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1 Introduction

We consider the following model for the flow of an inviscid fluid admitting
liquid and vapor phases:  vt − ux = 0

ut + p(v, λ)x = 0
λt = 0 .

(1)

Here t > 0 and x ∈ R; moreover v > 0 is the specific volume, u the velocity,
λ the mass density fraction of vapor in the fluid. Then λ ∈ [0, 1], with λ = 0
characterizes the liquid and λ = 1 the vapor phase; intermediate values of λ
model mixtures of the two pure phases. The pressure is p = p(v, λ); under
natural assumptions the system is strictly hyperbolic. We refer to [4, 3] for
more information on the model. System (1) has close connections to a system
considered by Peng [6]. A comparison of the two models is done in [1].

We consider and prove here, as a preliminary study for a forthcoming
paper, the basic features of system (1): wave curves, Riemann problem, wave
interactions. The results improve some of those in [6]; the proofs are different.
We refer to [1] for more details as well as, for instance, refined interaction
estimates and a simple but complete proof of Glimm estimates.

2 Assumptions, wave curves and the Riemann problem

We consider a pressure law of the form

p(v, λ) =
A(λ)

v
(2)

where A(λ) = a2(λ) is a smooth function defined on [0, 1] satisfying for every
λ ∈ [0, 1]
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A(λ) > 0, A′(λ) > 0 .

We denote U = (v, u, λ) ∈ Ω = (0,+∞) × R × [0, 1] and by Ũ = (v, u) the
projection of U onto the plane vu. Under the above assumptions on the pres-
sure the system (1) is strictly hyperbolic in the whole Ω: the eigenvalues are
±

√
−pv(v, λ), both genuinely nonlinear, and 0, which is linearly degenerate.
The direct shock-rarefaction curves through Uo = (vo, uo, λo) for (1) are

Φ1(v, Uo) =


(

v, uo + a(λo)
v − vo√

vvo
, λo

)
v < vo shock(

v, uo + a(λo) log
v

vo
, λo

)
v > vo rarefaction,

(3)

Φ2(λ, Uo) =
(

vo
a2(λ)
a2(λo)

, uo, λ

)
λ ∈ [0, 1] contact discontinuity, (4)

Φ3(v, Uo) =


(

v, uo − a(λo) log
v

vo
, λo

)
v < vo rarefaction(

v, uo − a(λo)
v − vo√

vvo
, λo

)
v > vo shock.

(5)

Remark that the pressure is constant along contact discontinuities. The curves
Φ1, Φ2 and Φ3 are plane curves; as for states we denote by Φ̃i the projection
of these curves on the plane vu. We denote the u-component of the 1- (3-
) shock-rarefaction curves by φ1(v, Uo) (resp. φ3(v, Uo)) so that Φi(v, Uo) =
(v, φi(v, Uo), λo) for i = 1, 3.

Lemma 1. Fix any (vo, uo, λo) ∈ Ω. Then for i = 1, 3 and any α > 0, λ1, λ2 ∈
[0, 1], u1, u2 ∈ R:

φi (αv, (αvo, uo, λo)) = φi (v, (vo, uo, λo)) (6)
φi (v, (vo, u1, λ1))− u1

a(λ1)
=

φi (v, (vo, u2, λ2))− u2

a(λ2)
. (7)

Moreover, for i, j = 1, 3, i 6= j, and v̄ = v2
o

v ,

φi(v, Uo) = φj(v̄, Uo) . (8)

Remark that property (8) exchanges shocks of the first family with shocks
of the third one, and analogously for rarefactions. The proof of the lemma
follows from the definition of the functions φi; equality (6) is a consequence
of the property of congruence of shock curves by rigid motions for fixed λ [5].

Definition 1. With the notation (3)–(5) we define the strength εi of a i-wave
by

ε1 =
1
2

log
(

v

vo

)
, ε2 = 2

a(λ)− a(λo)
a(λ) + a(λo)

, ε3 =
1
2

log
(vo

v

)
. (9)
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We define the function h as h(ε) = 2ε if ε ≥ 0 and h(ε) = 2 sinh ε if ε < 0.
Then |h(ε)| ≥ 2|ε| and φi(v, Uo) = uo + a(λo) · h(εi) for i = 1, 3.

We consider the Riemann problem, i.e., the initial-value problem for (1)
under the piecewise constant initial conditions

(v, u, λ)(0, x) =
{

(v`, u`, λ`) = U` if x < 0
(vr, ur, λr) = Ur if x > 0 (10)

for states U` and Ur in Ω. We denote Ar = A(λr), A` = A(λ`), Ar` =
A(λr)/A(λ`); analogous notations are used for the function a.

If λr = λ` then the solution to the Riemann problem is classical, [7];
otherwise we proceed as follows. For any pair of states U`, Ur in Ω we introduce

U∗
`r = Φ2(λr, U`) = (Ar`v`, u`, λr) .

The state U∗
`r is the unique state with mass density fraction λr that can be

connected to U` by a 2-contact discontinuity; both states have then the same
pressure. It lies on the right, resp. on the left, of Ũ` according to either λ` < λr

or λ` > λr. Consider for v > 0 the curves

Φ2 (λr, Φ1(v, U`)) = (Ar`v, φ1(v, U`), λr) , (11)
Φ2 (λr, Φ3(v, U`)) = (Ar`v, φ3(v, U`), λr) . (12)

The first curve is the composition of the 1-curve through U` with the 2-curve
to λr and passes through the point U∗

`r when v = v`. Similarly, the second is
the composition of the 3-curve through U` with the 2-curve to λr and passes
through the point U∗

`r when v = v`. We change parametrization v → v/Ar` in
(11), (12) and define for i = 1, 3

Φi2(v, U`, λr) =
(

v, φi

(
v

Ar`
, U`

)
, λr

)
= (v, φi2(v, U`, λr), λr) . (13)

The point U∗
`r corresponds now to v = Ar`v`. In an analogous way we define

for v > 0 and i = 1, 3 the curves Φ2i, φ2i, by

Φ2i(v, U`, λr) = Φi (v, Φ2(λr, U`)) = (v, φi(v, U∗
`r), λr) = (v, φ2i(v, U`, λr), λr) .

The curves defined above are the composition of the 2-curve from U` to U∗
`r

with the i-curve through U∗
`r. Both Φ21 and Φ23 pass through the point U∗

`r

when v = Ar`v`.

Lemma 2 (Commutation of curves). For i = 1, 3, the i2- and the 2i-
curves from U` are related by

φi2(v, U`, λr)− u`

a`
=

φ2i(v, U`, λr)− u`

ar
. (14)
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Proof. Using first (6) and then (7), we have

φi2(v, U`, λr)− u`

a`
=

φi

(
v

Ar`
, U`

)
− u`

a`
=

φi (v, (Ar`v`, u`, λ`))− u`

a`

=
φi (v, (Ar`v`, u`, λr))− u`

ar
=

φ2i(v, U`, λr)− u`

ar
.

ut

A consequence of the lemma is that if λr 6= λ` then the curves Φi2(v, U`, λr)
and Φ2i(v, U`, λr), i = 1, 3, meet only for v = v∗`r. More precisely remark that
φ′i2(v, U`, λr) = 1

ar`
φ′2i(v, U`, λr) for every v > 0. Therefore if λr > λ` then

φ′23 < φ′32 < 0 < φ′12 < φ′21, while if λr < λ` then φ′32 < φ′23 < 0 < φ′21 < φ′12.
The mutual position of the four curves Φ̃ij is as in Figure 1.
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qŨ∗
`r

. . . . . . . . . . . . . . . . .u`

.

.

.

.

.

.

.

.

.

v`

qŨ`
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Fig. 1. The curves Φ̃i2(v, U`, λr), Φ̃2i(v, U`, λr), i = 1, 3. (a): λr > λ`; (b): λr < λ`.

Theorem 1. For any pair of states U`, Ur in Ω the Riemann problem (1)
(10) has a unique Ω-valued solution in the class of solutions consisting of
simple Lax waves. If εi is the strength of the i-wave, i = 1, 2, 3, then

ε3 − ε1 =
1
2

log
(

Ar`v`

vr

)
(15)

a`h (ε1) + arh(ε3) = ur − u` . (16)

Moreover, let v > 0 be a fixed number. There exists a constant C1 > 0 de-
pending on v and a(λ) such that if vl, vr > v then

|ε1|+ |ε2|+ |ε3| ≤ C1|U` − Ur| . (17)

Proof. The case λr = λl is solved as in [7]. We consider the case λr > λ`.
Then Ũ∗

`r lies on the right of Ũ`: v` < v∗`r = Ar` · v`. The curves Φ̃12(v, U`, λr)
and Φ̃23(v, U`, λr) divide the plane into four regions, see Figure 2. The differ-
ent patterns of the solution are classified as in the case of the p-system, [7],
according to Ũr belongs to the regions RS, SS, SR, RR.
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qŨ`
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Fig. 2. Solution to the Riemann problem.

Assume that Ũr lies in region RS. Then by a continuity and transversality
argument, [7], there exists a unique point Umr = (vmr, umr, λr) on the curve
Φ12(v, U`, λr) such that the 3-curve through Umr passes by Ur. The curve
φ12(v, U`, λr) is strictly monotone and surjective on R; then we find a unique
state Um` = (vm`, um`, λ`) on the 1-curve through U`, with um` = umr. The
solution to the Riemann problem is then given by a 1-wave from U` to Um`, a
2-wave to Umr and a 3-wave to Ur. The other cases are treated analogously.

Formula (15) follows from the definition of strengths (9) as well as (16).
Finally, let us prove (17). Concerning ε2 remark that |ε2| ≤ max a′

min a · |λr − λ`|.
If ε1ε3 ≤ 0, from (15) we get

|ε1|+ |ε3| =
1
2
|log v` − log vr|+ |log a` − log ar|

≤ 1
2v
|vr − v`|+

max a′

min a
· |λr − λ`| .

If ε1ε3 > 0, from (16) we get |ur − u`| = a` |h (ε1)| + ar |h(ε3)| ≥ 2a` |ε1| +
2ar |ε3|. Then |ε1| + |ε3| ≤ 1

2 min a |ur − u`|. Then (17) follows for a suit-
able C1. ut

3 Interactions

We focus on interactions involving contact discontinuities, the interactions of
1- and 3-waves being treated as in [5, 7], see also [2].

Proposition 1. Let λ`, λr be the side values of λ along a 2-wave. The inter-
actions of 1- or 3-waves with the 2-wave give rise to the following pattern of
solutions:

interaction outcome
λ` < λr λ` > λr

2× 1R 1R + 2 + 3R 1R + 2 + 3S
2× 1S 1S + 2 + 3S 1S + 2 + 3R
3R× 2 1S + 2 + 3R 1R + 2 + 3R
3S × 2 1R + 2 + 3S 1S + 2 + 3S.
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Fig. 3. Interactions. (a): from the right; (b): from the left.

Proof. The interactions are solved in a geometric way by referring to Figure 1.
Thick lines there split the plane according to different patterns of solution of
the Riemann problem, thin lines describe the interaction.

Case 2 × 1. Consider the case of the interaction of the 2-wave with a
1-wave coming from the right, see Figure 3. The state Ur lies on the curve
Φ21(v, U`, λr). If the incoming wave is a rarefaction, then vr > v∗`r, if it is a
shock, then Ur lies on the left branch of Φ21: vr < v∗`r. Assume λr > λ`. Then
the curve Φ̃21(v, U`, λr) is contained either in the region RR if v > v∗`r or in
SS if v < v∗`r. The interaction is then solved according to Theorem 1 either
by a rarefaction of the first family, a contact discontinuity and a rarefaction of
the third family or by a shock of the first family, a contact discontinuity and a
shock of the third family. If λr < λ` then the curve Φ̃21(v, U`, λr) is contained
either in the region RS if v > v∗`r (incoming rarefaction) or in SR if v < v∗`r
(incoming shock). The interaction pattern is solved again by Theorem 1.

Case 3× 2. Consider now the case of the interaction of the 2-wave with a
3-wave coming from the left. The state Ur lies now on the curve Φ32(v, U`, λr).
One can check that if the incoming wave is a rarefaction then vr < v∗`r, while
if it is a shock then vr > v∗`r. If λr > λ` the curve Φ̃32(v, U`, λr) is contained
either in the region SR if v < v∗`r or in RS if v > v∗`r. The interaction is
then solved either by a shock of the first family, a contact discontinuity and
a rarefaction of the third family or by a rarefaction of the first family, a
contact discontinuity and a shock of the third family. If λr < λ` then the
curve Φ̃21(v, U`, λr) is contained either in the region RR if v < v∗`r (incoming
rarefaction) or in SS if v > v∗`r (incoming shock). The interaction is solved
consequently. ut

Theorem 2. Assume that a 1-wave of strength δ1 or a 3-wave of strength δ3

interacts with a 2-wave of strength δ2. Then the strengths εi of the outgoing
waves satisfy ε2 = δ2 and, for [δ2]+ = max{δ2, 0}, [δ2]− = max{−δ2, 0},

|εi − δi| = |εj | ≤
1
2
|δ2| · |δi| i, j = 1, 3, i 6= j . (18)

|ε1|+ |ε3| ≤

 |δ1|+ |δ1|[δ2]+ if 1 interacts

|δ3|+ |δ3|[δ2]− if 3 interacts . (19)
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Proof. We prove (18) when i = 1, j = 3. Assume that a 1 wave of strength
δ1 interacts with a 2 wave of strength δ2 = 2ar−a`

ar+a`
. From (15) and comparing

the velocities before and after the interactions we have

ε3 − ε1 = −δ1 (20)
a`h(ε1) + arh(ε3) = ar · h(δ1) . (21)

Using (20), (21) we get

a`h (δ1 + ε3) + arh(ε3) = arh(δ1) . (22)

Recall that ε1 = δ1 + ε3 and δ1 have the same sign; observe that ε3δ1δ2 > 0.
We consider the four possible types of interaction, as listed in Proposition 1.
• 2 × 1R, ar > a`. The identity (22) gives a` (δ1 + ε3) + arε3 = arδ1 from
which we obtain (a` + ar)ε3 = (ar − a`)δ1. Then (18) follows.
• 2× 1R, ar < a`. Here (22) gives a` (δ1 + ε3)− arδ1 = −ar sinh ε3 ≥ −arε3

from which we obtain −(ar + a`)ε3 = (ar + a`)|ε3| ≤ (a` − ar)δ1.
• 2 × 1S, ar > a`. From (22) we have a` sinh (|δ1|+ |ε3|) + ar sinh(|ε3|) =
ar sinh(|δ1|). Denote x = |δ1|, y = |ε3|, k = ar/a` > 1. Then the previous
identity is written for x ≥ 0, y ≥ 0 as F (x, y) = sinh (x + y) + k sinh(y) −
k sinh(x) = 0. We have F (x, 0) < 0 and F (0, y) > 0 for x > 0, y > 0;
moreover ∂F/∂y > 0. Therefore the implicit equation above is solved globally
by y = y(x).

The estimate (18) writes now y(x) ≤ k−1
k+1x. To prove this it is sufficient to

show that F (x, k−1
k+1x) ≥ 0. The Mac Laurin expansion of F (x, k−1

k+1x) is

∞∑
n=0

x2n+1

(2n + 1)!(k + 1)2n+1

[
(2k)2n+1 + k(k − 1)2n+1 − k(k + 1)2n+1

]
.

Consider the term in brackets; we claim that for every n ≥ 0 and k > 1

(2k)2n+1 + k(k − 1)2n+1 − k(k + 1)2n+1 ≥ 0 . (23)

Now (k + 1)2n+1 − (k− 1)2n+1 = [(k + 1)− (k − 1)]
∑2n

j=0(k− 1)j(k + 1)2n−j

and (2k)2n+1 = 2k · [(k + 1) + (k − 1)]2n. Then the left side of (23) equals

2k
{ 2n∑

j=0

(
2n

j

)
(k − 1)j(k + 1)2n−j −

2n∑
j=0

(k − 1)j(k + 1)2n−j
}

which is always positive. That proves the claim and hence (18).
• 2×1S, ar < a`. Here 0 < ε3 < |δ1|, and (22) gives a` sinh (|δ1| − ε3)−arε3 =
ar sinh(|δ1|). As in the previous case set x = |δ1|, y = ε3, k = a`/ar > 1
so that for 0 ≤ y ≤ x F (x, y) = k sinh (x− y) − y − sinh(x) = 0 . Since
F (x, x) < 0, F (x, 0) > 0 for x > 0 and ∂F/∂y < 0 we solve the above implicit
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equation globally with y = y(x). In order to prove y(x) ≤ k−1
k+1x we show that

F
(
x, k−1

k+1x
)
≤ 0. We have that F

(
x, k−1

k+1x
)

equals

∞∑
n=0

x2n+1

(2n + 1)!(k + 1)(2n+1)

[
k22n+1 − (k + 1)2n+1

]
− k − 1

k + 1
x .

The first term in the sum in the right side is precisely k−1
k+1x, so we need to prove

that for every n ≥ 1, k > 1 we have (k+1)2n+1 ≥ k22n+1, i.e., (k+1
2 )2n+1 ≥ k.

This follows by Bernoulli inequality: (k+1
2 )2n+1 = (1 + k−1

2 )2n+1 ≥ 1 + (2n +
1)k−1

2 ≥ k. Then (18) follows.
Finally, we prove (19), the first line. The case δ2 < 0 corresponds to λ` > λr.
From Proposition 1 the outcoming waves have different signs: ε1ε3 < 0. Hence
we apply (20) to get |ε1|+ |ε3| = |ε1 − ε3| = |δ1| and we just get the equality
in the first line of (19), for δ2 < 0. On the other hand, if δ2 > 0, the inequality
simply follows by (18). In the other case, when a 3-wave interacts, one has
ε1ε3 < 0 if λ` < λr, that is δ2 > 0; the rest of the proof is as above. ut

The inequalities (19) improve the inequality (3.3) in [6] in the case of two
interacting wave fronts, one of them being of the second family. Under the
notations of [6] we find a term 1/(ar + a`) instead of 1/ min{ar, a`}. The
proof differs from Peng’s. Our estimates are sharp: in some cases (19) reduces
to an identity.

We finally remark that, with the choice of the size of the wave-fronts
in Definition 1, the total size of the strengths does not increase across any
interaction of waves belonging only to the families 1 or 3, [1]. On the other
hand, if a 2-wave is involved in the interaction, as in Theorem 2, the variation
|ε1|+ |ε3| − |δi| of the sizes of the strengths may be positive if and only if the
incoming and the reflected waves are of the same type; this happens if and
only if the colliding wave is moving toward a more liquid phase.
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