MATHEMATICAL ASPECTS OF A MODEL FOR
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Abstract. The model for granular flow being studied by the authors was proposed
by Hadeler and Kuttler in [20]. In one space dimension, by a change of variable, the
system can be written as a 2 X 2 hyperbolic system of balance laws.

Various results are obtained for this system, under suitable assumptions on initial
data which leads to a strictly hyperbolic system. For suitably small initial data, the so-
lution remains smooth globally. Furthermore, the global existence of large BV solutions
for Cauchy problem is established for initial data with small height of moving layer.
Finally, at the slow erosion limit as the height of moving layer tends to zero, the slope of
the mountain provides the unique entropy solution to a scalar integro-differential con-
servation law, implying that the profile of the standing layer depends only on the total
mass of the avalanche flowing downhill.

Various open problems and further research topics related to this model are discussed
at the end of the paper.
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1. Introduction. In [20] the following model was proposed to de-
scribe granular flows

{ he = div(hVu) — (1 = [Vul)h, (1.1)

u = (1—|Vul)h.

These equations describe conservation of masses. The material is divided
in two parts: a moving layer with height A on top and a standing layer with
height u at the bottom. The moving layer slides downhill, in the direction
of steepest descent, with speed proportional to the slope of the standing
layer. If the slope |Vu| > 1 then grains initially at rest are hit by rolling
grains of the moving layer and start moving as well. Hence the moving
layer gets bigger. On the other hand, if |Vu| < 1, grains which are rolling
can be deposited on the bed. Hence the moving layer becomes smaller.

This model is studied in one space dimension by the authors [29, 2, 3].
Define p = u,, and assume p > 0, one can rewrite (1.1) into the following
2 x 2 system of balance laws

he — (hp)x = (p — 1)h,
{ pe+ ((p—1)h), = 0. (1.2)
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Writing the system of balance laws (1.2) in quasilinear form, the corre-
sponding Jacobian matrix is computed as

Alhp) = <p_p1 _hh> '

For h > 0 and p > 0, one finds two real distinct eigenvalues A\ < 0 < Ao,
Ayt

with 71,7 the corresponding eigenvectors. Denote “o” as the directional
derivative, a direct computation gives

20 +1) _ 2p—1) 2%k
A2 — A1 p A2 — A p?

7"1./\12—

This shows the fact that the first characteristic field is genuinely nonlinear
away from the line p = 1 and the second field is genuinely nonlinear away
from the line h = 0, therefore the system is weakly linearly degenerate at
the point (h,p) = (0,1). Also, the direction of increasing eigenvalues, for
the first family, changes with the sign of p — 1. The lines p =1, h = 0 are
characteristic curves of the first, second family respectively, along which
the system becomes separated and linearly degenerate:

pzl, ht—hz:(), h:O, pt:()

See Figure 1 for the characteristic curves.
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Fic. 1. Characteristic curves of the two families in the h-p plane. The arrows
point in the direction of increasing eigenvalues.

In this paper we review some recent results about the existence of
solutions for system (1.2), that are shown to exist globally in time for
suitable classes of initial data. For systems of conservation laws with source
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term, some dissipation conditions are known in the literature that ensure
the global in time existence of (smooth or weak) solutions; we refer to [22],
to Kawashima—Shizuta condition (see [21]) for smooth solutions and to
[15, 24] for the weak solutions. These conditions exploit a suitable balance
between the differential terms and the source term that enable to control
the nonlinearity of the system. It is interesting to remark that system
(1.2) does not satisfy any of these conditions, nevertheless it admits global
in time solutions.

For a derivation of the model (1.1) of granular flow we refer to [20].
Other models can be found in [7, 16, 27]. A mathematical analysis of steady
state solutions for (1.1) was carried out in [10, 11]. We remark that, besides
[29], the papers [2, 3] provide the first analytical study of time dependent
solutions to this system.

2. Global smooth solutions. The global existence of smooth solu-
tions is established in [29], under suitable assumptions on the initial data.
Let’s first define the decoupled initial data

h(0,z) = ¢(x) p(0,z) =14 ¥(x) (2.1)
with ¢, 1 satisfying

{éf)(x):() if ¢ a,0],
P(x)=0 if x¢]lcd].

The intervals are disjoint, i.e., a < b < ¢ < d. Moreover we assume
¥(x) > —1 for all z. For decoupled initial data, a global solution of the
Cauchy problem can be explicitly given, namely

h(t,z) = ¢p(x + 1), p(t,z) =1+ 9Y(x), zxelR, t>0.

Our first result provides the stability of these decoupled solutions.
More precisely, every sufficiently small, compactly supported perturbation
of a Lipschitz continuous decoupled solution eventually becomes decoupled.
Moreover, no gradient catastrophe occurs, i.e., solutions remain smooth for
all time.

THEOREM 2.1. Let a < b < ¢ < d be given, together with Lipschitz
continuous, decoupled initial data as in (2.1). Then there exists § > 0 such
that the following holds. For every perturbations g?), 7]1, satisfying

o) =d@) =0 i a¢lad, |F@|<o|iw <8, @2
the Cauchy problem for (1.2) with initial data

h(0, ) = ¢() + d(x) p(0,2) = 1+ ¢(x) + 4 (x), (2.3)

has a unique solution, defined for all t > 0 and globally Lipschitz continu-
ous. Moreover, this solution becomes decoupled in finite time.

The proof replies on the method of characteristics [22]. One must
bound the L> and L' norms of h, and p,. For details, we refer to [29].
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3. Global existence of large BV solutions. For more general ini-
tial data, due to the nonlinearity of the flux, the solutions will develop
discontinuities (shocks) in finite time. Solutions should be defined in the
space of BV functions. Assuming the height of the moving layer h suffi-
ciently small, in [2] we prove the global existence of large BV solutions, for
a class of initial data with bounded but possibly large total variation.

More precisely, consider initial data of the form

h0,z) = h(z) >0,  p(0,z) = p(x) > 0. (3.1)
which satisfy the following properties:

Tot.Var.{p} < M, Tot.Var.{h} < M, (3.2)
|hllg <M, |p—1w <M,  plz)>po >0, (3.3)

for some constants M (possibly large) and pg. The following theorem is
proved in [2].

THEOREM 3.1. For any constants M, py > 0, there exists § > 0 small
enough such that, if (3.2)-(3.3) hold together with

AL <46, (3.4)

then the Cauchy problem (1.2)—(3.1) has an entropy weak solution, defined
for all t > 0, with uniformly bounded total variation.

Compared with previous literature, the main novelty of this result
stems from the fact that:

(i) We have arbitrarily large BV data,

(ii) We assume a small L> bound on h, but not on both initial data;

(iii) The system is strictly hyperbolic, but one of the characteristic
fields is neither genuinely nonlinear nor linearly degenerate;

(iv) The system (1.2) contains source terms.

In the literature, for systems without source terms and small BV
data, the global existence and uniqueness of entropy-weak solutions to
the Cauchy problem are well known, using techniques such as the Glimm
scheme [18,; 23, 25|, front tracking approximations [9, 5, 6], and vanish-
ing viscosity approximations [8]. In some special cases, one has the exis-
tence and uniqueness of global solutions in the presence of a source term
[15, 24, 12, 14, 1, 13].

However, global existence of solutions to hyperbolic systems with large
BV data is a more difficult, still largely open problem. In addition to the
special system [26], two main cases are known in the literature, where global
existence of large BV solutions is achieved.

One is the case of Temple class systems [28], where one can measure the
wave strengths in terms of Riemann invariants, so that the total strength
of all wave fronts does not increase in time, across each interaction. A
second major result [19] refers to general 2 X 2 systems, where again we
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can measure wave strengths in terms of Riemann coordinates; here, if the
L norm of the solution is sufficiently small, the increase of total variation
produced by the interaction is very small, and a global existence result of
large BV solutions can then be established.

The validity of Theorem 3.1 relies heavily on some special properties
of the hyperbolic system (1.2). First, the system is linearly degenerate
along the straight line where h = 0. In the region where h is very small,
the second field of the system is “almost-Temple class”. Rarefaction curve
and shock curve through the same point are very close to each other. This
allows us to deduce refined interaction estimates, in which the effect of the
nonlinearity is controlled by the quantity ||h||Le.

Second, the source term involves the quadratic form h(p — 1). Here
the quantities h and p — 1 have large, but bounded L' norms. Moreover,
they are transported with strictly different speeds. The total strength of
the source term is thus expected to be O(1) - ||h||L: - ||[p—1||lL: . In addition,
since h itself is a factor in the source term, one can obtain a uniform bound
on the norm ||h||e, valid for all times ¢ > 0.

For details of the proof of Theorem 3.1 we refer to [2].

4. Global large BV solutions of an initial boundary value
problem. Next, we study how the mountain profile evolves when the
thickness of the moving layer approaches zero, but the total mass of slid-
ing material remains positive. This result is best formulated in connection
with an initial-boundary value problem. On R_ = {z < 0}, consider the
initial-boundary value problem for (1.2), with initial data (3.1) and the
following boundary condition at z =0

p(t,0) h(t,0) = F(t). (4.1)

Notice that here we prescribe the incoming flux F(t) of the moving material,
through the point x = 0. We assume

o0
F(t)>0, Tot.Var{F} < M, 0< M < / F(r)dr <M. (4.2)
0

As a partial step toward the slow erosion limit, we prove in [3] next the-
orem on the global existence of large BV solutions to this initial-boundary
value problem, provided that ||k~ and ||F||L~ are sufficiently small.

THEOREM 4.1. Given M, pg > 0, there exists § > 0 such that the
assumptions (3.2)-(3.3) and (4.2), together with

1Al <6, [FllLe <0, (4.3)

imply that the initial-boundary value problem (1.2)-(3.1), (4.1) has a global
solution, with uniformly bounded total variation for all t > 0.

The proof for Theorem 4.1 follows a similar setting as for Theorem 3.1.
The additional difficulty lies in the treatment of the boundary condition at
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x = 0. Fortunately, the addition waves generated at the boundary, such
as reflection waves, new entering wave, all contain a factor of ||h||Le or
the term ||F||L~, which are arbitrarily small. Therefore, same global a
priori estimates as for Theorem 3.1 can be established, proving the global
existence of large BV solution. For details, see [3].

5. Slow erosion limit. We now study the slow erosion limit. Numer-
ical simulations in [29] show the following observation. When the height of
the moving layer h is very small, the profile of the standing layer depends
only on the total mass of the avalanche flowing downhill, not on the time-
law describing at which rate the material slides down. This observation is
proved rigorously in [3].

We define a new variable which measures the total mass of avalanche
flowing down:

u(t) = /Ot F(r)dr.

Recalling that F(t) > 0, the above function is monotone non-decreasing.
Let t(u) be its generalized inverse, and reparametrize the solution in terms
of u:

(h, D) (1, ) = (h, p) (t(p), ) -

The last Theorem gives the slow erosion limit.

THEOREM 5.1. Assume all the assumption in Theorem 4.1 hold.
Then, as ||h|Le~ — 0 and ||F|L~ — 0, the rescaled p component of the
solutions to the initial boundary value problem (1.2)-(3.1)-(4.1) converges
to a limit function p, which provides the unique entropy solution to the
scalar integro-differential conservation law

-1 0 -1
Pu+ (p -eXp/ Plp.y) ~1 dy) =0, (5.1)
P =  Psy) "

with initial data p(0,x) = p(x) for x < 0.

A formal derivation is obtained as follows. For simplicity, assume
h(z) = 0 for z < 0. We stretch a given boundary data F'(t) > 0 by defining
Fe(t) = e F(et). Introduce the new variable yu = p°(t),

we(t) = /0 Fe(s)ds = /0E F(s)ds, so u'(t) = Fe(t) = eF(et).

Using p = p as a rescaled time variable, the equations in (1.1) can now
be rewritten as

why = (h°p%)e = (p° = 1)h°,
{ W', + ((0° = 1)1%),, 0. (52)
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Taking the limit as € — 0 in the first equation, the term u’ hj, turns out to
be of higher order w.r.t. &, while h = O(e) and p = O(1).

Introducing the new variable m = hp/e, from (5.2) we formally obtain

p—1
My = ——m, 5.3
’ (5.3)

P+ (P m)m 0. (5.4)

Integrating the equation in (5.3) with proper boundary conditions, one

obtains
o * plp,y) —1 =
m(p, ) = exp </w TR dy) F(p). (5.5)

Roughly speaking, this is the size of the avalanche at the time when it
crosses a given point # < 0. By inserting (5.5) in (5.4), and dividing both
terms by the common factor (1), we obtain (5.1).

The key point in the proof of Theorem 5.1 is to show that, taking
a converging sequence of p-component of solutions to the initial bound-
ary value problem (1.2)-(3.1)-(4.1), the limit p is a weak solution to the
conservation law (5.1). This is achieved by passing to the limit in the cor-
responding weak formulations. Here one needs the weak convergence of the
flux Ap and the strong convergence of the function ijl

N Y b (Y plp.x) =1 plu,w) —1
Pl @) hlp, @) = e p/m w0 % Thma)  pma)

The above convergence is obtained in [3] using a compactness argu-
ment. By showing that the limiting integro-differential equation (5.1) is
well posed, the convergence is extended to the whole sequence. The well-
posedness of (5.1) is non-trivial because the flux is a global function. In
the forthcoming work [4], we prove that the flow generated by the integro-
differential equation (5.1) is Lipschitz continuous restricted to the domain
of functions satisfying the bounds:

iré%p(xvt) > po >0, Tot.Var. p('vt) <M, Hp('vt) - 1||L1(]R,) <M.

6. Further discussion. In this final section we discuss various inter-
esting open problems related to this model.

(A). Uniqueness of entropy weak solutions for (1.2). After having es-
tablished the global existence of large BV solutions to (1.2), it remains open
the question of uniqueness of entropy-weak solutions. This does not imme-
diately follow from the known results [14], because one of the characteris-
tic fields is neither genuinely nonlinear, nor linearly degenerate. Unique-
ness and continuous dependence of large BV solutions may be obtained by
putting together the techniques in [5, 14, 12].
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(B). The Cauchy problem with a source term f = f(t,z). The original
model in [20] takes into account also precipitation effects. This corresponds
to supplement the first equation in (1.1) by an extra term f = f(¢,z) > 0
in the right hand side, representing additional material that increments the
size of the moving layer. In one dimension we are lead to

{ hi — (hp). = (p—1Dh+f,
pt—|—((p—1)h)$ = 0.

Notice that this system still decouples for p = 1: in this case, h satisfies
the scalar equation hy — h, = f(t, z).

For system (6.1), can one still establish the global existence result?
What will be the proper assumptions on f(¢,-)? To start, one can assume
that the support of f(t,-) is uniformly bounded, that

(6.1)

/OO [Tot.Var. f(t,-)] dt < C,
0

and that the norm | f|lp~ is sufficiently small, depending on the above
constant C.

(C). Mountain slope changes sign. It is interesting to check whether
the equations (1.1) have meaningful solutions also when the slope p = u,
changes sign. In this case, the one-dimensional model takes the form

{ hy — (hp). = (Ip| =Dh+f,
pt+((|p|—1)h)m = 0.

Since all these models do not account for the conservation of momentum,
one might wonder if the predictions are realistic, also in cases where p =~ 0
and the actual motion of the granular matter may be dominated by inertial
forces. We remark that, when p is allowed to change sign, the flux in (6.2)
is no longer smooth but only Lipschitz continuous. From the point of view
of basic theory, this is a situation not covered by standard existence and
uniqueness results, and should be examined specifically.

(D). Radially symmetric solutions. As an intermediate step toward the
fully two-dimensional model, one can study radially symmetric solutions in
R%. By writing the system (1.1) into polar coordinates (r,#) and looking
for solutions (h,u)(t,r), one reduces to

hi = (hp)r = (Ipl = Dh +2h,
{ pe+ ((Ipl = D), 0 (6.3)

(6.2)

where p = u, and 7 > 0. One may reduce to consider a conic-shaped
mountain, therefore assuming p < 0. The resulting system is quite similar
o (1.2), but differs for the additional source term ph/r, whose dependence
on the space variable r is not integrable on the half line.
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Notice that, in the simple case p = —1, (6.3) reduces to the equation
ht + h, = —h/r. Assuming that

o(r)

h(0,7) = ho(r) =

with ho(r) — 0 as 7 — 0+, then the solution is given by

O(r —1t)
h(r,t) = r
0 ifo<r<t.

ifr>t

Here, due to the spreading of the mass, h becomes smaller as r grows.

A very interesting problem is to reach a priori BV bounds for the
system (6.3), for suitable boundary conditions at r = ro > 0. For this
case, the BV bound estimates run into several difficulties: (i) the source
term depends on the space variable r in a non-integrable way; and (ii) the
characteristic speed is not strictly bounded away from 0, unless p is proved
to remain strictly different from 0.

(E). The two dimensional case. To present date, the mathematical
analysis of two-dimensional granular flow has been mainly concerned with
steady state solutions [10, 11] and has been approached numerically in [17].
Furthermore, the general existence-uniqueness result for a two-dimensional
hyperbolic system such as (1.1) is not yet available. However, the special
structure of this system suggests a possible line of attack, based on a multi-
dimensional extension of the integro-differential formula (5.1).

For example, consider the case where we initially have a steady sand-
pile of height ug(z) on a table  and hg = 0. Start to pour more sand on
top of it at a very slow rate f = Ef(ac); then the sand falls off as it reaches
the edge of the table. As ¢ — 0, a formal extension of the formula (5.1)
leads to the following approximate evolution equation:

u(t,z) = (1 — |Vul) H(t, z),
where H solves the following linear equation for every fixed ¢
Vu-VH+ (|Vu| = 1+ Au)H + f =0,
with the initial and boundary data

u(0,2) =up(x), h(0,2) =0 for x €, u(z) =0, for x €9N.
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