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Abstract. In this paper, we propose a new constructive characterization
of those semantics for disjunctive logic programs which are extensions of
the well-founded semantics for normal programs. Based on considera-
tions about how disjunctive information is treated by a given semantics,
we divide the computation of that semantics into two phases. The first
one is a program transformation phase, which applies axiom schemata
expressing how derivations involving disjunctions are made in the given
semantic framework. The second one is a constructive phase, based on
a variation of the well-founded model construction for normal programs.
We apply this two-phases procedural semantics to the computation of
the static semantics of disjunctive logic programs as a case-study, show-
ing how it works and what its results are in several examples. A main
perspective of this proposal is a procedural semantics for disjunctive pro-
grams consisting of an inefficient preprocessing phase (implementing the
program transformation procedure), to be however performed only once,
and of an efficient runtime computation, obtained as a variation of any
effective procedural semantics for the well-founded model.

1 Introduction

Disjunctive logic programs are significantly more expressive than normal pro-
grams; thus, all the semantics proposed for them are of very high complexity
(for an overview of recently proposed semantics, their properties and their com-
plexity, see [Bar91], [Dix91], [Dix92], [Got92], [JL92]). This means that it is not
easy to conceive reasonable proof procedures for this kind of program.

In this paper, we propose an approach to computing a class of semantics
of disjunctive logic programs. The approach divides the construction of a given
semantics into parts, to be computed separately.

In our opinion, the following components underly any semantics for disjunc-
tive programs with negation: (i) the specification of how to use explicit disjunc-
tive information in derivation; (ii) the specification of how to relate explicit and
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implicit disjunctive information; (iii) the specification of how to relate disjunc-
tion and negation. By varying the choices for (i)-(iii), different (though related)
semantics can be obtained.

Our proposal concerns those semantics which are extensions/modifications
of the well-founded model semantics (like for instance [CB92], [Prz94] ). We
define a program transformation procedure, which includes the formalization of
points (i)-(ii). To the resulting program, it is then possible to apply a variation
of any procedure for the well-founded model construction for normal programs
(see [Sch92] for a survey). The variation is defined by modifying the base step of
the procedure so as to include the choice for point (iii), i.e. for relating negation
and disjunction.

We illustrate our proposal with respect to the Static Semantics for disjunc-
tive programs [Prz94], which appears to be a natural generalization of the well-
founded model semantics. We believe, although this is still only a conjecture,
that the approach could be easily adapted to other similar existing semantics.

A main perspective of this proposal is a procedural semantics for disjunctive
programs consisting of an inefficient preprocessing phase (implementing the pro-
gram transformation procedure), to be however performed only once, and of an
efficient runtime computation, obtained as a variation of any effective procedural
semantics for the well-founded model.

Trying to cope with the complexity of declarative and procedural semantics
of disjunctive logic programs has been a motivating point of this research. In
the present paper, however, the complexity issue is not specifically addressed.
In fact, the main aim has been that of investigating the abstract properties
of these semantics, independently of computational issues. We defer to future
work a precise analysis of the complexity of the steps involved by the proposed
approach.

After some preliminary definitions (Section 2) and a summary of the sta-
tic semantics (Section 3) with some observations (Section 4), we introduce the
program transformation procedure (Section 5) and the modified well-founded
computation (Section 6). In Section 7 we discuss some examples, and in Section
8 we propose some final remarks.

2 Preliminary Definitions

A disjunctive logic program P is a set of clauses of the form:

A1 ∨ . . . ∨Al ← B1 ∧ . . . ∧Bm ∧ notC1 ∧ . . . ∧ notCn (1)

where l ≥ 1, m,n ≥ 0 and Ai, Bi and Ci’s are atomic formulae. We will call the
Ai’s and Bi’s atoms, or positive literals, and the notCi’s negative literals. If, for
every clause, l = 1, then the program is called normal. If, in addition, n = 0,
then the program is called definite.

As it is customary in the literature (see [HP90]), we assume that the program
has already been instantiated, i.e. all its (possibly infinitely many) clauses are
propositional. By not we mean a non–monotonic, commonsense negation whose
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informal meaning is: notC holds whenever C is believed to be false, i.e. whenever
¬C is believed to be true, where ¬ is classical negation of first-order predicate
logic.

For the semantics of definite logic programs and the semantics of normal logic
programs we will follow [Llo87] and [HP90], respectively. By ”interpretations”
and ”models” we mean Herbrand interpretations and Herbrand models. BP is,
as usual, the Herbrand base of P. In the following, we will consider the well-
founded model semantics of normal programs. The well-founded model of P (for
short WFMP , or simply WFM) is unique, and is in general 3-valued. Following
[Prz89], [HP90] we indicate WFMP with < T(P);F(P) >, or with < T;F > if
there is no ambiguity about P. T is the set of atoms which are true w.r.t. the
WFM, F the set of atoms which are false. All atoms belonging to BP− (T∪F)
have truth value undefined.

Various equivalent definitions of the well-founded model can be found in the
literature, for instance [AVG90], [Gel93] [Prz89], [HP90], [SC94]. In the examples,
we will use the constructive definition introduced in [Gel93] and [SC94], that we
rephrase below.

Here and in the rest of the paper, literals notA are considered to be new
atoms. We conventionally assume that, for every atom A in the language of
P, BP contains both A and notA. The following definitions introduce the
computation of the WFM by means of the computation of all the literals which
are true with respect to the WFM. The connection to the standard formulation
in terms of the sets T and F is then stated in Theorem 4.

Definition 1 Enhanced Immediate Consequence Operator.
Let J ⊆ BP be the set of literals currently known to be true. I.e., J is the current
approximation of the WFM. The VanEmden-Kowalski’s operator T [Llo87] is
modified into TJ, as follows. In particular, in the base step, the negation notA
of every atom A not belonging to J is assumed. The subsequent steps simply
apply the clauses of the program, given the set of literals already computed.

TJ ↑ 0 = {notA ∈ BP : A 6∈ J}
TJ ↑ n + 1= {A ∈ BP :

A← B1, . . . ,Bk is a clause in P, {B1, . . . ,Bk} ⊆ BP}
Let S(J) = TJ ↑ ω.

Let us now assume to iteratively apply the function S, starting from J = ∅,
and then taking J to be the result obtained at the previous iteration. We may
notice that S(∅) = T∅ ↑ ω will contain an overestimated set of consequences,
since notA will be assumed for every A ∈ BP. Vice versa, at the second iter-
ation, S(S(∅)) = TS(∅) ↑ ω will contain an underestimated set of consequences,
since the negation of atoms in S(∅) cannot be assumed. Similarly, the subse-
quent iteration steps will develop into an iterated fixpoint computation [Gel93].
At each second step, an underestimated set of consequences, of growing size with
respect to the previous one, is obtained. I. e., at every second step a better ap-
proximation of the WFM is computed. To capture this behaviour, a function
Σ corresponding to a double application of S is defined below.
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Definition 2 Alternating Fixpoint Computation. Let Σ = S2 correspond
to a double application of S, i.e.

Σ ↑ 0 = ∅
Σ ↑ n + 1= Σ(Σ ↑ n) = S(S(Σ ↑ n))

The following theorems state that Σ computes as least fixed point a set
WFC of literals, which exactly correspond to the set of literals which are true
with respect to the WFM.

Theorem3 Well-founded Model Construction.
Σ is monotonically increasing, and therefore for some ordinal δ:

Σ ↑ δ = Σ ↑ δ + 1 = WFC

Theorem 4.
Let A be an atom. Let T = {A ∈WFC} and F = {A : notA ∈WFC}.

We have WFMP =< T; F >.

Example 1.
Given the normal program:

a← notb

b← not a

e← f

f ← not g

g← h

the computation of the well-founded model by means of the above procedure is
the following.

Σ ↑ 0 = ∅
S(∅) = {not a,notb,not e,not f ,not g,noth

a,b, e, f}
Σ ↑ 1 = S(S(∅)) = {not g,noth

e, f}
S(Σ ↑ 1) = {not a,notb,not g,noth

a,b, e, f}
Σ ↑ 2 = S(S(Σ ↑ 1)) = Σ ↑ 1

Therefore, the fixpoint of the sequence is WFC = Σ ↑ 1 = {not g,noth, e, f},
and thus T = {e, f} and F = {g,h}.

For the sake of simplicity, by abuse of notation, conjunctions and disjunctions
will be treated as sets, so as not to be concerned about the order of the literals
composing them. Conjunctions of positive (respectively, negative) literals will
be denoted by names starting with C (respectively, C). Conjunctions of possibly
intermixed positive and negative literals will be denoted by names starting with
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Ĉ. Disjunctions of positive (respectively, negative) literals will be denoted by
names starting with D (respectively, D). Disjunctions of possibly intermixed
positive and negative literals will be denoted by names starting with D̂. By ∼
we will mean the operation of negating all the literals composing a conjunction
or disjunction: e.g., if DA = A ∨B, we have DA = ∼ DA = notA ∨ notB.
We will call ∼DD the negation of DD. Literals can be seen as particular cases
of conjunctions and disjunctions (singleton sets). Again by abuse of notation,
we will apply to conjunctions and disjunctions the usual set operators ∈, ∪, −
(set difference). Set operators will be used also for comparing disjunctions and
conjunctions. For instance, given disjunction DA and conjunction CB we will
write CB 6⊆ DA to mean that the atoms composing CB are not a subset of the
atoms composing DA.

In this notation, a disjunctive clause of the form 1 is written as:

DA← CB, CC

3 A Summary of the Static Semantics

In this section we report the main definitions and results about the static seman-
tics, as introduced in [Prz94]. The static semantics can be seen as an extension
of the well-founded model semantics to disjunctive logic programs. In fact, it
derives a minimal, in some sense, set of conclusions that can be inferred from
a disjunctive program. This is obtained by translating the (instantiated version
of) the program into a first-order Autoepistemic Logic of Knowledge and Be-
liefs. The language of these kinds of theories is a propositional language LB,
with standard connectives (∨, and, ∧, or, ⊃, material implication, ¬, negation),
the propositional letter ⊥ (denoting false) and a modal operator B, called the
belief operator. The atomic formulae of the form BF, where F is an arbitrary
formula of LB, are called belief atoms. BF intuitively means ”F is believed” The
formulae of LB in which B does not occur are called objective and the set of such
formulae is denoted by L.

Definition 5 Belief Theory.
An autoepistemic theory of beliefs, or just a belief theory, is an arbitrary theory
in the language LB.

Definition 6 Affirmative Belief Theory.
An affirmative belief theory, is a theory in the language LB consisting of a (pos-
sibly infinite) set of clauses of the form:

B1 ∧ . . . ∧Bm ∧ BG1 ∧ . . . ∧ BGk ∧ ¬BF1 ∧ . . . ∧ ¬BFn ⊃ A1 ∨ . . . ∨Al (2)

where l > 0, k,m,n ≥ 0, Ai’s and Bi’s are objective atoms and Fi’s and Gi’s
are arbitrary formulae.

5



A disjunctive logic program P is translated into a special case of affirmative
belief theory, where every clause of the form 1 is considered to be translated into
the corresponding axiom:

B1 ∧ . . . ∧Bm ∧ B¬C1 ∧ . . . ∧ B¬Cn ⊃ A1 ∨ . . . ∨Al (3)

where the Ai’s, Bi’s, and Ci’s are objective atoms.
A model of a belief theory is a consistent set of literals. All models are

assumed to be total, i.e., given atom A, either A or ¬A belongs to M. An atom
A is true in a model M (resp. false) if A (resp. ¬A) belongs to M. A model
M is smaller than a model N, if it contains less positive literals (atoms).

Definition 7 Minimal Model of a Belief Theory.
A minimal model of a belief theory T is a model M of T such that there is no
smaller model N of T which coincides with M on belief atoms.

T|=minF means that F is true in all minimal models of T, i.e. F is minimally
entailed by T.

In a theory T, the following axioms are given, describing obvious properties
of belief atoms.
(D) Consistency Axiom:

¬B⊥
(K) Normality Axiom: For any formulae F and G

B(F ⊃ G) ⊃ (BF ⊃ BG)

(N) Necessitation Rule: For any formula F

F
BF

Axiom (N) implies that beliefs are distributive with respect to conjunctions,
namely, for any formaulae F and G,

B(F ∧G) ≡ (BF ∧ BG)

Instead, it is not assumed that the belief operator is distributive with respect
to disjunctions. A variation of the semantics can, however, be easily defined by
assuming the
(J) Disjunctive belief axiom

B(F ∨G) ≡ BF ∨ BG

Definition 8 Formulae Derivable from a Belief Theory.
A formula F is derivable from a belief theory if it belongs to the smallest set,
Cn∗(T), of formulae of the language LB which contains the theory T and all
(the substitution instances of) the axioms (K), (D), and is closed under the
necessitation rule (N). This is denoted by T`∗F. Consequently,

Cn∗(T) = {F : T`∗F}

A belief theory T is called consistent if Cn∗(T) is consistent. Thus, T is consis-
tent if T 6 `∗⊥.
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Notice that, by the consistency axiom (D),

∀F such that BF ∈ T, T |= ¬B¬F

The Belief Closure Operator defined below is based on the idea of building
extensions of a belief theory T based on another belief theory S, obtained by
augmenting T with precisely those belief atoms BF which satisfy the condition
that F is true in all minimal models of S.

Definition 9 Belief Closure Operator.
For any belief theory T define the belief closure operator ΨT by the formula:

ΨT(S) = Cn∗(T ∪ {BF : S|=minF})

where S is an arbitrary belief theory and F ranges over all formulae of LB

Theorem10 Monotonicity of the Belief Closure Operator.
Suppose that the theories V′ and V′′ are extensions of a belief theory T obtained
by adding some belief atoms BF to T, and let T′ = Cn∗(V′) and T′′ = Cn∗(T′′).

If T ⊆ T′ then ΨT(T′) ⊆ ΨT(T′′)

A Static Expansion of a belief theory T is a fixed point of the operator ΨT.

Definition 11 Static Expansions.
A theory T̂ is a static expansion of the belief theory T iff T̂ = ΨT(T̂).

Static expansions T̂ of a belief theory T are first-order extensions of T, and
thus provide the meaning of T consisting of the sentences logically derivable
from T̂. Since ΨT is monotonic, it has a least fixed point, as stated below.

Theorem12 Least Static Expansion.
Every belief theory T has the least static expansion T, namely the least fixed
point of the operator ΨT.

Definition 13 Static Completion.
The least static expansion T of a belief theory T is called the static completion
of T.

Theorem 14 Consistency of Static Completions.
The static completion T of any affirmative belief theory T is always consistent.

As a special case, the static completion of a belief theory which is the trans-
lation of a disjunctive logic program P is consistent.

Definition 15 Static Semantics.
The static semantics of a belief theory T is the set of all formulae which belong
to the static completion T of T.
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In agreement with Minker’s Generalized Closed Word Assumption GCWA)
[Min82] and with McCarthy’s Circumscription [McC80], a formula F is believed
to be true in the static semantics if and only if it is minimally entailed by T.
Thus, BF means that F is believed to be true, i.e. that F is true in all minimal
models of T. By definition, notF means B¬F, i.e. F is believed to be false, i.e.
F is false in all the minimal models of T, i.e. ¬F is believed to be true.

For normal programs, the well-founded, static and stationary [Prz91] seman-
tics coincide. For positive disjunctive programs, the static semantics coincides
with the minimal model semantics.

In the rest of the paper, let P be the static completion of the affirmative
belief theory corresponding to a disjunctive logic program P.

Remark.
Notice that, in the context of an affirmative belief theory which is the translation
of a disjunctive logic program P, we are interested in a subset of P, consisting
of the belief atoms BD or B ∼D, where D is either a literal or a disjunction,
containing at least one atom/disjunction which appears as the conclusion of a
clause in P. We will call this subset the interesting subset of P.

4 Observations on the Static Semantics

In this section we propose some observations about the static semantics, useful
for what follows. Conventionally, we extend the notation for disjunctions and
conjunctions introduced in Section 2 to conjunctions/disjunctions of formulae of
LB.

An affirmative belief theory is, as defined in the previous section, composed of
a set of axioms represented as implications. Some of the axioms may have empty
conditions, and will be called facts. In the following, given any extension P̂ of the
belief theory corresponding to a disjunctive program P, we will call interesting
subset of P̂ the set of axioms whose conclusion is a disjunction (as a particular
case, an atom) containing at least one atom/disjunction which appears as the
conclusion of a clause in P.

Since any logical theory implies all the tautologies, this is also the case for
belief theories, and for their static expansions. From the necessitation rule (N),
it is thus possible to derive belief atoms corresponding to all the instances of
all the tautologies of propositional logic over the language LB, like for instance
B(F ∨ ¬F) for any formula F of LB. From the consistency axiom (D), formulae
corresponding to the negation of all the tautologies are symmetrically obtained,
like for instance ¬B((F ∧ ¬F)). Axiom (K) is a distributive axiom which allows
modus ponens to be applied to belief formulae. In an affirmative belief theory,
several disjunctions can be derived, not only those explicitly present in the con-
ditions of some of the axioms.

Example 2.
From theory:

A ∨B
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A ⊃ C

where A, B and C are objective atoms, given tautology

((A ⊃ C) ⊃ ((A ∨B) ⊃ (C ∨B)))

by axiom (N) it is possible to derive

B(A ∨B)

B(A ⊃ C)

B((A ⊃ C) ⊃ ((A ∨B) ⊃ (C ∨B)))

From the last formula, by axiom (K), applied twice, we obtain

B(A ⊃ C) ⊃ (B(A ∨B) ⊃ B(C ∨B))

Now, by modus ponens it follows

B(A ∨B) ⊃ B(C ∨B)

and then
B(C ∨B)

The following is a trivial consequence of the definitions reported in the pre-
vious section.

Proposition 16.
Let Z ⊆ P be a set of belief atoms. ΨP(P ∪ Z) ⊆ P.

Proof. Since Z ⊆ P, clearly (P ∪ Z) ⊆ (P ∪ P). By the monotonicity of ΨP,
ΨP(P ∪ Z) ⊆ ΨP(P ∪P). Since P ⊆ P, and P is a fixed point of ΨP, it follows
ΨP(P ∪ Z) ⊆ P). 2

In order to compute the static completion of disjunctive logic programs,
it is important to characterize the formulae F such that T|=minF, given an
affirmative belief theory T. The definitions imply that one has to assign arbitrary
truth values to belief atoms which are not in T, then minimize the objective
atoms, and select those which have the same truth value in all the minimal
models. Some observations are in order about what this means.

Lemma 17.
Let A be an objective atom. Let D̂D be a disjunction such that T|=minD̂D,

and A ∈ D̂D (or, respectively, ¬A ∈ D̂D). Assume 6 ∃D̂H, D̂H ⊆ D̂D,such that
A ∈ D̂H (or, respectively, ¬A ∈ D̂H). Then, T 6 |=min¬A

Proof. By hypothesis, D̂D is not redundant with respect to A (respectively,
¬A). Since it cannot be decided which of the literals composing D̂D are true,
any of them can be assumed in a minimal model. Thus, there will be minimal
models where A is true, and others where it is false. Therefore, ¬A can’t be
minimally entailed. 2
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Example 3.
From theory T

A ∨B ∨C

one cannot decide which literal is true. Thus, every minimal model will entail
A ∨B ∨C, but there will be three models, entailing A, B and C respectively.
Thus, T 6 |=minA, T 6 |=minB, and T 6 |=minC.
Given instead T’,

A ∨B ∨C

B ∨C

since the first disjunction is redundant with respect to the second one, every
minimal model will entail ¬A, and thus T′|=min¬A.

Lemma 18.
If for every axiom in T of the form ĈG ⊃ F, ∃BL ∈ ĈG : T 6|= BL then

T 6 |=minF andT 6 |=min¬F

Proof. If we consider such an axiom, by varying the truth value of BL, F becomes
alternatively true or false. Thus, neither F nor its negation may belong to all
minimal models. 2

Theorem19.
For any formula F and any affirmative belief theory T, T|=minF iff one of the
following cases holds:

(i) F is an atom or a disjunction, and there exists an axiom ĈG ⊃ F in T
where T |= ĈG

(ii) F = ¬A, where A is an objective atom to which Lemma 17 does not apply,
and for every axiom ĈG ⊃ A in T there exists an objective formula R ∈ ĈG
such that T 6|= R.

(iii) F = ¬A where A is an objective atom to which Lemma 17 does not apply,
and there is no axiom CG ⊃ A in T.

(iv) F = ¬A where A is an objective atom, (i) does not apply to A, and
T|=minDD, T|=minDH, H ⊆ D, A ∈ D, A 6∈ H.

(v) F is a negative disjunction DD, T|=minDD and ∃L ∈ DD, T 6 |=minL.
(vi) F is a logical consequence of formulae which fit in cases (i)-(v).

Proof. Case (i) is fairly obvious. In cases (ii)-(iv), if Lemma 17 does not apply
we can conclude that every minimal model will entail ¬A, since it does not entail
A, and it is total. Case (v) holds because

¬(A ∧B) ≡ (¬A ∨ ¬B)

is a tautology of first-order propositional logic. Case (vi) is also obvious. All the
formulae not considered in cases (i)-(vi) are not minimally entailed since they
are not necessary for satisfying axioms in T, and are not logical consequences of
those which are necessary. 2
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In [Prz94], the static completion is shown to be the least fixed point of a
monotonic minimal model operator, based on the belief closure operator ΨT, so
that it can be iteratively constructed starting from P. In the following sections,
we propose an analogous characterization, given by splitting the construction
into two parts: a preliminary part of simplification of the program w.r.t. dis-
junction, and then a constructive part based on a variant of the well-founded
model computation.

5 Program Transformation

The objective of the program transformation procedure described in this section
is that of identifying and making explicit all potential deductions which can be
performed, according to a given semantics, by means of the disjunctive knowledge
represented in the program. The result is a new program P’ (containing P as
a proper subprogram) where disjunction may occur also in the conditions of
the axioms. Thus, the definition of the procedure formalizes the rules for using
disjunction in the inference process.

For the static semantics, that we are considering as a case-study, a disjunction
of literals is transposed, by necessitation (axiom (N)), into a single belief atom,
which is then used in derivations according to the usual first-order-logic rules.
In the static semantics, in fact, it is not assumed that the belief operator is
distributive with respect to disjunctions. It is however possible, as we will see,
to optionally introduce the disjunctive belief axiom.

Following [Prz94], and as summarized in the previous section, we consider
every clause in a disjunctive logic program P to be translated into a correspond-
ing axiom of an affirmative belief theory, of the form 2. Therefore, we are able
to use all features of first-order predicate logic (including moving literals from
one side of the implication to the other, and introducing disjunctions in the con-
ditions). Since we will not explicitly use this notation, please recall that notA
means B¬A. All disjunctions in the conditions of clauses will be enclosed in
brackets, to indicate that they correspond to a single belief atom. Axioms in P
and P’ will be also called, by abuse of notation, clauses.

As shown in Example 2, in the context of theories which are the translation
of disjunctive logic programs, a way for deriving new disjunctions is that of using
tautologies of propositional logic. Useful tautologies concerning disjunction can
be represented by means of the following axiom schemata. Let Q, R, S, W be
objective atoms, D be a disjunction of objective atoms, and C any conjunction.

((C ∧W ⊃ Q) ⊃ (C ∧ (W ∨ S)) ⊃ (Q ∨ S)) (4)

((C ⊃ D) ⊃ (C ∧W ⊃ (D ∨ S)) (5)

The purpose of axiom 4 is that of introducing disjunctions in the conditions
of clauses, so as to derive new disjunctions from those which are conclusions of
some other clause in P. Axiom 5, insted, has the aim of eliminating redundant
clauses.
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Proposition 20.
Axiom schema 4 represents all possible derivations of disjunction from other
disjunctions.

Proof. This is easy to see, since this axiom potentially introduces in the condi-
tions and conclusion of clauses all possible disjunctions over the language of the
program. 2

In order to generate only the interesting clauses (in the sense specified in
Section 4), we also introduce the following restricted form of axiom schema 4.

((C ∧W ⊃ Q) ∧ (C ∧R ⊃ S) ⊃ (C ∧ (W ∨R)) ⊃ (Q ∨ S)) (6)

Axiom 6 joins two clauses, thus obtaining a new one with disjunctive condi-
tions and conclusion.

The program transformation procedure performs a controlled application of
the above schemata to the given program, so as to generate interesting axioms
only. To do this, the application takes as basis disjunctions DD appearing as the
conclusion of a clause in P, and their negation ∼DD. With this limitation, only
the significant subset of the static completion is computed in the constructive
step. Other limitations are introduced to avoid the generation of redundant
clauses.

The program transformation procedure for the static semantics consists in
repeatedly applying the steps defined below in the given order, each step being
repeated until no further transformation is possible. Each transformation will be
first illustrated by means of examples, and then defined formally.

Initial Step
The aim of this step is that of relating disjunctions expressed explicitly with

disjunctions expressed implicitly, by applying axiom schema 6.

Example 4.
Given clauses:

a← b,g

a← c,h

b ∨ c← e, f

add axiom:

a← (b ∨ c),g,h

Example 5.
Similarly to the previous example, given clauses:

a ∨ b

c← a, e

d← b, not f
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add axiom:

c ∨ d← (a ∨ b), e,not f

Formally, this transformation step is defined as follows.

Definition 21.
Given clauses:

DD1 ← CB1, CC1

. . .

DDn ← CBn, CCn

DT← CH, CK

if ∀ CBi i = 1, . . . ,n ∃Ai ∈ CBi such that Ai ∈ DT, then:
let CB′

i =
⋃n

i=1 (CBi −Ai);
let CC′

i =
⋃n

i=1 CCi;
let DD′ =

⋃n
i=1 DDi;

let DA = A1 ∨ . . . ∨An;
add axiom:

DD′ ← DA, CB′, CC′

As a special case, we may have DD1 = ... = DDn.

An analogous transformation involving negative literals allows us to option-
ally introduce the disjunctive belief axiom.

Example 6.
Given clauses:

a← notb

a← not c

b ∨ c← e, f

the axiom:
a← (notb ∨ not c)

is an application of the disjunctive belief axiom. In fact, in terms of belief theo-
ries, the axiom schema which has been applied in this case is:

((B¬b ⊃ a) ∧ (B¬c ⊃ a)) ⊃ (B(¬b ∨ ¬c) ⊃ a)

which is equivalent to

((B¬b ∨ B¬c) ⊃ a)) ⊃ (B(¬b ∨ ¬c) ⊃ a)
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Notice that, in performing derivations from the program P, the disjunctive
belief axiom makes sense only if applied to negative atoms, which are the only
belief atoms in the program. An example of application is shown in Section 6.

Formally, we have the following

Definition 22.
Given the same clauses as in previous definition,
if ∀ CCi i = 1, . . . ,n ∃notAi ∈ CCi such that
notAi ∈ ∼DT, then:
let CC′

i = CCi − notAi;
let CP =

⋃n
i=1 CBi and CQ =

⋃n
i=1CC′

i;
let DD′ =

⋃n
i=1 DDi;

let DD = notA1 ∨ . . . ∨ notAn;
add axiom:

DD′ ← DD, CP, CQ

Intermediate Step
This step carefully applies axiom schema 4, so as to exploit disjunctions

which appear as the conclusion of some clause in P.

Example 7.
Consider the following clauses.

t← a, f

a ∨ b← p,notq

add axiom:

t ∨ b← (a ∨ b), f

The formal definition of this transformation is the following.

Definition 23.
Given clauses:

DA← CB, CC
DD← CP, CQ

if DA 6⊆ DD and ∃A ∈ CB such that A ∈ DD, then:
let CB′ = CB− {A};
let DD′ = DD− {A};
let DA′ = DA ∪ DD′;
add axiom:

DA′ ← DD, CB′, CQ

The limitation DA 6⊆ DD is aimed at avoiding redundancies, as exemplified
below.
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Example 8.
Given clauses:
a ∨ b ∨ c
c ∨ b← c
it is useless to generate the axiom:
a ∨ b ∨ c← (a ∨ b ∨ c)

Example 9.
Consider the following clauses.

g← k,not c

c ∨ d←m,notn

The situation is similar to previous example, but the condition not c in the first
clause corresponds to the negation of atom c, that appears in the disjunction
c ∨ d, which is the conclusion of the second clause. In this case, add axiom:

g ∨ notd← k, (not c ∨ notd)

Formally, we have

Definition 24.
Given the same clauses as in previous definition,
if DA 6⊆ DD and ∃notA ∈ CC such that notA ∈ ∼DD, then:
let CC′ = CC− {notA};
let DD = ∼DD;
let DD′ = DD− {notA}; let D̂E = DA ∨ DD′

add axiom:

D̂E← DD, CB, CC′

Again, the limitation DA 6⊆ DD is aimed at avoiding redundancies, such as
the following.

Example 10.
Given clauses:
a ∨ b ∨ c
a ∨ b← not c
it is useless to generate the axiom:
a ∨ b ∨ not a ∨ notb← (not a ∨ notb ∨ not c)

Final Step
The aim is to eliminate redundant axioms, i.e. those axioms whose head and

body are included in that of another (according to axiom schema 5).
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Example 11.
Consider the following axioms.

a ∨ b← f ,g

a ∨ b ∨ c← f ,g,h

The second axiom can be removed, since its conclusion is a trivial consequence
of the conclusion of the first one.

Formally, we have

Definition 25.
Let C1 be the axiom

DA← CB, CC

and C2 be the axiom
DF← CG, CH

If DA ⊆ DF and CB ⊆ CG and CC ⊆ CH, then remove C2.

In the rest of this paper, when considering one of the following: the disjunctive
logic program P; the new program P′ obtained by applying the transformation
procedure defined above; the consequences of P’; the results of the constructive
phase; we will say that they correspond to an affermative belief theory (or more
generally to a set of formulae of LB) in the sense that: every atom notA must
be read as B¬A and every disjunction A∨B in the conditions of axioms must be
read read as B(A ∨B). By abuse of notation, we indicate with the same names
P and P’ also the corresponding belief theories. By ”model” we mean a model
of a belief theory, as defined in Section 3.

Proposition 26.
P’ corresponds to an affirmative belief theory.

Proof. From the definition of the program transformation steps, it is easy to see
that the resulting axioms are still of the form 2. 2

Theorem 27.
M is a model of P iff M is a model of P′.

Proof. The axioms added to P by the program transformation procedure are
logical consequences of P, and therefore adding them explicitly does not change
the models of the theory. 2

Theorem 28.
Cn∗(P) = Cn∗(P′)

Proof. The consequences obtained from the axioms of P′ added by the program
transformation procedure can be derived directly ¿from P, given the tautologies
of propositional logic. Therefore, the overall set of consequences is the same. 2

16



Corollary 29.
The static completion of P is the same as the static completion of P′.

Proof. By the definition of belief closure operator, since the set of minimal mod-
els and the consequences Cn∗ are the same for P and P′, the fixed points of the
belief closure operators ΨP and and ΨP′ must also be the same. 2

The previous results imply that we can indifferently consider the minimal
models and the static completion of P and P′. In particular, we are entitled to
compute the static completion of P by means of the transformed program P′.

6 Iterated Fixpoint Computation

The static semantics can be computed by applying to the program P′, resulting
from the above-defined transformation procedure, a variation of the construction
summarized in Section 2. In particular, it is only necessary to modify the base
step, while the rest of the procedure remains the same.

Preliminarly, we assume that the Herbrand base of P′ contains (as new
atoms): all negative literals appearing in P′; all disjunctions appearing in P′; and
the negation of each disjunction appearing in P′. This extended Herbrand base
will be denoted by BC

P . In this way, the program P’ can be treated, basically, as
a definite Horn-clause program.

Notice that any set Z ⊆ BC
P corresponds to an affirmative belief theory

composed of facts. Again by the abuse of notation, this affirmative belief theory
will be called Z.

Proposition 30. Given a set Z ⊆ BC
P, the logical consequences of P′ ∪ Z cor-

respond to the interesting subset of Cn∗(P ∪ Z).

Proof. The program transformation procedure has added to P′ new axioms
which simulate the application of axioms (K) and (N), taking (D) into account.
All the belief formulae in P’ and Z are represented as atoms of BC

P . The axioms
are formulated so as to derive interesting disjunctions. Thus, this corresponds
to applying Cn∗ to P ∪ Z. 2

Proposition 31. Given a set Z ⊆ BC
P, Cn∗(P ∪ Z) is equivalent to the least

Herbrand model of P ∪ Z.

Proof. This holds because, in the extended Herbrand base, P ∪ Z (or, equiva-
lently, P′ ∪ Z) is a definite program. 2

For the static semantics, in order to compute what is true in all minimal
models of a belief theory corresponding to the translation of a disjunctive logic
program, it is necessary to consider the requirements stated in Theorem 19. Since
the steps of the iterated fixpoint procedure start from a current set of beliefs,
which is an approximation of the final one, some of the requirements can be
taken into account also in the base step.
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Definition 32 Modified Base Step.
Let A,notA,DD,DD ∈ BC

P . Let J ⊆ BC
P .

TJ ↑ 0 =
(1) { notA : A 6∈ J

and ∀DD such that A ∈ DD DD 6∈ J
and ∀DD such that notA ∈ DD DD 6∈ J}

⋃
(2) { notA : A 6∈ J

and ∀DD such that A ∈ DD
DD′ = DD− {A} ∈ J}

⋃
(3) { DD = ∼DD such that

∃A ∈ DD,A 6∈ J}

Lemma 33.
Let J ⊆ BC

P, and let J be consistent. Let F be a negative literal or a negative
disjunction. TJ ↑ 0 corresponds to the set {BF : J|=minF}.

Proof. J corresponds to an affirmative belief theory composed of facts. Points
(1)-(3) of Definition 32 exactly correspond to points (iii)-(v) of Theorem 32,
which are those applicable to this kind of theory. 2

We will still call Σ the function resulting from Definitions 1 and 2 by substi-
tuting, in Definition 1, the original base step with the modified base step.

Theorem34.
Σ is monotonically increasing, and therefore for some ordinal δ:

Σ ↑ δ = Σ ↑ δ + 1 = WFD

The proof is like those in [Gel93] and [SC94], since the modified base step
does not actually affect this point.

In the following, given Z ⊆ BC
P , the comparison between Σ(Z) and ΨP(P∪Z)

(which is equal, by the results given in previous section, to ΨP′(P′∪Z) ) is meant
with respect to the interesting subset of ΨP(P ∪ Z).

Theorem35.
Let Z ⊆ BC

P, Z ⊆ P. P ∪Σ(Z) = ΨP(P ∪ Z).

Proof. By the definition of Σ,

Σ(Z) = S(S(Z)) = TZ ↑ ω

By Proposition 31 and Lemma 33,

S(Z) = Cn∗(P ∪ {BF : Z|=minF}
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where F is either a negative literal or a negative disjunction. Notice, however,
that these belief atoms (beliefs about negative formulae) are the only interesting
ones in this context: in fact, they are the only belief atoms explicitly present in
the clauses of P’.

S(Z) is an overestimated, possibly inconsistent set of consequences. In fact,
it will contain both A and notA any time that Z|=minnotA, but A is instead
a consequence of P∪{notA}. When computing S(S(Z)), however, these incon-
sistent conclusions will be excluded, since point (1) of the modified base step will
exclude notA. Then, the modified base step will compute the negative formulae
F that are minimally entailed by the consistent subset of S(Z).

Since Z ⊆ P, this corresponds to finding the formulae F that are minimally
entailed by P∪Z. Thus, by applying again the definition of Σ and Proposition 31,
we have

P ∪ S(S(Z)) = P ∪Σ(Z) = Cn∗(P ∪ {BF : P ∪ Z|=minF}

which is exactly ΨP(P ∪ Z). 2

Corollary 36.
Σ(Z) ⊆ P.

Proof. The result follows from the above Theorem, and from Proposition 16. 2

Lemma 37.
P ∪ (Σ ↑ n + 1) = P ∪ (Σ(Σ ↑ n)) = ΨP(P ∪ (Σ ↑ n)).

Proof. Since Σ ↑ 0 = ∅, and clearly ∅ ⊆ P, by Theorem 35 P ∪ (Σ ↑ 1) =
ΨP(P ∪ (Σ ↑ 0)). The thesis easily follows by induction, assuming that Σ ↑ n ⊆
P, and applying Theorem 35. 2

Corollary 38.
The sequence ΨP(P ∪ Σ ↑ n) is monotonically increasing, and thus has a least
fixed point.

Proof. It is an immediate consequence of Theorem 34 and Theorem 35. 2

Corollary 39.
The fixed point of the sequence ΨP(P ∪ Σ ↑ n) is the least fixed point of the
operator ΨP.

Proof. This follows from Corollary 36, since the fixed point of the sequence
ΨP(P ∪ Σ ↑ n) is reached in correspondence of the least fixed point Σ ↑ δ
of the sequence Σ ↑ n. In fact, by Theorem 35, P ∪Σ ↑ δ = ΨP(P ∪Σ ↑ δ) 2

Therefore, we have proved the correspondence between the (set of conse-
quences of) WFD and the static completion. In the next section we show this
correspondence with respect to some examples.
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7 Examples

In this Section we give some examples of the proposed approach. First, we con-
sider two of the sample programs discussed in [Prz94] so as to show that the
proposed constructive approach gives the same results. Then, we propose more
complex new examples, in order to better illustrate the program transformation
procedure.

Example 1. ([Prz94, Example 5.2] Let wp1 stand for Write Paper 1, wp2 stand
for Write Paper 2, gc stand for Get Crazy, gf stand for Get Fired, and let the
given program P be the following.

wp1 ∨wp2
gc← wp1, wp2
gf ← notwp1, notwp2

The program transformation procedure does not modify the program. The com-
putation of the static completion by the proposed extended well-founded com-
putation is the following.

Σ ↑ 0 = ∅
S(∅) = {notwp1 ∨ notwp2,notwp1,notwp2,not gc,not gf ,

wp1 ∨wp2,gf}
Σ ↑ 1 = S(S(∅)) = {notwp1 ∨ notwp2,not gc,

wp1 ∨wp2}
S(Σ ↑ 1) = {notwp1 ∨ notwp2,not gc,not gf ,

wp1 ∨wp2}
Σ ↑ 2 = S(S(Σ ↑ 1)) = S(Σ ↑ 1)

Therefore, the fixpoint of the sequence is
WFD = Σ ↑ 2 = {notwp1 ∨ notwp2,not gc,not gf ,wp1 ∨ wp2}. In fact,
given the belief theory T corresponding to P, the static completion is
T = Con∗ (T ∪ {B(¬wp1 ∨ ¬wp2),B¬gc,B¬gf ,B(wp1 ∨wp2)}).

Example 2. ([Prz94, Example 5.4] Let w stand for Work, t stand for Tired, s
stand for Sleep, p stand for Paid, u stand for Unhappy, and let the given program
P be the following.

w ∨ t ∨ s

w← not t

s← notw

t← not s

u← w, notp

p
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The program transformation procedure does not modify the program. The com-
putation of the static completion is the following.

Σ ↑ 0 = ∅
S(∅) = {notw ∨ not t ∨ not s,notw,not t,not s,notu,notp,

w ∨ t ∨ s,w, t, s,u,p}
Σ ↑ 1 = S(S(∅)) = {notw ∨ not t ∨ not s,

w ∨ t ∨ s,p}
S(Σ ↑ 1) = {notw ∨ not t ∨ not s,notu

w ∨ t ∨ s,p}
Σ ↑ 2 = S(S(Σ ↑ 1)) = S(Σ ↑ 1)

Therefore, the fixpoint of the sequence is
WFD = Σ ↑ 1 = {notw ∨ not t ∨ not s,notu,p,w ∨ t ∨ s}. In fact, given the
belief theory T corresponding to P, the static completion is
T = Con∗ (T ∪ {B(¬w ∨ ¬t ∨ ¬s),B¬u,Bp,B(w ∨ t ∨ s)}).

It is easy to see that the correspondence between WFD and Static Comple-
tion also holds for [Prz94, Example 5.3].

Example 3. Let us reconsider the predicates in Example 1, together with: gs
standing for Get Salary, gr standing for Get Rich, gf standing for Get Famous,
gh standing for Get Happy, ga standing for Get Angry. Let the given program
P be the following.

wp1 ∨wp2
gr← wp1
gf ← wp2
gc← gr, gf

gh← gr

gh← gf

gs← wp1
gs← wp2
ga← notwp1
ga← notwp2

The initial step of the program transformation procedure adds the axioms:

gs← (wp1 ∨wp2)
gh← (gr ∨ gf)

The intermediate and final steps add the axioms:

gr ∨wp2← (wp1 ∨wp2)
gf ∨wp1← (wp1 ∨wp2)
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ga ∨ notwp1← (notwp1 ∨ notwp2)
ga ∨ notwp2← (notwp1 ∨ notwp2)

The computation of the static completion by the proposed procedure is the
following.

Σ ↑ 0 = ∅
S(∅) = {notwp1 ∨ notwp2,not gr ∨ not gf ,

notwp1,notwp2,not gr,not gf ,
not gh,not gc,not gs,not ga,
gr ∨wp2,gf ∨wp1,
ga ∨ notwp1,ga ∨ notwp2,
wp1 ∨wp2,gr ∨ gf ,
gh,gs,ga}

Σ ↑ 1 = S(S(∅)) = {notwp1 ∨ notwp2,not gr ∨ not gf ,not gc,
wp1 ∨wp2,gr ∨ gf ,
gr ∨wp2,gf ∨wp1,
ga ∨ notwp1,ga ∨ notwp2,
gh,gs}

S(Σ ↑ 1) = {notwp1 ∨ notwp2,not gr ∨ not gf ,not gc,
wp1 ∨wp2,gr ∨ gf ,
gr ∨wp2,gf ∨wp1,
ga ∨ notwp1,ga ∨ notwp2,
gh,gs}

Σ ↑ 2 = S(S(Σ ↑ 1)) = S(Σ ↑ 1)

Therefore, the fixpoint of the sequence is
WFD = Σ ↑ 2.

By applying the negative part of the initial step, it is possible to implement
the disjunctive belief axiom

B(F ∨G) ≡ BF ∨ BG

In this case, in fact, we would add axiom

ga← notwp1 ∨ notwp2

which would lead to adding conclusion ga to WFD.

Example 4. Let gq stand Good Quality, rf stand for Refunded, st stand for
Satisfied, ba stand for Buy Again, and let the given program P be the following.

gq ∨ rf

st← gq

ba← st

ba← rf
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The program transformation procedure (initial and intermediate steps) adds the
axioms:

ba← st ∨ rf

st ∨ rf ← (gq ∨ rf)

The first new axiom is obtained by joining the third and fourth clauses, thus
making explicit the disjunctive information that they express. The second new
axiom is obtained by a derivation involving the first two clauses. It is easy to
verify that:
WFD = {not gq ∨ not rf ,not st ∨ not rf , gq ∨ rf , st ∨ rf , ba}

Thus, it is clear that any shop which satisfies the condition st∨rf , represented
in the first clause of the program, is a good shop, where a customer will buy
again.

8 Concluding Remarks

The idea of applying program transformation techniques for characteriz-
ing/computing the semantics of normal and disjunctive programs is not new
in itself. It has been used, for instance, in [Cos95] for characterizing the stable
model semantics [MG88] for normal programs, and in [MM93] for computing the
well-founded and stationary semantics for normal and disjunctive programs.

In this paper, however, a main aim has been that of abstracting from compu-
tational issues and trying to analyze and characterize the general features of any
semantics of disjunctive programs. An analysis and a classification of semantics
for disjunctive programs have been proposed in [Dix92] [JD94]. We are indebted
to these papers, and the spirit of the present paper is very much the same.

The perspective of this proposal is twofold. On the one hand, as already
mentioned, the proposed approach might constitute the formal foundation of ef-
ficient procedural semantics for disjunctive logic programs. On the other hand, it
is aimed to be a step towards the definition of a general framework for comparing
different related semantics, and for possibly specifying parametrized definitions
of semantics, to be adapted to the application domain at hand. What can be
parametrized is the following. First, the choice of the axiom schemata on which
the program transformation procedure is based. This influences the treatment
of disjunctive information: in fact, the set of conclusions potentially derivable by
the axioms given in Section 5 can be restricted, or changed, according to some
kind of reasoning principle. Second, the modified base step, which basically de-
fines the relationship between disjunction and negation. Also in this case, some
other reasoning principles could be adopted, instead of minimal entailment.

The proposal in the present form could be potentially extended to versions of
the stable model semantics for disjunctive programs, by suitably adapting those
procedures which compute the stable models on the basis of the well-founded
model, such as [Cos95], [VS92].
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