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Abstract

We prove Glimm interaction estimates for a 3×3 hyperbolic system of conservation laws
arising in the modeling of multi-phase flows. No smallness of the interacting waves is
assumed. Our proof simplifies and improves a previous result by Y.-J. Peng [9].
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1. Introduction

We consider the following simple model for the flow of an inviscid fluid, where liquid
and vapor phases coexist: 

vt − ux = 0,
ut + p(v, λ)x = 0,
λt = 0 .

(1.1)

Here t > 0 and x ∈ R, v > 0 is the specific volume, u the velocity, λ ∈ [0, 1] the mass
density fraction of vapor in the fluid. The pressure p is defined by

p(v, λ) =
a2(λ)
v

, (1.2)

where a is a smooth function defined on [0, 1] satisfying a(λ) > 0. We refer to Fan [6] for
more information on this model.

If λ is constant, (1.1) reduces to the system of isothermal gasdynamics. The existence
of global solution for this system was proved in [8], with data having arbitrarily large
total variation.

In [1, 2] we proved the global existence of weak solutions to (1.1), for a wide class
of initial data with large total variation, by means of a front-tracking scheme. Another
proof, again by a front-tracking scheme, was provided in [4]. A system close to (1.1)
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was previously considered by Peng [9], where the author proves the Glimm interaction
estimates, but the proof of the main theorem seems incomplete. We refer to [5, 10, 7]
for definitions and more information on systems of conservation laws and on the Glimm
scheme.

In this note we prove the Glimm interaction estimates by a procedure different from
that of [9, Lemma 3, p. 529]; such proof allows us to improve the quadratic interaction
estimate. The technique used below consists in letting waves interact one at a time
and shows precisely when the variation of the solution increases. From this analysis,
a convenient choice of the interaction potential emerges. Also, our method completely
avoids the splitting of the proof into many cases (in [9], fifteen cases have to be considered
for just one subcase). In a sense, then, the spirit of this note is close to [11]. In particular,
the ideas exploited here are possibly applicable to systems more general than (1.1). We
point out that the existence proof via the Glimm scheme is not considered here since
[2, 4] already provide global existence results.

We now state the main result. We denote U = (v, u, λ) ∈ Ω = (0,+∞) × R × [0, 1].
Under the assumption (1.2), the system (1.1) is strictly hyperbolic in Ω with eigenvalues
e1 = −c, e2 = 0, e3 = c, for c =

√
−pv = a(λ)/v. The eigenvalues e1, e3 are genuinely

nonlinear while e2 is linearly degenerate. For i = 1, 3 the Lax curves through the point
Uo = (vo, uo, λo) are

v 7→
(
v, uo + a(λo) · 2h(εi), λo

)
,

where

ε1 =
1
2

log
(
v

vo

)
, ε3 =

1
2

log
(
vo

v

)
,

and

h(ε) =

{
ε if ε ≥ 0,
sinh ε if ε < 0,

see [1], [9]. The Lax curve for i = 2 is characterized by steady solutions of (1.1), across
which pressure and velocity are constant:

a2(λ)
v

=
a2(λo)
vo

, u = uo.

The strength ε2 of a 2-wave (contact discontinuity) is defined as

ε2 = 2
a(λ)− a(λo)
a(λ) + a(λo)

.

Rarefaction (shock) waves have positive (negative) strengths. The Riemann problem for
(1.1) has a unique solution for any initial data valued in Ω, see Proposition 2.1. We notice
that in [1, 6] the function a(λ) is assumed to be increasing, on the ground of physical
motivations; such an assumption is not needed in the forthcoming analysis.

We deal now with Glimm estimates. Consider the interaction problem displayed in
Figure 1. Since contact discontinuities are stationary, exactly one contact discontinuity
can be present in any interval of random sampling of the Glimm scheme. Therefore, in
the estimates below we only take into account the case when only one 2-wave is present
in the previous pattern, that is, either α2 = 0 or β2 = 0.
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Figure 1: Glimm interactions.

We denote [x]± = max{±x, 0} and define the interaction potential

q(α, β) = [α2]+ · |β1|+ |α3| · [β2]−. (1.3)

Since we only deal with one 2-wave at a time, then q(α, β) = [α2]+ · |β1| if β2 = 0 and
q(α, β) = |α3| · [β2]− if α2 = 0. Here follows our main result.

Theorem 1.1. Consider the interaction pattern in Figure 1, with either α2 = 0 or
β2 = 0. Then

|ε1|+ |ε3| ≤ |α1|+ |α3|+ |β1|+ |β3|+ q(α, β) . (1.4)

We notice that (1.4) and (1.3) improve the inequality (3.3) in [9], where the usual
Glimm potential was considered. Indeed, such a full quadratic potential is not needed:
our potential q vanishes according to the signs of α2 and β2. This fact has a possible con-
sequence in the definition of the Glimm functional and permits to improve the conditions
on the initial data that guarantee the global existence of solutions.

2. Proof of Theorem 1.1

We begin this section with a result on the Riemann problem. Then, we consider two
cases of simple interactions. First, we deal with the interaction of a 1- or 3-wave with
a 2-wave, where the total variation can increase (Proposition 2.2); second, we study the
case of q = 0 (Lemma 2.3). They are both special cases of Theorem 1.1. Finally, the full
proof of Theorem 1.1 is deduced by a decoupling technique.

We consider the Riemann problem for (1.1) with initial condition

(v, u, λ)(0, x) =

{
(v`, u`, λ`) = U` if x < 0,
(vr, ur, λr) = Ur if x > 0, (2.1)

for U` and Ur in Ω. We denote ar = a(λr), pr = a2
r/vr and similarly a`, p`.

Proposition 2.1 ([1]). For any pair of states U`, Ur in Ω, the Riemann problem (1.1),
(2.1) has a unique Ω-valued solution in the class of solutions consisting of simple Lax
waves. If εi is the strength of the i-wave, i = 1, 2, 3, then

ε3 − ε1 =
1
2

log
(
pr

p`

)
, 2

(
a`h(ε1) + arh(ε3)

)
= ur − u` .
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The interactions between shocks and rarefactions, with λ constant, are analyzed in
[3]. The following result analyzes the interaction of a single wave with a 2-wave, which
is a special case of the interaction pattern in Figure 1.

Proposition 2.2 ([1]). Assume that either a 1-wave of strength δ1 or a 3-wave of strength
δ3 interacts with a 2-wave of strength δ2. Then, the strengths εi of the outgoing waves
satisfy ε2 = δ2 and

|εi − δi| = |εj | ≤
1
2
|δ2| · |δi|, i, j = 1, 3, i 6= j ,

|ε1|+ |ε3| ≤

{
|δ1|+ |δ1|[δ2]+ if 1 interacts,
|δ3|+ |δ3|[δ2]− if 3 interacts .

(2.2)

In the next Lemma we prove that waves “outgoing” from a Riemann solution, see
Figure 2, do not increase the total variation of the solution. The following result is
contained also in [9]; however, the proof is different and we obtain some sharper estimates.
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Figure 2: Special interactions: β1 = β2 = 0 (left) and α2 = α3 = 0 (right).

Lemma 2.3. Consider the interaction patterns in Figure 2. Then

|ε1|+ |ε3| ≤ |α1|+ |α3|+ |β1|+ |β3| . (2.3)

Proof. We assume that β1 = β2 = 0; the other case is analogous. We must prove that

|ε1|+ |ε3| ≤ |α1|+ |α3|+ |β3| . (2.4)

We recall the elementary identities about the interaction pattern in Figure 1, see [9],

ε3 − ε1 = α3 + β3 − α1 − β1,

a`h(ε1) + arh(ε3) = a`h(α1) + amh(α3) + amh(β1) + arh(β3) ,

that here reduce to

ε3 − ε1 = α3 + β3 − α1, (2.5)
a`

[
h(ε1)− h(α1)

]
+ ar

[
h(ε3)− h(α3)− h(β3)

]
= 0 . (2.6)

If ε1 · ε3 ≤ 0, then (2.4) holds thanks to (2.5). Then we focus on the case ε1 · ε3 > 0.
(a) If ε1, ε3 > 0, then h(εi) = εi and (2.5), (2.6) give a 2 × 2 linear system, whose
solutions εi can be explicitly computed. We show that

ε1 ≤ α1 , ε3 ≤ α3 + β3 , (2.7)
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that lead to (2.4). Indeed, using that h(x) ≤ x for all x, we easily find

ε1 =
1

a` + ar

{
a`h(α1) + arh(α3) + arh(β3)− ar(α3 + β3 − α1)

}
≤ α1 .

The inequality on the right in (2.7) is proved in an entirely similar way.
(b) If ε1, ε3 < 0, then formulas (2.5), (2.6) can be written as

|ε1|+ α1 = |ε3|+ α3 + β3, (2.8)
a`

(
sinh(|ε1|) + h(α1)

)
+ ar

(
sinh(|ε3|) + h(α3) + h(β3)

)
= 0 . (2.9)

Then |ε1|+ |ε3| = 2|ε1| −α3−β3 +α1 = 2|ε3|+α3 +β3−α1. Therefore, inequality (2.4)
is equivalent to any one of

|ε3| ≤ [α1]+ + [α3]− + [β3]−, |ε1| ≤ [α1]− + [α3]+ + [β3]+.

It is sufficient to prove that

|ε3| ≤ [α3]− + [β3]−. (2.10)

If |ε3|+ α3 + β3 ≤ 0 then (2.10) holds. On the other hand, if the quantity in (2.8) is
positive, then sinh(|ε1|) + h(α1) > 0 and from (2.8), (2.9) we deduce

|ε3|+ α3 + β3 > 0, (2.11)
sinh(|ε3|) + h(α3) + h(β3) < 0 . (2.12)

By (2.12) we see that α3 and β3 cannot be both positive. Assume that they are both
negative; then |ε3| > −α3 − β3 = |α3|+ |β3| from (2.11). By (2.12) we would obtain

sinh
(
|α3|+ |β3|

)
< sinh(|ε3|) < sinh(|α3|) + sinh(|β3|) .

This contradicts the elementary inequality sinh(x+ y) ≥ sinh(x) + sinh(y), which holds
for x ≥ 0, y ≥ 0. Therefore α3 and β3 have different signs. Assume that α3 > 0, β3 < 0,
the other case being symmetric. We rewrite (2.12) as

sinh(|ε3|) + α3 < sinh(|β3|) . (2.13)

From (2.13) and since α3 > 0, we find that |ε3| < |β3| and therefore (2.10).

Proof of Theorem 1.1. We focus on the case β2 = 0, the case α2 = 0 being symmetric. If
also β1 = 0, then Lemma 2.3 applies; we are left with the case when β1 6= 0. The proof
consists of some steps that reduce the estimate (1.4) to special cases, see Figure 3.

(1): α1 = α3 = β2 = β3 = 0. In this case Proposition 2.2 applies and (2.2) gives

|ε1|+ |ε3| ≤ |β1|+ [α2]+ · |β1| .

In the same way we treat the symmetric case α1 = α2 = β1 = β3 = 0.
(2): α3 = β2 = β3 = 0. Let U∗ be the state between α1 and α2. The Riemann

problem of states (U∗, Ur) is solved by waves ε∗i , i = 1, 2, 3; by step (1) we have |ε∗1|+|ε∗3| ≤
|β1|+[α2]+ · |β1|. Then, consider the interaction pattern given by the wave α1 on the left
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Figure 3: Special cases of Glimm interactions.

and the Riemann solution (ε∗1, ε
∗
2, ε

∗
3) on the right. This pattern gives rise to a solution

(ε1, ε2, ε3) of the Riemann problem of states (Ul, Ur); Lemma 2.3 applies and we obtain

|ε1|+ |ε3| ≤ |α1|+ |ε∗1|+ |ε∗3| ≤ |α1|+ |β1|+ [α2]+ · |β1| .

(3): β2 = β3 = 0. Let Uo be the state between α2 and α3. The Riemann problem of
states (Uo, Ur) is solved by (β1, α3), [10]; let U∗ be the state between these waves. The
Riemann problem of states (Ul, U

∗) is then solved by (ε∗1, ε
∗
2, ε

∗
3) and, because of step (2),

|ε∗1| + |ε∗3| ≤ |α1| + |β1| + [α2]+ · |β1|. The Riemann problem of states (Ul, Ur) is solved
by (ε1, ε2, ε3) and, because of Lemma 2.3,

|ε1|+ |ε3| ≤ |ε∗1|+ |ε∗3|+ |α3| ≤ |α1|+ |α3|+ |β1|+ [α2]+ · |β1| .

(4): β2 = 0. Let U∗ be the state between β1 and β3. The Riemann problem of states
(Ul, U

∗) is solved by (ε∗1, ε
∗
2, ε

∗
3) and, because of step (3), |ε∗1|+ |ε∗3| ≤ |α1|+ |α3|+ |β1|+

[α2]+ · |β1|. The Riemann problem of states (Ul, Ur) is solved by (ε1, ε2, ε3) and, again
by Lemma 2.3,

|ε1|+ |ε3| ≤ |ε∗1|+ |ε∗3|+ |β3| ≤ |α1|+ |α3|+ |β1|+ |β3|+ [α2]+ · |β1| .

The cases symmetric to cases (2), (3), (4), are dealt analogously.
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