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1 Introduction

We consider the equation

uε
t + f(uε)x =

1
ε
V ′

(x
ε

)
, x ∈ R, t > 0, ε > 0 . (1)

We assume that

(H1) f : R → R is C2, f(u) → +∞ as |u| → ∞;
(H2) f ′′ > 0;
(H3) V ∈ C2 (R), periodic with period 1;
(H4) V attains its minimum value at a single point in R/Z.

Without loss of generality, we can assume that minV (x) = 0 and f(0) =
minR f = 0. As a consequence of (H2), one has

(H2)′ uf ′(u) > 0 if u 6= 0 .

Given the initial data uε(x, 0) = uo(x), we will analyze the limiting behavior
of the sequence uε. To describe the problem, we first recall the results obtained
in [AS06], [Ama06]. Let us write the equation (1) for ε = 1:

ut + f(u)x = V ′(x) . (2)

We introduce the family S of 1-periodic, steady solutions to (2):

S = {ψ : R/Z → R; ψ = ψ(x) is a weak entropy solution to (2)} ;

the properties of S, resulting by the assumptions above, will be described
in Sect. 2. We denote by 〈·〉 the average over the period of a periodic func-
tion. The following theorem is concerned with the large time behavior of the
periodic solutions to (2).
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Theorem 1. ([AS06], [E92]) Assume (H1), (H2), (H3). Let uo ∈ L∞ (R) be
1–periodic. Let u be the entropic solution to the Cauchy problem ut + f(u)x =
V ′(x) , u(x, 0) = uo(x) . Then there exists a steady state solution ψ ∈ S such
that

‖u(t, ·)− ψ‖L1(R/Z) → 0 as t→ +∞ .

The limit state ψ has the property 〈ψ〉 = 〈uo〉 . If moreover (H4) holds, then
ψ is uniquely identified by its mean value.

Now let us consider the Cauchy problem for (1) with initial data

uε(x, 0) = uo

(
x,
x

ε

)
(3)

where uo ∈ L∞ (R × (R/Z)). After [LPV87], it is known that the sequence
{uε}ε>0 converges to a function ū weak ∗ in L∞loc (R × R+), where ū is the
unique entropy solution of

ūt + f̄(ū)x = 0 , ū(x, 0) =
∫ 1

0

uo(x, y) dy (4)

and f̄ , the so called effective flux, is a well defined function on R, see Sect. 2.

Theorem 2. ([Ama06]) Assume (H1), (H2)′, (H3), (H4) and that f is
convex in an arbitrarily small neighborhood of 0. Let uε be the unique solution
to (1), (3) and assume that the initial data uo ∈ L∞ (R× (R/Z)) satisfy

y 7→ uo(x, y) ∈ S, for a.e. x . (5)

Let ū be the entropy solution to (4) and let U : R × R+ × (R/Z) → R be
uniquely defined, for a.e. (x, t), as follows:

y 7→ U(x, t, y) ∈ S, 〈U(x, t, ·)〉 = ū(x, t) . (6)

Then, as ε→ 0,

uε(x, t)− U
(
x, t,

x

ε

)
→ 0 in L2

loc (R× (0,+∞)) . (7)

In this note, we are going to extend the result of Theorem 2, by relaxing the
assumption (5) on the initial data. We focus on the special case of uε(x, 0) =
uo(x): the initial data do not depend on ε. In particular, they are not prepared,
in the sense that do not satisfy the strong assumption (5).

Without assuming the strict convexity of f , we may expect that the asymp-
totic profile U depends on both x/ε, t/ε, as can be seen by simple counterex-
amples with linear flux (see [E92]). Observe that the (global) convexity is not
required in Theorem 2, but the assumption on the initial data prevents the
formation of initial layers.

Here we will assume that the flux is uniformly convex, (H2). The main
result is the following.
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Theorem 3. Assume (H1), (H2), (H3), (H4) and that uo ∈ BVloc (R) ∩
L∞ (R). Let uε be the entropy solution to the Cauchy problem (1), uε(x, 0) =
uo(x) and ū be the entropy solution to

ūt + f̄(ū)x = 0 , ū(x, 0) = uo(x) . (8)

Let U : R× R+ × (R/Z) → R be defined by (6). Then, as ε→ 0 one has (7).

We remark that, since uε, U are uniformly bounded in L∞, the convergence
(7) actually holds in Lp

loc for every p ≥ 1.
After some preliminary arguments, object of Sect. 2, the proof of Theo-

rem 3 will be given in Sect. 3. It makes use of both Theorems 1, 2. The key
point is the introduction of a sequence of solutions to (1) with suitably pre-
pared initial data, with the same asymptotic representation as uε. Then we
proceed by using a localization argument, as done in [EE93] for conservation
laws with smooth oscillatory data.

See [TT97] for related problems and [Tar86], plus references therein, as a
general reference on the study of oscillations in nonlinear partial differential
equations, with an application to one-dimensional scalar conservation laws.

2 Preliminaries

We start by reporting some properties of S. Clearly, if ψ ∈ S, then ψ satisfies
f(ψ(y))−V (y) = C for some constant C; ψε(x) = ψ(x/ε) is a steady solution
to (1); ψ is bounded because of (H1).

The effective flux. We recall the definition of f̄ ([E92], [LPV87]). If there exists
a 1-periodic function w such that

f(p+ w′(y))− V (y) = const.

independently of y, then f̄(p) is defined as the constant value on the right hand
side. This procedure leads to a well defined function f̄ ; an explicit formula in
terms of f , V is given by (2.8) in [E92]. See Fig. 1 for an example.
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Fig. 1. Graph of f̄ in the case f(u) = u2/2, V (y) = 1 + sin(2πy)
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Proposition 1. (a) Assume (H1), (H2)′, (H3). Then, for every p ∈ R,
there exists a map ψp(y) ∈ S such that

〈ψp〉 = p , f(ψp(y))− V (y) = f̄(p) ∀ y ∈ R/Z . (9)

(b) In addition, if (H4) holds, there exists a unique ψp satisfying (9), hence
the map S 3 ψ 7→ 〈ψ〉 ∈ R is bijective. Moreover, the following monotonicity
property holds:

p1 ≤ p2 ⇒ ψp1(y) ≤ ψp2(y), ∀y .

See [Ama06] for details.

Modified initial data. From now on, assume (H1), (H2)′, (H3), (H4). Given
uo ∈ L∞ (R) we can define

wo (x, y) =̇ ψuo(x) (y) . (10)

That is, wo is defined by the two following properties: y → wo (x, y) ∈ S, for
a.e. x, and

〈wo (x, ·)〉 =
∫ 1

0

ψuo(x)(y) dy = uo(x) . (11)

Thanks to assumption (H4), wo is well defined in L∞ (R × (R/Z)). Denote
by wε(x, t) the solution to (1) with initial data wo

(
x, x

ε

)
:

wε
t + f(wε)x =

1
ε
V ′

(x
ε

)
wε(x, 0) = wo

(
x,
x

ε

)
. (12)

Observe that wo (x, x/ε) is a prepared initial data, with pointwise average uo.

Uniform L∞ bounds. As in [ES92, Ama06], we can prove that uε, wε are
bounded independently of ε in L∞ (R × R+), by bounding the initial data
from above and below with suitable steady solutions (which are bounded
because of (H1)) and then by using a comparison argument.

Also, the map U(x, t, y) defined by (6) is bounded in L∞ (R×R+×(R/Z)):
indeed, y 7→ U(x, t, y) ∈ S and 〈U(x, t, ·)〉 = ū(x, t), solution to (8), whose
values belong to a bounded set.

An approximation lemma. Let I = (0, 1), N ∈ N, h = 1/N and define

Aj = (jh, (j + 1)h) , j = 0, . . . , N − 1

uh
o (x) =

1
h

∫
Aj

uo(y) dy , x ∈ Aj

wh
o (x, y) = ψuh

o (x)(y) , x ∈ Aj , y ∈ R .
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Lemma 1. Let uo ∈ BVloc (R) ∩ L∞ (R) and wo defined by (10). Then, for
every δ > 0 the following holds. There exist No ∈ N and εo > 0 such that, for
all N = 1/h ≥ No and 0 < ε ≤ εo one has∫

∪Aj

∣∣∣wo

(
x,
x

ε

)
− wh

o

(
x,
x

ε

)∣∣∣ dx < δ .

Proof. Set Mj = supAj
uo, mj = infAj uo (we choose the right continuous

representative of uo to avoid ambiguity). Thanks to the monotonicity property
of ψp w.r.t. p, we have for x ∈ Aj∣∣∣wo

(
x,
x

ε

)
− wh

o

(
x,
x

ε

)∣∣∣ = ψmax{uo(x),uh
o (x)}

(x
ε

)
− ψmin{uo(x),uh

o (x)}

(x
ε

)
≤ ψMj

(x
ε

)
− ψmj

(x
ε

)
and hence∫

Aj

∣∣∣wo

(
x,
x

ε

)
− wh

o

(
x,
x

ε

)∣∣∣ dx ≤
∫

Aj

ψMj

(x
ε

)
− ψmj

(x
ε

)
dx

≤ ε

([
h

ε

]
+ 1

) ∫
I

[
ψMj (y)− ψmj (y)

]
dy

≤ (h+ ε) (Mj −mj) ≤ (h+ ε) Tot.Var. {uo, Aj}

so that ∫
∪Aj

∣∣∣wo

(
x,
x

ε

)
− wh

o

(
x,
x

ε

)∣∣∣ dx ≤ (h+ ε) Tot.Var. {uo, I} < δ

for h, ε sufficiently small. This concludes the proof of the Lemma. ut

3 Proof of the main theorem

In this section we prove theorem 3. Since uε, U are uniformly bounded, it is
enough to prove that the convergence (7) holds in L1

loc (R× R+).

Step 1: Constant initial data. Assume that uo(x) = ūo ∈ R. Then one has
uε(x, t) = v

(
x
ε ,

t
ε

)
where v is the solution of ut+f(u)x = V ′(x) , u(x, 0) = ūo .

Applying Theorem 1, there exists a limit state ψ such that

v(y, τ)− ψ (y) → 0 in L1 (R/Z) as τ →∞ . (13)

Observe that 〈ψ〉 = ūo and that the solution to (8) is constant: ū(x, t) ≡ ūo.
Hence the asymptotic profile U , introduced at (6), is given here by U =
U(y)=̇ψ(y).

Then, let K > 0, t2 > t1 > 0 and define M(ε) =
[

K
ε

]
+ 1, so that

K < εM(ε) < K + 1 as ε→ 0. We easily get
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[t1,t2]×[−K,K]

|uε(x, t)− ψ(x/ε)|dxdt

≤ 2εM(ε)
∫

[t1,t2]

∫
[0,1]

|v(y, t/ε)− ψ(y)|dydt

≤ 2εM(ε) (t2 − t1)
∫

[0,1]

|v(y, t1/ε)− ψ(y)|dy → 0 as ε→ 0 .

Remark that, for this part of the proof, (H4) is not required: the profile ψ is
that one, among the ones having mean value ūo, that satisfies (13) and whose
existence is guaranteed by Theorem 1. In other words, it is the limit profile
chosen by the constant initial data ūo. In a similar way, one proves also that∫

I

|uε(x, t)− ψ(x/ε)| dx→ 0 as ε→ 0 , (14)

for every closed interval I = [a, b] and every t > 0.

Step 2: Modified initial data. In general, with uo ∈ BVloc (R) ∩ L∞ (R), we
consider the solution wε of the Cauchy problem (12).

By [LPV87], and thanks to (11), the sequences uε, wε have the same
weak limit ū, solution to (8). Also, the corresponding asymptotic profile U
is the same, see (6), since it depends only on the limit ū. Then, by applying
Theorem 2, we get that wε(x, t)− U (x, t, x/ε) → 0 in L1

loc.
Now we evaluate uε −wε. We proceed similarly to [EE93], proof of Theo-

rem 4.1, and show that for any fixed t > 0

uε(·, t)− wε(·, t) → 0 in L1
loc (R) . (15)

By using (15) and the L1-contraction, we can easily prove that uε − wε → 0
in L1

loc (R× R+).

Step 3: Proof of (15). Let I be a closed, bounded interval. Without loss of
generality in the following arguments, we can assume I = [0, 1].

Fix a δ > 0. Let to > 0, N ∈ N to be chosen later, h = 1/N . Define, for
j = 0, . . . , N − 1

Aj = (jh, (j + 1)h) , Bj = (jh+ Lto, (j + 1)h− Lto)

A = ∪N−1
j=0 Aj , B = ∪N−1

j=0 Bj

uh
o (x) =

1
h

∫
Aj

uo(ξ) dξ wh
o (x, y) = ψuh

o (x)(y) if x ∈ Aj ,

being L=̇ sup|z|≤M |f ′(z)| , M a bound on ‖uε‖∞, ‖wε‖∞. Similarly, define

j = 0, . . . , N , xj =
(
j +

1
2

)
h

Cj = (xj−1, xj) , Ej = (xj−1 + Lto, xj − Lto)
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C = ∪N
j=0Cj , E = ∪N

j=0Ej

vh
o (x) =

1
h

∫
Cj

uo(ξ) dξ Wh
o (x, y) = ψvh

o (x)(y) if x ∈ Cj .

By Lemma 1, we can choose N = 1/h so large that the following holds: there
exists a εo > 0 such that, for all 0 < ε ≤ εo, one has∫

A

|uo(x)− uh
o (x)| dx +

∫
A

∣∣∣wo

(
x,
x

ε

)
− wh

o

(
x,
x

ε

)∣∣∣ dx < δ , (16)

∫
C

|uo(x)− vh
o (x)| dx +

∫
C

∣∣∣wo

(
x,
x

ε

)
−Wh

o

(
x,
x

ε

)∣∣∣ dx < δ .

Then, we choose to such that: Lto < h/4. With this choice of to, one has
I ⊂ B ∪ E.

Now, let uε,h(x, t) and wε,h(x, t) be the solutions to (1) with initial data,
respectively, uh

o (x) and wh
o (x, x/ε). Using (16) and the L1-contraction prop-

erty, one has∫
B

∣∣uε(x, to)− uε,h(x, to)
∣∣ dx +

∫
B

∣∣wε(x, to)− wε,h(x, to)
∣∣ dx

≤
∫

A

∣∣uo(x)− uh
o (x)

∣∣ dx +
∫

A

∣∣∣wo

(
x,
x

ε

)
− wh

o

(
x,
x

ε

)∣∣∣ dx < δ .(17)

Now, observe that

wε,h(x, to) = wh
o

(
x,
x

ε

)
= ψuo(xj)

(x
ε

)
if x ∈ Bj

because the initial data wh
o coincides, on Aj , with a steady state, hence wε,h

coincides on Bj with the same steady state. Nevertheless, uε,h(x, to) coincides,
on Bj , with the solution to the equation (1) corresponding to the constant
initial data uo(xj). Then, we can use (14) and obtain∫

Bj

∣∣uε,h(x, to)− wε,h(x, to)
∣∣ dx =

=
∫

Bj

∣∣∣uε,h(x, to)− ψuo(xj)

(x
ε

)∣∣∣ dx→ 0 as ε→ 0 .

Summing up over j, one can conclude that there exists εo > 0 such that, for
all 0 < ε < εo, ∫

B

∣∣uε,h(x, to)− wε,h(x, to)
∣∣ dx < δ . (18)

In conclusion, using (17), (18), one gets that
∫

B
|uε(x, to)−wε(x, to)| dx ≤ 2δ

for any ε sufficiently small.
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We repeat the same argument to estimate
∫

E
|uε(x, to)−wε(x, to)|dx and

finally get that, for any ε sufficiently small∫
I

|uε(x, to)− wε(x, to)| dx ≤

≤
∫

B

|uε(x, to)− wε(x, to)| dx +
∫

E

|uε(x, to)− wε(x, to)| dx ≤ 4δ .

To conclude the proof of (15), let I = [a, b] be a given interval and t > 0
a given time. Define J = [a − Lt, b + Lt]. By the previous argument, for any
positive δ there exist ε1 > 0, to > 0 (that can be chosen less than t) such that∫

J

|uε(x, to)− wε(x, to)| dx ≤ δ ∀ 0 < ε < ε1 .

Since
∫

I
|uε(x, t)−wε(x, t)| dx ≤

∫
J
|uε(x, to)−wε(x, to)| dx , the conclusion

follows. ut
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