
Software Customization in Model Driven Development
of Web Applications

Antonio Cicchetti, Davide Di Ruscio, Amleto Di Salle
Dipartimento di Informatica

Università degli Studi dell’Aquila
I–67100 L’Aquila, Italy

{cicchetti, diruscio, disalle}@di.univaq.it

ABSTRACT
Model Driven Development (MDD) of complex software systems
can require manual adaptations of the generated artifacts.In fact,
in order to cope with unforeseen requirements which are not com-
pletely satisfiable by means of the involved modeling languages,
developer interventions could be needed. The optimal solution to
deal with this issue, is based on the expressiveness improvement of
the involved metamodels and refinement of the used model trans-
formations. Nevertheless, these adaptations are not always possible
or cost-effective especially if the new functionalities that have to be
introduced affect only the single application being developed.

This paper discusses and attempt to hand-tune the generatedcode
by providing an approach supporting its merging with hand written
modifications. For this purpose, the behaviour model of the system
under study is considered to graphically specify theinjection points
where the modifications have to occur. The discussions are based
on a running example consisting of a simple Web application.

Categories and Subject Descriptors
K.6.3 [Management of Computing and Information Systems]:
Software Management—Software development; D.2.10 [Software
Engineering]: Design—Methodologies; D.2.13 [Software Engi-
neering]: Reusable Software—Domain engineering

Keywords
Model Driven Development, Software Customization, Model Trans-
formation, Web Application, Model-View-Controller

1. INTRODUCTION
In Model Driven Development (MDD) [27] metamodeling and mo-
del transformations play a central role enabling to shift the focus of
software development from coding to modeling. In this respect,
problems can be precisely described using specific terms andcon-
cepts more familiar to experts who work in the considered domain
avoiding technological details which are unnecessary for the func-
tional descriptions. Furthermore, model transformationsare used to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07March 11-15, 2007, Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

glue the several levels of abstractions and by encoding the knowl-
edge about the technological assets permit the automated genera-
tion of the implementation.

The technical intricacies of model transformations require lan-
guages and tools that foster reuse, adaptation and composition in
the same manner as the traditional software artifacts, likeclasses
and libraries, are developed to be used, adapted and composed [20].
Although model transformations are specified and developedtak-
ing into account well-known software engineering principles en-
abling their adaptability, in some cases manual changes of the gen-
erated artifacts are required to resolve unforeseen requirements or
limited expressiveness of the involved metamodels. Manualinter-
ventions should be avoided by adapting the required metamodels
and model transformations to cope with the new domain concepts,
but for complex systems such modifications are not always cost-
effective and could require much efforts both for developers and
final users.

This paper discusses the need of supporting software customiza-
tions in MDD and describes the experience of the authors in dealing
with these problems during the development of Web applications.
In fact, manual interventions on the generated code are usually re-
quired to meet specificities or behaviours that are not considered
in advance or that concern only the single system being developed.
Furthermore, this work proposes an attempt to hand-tune theauto-
matically generated code by providing an approach supporting its
merging with the hand-written one. For this purpose, behaviour
models are considered to graphically specify the points of the gen-
erated code where the modifications have to occur. A running ex-
ample consisting of a simple Web application will be considered
and an approach to support manual customizations of the gener-
ated artefacts compliant to theModel-View-Controller(MVC) [11]
pattern will be also provided.

The structure of the paper is as follows: next section motivates
the need of software customization in MDD. Section 3 describes a
simple Web application where manual customizations are needed.
Section 4 proposes and apply a solution to cope with this issue.
Finally, Section 5 draws the conclusions and presents some per-
spective work.

2. SOFTWARE CUSTOMIZATION IN MDD
Model Driven Architecture (MDA) [14] is an important effortto
support and implement MDD. It is intended to be a top-down pro-
cess which starts from abstract descriptions, calledPlatform Inde-
pendent Models(PIMs), able to capture the business logic of the
system being modeled. Then, such specifications are enriched and
refined with platform specific details giving place toPlatform Spe-
cific Models(PSMs). Finally, all the previous information will be
used to generate the implementation code.

Despite the remarkable steps toward a complete model driven
software development, today’s MDA tools are not always ableto
automatically build the complete applications except for very par-
ticular cases. In fact, it is possible to generate the architectural in-
frastructure code as well as a complete working applicationthat
supports CRUD (Create, Read, Update, Delete) behavior opera-
tions, even though this is still not what MDD is expected to be[21].
Usually, the source PIMs contain the structural description of sys-
tems, and hence the behavior implemented by the used MDA tools
tends to be only a default. One of the main reasons is that the ex-
pressive power of structural models is not enough to supportthe
potential complexity of the behavioral requirements that need to be
expressed. Even though some ongoing work is being done to sup-
port modeling behaviour, an agreed notation for this issue has not
been reached yet [15].

Except for very simple applications, the obtained default behav-
iors have to be manipulated in the generated PSM or code, by
means of hand-written modifications implementing the required
functionalities. In fact, by using the available tools the designer
is able to generate kind of container in which s/he is called to add
her/his own code. However, this intervention might cause several
problems:

- it can be difficult to locate the point(s) in the generated sys-
tem where new code is required;

- it can be difficult to verify and validate the modifications,
i.e. some manipulations could compromise system status
correctness;

- the massive use of this technique can lead to model erosion,
since a lot of customizations are hidden in the code;

- reverse engineering could be used to derive models from the
customized code. Although the outcome presents some dia-
grammatic representation of the system execution, it usually
fails in significantly leveraging design decisions [23].

Over the last years, several techniques have been proposed to
deal with behavior customizations. Taking into account thecon-
text of component based software development, few approaches
(e.g. [23]) propose to specify adaptors at a high abstraction level for
using new software components. Others (see [25]) tend to combine
models and code by means of model interpreters. In particular, ex-
ecutable UML 2 activity diagrams can specify at specific locations
invocations of handwritten code. The choice of the model/code ra-
tio is left to the developer; an extendedC# compiler will be able to
integrate such parts.

With respect to Web application modeling and adaptability is-
sues, the work in [6] illustrates a technique to perform context
aware adaption of a system. It is obtained by combining WebML
conceptual modeling [3] and Chimera Exception Language rule
definitions [2]. Starting from a conceptual model defined trough
WebML, the correspondent code is obtained by means of an auto-
mated transformation. Then, once defined Event-Condition-Action
rules, an engine is able to trigger them when specific page context
changes occur. Finally, several MDA tools (ArcStyler [24],An-
droMDA [29] to mention a few) provide with facilities to concep-
tually describe Web applications and generate the correspondent
code by means of a one-step model-to-code transformation. The
generation gives place to a complete skeleton of the modeledappli-
cation even though the business rules have to be written by hand.
Tools like Rhapsody [16] permit software customizations atcode
level. In particular specific markers are placed in the generated
code and hand written one should only be inserted there.

Figure 1: Sample Source Specification (PIM)

Speaking about software adaptation, aspect-oriented software de-
velopment (AOSD) [17, 8] gained popularity thanks to its noninva-
sive property, that is the possibility to execute crosscutting concerns
exploiting weaving techniques without making modifications to the
original code. However, in some cases it can not be simple to deal
with interference issues between original code and woven one [1].

In the rest of the paper, the problem of software customization
in the model driven development of Web applications is considered
and an approach to face it is introduced and described by means of
a simple running example.

3. WEB APPLICATION MODELING
Over the last years the complexity of Web applications increased
requiring languages and tools to support their developmentand life
cycle. Many design methodologies, such as Hera [9], OO-H [12],
OOHDM [26], UWE [19], W2000 [10], and WebML [3], have been
proposed to cope with the technical intricacy of such systems. All
methodologies adopt different notations and propose theirown con-
structs to describe this kind of applications under different views
comprising at least the data, navigation and presentation one giv-
ing place to PIMs.

All of the above modeling approaches are based on concepts
proper of the Web domain (e.g.page, navigation node, naviga-
tion link andindex) providing the designer with the necessary con-
structs to describe applications without considering implementa-
tion details. For example, the Fig. 1 shows the data and naviga-
tion specifications, given by using the WebML notation, of a sam-
ple application without providing information about the underlying
platform. On the lower side of the figure, four Web pages are mod-
eled to support the management of theUser andGroup data enti-
ties modeled on the upper side of the same figure. From theMenu
page, a list of all users can be reached. Furthermore, theUserList

page provides with two links in order to reach the pages devoted
to add a new user (UserForm Add page) or to edit a selected one
(UserForm Edit page). In the former, all the information about
a new user can be filled and the groups to whom she/he belongs
can be also selected. The provided data will be stored in theUser
data entity and new relationships amongst the just added user and
selected groups will be established. In order to modify the data

of existing users theUserForm Edit page is defined consisting
of the form where the data of the selected users will be preloaded
and ready to be changed. The WebML notation used to specify
the above example is supported by the WebRatio tool [30] ableto
generate inone-stepthe complete implementation of the specified
applications executable on the J2EE [28] platform. In this paper,
in order to set a simpleelaborationist[18] approach to Web appli-
cation development used as basis for our discussions, the WebML
notation is still maintained (because of its simplicity andflexibil-
ity) but considered as a source metamodel of model transformations
capable to gradually refine the WebML specifications into PSMs
which are compliant to the MVC pattern.

Being more precise, MVC is an architectural pattern which aims
at minimizing the degree of coupling between elements to relate
the user interface to underlying data models in an effectiveway. In-
creasingly, this pattern is used in program development with object-
oriented languages and for organizing the design of Web applica-
tions proposing a three-way factoring paradigm based on thefol-
lowing: themodelholds all data relevant to domain entity or pro-
cess, and performs behavioral processing on that data; theviewdis-
plays data contained in the model and maintains consistencyin the
presentation when the model changes. Finally, thecontroller is the
glue between view and model reacting to signicant events in the
view, which may result in manipulation of the model.

As shown in [7], by means of model transformations it is pos-
sible to obtain MVC compliant models of Web applications con-
ceptually described through specialized modeling languages. In
this sense, the conceptual description given in Fig. 1 can betrans-
formed into the specification shown in Fig. 2. In particular,borrow-
ing some constructs of the Conallen’s UML profile [5] the pages
are modeled by giving both server and client sides by means of
≪serverPage≫ and≪clientPage≫ stereotyped classes, re-
spectively. A server page can be associated with other server-side
objects, i.e. database, middle-tier components and so on. The
≪clientPage≫ stereotype represents a HTML page which is
usually associated with other client or server pages. In thelast case
the≪build≫ stereotyped association is used to state that a server
page builds a client one. An hyperlink between pages is modeled
by a≪link≫ stereotyped association. A directed relationship be-
tween one server page and another server or client page is modeled
by the≪forward≫ stereotyped association. This association rep-
resents the delegation of processing client’s requests fora resource

Figure 2: Generable Platform Specific Model MVC-Compliant

Figure 3: Overall Approach

to another server-side page. Finally, the≪businessDelegate≫
stereotype is used to refer to business delegate objects that hides
implementation details of the business service and encapsulates ac-
cess and lookup mechanisms to the persistency layer.

The controller andview counterparts are modeled by means of
the≪controller≫ and≪view≫ stereotypes respectively. Due
to space limitation, concerning themodel layer specified through
the≪model≫ stereotype, onlyUserTO transfer object is consid-
ered which is used to optimize data transfer across tiers.

By means of further model transformation steps, the PSM in
Fig. 2 can be refined and transformed into executable code. Ac-
cording to our experience, this is not the typical scenario as man-
ually interventions are often required, especially on the generated
code, in order to cope with functionalities which are not completely
covered by the source metamodel.

Next section focuses on these issues and presents a tentative so-
lution to support manual interventions on generated artifacts to re-
solve unforeseen requirements or limited expressiveness of the in-
volved metamodels.

4. DEALING WITH SOFTWARE CUSTO-
MIZATION OF WEB APPLICATIONS

As mentioned above, during the model driven development of com-
plex software systems, developers can be required to hand-tune the
generated artifacts in order to cope with particular requirements and
funcionalities which are not completely specifiable by means of the
used metamodels. A possible solution to accommodate the newre-
quirements, is based on the improvement of such metamodels and
model transformations. Nevertheless, these modificationsare not
always possible especially if the new behaviour affects only the ap-
plication being developed and not the overall domain because of
its irregularity or individuality. In this case, manual interventions
on the PSMs could be more profitable even if it is surely critical
and other problems may raise. In fact, according to our experience,
changing the generated code can be very difficult if the develop-
ers are not appropriately supported mostly to understand inwhich
places of the code the modifications can occur.

In this section a methodology to support the customization of
Web Applications developed by means of model driven approaches
is proposed. The premise is that the designer of both the source
metamodels and the corresponding transformations decidesin ad-
vance in which locations of the generated artifacts manual inter-
ventions are permitted. Even though this could not appear power-
ful enough, it is kind of trade-off: on one hand the users of these

Figure 4: Generated Behavior Specification Fragment

transformations will have the possibility to customize thegener-
ated artifacts by adding behaviours not completely coveredby the
source metamodels. On the other hand, to not compromise the
system behaviour through manual customizations, the metamodel
and transformation designer decides where manual interventions
are allowed. According to the approach depicted in Fig. 3, these
localities are shown to the developer in term of a view (seePSM
abstraction) of the generated system behaviour models (seePSM).
This view hides the details that the source metamodel and transfor-
mation designer does not want to give and shows where the cus-
tomizations can occur. In the remaining of the paper, these points
will be calledinjection points. This is the main characteristics that
differ the proposed approach with the attempts described inSec. 2.

By going into more detail, the model in Fig. 2 lies on a defaultbe-
haviour consisting of a number of interactions as shown in the UML
sequence diagram in Fig. 4. For example, the editing of the user
information conceptually modeled through theUserForm Edit
page in Fig. 1, will consist of a number of interactions amongst
theUser controller, theUserDelegate, theUserForm controller
and view. In fact, in order to publish the pre-filled form withthe
data of the selected user, theUser controller will invoke the method
findUserByPK of theUserDelegate in order to retrieve the user
data that have to be forwarded to theUserForm server page. This
builds the HTML page that will be sent to the user. Once the mod-
ified data are filled out, theedit method of theUser controller is
called and by means of theUserDelegate the persistency layer
will be updated. This behaviour mainly depends on the indeedse-
mantics of the source modeling language (WebML) defined with
respect to the concepts of the considered domain.

According to the proposed approach, these behaviours represent
too much information that the designer of the source metamodel
and transformations may want to hide for manual customizations.
For this purpose a model like the one depicted in Fig. 5 will be

provided for the changes. This model is an abstraction of themodel
in Fig. 4 and has only the essentials with the injection points where
manual interventions can occur. In particular, the model describes
two possibleactionsthat can be performed by the client browser
with the Web server, that is the editing of an existing user orthe
addition of a new one. The possible injection points are indicated
by dashed circles denotingpre or post actions, i.e. whether the
hand written code will be performed before or after, respectively,
the considered action.

Figure 5: Generated PSM Abstraction

In Fig. 5, pre and post actions can be customized for the adding
operation. For theeditUser operation, only the definition of a
pre-action is permitted. The models in Fig. 4 and in Fig. 5 are
related in order to link the injection points specified in thelatter
with the right place in the former where the hand-written code will
be merged with the generated one.

In order to better clarify the approach in Fig. 3 a new require-
ment for the sample application described above is considered: for
traceability purposes, before the transaction storing themodified
data of a selected user takes place, an email to the system admin-
istrator is sent to inform her/him about the operation that is going
to be executed. This is a new functionality which cannot be com-
pletely described by the source metamodel and the generatedarti-
facts should be manually modified. In the model depicted in Fig. 5
the pre-action for the editing operation is permitted. Thismeans
that the code implementing the new requirement can be provided
for the customization. In order to reduce the risk of compromis-
ing the reliability of the generated application, we believe that the
user could take advantage of dedicated Application Programming
Interface (API), dependent on the considered platform, to imple-
ment the adaptations. For example, considering the J2EE platform
and the MVC pattern, the Java code needed to implement the re-
quired send mail operation is obtained by exploiting an available
EmailManager as follows

1 ...
2 EmailManager emanager = new EmailManager();
3 Message message = new Message();
4

5 message.setFrom("from@email.address");
6 message.setSubject("subject");
7 message.setRecipient("administrator@system.address");
8 message.setBody("body");
9

10 emanager.sendmail(message);
11 ...

Listing 1: Hand-written code implementing the new
functionality

whereMessage is a class provided by the underlying platform to
define an email message.

Once the injection points have been elicited and the correspond-
ing code have been provided, a weaving operation has to be per-
formed to merge together the automatic generated code with the
hand-written one. Of course, Aspect Oriented Programming (AOP)
[17] is a candidate for this purpose. In particular, in orderto use
AOP approaches, each specifiedinjection point induce the defini-
tion of pointcutsin the code generated by the static descriptions of
the system (see Fig. 2). Then theadvicecode will be merged, with
respect to the previously defined points, by using the considered
AOP compiler.

Alternatively, othermodel weaving strategies[13] can be imple-
mented. This is the case of the sample application for which an
approach based on thedependency injection pattern[22] has been
proposed. In particular, ifop() is the method of the classA (be-
longing to the PSM) invoked by the message corresponding to the
injection point selected in the PSM abstraction, the following code
will be generated

1 class A {
2 private Action preAction;
3 private Action preAction;
4 ...
5 public void op() {
6 preAction.execute();
7 op_internal();
8 postAction.execute();
9 }

10 ...
11 public void setPreAction(Action action) {
12 this.preAction=action;
13 }
14

15 public void setPostAction(Action action) {
16 this.postAction=action;
17 }
18 }

The operationop internal() implements the default behaviour
of the previousop() method. ThepreAction andpostAction
objects are the actions that will be executed before and after the ex-
ecution ofop internal() respectively and they are set by means
of the providedsetPreAction() andsetPostAction() meth-
ods. The classAction is an interface which will be implemented
by the class containing the hand-written as follows

1 interface Action {
2 void execute();
3 }
4

5 class MyAction implements Action {
6 public void execute(){
7 //Place where the hand-written code
8 //will be filled
9 }

10 }

According to this pattern the injection point specified by the devel-
oper in the model in Fig. 4 will induce the following code in the
generatedUser class to whom theedit() method belongs

1 Class User {
2 ...
3 public void edit() {
4 preAction.execute();
5 edit_internal();
6 postAction.execute();
7 }
8 ...
9 }

In this case, thepreAction object is an instance of a class imple-
menting theAction interface and having the code in the listing 1
as the body of the correspondingexecute() method. In this ex-
ample, the code for the post-action, graphically indicatedin Fig. 4
through the lower dashed circle, has not been given; this means
that postAction.execute() will be an invocation of a prede-
fined dummy operation.

5. CONCLUSIONS AND FUTURE WORK
This paper proposed an approach to support manual changes in
the model driven development of Web applicationsin response to
the need of behavior customization of automatically generated ap-
plications. The reasons of performing hand-tuning are numerous,
like the lack of expressive power at higher levels of abstraction or
the non-cost-effectiveness of metamodel and model transformation
adaptations. Since such kind of customizations can cope with sev-
eral drawbacks as highlighted above, we propose an attempt to pro-
vide with an abstraction level to avoid direct code manipulation and
necessary to tune the intervention granularity. The work describes
a technique by which PSM adaptations are enabled by choosingin-
jection points on an abstraction of the PSM itself. The abstraction
and the injection points are defined by the metamodel and transfor-
mation designer, who decides in advance how and where the cus-
tomizations will be permitted in order to maintain the correctness
of the generated application merged with the hand-written code.

The approach differs from other works that allow manual in-
tervention at code level and that enable large possibilities of cus-
tomizations. The proposal described in this paper reduces these
possibilities in order to do not compromise generated Web applica-
tions by means of manual customizations. The proposed approach
is not able to deal with complex situations. However, according to
the experience of the authors in developing Web applications, the
powerful of the approach is enough to deal with customizations like
the one described in the running example where pre or post actions
have to be added, if permitted, and executed before or after given
HTTP requests respectively.

Under a MDD point of view, the main drawback of the proposed
solution is the inconsistency between the PIM and the remaining
artifacts produced through the customization. This problem could
become very relevant if a number of modifications is performed;
in such a case the method usability could become a weak point
too. However, the paper focuses on situations where higher level
refactorings are not cost-effective and proposes an approach that
could have to be used in exceptional cases only and by means ofa
proper tool support.

Upcoming extensions of the approach should encompass a step
towards the reverse engineering of the changes by means of a UML
profile able to enrich the sequence diagrams used to specify the
injection points; to each of them the related source code could
be attached as white-box components through tagged values.Be-
sides, transformation approaches able to support bi-directionality
and change propagation [4] should be explored to verify whether
it could be possible to automatically preserve the consistency be-
tween the modeling layers.

6. REFERENCES
[1] C. Atkinson and T. Kühne. Aspect-Oriented Development

with Stratified Frameworks.IEEE Software, 20(1):81–89,
2003.

[2] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification
and Implementation of Exceptions in Workflow Management
Systems.ACM Transations on Database Systems,
24(3):405–451, 1999.

[3] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling
Language (WebML): a Modeling Language for Designing
Web sites.Computer Networks, 33(1–6):137–157, 2000.

[4] A. Cicchetti, D. Di Ruscio, and R. Eramo. Towards
Propagation of Changes by Model Approximations. In
International Workshop on Models for Enterprise Computing
- EDOC 2006. To appear.

[5] J. Conallen. Modeling Web Application Architectures with
UML. Comm. ACM, 42(10):63–71, 1999.

[6] F. Daniel, M. Matera, and G. Pozzi. Combining conceptual
modeling and active rules for the design of adaptive web
applications. InICWE ’06: Workshop procs. of the sixth Int.
Conf. on Web Engineering, page 10, New York, NY, USA,
2006. ACM Press.

[7] D. Di Ruscio and A. Pierantonio. Model Transformations in
the Development of Data–Intensive Web Applications. In
CAISE ’05, volume 3520 ofLNCS, pages 475–490.
Springer-Verlag, 2005.

[8] T. Elrad, O. Aldawud, and A. Bader. Aspect-Oriented
Modeling: Bridging the Gap between Implementation and
Design. InProcs. of the Generative Programming and
Component Engineering, ACM SIGPLAN/SIGSOFT Conf.,
GPCE 2002, Pittsburgh, PA, USA, volume 2487 ofLNCS,
pages 189–201. Springer-Verlag, October 2002.

[9] F. Frasincar, G. Houben, and R. Vdovjak. Specification
Framework for Engineering Adaptive Web Applications.
WWW 2002.

[10] F. Garzotto, L. Baresi, and M. Maritati. W2000 as a MOF
metamodel. InThe 6th World Multiconf. on Systemics,
Cybernetics and Informatics-Web Engineering track, 2002.

[11] S.T. Pope G.E. Krasner. A cookbook for using the
model-view controller user interface paradigm in
Smalltalk-80.Jour. of Object-Oriented Programming,
1(3):26–49, 1988.

[12] J. Gómez and C. Cachero. OO-H Method: extending UML

to model web interfaces. pages 144–173, 2003. Idea Group
Publishing.

[13] Thomas R. Graziadei. Aspect oriented model weaver.
Master’s thesis, Fachhochschule Vorarlberg GmbH. In the
Degree Program, 2005.

[14] Object Management Group. OMG/Model Driven
Architecture - A Technical Perspective, 2001. OMG
Document: ormsc/01-07-01.

[15] Object Management Group. OMG/Semantics of a
Foundational Subset for Executable UML Models - RFP,
2005. OMG Document: ad/2005-04-02.

[16] I-Logix. Rhapsody Tool, 2006.
http://www.ilogix.com/sublevel.aspx?id=53.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In11th European Conf. on
Object Oriented Programming (ECOOP ’97), volume 1241
of LNCS, pages 220–242, Helsinki, Finland, June 1997.
Springer-Verlag.

[18] Anneke Kleppe, Jos Warmer, and Wim Bast.MDA
Explained: The Model Driven Architecture—Practice and
Promise. Addison-Wesley, 2003.

[19] N. Koch and A. Kraus. The expressive Power of UML-based
Web Engineering. InIWWOST, volume 2548 ofLNCS, pages
105–119. Springer-Verlag, 2002.

[20] I. Kurtev, K. van den Berg, and F. Jouault. Evaluation of
rule-based modularization in model transformation
languages illustrated with ATL. InProcs. of the 2006 ACM
symposium on Applied computing, pages 1202–1209. ACM
Press, 2006.

[21] A. McNeile and N. Simons. Methods of Behaviour
Modelling: A Commentary on Behaviour Modelling
Techniques for MDA. White Paper (Draft). Metamaxim Ltd,
2004.

[22] M.Fowler. Inversion of control containers and the
dependency injection pattern, 2006.
http://www.martinfowler.com/articles/injection.html.

[23] N. Moreno, R. Romero, and A. Vallecillo. Software
Adaptation in the Context of MDA. InProcs. of the Second
Int. Workshop on Coordination and Adaptation Techniques
for Software Entities (WCAT05), page 7, July 2005.

[24] Interactive Objects. ArcStyler Tool, 2006.
http://www.interactive-objects.com.

[25] S. Sarstedt, J. Kohlmeyer, A. Raschke, and M. Schneiderhan.
A New Approach to Combine Models and Code in Model
Driven Development. InProcs. of the Int. Conf. on Software
Engineering Research and Practice, SERP 2005, Las Vegas,
Nevada, USA, volume 1, June 2005.

[26] D. Schwabe and G. Rossi. An object oriented approach to
Web-based applications design.Theor. Pract. Object Syst.,
4(4):207–225, 1998. John Wiley & Sons, Inc.

[27] B. Selic. The Pragmatics of Model-driven Development.
IEEE Software, 20(5):19–25, 2003.

[28] Sun. Java platform, enterprise edition, 2006.
http://java.sun.com/javaee/index.jsp.

[29] AndroMDA Team. AndroMDA Tool, 2006.
http://www.andromda.org.

[30] Web Models. WebRatio Tool. http://www.webratio.com.

