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Abstract

In this paper we study the well-posedness for a scalar conser-
vation law in which the flux term is non-local in space.

This equation represents a reduced model for slow erosion in
granular flow ([1, 6]) and describes roughly the evolution of a
profile of stationary matter, under the effect of a thin moving
layer of granular matter on the top of it.

We show that the present equation admits weak solutions ex-
isting globally in time and prove their stability w.r.t the initial
data. These properties are related to the assumption on the ero-
sion flux. Different assumptions may lead to significantly different
behaviors, see [9].

1 Introduction

We consider the scalar integro-differential equation

qt + (K(q) f(q))x = 0 , (1.1)

where

K(q(t, ·))(x) = exp
{∫ 0

x

f(q(t, ξ)) dξ
}
, (1.2)

for (t, x) ∈ [0, T ]× R− and
f : (−1,+∞)→ R , f(0) = 0 ,

f ′ > 0 , f ′′ < 0

lim
q→−1

f(q) = −∞ , lim
q→+∞

f(q)
q

= 0 .
(1.3)
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We are interested in the initial-boundary value problem for (1.1) on the
domain R+ × R−, with initial condition

q(0, x) = q0(x) > −1 , x < 0 (1.4)

and no boundary condition at x = 0.
This equation arises as a slow erosion limit in a model of granular

flow, studied in [1]. In more detail, let h be the height of the moving
layer, u the height of the standing layer and p = ux be its slope. Assume
that p > 0. The granular flow in one space dimension is described by
the following 2× 2 system of balance laws (originally proposed in [6]){

ht − (hp)x = (p− 1)h ,
pt +

(
(p− 1)h

)
x

= 0 . (1.5)

As the moving layer becomes very thin, i.e., as ‖h‖L∞ → 0, we proved
in [1] that the solution for the slope p in (1.5) provides the weak solution
of the following scalar integro-differential equation

pµ +
(
p− 1
p
· exp

∫ 0

x

p(µ, y)− 1
p(µ, y)

dy

)
x

= 0 .

Here, the new time variable µ(t) =
∫ t
0
p(τ, 0)h(τ, 0) dτ accounts for the

total mass of granular material being poured from above. Recognizing
p = 1 as the equilibrium slope, we introduce q .= p−1. Using the variable
t in place of µ, we obtain the equation (1.1) with

f(q) =
q

q + 1

that clearly satisfies (1.3).
In this paper we establish the well-posedness result for equation (1.1).

In order to define entropy weak solutions, we recall some results in [1].
From Theorem 2 in [1], for h sufficiently small, we proved that the solu-
tion for p of (1.5) satisfies the following bounds for all t ≥ 0, uniformly
in h:

p(t, x) ≥ p0 > 0, TV p(·) ≤M, ‖p− 1‖L1(R−) ≤M . (1.6)

This leads to the state of the solutions q = p − 1 for (1.1), on a
domain [0, T ]×R−, for a given T > 0. To be precise, let C0, p0 be some
positive constants and define DC0,p0 as

DC0,p0 =
{
q(x) : inf

x<0
q(x) + 1 ≥ p0 , TV q ≤ C0 , ‖q‖L1(R−) ≤ C0

}
.

(1.7)
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Note that for any q ∈ D, the local term f(q) of the flux satisfies Kf ′ > 0,
i.e., the characteristic speed of equation (1.1) is positive. Therefore no
boundary condition is posed at x = 0.

We now state a natural definition of an entropy weak solution of
(1.1)–(1.4) on a domain [0, T ]× R−, with T > 0.

Definition 1.1. For some C0 > 0 and p0 > 0, let q0 ∈ DC0,p0 (see (1.7)).
We say that q provides an entropy weak solution to (1.1)–(1.2) on
[0, T ] × R− with initial condition (1.4), if the following conditions are
satisfied:

(H1) q : [0, T ] → DC1,p1 for some C1 > 0, p1 > 0; the map [0, T ] 3 t 7→
q(t) is Lipschitz in L1(R−).

(H2) q is a weak entropy solution of the scalar conservation law{
qt + (k(t, x) f(q))x = 0 ,
q(0, x) = q0(x)

(1.8)

where the coefficient k is defined by

k(t, x) = K(q(t, ·))(x) = exp
{∫ 0

x

f(q(t, ξ)) dξ
}
. (1.9)

The main result of the paper is the uniqueness and well-posedness of
the solution for (1.1), as stated in the following Theorem.

Theorem 1.2. Let C0, p0 be given positive constants. Then for any ini-
tial data q0 ∈ DC0,p0 there exists a solution q(t, x) to the initial-boundary
value problem (1.1) on x < 0, t ≥ 0 with the following properties:

(i) for all t ≥ 0, infx<0 q(t, x) + 1 ≥ p0 > 0;

(ii) q ∈ L∞([0,+∞)× R−);

(iii) for all t ≥ 0, q(t, ·) ∈ L1(R−) ∩BV (R−).

Moreover, consider two solutions q0(t, ·), q1(t, ·) of the integro-differential
equation (1.1), corresponding to the initial data q̄0, q̄1 ∈ DC0,p0 respec-
tively. Then for any T > 0 there exists L = L(T,C0, p0) > 0 such that,
for t ∈ [0, T ]

‖q0(t, ·)− q1(t, ·)‖L1(R−) ≤ eLt ‖q̄0 − q̄1‖L1(R−) . (1.10)

Recalling that q = p − 1 = ux − 1, the solution q established by
Theorem 1.2 allows us to reconstruct the profile u of the standing layer:

u(t, x)− x =
∫ x

−∞
q(t, y) dy . (1.11)
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Moreover an equation for u is deduced as follows. From (1.2) we have

Kx = −Kf(q(t, x)) ,

so that equation (1.1) can be rewritten as qt −Kxx = 0 .
By integrating in space, using (1.11) and noticing that Kx(q(t, ·)) ∈

L1(R−), we arrive at

ut −Kx = ut +Kf (ux − 1) = 0 .

This is a nonlocal Hamilton-Jacobi equation for the unknown u. An
analysis for this type of equation has been carried out in [9] for a different
class of functions f , that allows for singularities on the standing profile.

More precisely, the main difference between Theorem 1.2 and the
results in [9] is due to the different behavior of f at +∞. Indeed a
slower increase of f as

f(q)
q
→ 0 as q → +∞ , (1.12)

assumed in (1.3), yields to globally bounded solutions. On the other
hand, the faster behavior assumed in [9] requires that the above limit is
positive and leads to blow-up of the solutions, that renders more conve-
nient to study the equation in terms of the antiderivative u.

To be more specific, for both problems it is possible to derive an
apriori, global bound on the quantity

q(t, x)
f(q(t, x))

.

Thanks to (1.12), the function q/f(q) diverges as q → +∞. From this
one deduces that q(t, x) must be globally bounded.

Other problems involving a nonlocal term in the flux have been stud-
ied in [5, 3, 4]. In the rest of the paper we review the proof of Theo-
rem 1.2, whose details can be found in [2].

2 Well-posedness for the equation with a
given k(t, x)

Towards the proof of Theorem 1.2, we study the equation with a given
local coefficient k(t, x)

ut +
(
k(t, x)f(u)

)
x

= 0 , x ≤ 0, t ≥ 0 (2.1)

where k(t, x) satisfies the following assumptions, for some given T > 0:
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(K1) k(t, x) ∈ L∞ ([0, T ]× R−), is Lipschitz continuous and inft,x k > 0;

(K2) TV k(t, ·), TV kx(t, ·) are bounded uniformly in time;

(K3) [0, T ] 3 t→ kx(t, ·) ∈ L1(R−) is Lipschitz continuous.

The local existence and well-posedness for (2.1) is stated in the fol-
lowing Theorem.

Theorem 2.1. Let f satisfy (1.3) and k satisfy (K1)–(K3). Let C0 >
0, p0 > 0 be given. Then there exist two positive constants C1 > C0,
p1 < p0 and an operator Pt : [0, T ]×DC0,p0 → DC1,p1 such that:

1) for all ū0, ū1 ∈ DC0,p0 one has

‖Pt(ū0)− Pt(ū1)‖L1(R−) ≤ ‖ū0 − ū1‖L1(R−) ; (2.2)

2) the function u(t, x) = Pt(ū0) is a weak entropy solution of (2.1)
with initial data u(0, ·) = ū0 ∈ DC0,p0 .

Moreover, the solutions of (2.1) depend continuously in L1 on the
coefficient k (see also [7]).

Theorem 2.2. Let k, k̃ satisfy the assumptions (K1)–(K3). Let u, ũ
be the solutions of the conservation laws

ut +
(
k(t, x)f(u)

)
x

= 0 , x ≤ 0, t ≥ 0 ,

ut +
(
k̃(t, x)f(u)

)
x

= 0 , x ≤ 0, t ≥ 0 ,

respectively, with the same initial data ū0 ∈ DC0,p0 , on the time interval
[0, T ]. Then, the following estimate holds

1
t
‖u(t, ·)− ũ(t, ·)‖L1(R−)

≤ Ĉ1‖k − k̃‖L∞([0,t]×R−) + Ĉ2 sup
t∈[0,T ]

TV
(
k(t, ·)− k̃(t, ·)

)
where Ĉ1, Ĉ2 depend on supt TV u(t, ·), supt TV ũ(t, ·) and on sup |f |,
sup |f ′| taken over the range of the solutions.

3 Sketch of the proof of Theorem 1.2

The existence of solutions for (1.1), in the case of f(q) = q/(q + 1),
is a consequence of the slow erosion limit studied in [1]. In the more
general assumptions (1.3) for f , a proof can be obtained through a time
step approximation of (1.1). Below we give some formal arguments for
smooth solutions, while rigorous analysis can be found in [2].
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(a). Bound on the L1 norm. Because sign(q) = sign(f(q)), the conser-
vation law (1.1) implies that, for all t ≥ 0, we have

‖q(t, ·)‖L1(R−) ≤ ‖q(0, ·)‖L1(R−) −
∫ t

0

|f(q(τ, 0))| dτ . (3.1)

(b). Lower bound on q. Along a characteristic curve t→ x(t) we have{
x′(t) = k(t, x)f ′(q)
q′(t) = −kx(t, x)f(q) = kf(q)2 ≥ 0 . (3.2)

Then the solution q is non-decreasing along any characteristics, and
therefore infx q(t, x) ≥ inf q0(x) ≥ p0 − 1 > −1 for all t ≥ 0.
(c). Bounds on f , f ′, k. As a consequence of (a), (b) we immediately
deduce apriori bounds on ‖f(q(t, ·))‖∞, ‖f(q(t, ·))‖L1 , ‖f ′(q(t, ·))‖∞,
‖k(t, ·)‖∞, TV (k) and the characteristic speed kf ′.

(d). Upper bound on q. The physical meaning of the function f(q) is
the amount of erosion per unit length in x. Then the function q/f(q) is
a measurement for the change in height per unit erosion. Therefore, the
function

φ(t, x)=̇
∫ x

−∞
q(t, y) dy +

q

f(q)

would remain constant along characteristics. In fact, we can easily check
that

φ̇(t, x(t)) = φt + ẋφx = [qf ′(q)− f(q)]k +
f(q)− qf ′(q)

f2(q)
f2(q)k = 0.

For any q(0) > 0, for any time t > 0, along the characteristic we have

q(t)
f(q(t))

=
q(0)

f(q(0))
+
∫ x(0)

−∞
q(0, y) dy −

∫ x(t)

−∞
q(t, y) dy ≤M (3.3)

which is bounded thanks to (a). Recalling the last assumption in (1.3),
the function q → q/f(q) is monotone increasing and approaches +∞ as
q → +∞. Therefore (3.3) provides an upper bound for q for all t > 0.

(e). BV bound. For smooth solutions, the equation (1.1) gives

(qx)t + (kf ′(q)qx)x = (kf2(q))x = −f3(q)k + 2f(q)f ′(q)qxk .

Formally, the L1 norm of qx provides the total variation for q. One has

d

dt
TV (q(t, ·)) ≤ ‖k‖∞ · ‖f(q(t, ·))‖2∞ · ‖f(q(t, ·))‖L1

+ 2‖k(t, ·)‖∞ · ‖f(q(t, ·)‖∞ · TV (f(q(t, ·))).
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Then the total variation of q can grow exponentially in t, but remains
bounded for finite t.

Finally, to see that the flow generated by equation (1.1) is Lips-
chitz continuous, we consider two solutions q0(t, ·), q1(t, ·) of the integro-
differential equation (1.1) with initial data

q0(0, x) = q̄0(x) , q1(0, x) = q̄1(x) x < 0 ,

and satisfying (1.7) for t ∈ [0, T ]. We have the following estimate

‖q0(t, ·)− q1(t, ·)‖L1(R−) ≤ ‖q̄0 − q̄1‖L1(R−)

+ L

∫ t

0

‖q0(s, ·)− q1(s, ·)‖L1(R−) ds (3.4)

for a suitable constant L. By Gronwall lemma, this yields (1.10), hence
the Lipschitz continuous dependence of solutions of (1.1) on the initial
data.

q
0

q
1

τ
τ

  T0

q
0

q
1

k
0

k
1

t

q

q

τ

q  (t)

Figure 3.1: The flow of solutions q0, q̂, qτ , q1 for the integro-differential
equation.

To prove the estimate (3.4), we define the functions k0(t, x), k1(t, x)
as in (1.9), corresponding to q0(t, x), q1(t, x) respectively. Let q̂ be the
solution of

qt + (k0(t, x) f(q))x = 0 ,

with initial data q̂(0, x) = q̄1(x) (see Figure 3.1). Since q0 and q̂ satisfy
the same equation (with coefficient k0), we have

‖q0(t, ·)− q̂(t, ·)‖L1(R−) ≤ ‖q̄0 − q̄1‖L1(R−) ∀ t ∈ [0, T ] . (3.5)
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Now we evaluate ‖q̂(t, ·)− q1(t, ·)‖L1(R−) as follows:

‖q̂(T, ·)− q1(T, ·)‖L1(R−) ≤
∫ T

0

E(τ) dτ , (3.6)

where

E(τ) .= lim sup
h→0+

‖qτ (τ + h, ·)− q̂(τ + h, ·)‖L1

h

and qτ (t, ·) is the solution, for t ≥ τ , of

qt + (k1(t, x) f(q))x = 0 , q(τ, x) = q̂(τ, x) .

By Theorems 2.1 and 2.2 we get the following estimate for E:

E(τ) ≤M TV {k0(τ, ·)− k1(τ, ·)} ≤ L · ‖q0(τ, ·)− q1(τ, ·)‖L1

for some suitable constants M , L. By inserting this estimate into (3.6)
and using (3.5) one finally obtains (3.4).
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