centria.di.fct.unl.pt/�lmp/).

114. Brewka, G.: Declarative representation of revision strategies. In Baral, C.,
Truszczynski, M., eds.: NMR’2000, Proc. Of the 8th Intl. Workshop on Non-
Monotonic Reasoning. (2000)

115. McCarthy, J.: First order theories of individual concepts and propositions. Ma-
chine Intelligence 9 (1979) 129–147

116. Lloyd, J.W.: Foundations of Logic Programming, Second Edition. Springer-
Verlag, Berlin (1987)

117. Dell’Acqua, P.: Reflection principles in computational logic. PhD Thesis, Uppsala
University, Uppsala (1998)

118. Dell’Acqua, P.: SLD–Resolution with reflection. PhL Thesis, Uppsala University,
Uppsala (1995)

119. Jaffar, J., Lassez, J.L., Maher, M.J.: A theory of complete logic programs with
equality. J. Logic Programming 3 (1984) 211–223

120. Martens, B., De Schreye, D.: Two semantics for definite meta-programs, using the
non-ground representation. In Apt, K., Turini, F., eds.: Meta-Logics and Logic
Programming. The MIT Press, Cambridge, Mass. (1995) 57–82

121. Falaschi, M.and Levi, G., Martelli, M., Palamidessi, C.: A new declarative se-
mantics for logic languages. In Kowalski, R. A.and Bowen, K.A., ed.: Proc. 5th
Intl. Conf. Symp. on Logic Programming, Cambridge, Mass., MIT Press (1988)
993–1005

