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Abstract. In this paper we study the long time behavior for a semilinear
wave equation with space-dependent and nonlinear damping term, rewritten
as a first order system. Under appropriate assumptions on the nonlinearity, we
prove the exponential convergence in L1, as t ! +1, of the solution towards
a stationary solution.

1. Introduction. In this paper we study the initial–boundary value problem for
the 2⇥ 2 system in one space dimension(

@t⇢+ @xJ = 0,

@tJ + @x⇢ = �2k(x)g(J)
(1)

where x 2 I = [0, 1] and t � 0, and

(⇢, J)(x, 0) = (⇢0, J0)(x) , J(0, t) = J(1, t) = Jb (2)

for (⇢0, J0) 2 BV (I) and for a constant Jb 2 R. Assume that

0 < k1  k(x)  k2 8x , k1, k2 > 0 (3)

and that

g 2 C1(R) , g(0) = 0 , g0(J) > 0 8 J . (4)

The long time behavior of the solutions to (1), (2) is addressed by means of the
stationary equation

@xJ = 0 , @x⇢ = �2k(x)g(J) .

The initial and boundary conditions (2) lead to a stationary solution (e⇢, eJ):
e⇢(x) = �2g(Jb)

Z x

0
k(y) dy + C , eJ(x) = Jb , (5)

the constant C being uniquely identified byZ 1

0
e⇢(x) dx =

Z 1

0
⇢0(x) dx . (6)
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By the change of variable (⇢, J) 7! (⇢� e⇢, J � Jb) and g(J) 7! g(J + Jb)� g(J), we
can reduce to the case

Jb = 0 ,

Z 1

0
⇢0(x) dx = 0 . (7)

Problem (1), (2), (7) is related to the one-dimensional damped semilinear wave
equation on a bounded interval: indeed the function

u(x, t) = �
Z x

0
⇢(y, t) dy

satisfies ux = �⇢, ut = J and

@ttu� @xxu+ 2k(x)g(@tu) = 0 . (8)

The equation (8) has been considered in several papers, see [9, 6, 7, 11], the recent
monograph [8] and references therein. It is well known that the initial-boundary
value problem for (8) is well-posed for initial data (u0, @tu0) 2 H1

0 (I) ⇥ L2(I), for
k(x) 2 L1(I) with k(x) � 0, and decay estimates for the energy are obtained,
either exponential or polynomial.

Moreover, in [7], Lp decay estimates with 2  p  1 are studied for the 1-
dimensional problem. These estimates are obtained under the assumption that g0

vanishes at 0, and using the hypotheses of su�ciently regular data, (u0, @tu0) 2
W 2,1(I)⇥W 1,1(I).

In this paper we study the decay in L1 for a very similar problem, assuming
that the damping is space-dependent and that g0 > 0, 4. Our main contribution
is to develop an alternative approach that originates from the point of view of
the hyperbolic systems of balance laws. In particular, we construct approximate
solutions that allow us to get an accurate description of the solution, whose evolution
is recast as a discrete time system. Then we provide a strategy for the analysis of
this system, that makes use of a discrete representation formula. This eventually
leads to the decay in L1 of the solution in terms of (ux, ut).

Here ux(·, t), ut(·, t)) belong to BV (I) ⇢ L1(I) so that (u(·, t), ut(·, t)) are in
W 1,1(I)⇥ L1(I).

The main result of this paper here follows.

Theorem 1.1. Let k satisfy (3) and g satisfy (4). Define

d1 = k1 min
J2D

J

g0(J) > 0 , d2 = k2 max
J2D

J

g0(J) (9)

where DJ is a closed bounded interval depending on the data, which is invariant for
J . Finally assume that

ed2 � d2 < ed1 . (10)

Let (⇢, J)(x, t) be the solution of the problem (1), (2), (7) with (⇢0, J0) 2 BV (I).
Then there exist constant values C1 > 0 and C2 > 0, that depend only on the

coe�cients of the equation and on the initial and boundary data, such that

kJ(·, t)k1  C1e
�C

3

t ,

k⇢(·, t)k1  C2e
�C

3

t .
(11)

where

C3 = | logC(d1, d2)| , C(d1, d2) = e�d
1(ed2 � d2) < 1 .
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2. Approximate solutions. In this section we present our approach for the defi-
nition of approximate solutions. It consists of an adaptation of the scheme for the
Cauchy problem developed in [3]. Our approach is based on the formulation of
system (1) that is obtained by adding an equation for the antiderivative of k(x)

a(x) =

Z x

0
k(s) ds . (12)

More precisely, we introduce the non-conservative 3⇥ 3 system8><>:
@t⇢+ @xJ = 0 ,

@tJ + @x⇢+ 2g(J)@xa = 0 ,

@ta = 0 ,

(13)

and the piecewise constant initial data�
⇢�x
0 , J�x

0 , a�x
�
(x) = (⇢0(xj+), J0(xj+), a(xj)) x 2 (xj , xj+1)

xj = j�x j = 0, . . . , N, �x =
1

N
,

(14)

where N 2 2N is a fixed positive even number determining the size of the space
mesh. In this way, we can set up a so-called Well-Balanced algorithm to construct
approximate wave-front tracking solutions [5], with discontinuities uniformly dis-
tributed on a grid in the (x, t)-plane. We define an approximate solution as follows.

An approximate solution (⇢�x, J�x, a�x)(x, t) is an exact solution to
the initial-boundary value problem (13)–(14) with boundary condition
J�x(0, t) = J�x(1, t) = 0. In particular, a�x(x) is piecewise constant with
discontinuities located at each xj and (⇢�x, J�x) is a piecewise constant
function, w.r.t. (x, t), with discontinuities traveling along segments in the
(x, t)-plane with slopes 2 {±1, 0}.

As �x ! 0, the approximate solutions converge in L1
loc (up to a subsequence) to a

weak solution of (13).
The characterization of such approximate solution is based on the Riemann prob-

lem for (13), that is the initial-value problem for (13) with unknown U = (⇢, J, a)
and data

U(x, 0) =

(
U` x < 0,

Ur x > 0,
(15)

for a given left state U` = (⇢`, J`, a`) and right state Ur = (⇢r, Jr, ar). By assuming
(4) and that a`  ar, this problem is uniquely solved by

U(x, t) =

8>>><>>>:
U` x/t < �1,

U⇤ = (⇢⇤,`, J⇤, a`) �1 < x/t < 0,

U⇤⇤ = (⇢⇤,r, J⇤, ar) 0 < x/t < 1,

Ur x/t > 1,

(16)

where ⇢⇤,`, ⇢⇤,r, J⇤ satisfy suitable conditions. See Figure (1) for a diagram of (16)
in the (x, t)-plane, where the discontinuities travel along lines separating the couples
(U`, U⇤), (U⇤, U⇤⇤) and (U⇤⇤, Ur), which stand for a �1-wave, a 0-wave and a +1-
wave, respectively. In general, we call i-wave a couple of states (U`, Ur) separated
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U` Ur

U⇤ U⇤⇤

�1��1 �

0

Figure 1. The solution to the Riemann problem (15).

by a discontinuity with speed (i.e. slope) i 2 {0,±1} and we denote its size by

�±1 = Jr � J` = ±(⇢r � ⇢`) if i = ±1, (17)

� = ar � a` if i = 0.

In the following we describe the approximate solutions in more detail; the proce-
dure can be also regarded as a Well-Balanced scheme. See Figure (3) for a picture
of the scheme in the case N = 4.

Step 1. The initial data is approximated as in (14); the 0-waves are located at
each 0 < xj < 1, with size given by

�j = a(xj)� a(xj�1) =

Z x
j

x
j�1

k(x)dx (18)

for j = 1, . . . , N � 1. Since k 2 L1(I), we assume �x = 1/N to be su�ciently
small so that

(sup g0) · �j <
1

2
. (19)

Step 2. At time t = 0+ the solution is constructed by piecing together the
solutions to the local Riemann problems at each 0 < xj < 1 (see (16)) and at the
boundaries x = 0 and x = 1. Remark that at the boundaries the solution consists
of a single +1-wave at x = 0 and of a single �1-wave at x = 1, respectively.

Step 3. At time t = tn = n�t with n � 1 and �t = �x, multiple interactions
of waves occur at 0 < xj < 1 (i.e. multiple segments intersect at each (xj , t)) and
the newly generated Riemann problems are solved according to✓

�+
�1

�+
1

◆
=

✓
1� cj cj
cj 1� cj

◆✓
��
�1

��
1

◆
, cj :=

g0(snj )�j
g0(snj )�j + 1

, (20)

where snj 2 DJ , �
�
�1, �

�
1 are the sizes of the incoming waves, �+

�1, �
+
1 are the sizes

of the outgoing ones and c is transition coe�cient. The size of the 0-wave involved
in the interaction remains constantly equal to �j (see (18)) across time t. Moreover,
the waves hitting the boundaries x = 0 and x = 1 are both reflected and bounce
back with the same size they had before the interaction. See Figure (2) for a picture
of these two situations. We remark that a key property is that approximating a(x)
by a piecewise constant function implies that the source term is concentrated at
the points xj and results in the discontinuities with 0-slope in the solutions to the
Riemann problems.

3. The iteration matrix. The semilinear character of system (1) and the presence
of the (reflecting) boundary conditions allow us to view the problem as the time
evolution of the solutions to a finite dimensional linear system of the form

�(tn+) = B(tn)�(tn�1+) = · · · = B(tn)B(tn�1) · · ·B(0+)�(0+) . (21)
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�+
1�+

�1

��
1 ��

�1

�

�

(a)

�+
�1�+

1

��
�1 ��

1
x = 0 x = 1

(b)

Figure 2. Interactions at t = tn > 0: an example of multiple
interaction at 0 < xj < 1 in (a); an example of interaction at the
boundaries in (b).

�t

2�t
�1 �2 �3 �4 �5 �6 �7 �8

x1 x2 x30 1

Figure 3. Well-balanced scheme for N = 4.

The components of the vector

�(t) = (�1, . . . ,�2N ) 2 R2N , N 2 2N,

are the wave sizes, see (17), that occur in the approximate solution to (13)–(14)
at time tn, ordered according to increasing space position; while the matrix B 2
R2N⇥2N is a doubly stochastic matrix (i.e. a nonnegative matrix for which the sum
of all the elements by row is 1, as well as by column) given by

B(c) =

266666666664

0 1 0 0 · · · 0 0 0 0
c1 0 0 1� c1 · · · 0 0 0 0

1� c1 0 0 c1
...

...
...

...
...

...
...

...
0 0 0 0 · · · cN�1 0 0 1� cN�1

0 0 0 0 · · · 1� cN�1 0 0 cN�1

0 0 0 0 · · · 0 0 1 0

377777777775
,

where c = (c1, · · · , cN�1) 2 RN�1 and by the smallness of �j (see (18), (19)) we
have that

inf g0

2
�j  cj  (sup g0)�j , j = 1, . . . , N � 1 . (22)

In general the vector c depends on n, which is the index for the time: t = tn = n�t.
The eigenvalues �i of B satisfy |�i|  1 for all i = 1, . . . , 2N . In particular, � = ±1
are eigenvalues with corresponding (left and right) eigenvectors

�� = �1 , v� = (1,�1,�1, 1, . . . , 1,�1,�1, 1) ,

�+ = 1 , e = (1, 1, . . . , 1, 1) .
(23)

Denote by E� the (2N � 2)–dim eigenspace related to �i with |�i| < 1.
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It is well known (Birkho↵ Theorem, [10, Theorem 8.7.2]) that doubly stochastic
matrices can be written as a convex combination of permutations.

In case of c = c(1, · · · , 1) 2 RN�1 for c 2 [0, 1/2), the decomposition is obtained
with two terms:

B(c) = (1� c)B(0) + cB1 = (1� c) [B(0) + �B1] , (24)

where

� =
c

1� c
=

(sup g0)k̄

N
:=

d

N
,

B(0) is the matrix B(c) with c = 0 and B1 is a permutation matrix that switches
two consecutive rows (2k � 1) and 2k. We can rewrite (24) as

B(c) =

✓
1 +

d

N

◆�1 
B(0) +

d

N
B1

�
.

On the other hand, if c is not constant (that is the case for nonlinear damping),
we can bound each matrix B = B(cn), n 2 N with a term-by-term inequality by

B(cn) 
✓
1 +

d1
N

◆�1 
B(0) +

d2
N

B1

�
(25)

where d1, d2 are defined in (9).

3.1. Total variation estimates. Here we give a proof of the fact that

L±(t) =
X

(±1)�waves

|�f±| = TV J�x(·, t)

is not increasing in time, by means of the properties of doubly stochastic matrices.
We recall here some results from [4, pp.149–153].

Definition 3.1 (Majorization of vectors). Let v, u 2 Rn and denote

v[1] � v[2] � · · · � v[n], u[1] � u[2] � · · · � u[n],

the components rearranged in non-increasing order. We say that v is majorized by
u if the following conditions hold:

nX
i=1

vi =
nX

i=1

ui,

hX
i=1

v[i] 
hX

i=1

u[i] h = 1, . . . , n� 1.

The following theorem is a useful characterization of majorization.

Theorem 3.2 (Hardy-Littlewood-Polya). Let v, u 2 Rn. Then, v is majorized by
u if and only if there exists a doubly stochastic matrix A such that v = Au.

Lemma 3.3. Let v, u 2 Rn. If v is majorized by u and � : R ! R is a convex
function, then

nX
i=1

�(vi) 
nX

j=1

�(ui) . (26)

The following corollary is an easy consequence of these results, and it proves that
L± is non-increasing in time.
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Corollary 1. Denote �n
j the jth component of �(tn+). Then,

2NX
j=1

|�n+1
j | 

2NX
j=1

|�n
j | , n � 0 .

Proof. Since �(tn+1+) = B(n)
�(tn+) and B(n) is doubly stochastic, we have that

�(tn+1+) is majorized by �(tn+). Then, we can conclude by applying the previous
lemma to �(·) = | · | and v = �(tn+1+), u = �(tn+).

4. A discrete representation formula. The proof of Theorem (1.1) is given in
[1] (with a slight improvement in the condition (10) given in [2]). Here we provide
some key points.

First, a proposition which relates the L1-norm of J(·, tn), ⇢(·, tn) as n ! 1 to
the evolution of the `1–norm of the operator Bn:

Bn=̇
h
B(n)B(n�1) · · ·B(2)B(1)

i
, B(n) = B(cn) 2 M2N , n � 1 (27)

on the eigenspace E�=̇ < e, v� >?, see (23).

Proposition 1. For some constant values eCj > 0, j = 1, 2, 3, independent on �x
one has that for every t 2 (tn, tn+1)

kJ�x(·, t)k1  eC1�x+ kBne�(0+)k`1
k⇢�x(·, t)k1  eC2�x+ eC3kBne�(0+)k`1

where e
�(0+) is the projection of �(0+) onto E�.

Next, the goal is to prove that kBne�(0+)k`1 decays exponentially fast as n ! 1,
uniformly as �x = N�1 ! 0. We focus our analysis on the iteration of the matrices
B = B(cn) up to time

tN = N�t = N�x = 1 .

Recalling (25), we get the following inequality:

BN 
✓
1 +

d1
N

◆�N 
B0 +

d2
N

B1

�N
, B0=̇B(0). (28)

It is clear that ✓
1 +

d1
N

◆�N

! e�d
1 as N ! 1 ,

while it takes a bigger e↵ort to estimate the second factor

[B0 + �B1]
N =

NX
k=0

�kSk(B0, B1), � =
d2
N

(29)

since the matrices B0, B1 2 M2N do not commute. Each term Sk(B0, B1) is the
sum of all possible products of 2N matrices of size 2N equal to either B1 or B0

(and in which B1 appears exactly k times). In particular,

S0 = BN
0 , S1 =

N�1X
j=0

B2j
0 =̇ bP .

In the following theorem we provide an estimate of the sum in (29) for the terms
with k � 2.
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Theorem 4.1. Let N 2 2N. Then,
B0 +

d

N
B1

�N
= BN

0 +
d

N
bP +

N�1X
j=0

⇣j,NB2j+1
0 B1 +

N�1X
j=1

⌘j,NB2j
0 , (30)

where the scalar coe�cients in the sums are bounded by:

0 
N�1X
j=0

⇣j,N  sinh(d)� d+
f0(d)

N
,

0 
N�1X
j=1

⌘j,N  cosh(d)� 1 +
f1(d)

N
,

with terms f0(d) and f1(d) containing modified Bessel functions of the first type.

Thanks to (30) we can prove the following contraction property:

kBN e
�(0+)k`1  CN (d1, d2)ke�(0+)k`1 (31)

where
CN (d1, d2) ! e�d

1(ed2 � d2) =̇ C(d1, d2) < 1 , N ! 1 .

The last inequality follows from the assumption (10). By iterating the estimate
(31), recalling Prop. (1) and sending N ! 1, it is possible to prove the L1 decay
stated in (11).
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