Control Systems Course, Academic Year 2013-2014

Dr. A. D'Innocenzo

Second Exam Session, Part 1. February 12th 2014

Available time: 2 h $\,$

Ex1 (11 points) Given a plant characterized by the transfer function

$$G(s) = \frac{(s+3)(s+4)}{s(s+1)^2},$$

compute the output signal y(t) of the plant to the signal $u(t) = (3 + t^2 - sin2t)\delta_{-1}(t)$ applied to the input of the plant, and assuming zero initial conditions. Then design a control scheme and characterize the set of parameters of a controller $G_c(s) = \frac{K(s+z)}{s^{\alpha}(s+p)}, K \in \mathbb{R}, z, p > 0, \alpha \ge 0$ a non-negative integer, such that the following hold:

- 1. the closed loop system is a tric with respect to a step additive disturbance applied to the output of the plant;
- 2. the steady state error with respect to a parabola input is smaller or equal to 10^{-1} ;
- 3. all poles of the closed loop system have real part smaller or equal to -2.
- **Ex2** (11 points) Given an actuator characterized by the following state space representation

$$\begin{split} \dot{x}_1(t) &= x_1(t) + x_2(t) - u(t), \\ \dot{x}_2(t) &= -x_1(t) + 2x_2(t) - u(t), \\ y(t) &= x_1(t) - 2x_2(t), \quad t \geq 0. \end{split}$$

and a plant characterized by the transfer function $G(s) = \frac{s+1}{s-3}$, design a control scheme and characterize the set of parameters of a controller $G_c(s) = \frac{K_P + K_D s}{s^{\alpha}}$, $K_P, K_D \in \mathbb{R}$, $\alpha \ge 0$ a non-negative integer, such that:

- 1. the closed loop system is a static with respect to a step additive disturbance applied to the output of the plant;
- 2. the steady state error with respect to a ramp input is smaller than 0.1;
- 3. the settling time of the closed loop system is smaller than 1s.

Finally discuss the implementability of the obtained controller.

Ex3 (8 points) Discuss the rejection with respect to polynomial disturbances applied to the input of a plant, to the output of a plant and to the feedback branch.