
Synthesis of resilient choreographies

Marco Autili, Amleto Di Salle, and Massimo Tivoli ?

Università degli Studi di L’Aquila, Italy
{marco.autili,amleto.disalle,massimo.tivoli}@univaq.it

Abstract. A possible Service Engineering (SE) approach to build service-based
systems is to compose together distributed services by considering a global spec-
ification of their interactions, namely a choreography. BPMN2 (Business Process
Modeling Notation v2.0) provides a dedicated notation, called Choreography Di-
agrams, to define the global expected behavior between interacting participants.
An interesting problem worth considering concerns choreography realizability
enforcement, while ensuring a resilient evolution upon facing changes. The strat-
egy that we adopt to solve this problem is twofold: given a BPMN2 choreography
specification and a set of existing services discovered as possible participants,
(i) adapt their interaction protocol to the choreography roles and (ii) coordinate
their (adapted) interaction so to fulfill the global collaboration prescribed by the
choreography. This paper proposes a synthesis approach able to automatically
generate, out of a BPMN2 choreography specification, the needed adaptation and
coordination logic, and distribute it between the participants so to enforce the
choreography. Our approach supports choreography evolution through adaptation
to possible changes in the discovered services, while still keeping the prescribed
coordination.

Keywords: Service Choreography, Model Driven Engineering, Service Oriented
Architectures, Choreography Realizability Enforcement, Resilient Choreography
Evolution

1 Introduction

Service-Oriented Computing (SOC) is now largely accepted as a well-founded ref-
erence paradigm for the Future Internet computing [16]. The near future in service-
oriented system development envisions an ultra large number of diverse service
providers and consumers that collaborate to fit users’ needs. In this vision, a possi-
ble Service Engineering (SE) approach to build service-based systems is to compose
distributed services together by considering a global specification of the interactions
between the participant services, namely Choreography. Service choreographies will
certainly have an important role in shaping the SOC within the vision of Future In-
ternet. Choreography formalizes the way business participants coordinate their interac-
tions. The focus is not on orchestrations of the work performed within them, but rather

? This work is supported by the European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement number 257178 (project CHOReOS - Large Scale
Choreographies for the Future Internet - www.choreos.eu).

on the exchange of messages between these participants. In this respect, a choreography
defines the global expected behavior between interacting participants.

When considering choreography-based service-oriented systems, the following two
problems are usually considered: (i) realizability check - checks whether the choreogra-
phy can be realized by implementing each participant so that it conforms to the played
role; and (ii) conformance check - checks whether the set of services satisfies the chore-
ography specification. In the literature many approaches have been proposed to address
these problems (e.g., [7,20,17,4,5]). However, by moving a step forward with respect
to the state of the art, a further problem worth considering when actually realizing ser-
vice choreographies by reusing (third-party) services concerns automatic realizability
enforcement. That is, given a choreography specification and a set of existing services
(discovered as suitable participants), externally coordinate their interaction so to fulfill
the collaboration prescribed by the choreography specification. To address this problem,
in this paper, we propose to (i) possibly adapt those services that have been discovered
so to fit the choreography roles and (ii) synthesize the global coordination logic to be
then distributed and enforced among the considered services. Discovery issues are out
of scope of this paper. However it is worth mentioning that, whatever discovery pro-
cess one wishes to apply, it is very infrequent to find a service that exactly matches
the discovery query. For this reason, in the literature, many approaches have been de-
vised (e.g., [1,26]) in order to account for an effective notion of similarity, which is
an approximative notion. However, in the context of the CHOReOS EU project1 where
the full automation of the realizability enforcement process and its “resiliency” is of
paramount importance, we cannot rely on services that approximately/partially play a
choreography role. Thus, our approach is to synthesize and use adaptors in order to
solve the problem of choreography realizability by enforcing exact similarity between
the discovered services and the choreography roles. Adaptation to possible changes in
the considered services is also a mean to achieve the realizability of resilient choreogra-
phies, i.e., choreographies able to evolve while still keeping the prescribed coordination.

We use BPMN2 to specify choreographies. The OMG BPMN2 [15] is the standard
de facto for specifying service choreographies by providing a dedicated notation called
Choreography Diagrams.

Contribution. In this paper we describe how to automatically synthesize a resilient
choreography out of an its specification and a set of existing services. To this purpose,
it is worth to note that, since a choreography is a network of collaborating services,
the notions of protocol adaptation and coordination protocol become crucial. In fact,
it might be the case that on the one hand the considered services do not exactly fit the
choreography roles or changes in a participant service can be applied and, on the other
hand, an uncontrolled collaboration of (possibly adapted) services can lead to undesired
interactions. That is interactions that do not belong to the set of interactions modeled
by the choreography specification. To prevent undesired interactions, we automatically
synthesize additional software entities, called Coordination Delegates (CDs), and inter-
pose them among the participant services. CDs coordinate the services’ interaction in
a way that the resulting collaboration realizes the specified choreography. This is done
by exchanging suitable coordination information that is automatically generated out of

1 See at www.choreos.eu.

www.choreos.eu

the choreography specification. Furthermore to both adapt the interaction of the par-
ticipant services so to fit the choreography roles and support choreography evolution,
we automatically synthesized adaptors able to mediate the interaction service-CD and
CD-service according to the specification of the corresponding choreography roles.

Progress beyond state-of-the-art. We tackle the problem of realizability enforce-
ment, which so far has been receiving little attention by the SE community. Further-
more, our synthesis method allows the realizability of resilient choreographies that, to
the best of our knowledge, are not accounted for by the state-of-the-art work.

Structure of the work. The paper is structured as follows. Section 2 and Section 3
describes the choreography synthesis process by means of basic examples and gives an
intuition of how adaptation can be performed and correct coordination can be enforced.
In Section 4 an explanatory example is then used to show the synthesis approach at
work. Related works are discussed in Section 5. Section 6 concludes the paper and
discusses future directions.

2 Choreography coordination synthesis

This section describes the synthesis approach and explains the notion of undesired in-
teraction. The synthesis process uses dedicated model transformations to generate from
a BPMN2 choreography diagram an automata-based specification of the coordination
logic “implied” by the choreography. Specifically, an extension of Labelled Transition
Systems (LTSs), called Choreography LTS (CLTS), is generated to explicitly describe
the coordination logic that must be applied to enforce the choreography. CLTSs repre-
sent the mean to precisely describe the complex coordination logics implied by BPMN2
choreography specifications.

Fig. 1. CHOReOS Architectural Style

For the choreography to be externally enforced, the coordination logic modeled by
the CLTS is distributed between additional software entities, whose goal is to coordi-
nate (from outside) the interaction of the participant services in a way that the resulting
collaboration realizes the specified choreography. To this aim, our method automati-
cally derives these software entities, called Coordination Delegates (CDs), and inter-
pose them among the participant services according to the CHOReOS architectural

style (see Fig. 1). CDs perform pure coordination of the services’ interaction (i.e., stan-
dard communication in the figure) in a way that the resulting collaboration realizes the
specified choreography. To this purpose, the coordination logic is distributed among a
set of Coordination Models that codify coordination information. Then, at run time, the
CDs exchange this coordination information (i.e., additional communication) to prevent
possible undesired interactions. The latter are those interactions that do not belong to
the set of interactions allowed by the choreography specification and can happen when
the services collaborate in an uncontrolled way. In order to understand the notion of
undesired interactions let us consider the very simple example in Fig. 2.

Fig. 2. Undesired interactions

The latter shows a BPMN2 choreography specification (a) and its corresponding
CLTS (b). In BPMN2, a choreography Task is an atomic activity that represents an in-
teraction by means of one or two (request and optionally response) message exchanges
between two participants. Graphically, BPMN2 choreography diagrams uses rounded-
corner boxes to denote choreography tasks. Each of them is labeled with the roles of
the two participants involved in the task (see p1 and p2), and the name of the service
operation (see op1 and op2) performed by the initiating participant and provided by the
other one. A role contained in the white box denotes the initiating participant (p1 in
the two tasks). In particular, we recall that the BPMN2 specification employs the the-
oretical concept of a token that, traversing the sequence flows and passing through the
elements in a process, aids to define its behavior. The start event generates the token
that must eventually be consumed at an end event. Basically, the BPMN2 model in the
figure specifies that the task op1 is followed by the task op2. The corresponding CLTS
models this sequence of tasks by specifying two contiguous transitions. In particular,
the transition label p1.m4::op2(m3).p2 specifies that the participant p1 initiates the task
op2 by sending the message m3 to the receiving participant p2 which, in turn, returns
the message m4. Let us now assume that S1 and S2 are the services that have been
discovered to play the roles of p1 and p2, respectively.

The automaton of S1 (S2) specifies that S1 (S2) initiates (receives) op1! (op1?) as
first, and initiates (receives) op2! (op2?) as second, and vice versa. That is, if the services
S1 and S2 interact by following the flow op1 → op2, the choreography is fulfilled.
Vice versa, if the services S1 and S2 interact by following the flow op2 → op1, the
choreography is not respected. That is, the interaction flow op2 → op1 is an undesired
interaction since, differently from what is specified by the choreography CLTS, the task
op2 is performed before the task op1. As shown in the figure, a coordination delegate,
CD1.2, is automatically synthesized and interposed between S1 and S2 in order to
prevent this interaction.

op2!	 op1'!	 S1'	 op1''!	

Fig. 3. S1′: a service discovered to play the role of p1

Let us suppose that, instead of discovering S1, another service, say S1′, would have
been discovered. The interaction protocol of S1′ is shown in Fig. 3. Let us suppose also
that the flow op1′! → op1′′! (in S1′) is semantically equivalent to (yet syntactically
different from) op1! (in S1). Thus, in order to adapt the protocol of S1′ to the one of p1,
we synthesize an adaptor that reorders the sequence of messages op2! → op1′! → op1′′!
into op1′! → op1′′! → op2! and, then, merges the sequence of messages op1′! →
op1′′! into the single message op1!. This adaptor is synthesized as a wrapper for S1′

with a modular architecture resulting in the concurrent execution of two mediators,
one for performing message reordering and the other one for performing the merge of
messages. Note that the same adaptor could be used in the case we would consider
a service that behaves exactly like S1 and its behaviour is changed afterwards so to
become the one of S1′. This points out the ability of our modular adaptors to achieve
resilient choreographies. That is choreographies able to evolve in response of possible
changes in the participant services, while still keeping the prescribed coordination.

3 Choreography modular adaptors synthesis

As informally discussed in the previous section, a modular adaptor is automatically
synthesized as a suitable composition of independent mediators. A mediator has an
input-output behaviour (not necessarily strictly sequential, e.g., for allowing reorder-
ing of messages), and it is a “reactive” software entity harmonizing the interaction be-
tween heterogeneous services by intercepting output messages from one service and
eventually issuing to another service (e.g., a CD) the co-related input messages. Mes-
sage co-relations can be inferred by taking into account ontological information. In
particular, we assume the existence of a Domain Ontology (DO) that can be used to
semantically enrich the protocol description of the considered services. DO represents
the relations holding between the various concepts used by the services to be medi-
ated. Typically, ontologies account for two fundamental relations between concepts:

subsumption and aggregation [3]. A concept a is subsumed by a concept b, if the set
denoted by a is a subset of the set denoted by b. A concept a is an aggregate of con-
cepts b1, . . . , bn if the latter are part of the former. It is worth to mention that our use
of the ontology concept is specific of the CHOReOS project. Thus, in the following,
we will exploit these notions to our purposes. That is, concepts in DO correspond to
service input/output operations. The two relations between concepts are, then, used to
account for the granularity of the data that define the structure of the messages ex-
changed by the respective input/output actions. Indeed, in the current practice of on-
tology development, one cannot expect to find a highly specific (to the considered
services) ontology as DO. The production of DO involves the extension of a more
general ontology in the application domain. This extension allows the definition of
specific ontologies that represent a semantic description for the considered services,
respectively. Then DO results from discovering mappings between these ontologies.
Note that nowadays there exist several ontologies (e.g., for e-commerce domains, see
at: http://www.heppnetz.de/projects/goodrelations/) that can serve
as common descriptions of specific domains, which can be shared among different ap-
plications. Furthermore, they are expressed by using languages (e.g., OWL, DAML,
OIL, RDF Schema, just to mention a few) that allow ontology extension and automated
reasoning for ontology mapping discovery [11].

Synthesis of
Communication

Mediators

Alphabet
Alignment

Automatic
Synthesis of
Coordination

Mediators

1.1	

1.2	

2

Login& CreateOrder& SelectItem& SetItemQuan5ty&

CloseO
rder&ConfirmItem&Close& PayThirdParty&

Login& CreateOrder& SelectItem& SetItemQuan5ty&

PayThirdParty&

Close&

ConfirmItem&CloseOrder&

P

StartOrder(AddItemToOrder(GetConfirma2on(PlaceOrder(Quit(

GetConfirma2on(

StartOrder(AddItemToOrder(

AddItemToOrder(

Quit(

GetConfirma2on(

PlaceOrder(R

PlaceOrder CloseOrder

CloseOrder

PlaceOrder

StartOrder

Login

Login

CreateOrder

CreateOrder

Login

StartOrder

CreateOrder

<<OWLClass>>*
AddItemToOrder*

{hasPart*some*SelectItem,*SetItemQuan=ty}*

<<OWLClass>>*
PayThirdParty*

<<OWLClass>>*
SelectItem*

{isPartOf*some*addItemToOrder}*

<<OWLClass>>*
SetItemQuan=ty*

{isPartOf*some*addItemToOrder}*

isPartOf{some}* isPartOf{some}*

<<OWLClass>>*
GetConfirma=on*

<<OWLClass>>*
ConfirmItem*

<<OWLClass>>*
PlaceOrder*

<<OWLClass>>*
CloseOrder*

<<OWLClass>>*
CreateOrder*

<<OWLClass>>*
StartOrder*

<<OWLClass>>*
Login*

isPartOf{some}*

isPartOf{some}*
<<OWLClass>>*

Close*

<<OWLClass>>*
Quit*

isPartOf{some}*

DO	

W	

Wi

Wj

StartOrder(SelectItem(SetItemQuan0ty(

CloseO
rder(ConfirmItem(Close(PayThirdParty(

StartOrder(SelectItem(SetItemQuan0ty(

PayThirdParty(

Close(

ConfirmItem(CloseOrder(

P	 wrapped-‐by	 W	

StartOrder(AddItemToOrder(GetConfirma2on(CloseOrder(Quit(

GetConfirma2on(

StartOrder(AddItemToOrder(Quit(

CloseOrder(R	 wrapped-‐by	 W	

M=(||Mk)	

SelectItem(SetItemQuan-ty(SetItemQuan-ty’(

SelectItem’(SetItemQuan-ty’(

SelectItem’(

SelectItem(SetItemQuan-ty(

Mx

PayThirdParty*

PayThirdParty’*

PayThirdParty’*

PayThirdParty*

My

1 Automatic Synthesis of
Communication Mediators

Fig. 4. Overview of the choreography modular adaptor synthesis

Our modular adaptor synthesis method is organized into two phases. In this paper
we do not go into the details of the two phases that are rigorously described in [10], we
rather give an overview of them. Fig. 4 pictorially shows the phases (as rounded-corner
rectangles) with their related input/output artefacts. The numbers denote the order in

http://www.heppnetz.de/projects/goodrelations/

which the phases are carried out. The first phase splits into two sub-phases (1.1 and 1.2);
it takes as input a domain ontology DO, for services (indeed, for service behavioural
descriptions) P and R, and automatically synthesizes a set, W , of Communication Me-
diators (CMs). CMs are responsible for solving communication mismatches. They con-
cern the semantics and granularity of the service protocol actions. To solve these kind
of mismatches it is necessary to assume and use ontology knowledge in order to align
the two protocols to the same concepts and language. In particular, the CMs in W are
used as wrappers for P and R so to “align” their different alphabets to the same al-
phabet. Roughly speaking, the goal of this phase is to make two heterogeneous service
protocols “speak” the same language. To this aim, the synthesized CMs translate an
action from an alphabet into a certain sequence of actions from another alphabet (e.g.,
as illustrated in the previous section, through the merge of messages). However, de-
spite the achieved alphabet alignment, coordination mismatches are still possible (e.g.,
as illustrated in the previous section, some message reordering is needed); the second
phase is for solving such mismatches. Coordination mismatches concern the control
structure of the protocols and can be solved by means of the mediator that can mediate
the conversation between the two protocols so that they can actually interact. The syn-
thesis of COordination Mediators (COMs) is carried out by reasoning on the traces of
the “wrapped” P and R. As detailed in [10], for all pairs of traces, if possible, a COM
that makes the two traces interoperable is synthesized. The parallel composition of the
synthesized COMs represents, under alphabet alignment, the correct modular adaptor
for P and R.

4 Explanatory example

In this section a simple and generic explanatory example is used to show the synthesis
approach at work. This example should not be interpreted as a motivating one; rather it
serves just to provide the reader with some more details about the single phases of our
method.

By applying model transformation rules, the BPMN2 choreography diagram of
Fig. 5 is transformed into the corresponding CLTS diagram in Fig. 6 (the CLTS dia-
gram has been drawn by means of a graphical editor we have aptly developed).

For now, let us focus on the role of p4 only. Fig. 7 shows: (i) the interaction protocol
expected for p4, (ii) the one of S4, i.e., a service discovered for playing the role of p4,
and (iii) the assumed domain ontology (informally represented in the figure). By ex-
ploiting the ontology knowledge in Fig. 7, we can consider S4 as a suitable participant
with respect to p4 since, although some of its operations are syntactically different from
the ones of p4, they are still semantically co-related. Thus, under semantic co-relation
of messages, S4 and p4 represent equivalent protocols except for the messages op3 and
op3′ that are semantically different. As discussed in Section 3, in order to adapt S4
to p4 we synthesize communication and coordination mediators whose parallel com-
position represents the modular adaptor for S4. In particular, as shown in Fig. 8, the
synthesized adaptor is made of three mediators; M1 and M2 are the communication

Fig. 5. BPMN2 choreography diagram example

Fig. 6. CLTS derived from the BPMN2 choreography diagram in Fig. 5

mediators that perform the adaptation prescribed by the domain ontology, M3 is the
coordination mediator that translates op3 into op3′.

Once we have adapted the protocol of the discovered services so to exactly match
the one of their respective roles, our method can perform the synthesis of the needed
CDs by reasoning abstractly on the roles’ protocol. This is done by distributing the
obtained CLTS into a set of coordination models. The latter contain coordination infor-
mation codified as a set of tuples (called coordination tuples). For each interface that
a participant pi requires from another participant pj , a coordination model MCDpi.pj

is derived. The model MCDpi.pj
will be then the input of the coordination delegate

CDpi.pj that is interposed between the services acting as pi and pj .

For the convenience of the reader, before describing the format of the coordination
tuples contained into the coordination models, Fig. 9 shows the set of CDs that are

Fig. 7. Interaction protocol for the role of p4 and for S4, and the ontology knowledge

Fig. 8. The mediators constituting the modular adaptor for S4

generated out of the obtained CLTS and how they are interposed between the discovered
(and adapted) services.

In Table 1 we provide a plain-text representation of some of the coordination tuples
as contained in some of the coordination models derived for the example of Fig. 5. For
space limitation we cannot show all the tuples for all the coordination models. Each
tuple is composed of eight elements:

The first element denotes the CLTS source state from which the related CD can
either perform the operation specified as second element of the tuple or take a move
without performing any operation (i.e., the CD can step over an epsilon transition). In
both cases, the third element denotes the reached target state. For instance, the first
tuple of MCDp1.p2

specifies that the coordination delegate CDp1.p2 can perform the
operation op1 with message m1 from the source state S1 to the target state S2; whereas,
the second tuple of MCDp1.p2

specifies that the coordination delegate CDp1.p2 can step
over the state S2 and reach the state ALT1, from where alternative branches can be
undertaken. That is, as specified by the third, fourth and fifth tuple, the coordination
delegate CDp1.p2 can reach either the state S3, or S23, or S24, respectively, according
to the evaluation of the related conditions.

The fourth element contains the set of states and related CDs that must be asked
for to check whether the specified (allowed) operation can be forwarded or not. This

Fig. 9. Architecture of the example

MCDp1.p2
〈S1, op1(m1), S2, Ask(), CD{}, true,Notify(),Wait()〉
〈S2, {}, ALT1, Ask(), CD{}, true,Notify(),Wait()〉
〈ALT1, {}, S3, Ask(), CD{}, cond1&(!cond2)&(!cond3),

Notify(),Wait()〉
〈ALT1, {}, S23, Ask(), CD{2.3}, (!cond1)&cond2&(!cond3),

Notify(),Wait()〉
〈ALT1, {}, S24, Ask(), CD{2.4}, (!cond1)&(!cond2)&cond3,

Notify(),Wait()〉
〈S3, {}, FORK1, Ask(), CD{}, true,Notify(),Wait()〉
〈FORK1, {}, S14, Ask(), CD{}, true,Notify(),Wait()〉
· · ·
MCDp2.p3
〈S23, op1(m1), S26, Ask(), CD{3.5}, true,Notify(),Wait()〉
〈S21, {}, JOIN2, Ask(), CD{}, true,Notify(S20 to CD(2.3, 1.3, 1.5,

2.4)),Wait(S11 from CD(2.3 or 1.3), S13 from CD(1.5),
S17 from CD(2.4))〉

〈S7, {}, JOIN3, Ask(), CD{}, true,Notify(S7 to CD(1.3)),
Wait(S9 from CD(1.3))〉

〈LOOP, {}, S11, Ask(), CD{}, !cond6, Notify(),Wait()〉
〈S11, {}, JOIN2, Ask(), CD{}, true,Notify(S11 to CD(1.5, 1.3, 2.3,

2.4)),Wait(S13 from CD(1.5), S20 from CD(1.3 or 2.3),
S17 from CD(2.4))〉

· · ·
MCDp1.p3
〈S9, {}, JOIN3, Ask(), CD{}, true,Notify(S9 to CD(2.3)),

Wait(S7 from CD(2.3))〉
〈S11, {}, JOIN2, Ask(), CD{}, true,Notify(S11 to CD(1.5, 1.3, 2.3,

2.4)),Wait(S13 from CD(1.5), S20 from CD(1.3 or 2.3),
S17 from CD(2.4))〉

MCDp3.p5
〈S26, op6(m6), S27, Ask(), CD{3.4, 2.1}, true,Notify(),Wait()〉
MCDp2.p1
〈S27, op3(m3), S29, Ask(CD(3.4) for S27), CD{}, true,

Notify(),Wait()〉
〈S29, {}, F inalState, Ask(), CD{}, true,Notify(),Wait()〉
MCDp3.p4
〈S27, op3(m3), S28, Ask(CD(2.1) for S27), CD{}, true,

Notify(),Wait()〉
〈S28, {}, F inalState, Ask(), CD{}, true,Notify(),Wait()〉

Table 1. Coordination Models Tuples

means that race conditions can arise when, at a given execution point, more than one
service wants to perform an operation but, according to the choreography specifica-
tion, only one must be unconditionally elected. For instance, in the state S27, the co-
ordination delegate CDp2.p1 can be in a race condition with the coordination delegate
CDp3.p4 (and viceversa), whenever both p2 and p3 are ready to request the operation
op3 with message m3 to p1 and p4, respectively. To solve this race condition, the tu-
ple 〈S27, op3(m3), S29, Ask(CD(3.4) for S27), CD{}, true,Notify(),Wait()〉
contained in MCDp2.p1 informs the coordination delegate CDp2.p1 that before for-
warding the operation op3, it must ask the permission to the coordination delegate
CDp3.p4 about the inquired state S27. Complementarily, the same applies for the tu-
ple 〈S27, op3(m3), S28, Ask(CD(2.1) for S27), CD{}, true, Notify(),Wait()〉
contained in MCDp3.p4

. As extensively discussed in [2], race conditions are solved by

applying a suitable extension of the seminal algorithm proposed in [13]. Thus, in this
paper the resolution of race conditions is not further discussed.

The fifth element contains the set of (identifiers of) those CDs whose supervised
services became active in the target state, i.e., the ones that will be allowed to require
some operation from the target state. This information is used by the “currently active”
CD(s) to inform the set of “to be activated” CDs (in the target state) about the changing
global state. For instance, upon the operation op1 is requested from p2 to p3, the coordi-
nation delegate CDp2.p3 uses the fifth element CD{3.5} of the first tuple in MCDp2.p3

to inform the CD CDp3.p5 about the new global state S26.
The sixth element reports the condition expression to be checked to select the cor-

rect tuple, and hence the correct flow(s) in the CLTS. For example, referring to the third
tuple of MCDp1.p2 , if the condition expression cond1&(!cond2)&(!cond3) evaluates to
true, then the coordination delegate CDp1.p2 can step over the alternative state ALT1
and reach S3.

The seventh element contains the joining state that a CD, when reach-
ing a join state, must notify to the other CDs in the parallel path(s)
of the same originating fork. Complementarily, the eight element con-
tains the joining state(s) that must be waited for. For example, con-
sidering the tuple 〈S7, {}, JOIN3, Ask(), CD{}, true,Notify(S7 to
CD(1.3)),Wait(S9 from CD(1.3))〉 of MCDp2.p3

, the coordination del-
egate CDp2.p3 notifies the joining state S7 to the coordination delegate
CDp1.p3, and wait for the state S9 from CDp1.p3. On the other hand, con-
sidering the tuple 〈S9, {}, JOIN3, Ask(), CD{}, true,Notify(S9 to
CD(2.3)),Wait(S7 from CD(2.3))〉 of MCDp1.p3

, the coordination delegate
CDp1.p3 notifies the joining state S9 to the coordination delegate CDp2.p3, and wait
for the state S7 from CDp2.p3.

5 Related Work

The approach presented in this paper is related to a number of other approaches that
have been considered in the literature. In Section 5.1, we discuss valuable work in
the literature concerning coordinator (service choreographer) synthesis in the W3C
(http://www.w3.org/) point of view of the SOA style. Then, in Section 5.2, we
discuss other relevant works in the Component-Based Software Engineering domain
that concern the synthesis of protocol adaptors.

5.1 Automated protocol coordinator synthesis

Many approaches have been proposed in the literature aiming at composing services
by means of BPEL, WSCI, or WS-CDL choreographers [6,7,14,20,25]. The common
idea underlying these approaches is to assume a high-level specification of the require-
ments that the choreography has to fulfill and a behavioral specification of the services
participating in the choreography. From these two assumptions, by applying data and
control-flow analysis, the BPEL, WSCI or WS-CDL description of a centralized chore-
ographer specification is automatically derived. This description is derived in order to

http://www.w3.org/

satisfy the specified choreography requirements. In particular, in [25], the authors pro-
pose an approach to derive service implementations from a choreography specification.
The authors of [9] and [23] present different approaches to semi-automatic services
composition (based on abstract functional blocks) and semantic service descriptions,
respectively. In [18], the authors propose an automatic approach to service composi-
tion exploiting AI planning algorithms. In [20] assume that some services are reused
and propose an approach to exploit wrappers to make the reused services match the
choreography.

Most of the previous approaches concern orchestration that is the most common
approach to service composition. Conversely, our approach is one of the few in the
literature that consider choreography as a means for automatically composing services
in a fully distributed way. Despite the fact that the works described in [20,25] focus on
choreography, they consider the problem of checking choreography realizability. It is a
fundamentally different problem with respect to the one considered in this paper, i.e.,
discovery-based choreography realizability enforcement.

In [21], the authors show how to monitor safety properties locally specified (to each
component). They observe the system behavior simply raising a warning message when
a violation of the specified property is detected. Our approach goes beyond simply de-
tecting properties (e.g., a choreography specification) by also allowing their enforce-
ment. In [21] the best thing that they can do is to reason about the global state that each
component is aware of. Note that, differently from what is done in our approach, such
a global state might not be the actual current one and, hence, the property could be
considered guaranteed in an “expired” state. Another work in the area of the synthesis
of runtime monitors from automata is described in [22]. Note that runtime monitoring
is mostly focused on the detection of undesired behaviours, while runtime enforcement
focuses on their prevention/solution.

5.2 Automated protocol adaptor synthesis

The mediation/adaptation of protocols have received attention since the early days of
networking. Indeed many efforts have been done in several directions including for
example formal approaches to protocol conversion, like in [8,12].

The seminal work in [29] is strictly related to the notions of mediator presented in
this paper. Compared to our adaptor synthesis, this work does not allow to deal with
ordering mismatches and different granularity of the languages (solvable by the split
and merge primitives).

Recently, with the emergence of web services and advocated universal interoper-
ability, the research community has been studying solutions to the automatic mediation
of business processes [28,27]. However, most solutions are discussed informally, mak-
ing it difficult to assess their respective advantages and drawbacks.

In [24] the authors present an approach for formally specifying adaptor wrappers
as protocol transformations, modularizing them, and reasoning about their properties,
with the aim to resolve component mismatches. Although this formalizations supports
modularization, automated synthesis is not treated at all hence keeping the focus only
on adaptor design and specification.

In [19], the authors use a game theoretic approach for checking whether incom-
patible component interfaces can be made compatible by inserting a converter between
them which satisfies specified requirements. This approach is able to automatically syn-
thesize the converter. In contrast to our method, their method needs as input a deadlock-
free specification of the requirements that should be satisfied by the adaptor, by dele-
gating to the user the non-trivial task of specifying that.

6 Conclusions and Future Work

In this paper, we proposed an automatic approach to enforce choreography realizability.
The described methodology allows for both adapting the external interaction of the
considered services to the roles of the choreography and (ii) coordinating the (adapted)
interaction so to fulfill the global collaboration prescribed by the choreography.

To this end, the proposed approach uses model transformations to extract from a
BPMN2 choreography specification the global coordination logic and codifies it into
an extended LTS, called Choreography LTS (CLTS). The CLTS is then modularly dis-
tributed into a set of adaptors and coordination delegates that, when combined together,
allow for enforcing the choreography in a fully distributed way, while adapting the ser-
vices’ interaction. The expressiveness of the CLTS model allows us to fully automate
the approach and to transform very complex choreography specifications into powerful
coordination and adaptation logics.

In Section 5, we related our approach to existing centralized solutions. Summing
up, the most relevant advantage of our approach with respect to these solutions is that
the degree of parallelism of the system is maintained despite the introduction of the
adaptors and coordination delegates. Often, centralized approaches do not permit full
parallelism since the adaptor/coordinator is usually implemented as a centralized single-
threaded component and the communication with it is synchronous.

The proposed approach has already been applied to a large-scale realistic case study,
namely the passenger-friendly airport scenario and a public demo is available at the
CHOReOS web-site http://www.choreos.eu. Currently, we are applying the pro-
cess at two other industrial case studies of CHOReOS in the domains of marketing
and sales, and Internet of things. The results will also be publicly available by the
CHOReOS web site. The current implementation of the whole approach supports the
generation of Java code for coordinating SOAP-based Web-services. Considering the
general-purpose nature of the approach, other languages and application domains are
eligible, and other forms of wrapping can be easily realized.

The current approach allows supervised services to perform an operation that is out-
side the scope of the specified choreography. In this sense our approach is permissive,
and can be parameterized to be either permissive or restrictive with respect to these op-
erations. However, simply enabling or disabling the execution of operations outside the
scope of the choreography is a trivial strategy. In the future we plan to investigate, and
embed into the approach implementation, more accurate strategies to suitably deal with
these operations.

http://www.choreos.eu

A further interesting future direction is the investigation of non-functional proper-
ties of the choreography, e.g., by extending the choreography specification with perfor-
mance or reliability attributes and accounting for them in the CDs synthesis process.

References

1. F. Arbab and F. Santini. Preference and similarity-based behavioral discovery of services.
In Web Services and Formal Methods, volume 7843 of Lecture Notes in Computer Science,
pages 118–133. 2013.

2. M. Autili, D. Ruscio, A. Salle, P. Inverardi, and M. Tivoli. A model-based synthesis process
for choreography realizability enforcement. In FASE, volume 7793 of LNCS, pages 37–52.
2013.

3. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
description logic handbook: theory, implementation, and applications. Cambridge Univer-
sity Press, 2003.

4. S. Basu and T. Bultan. Choreography conformance via synchronizability. In Proc. of WWW
’11, pages 795–804, 2011.

5. S. Basu, T. Bultan, and M. Ouederni. Deciding choreography realizability. In Proceed-
ings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL, pages 191–202. ACM, 2012.

6. A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. In Proc. of ICSOC’06,
volume 4294 of LNCS, 2006.

7. D. Calvanese, G. D. Giacomo, M. Lenzerini, M. Mecella, and F. Patrizi. Automatic service
composition and synthesis: the roman model. IEEE Data Eng. Bull., 31(3):18–22, 2008.

8. K. L. Calvert and S. S. Lam. Formal methods for protocol conversion. IEEE Journal on
Selected Areas in Communications, 8(1), 1990.

9. M. Fluegge and D. Tourtchaninova. Ontology-derived activity components for composing
travel web services. In International Workshop on Semantic Web Technologies in Electronic
Business (SWEB2004), 2004.

10. P. Inverardi and M. Tivoli. Automatic synthesis of modular connectors via composition of
protocol mediation patterns. In ICSE, pages 3–12, 2013.

11. Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. Knowl. Eng.
Rev., 18(1), 2003.

12. S. S. Lam. Correction to ”protocol conversion”. IEEE Trans. Software Eng., 14(9), 1988.
13. L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commun.

ACM, 21:558–565, July 1978.
14. A. Marconi, M. Pistore, and P. Traverso. Automated Composition of Web Services: the

ASTRO Approach. IEEE Data Eng. Bull., 31(3):23–26, 2008.
15. OMG. Business Process Model And Notation (BPMN) Version 2.0. http://www.omg.

org/spec/BPMN/2.0/.
16. M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented computing: State

of the art and research challenges. Computer, 40(11):38–45, 2007.
17. P. Poizat and G. Salaün. Checking the Realizability of BPMN 2.0 Choreographies. In Proc.

of SAC 2012, pages 1927–1934, 2012.
18. S. Ponnekanti and A. Fox. Sword: A developer toolkit for web service composition. In In

Proc. of the 11th WWW Conference, 2002.
19. Roberto Passerone and Luca De Alfaro and Thomas A. Henzinger and Alberto L.

Sangiovanni-Vincentelli. Convertibility Verification and Converter Synthesis: Two Faces
of the Same Coin. In ICCAD, 2002.

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

20. G. Salaün. Generation of service wrapper protocols from choreography specifications. In
Proc. of SEFM, 2008.

21. K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient decentralized monitoring of safety in
distributed systems. In Proc. of ICSE, 2004.

22. J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O’Farrell, E. Litani, and J. Waterhouse.
Runtime monitoring of web service conversations. IEEE T. Services Computing, 2(3), 2009.

23. E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of web services using se-
mantic descriptions. In In Proc. of Web Services: Modeling, Architecture and Infrastructure
workshop, 2003.

24. B. Spitznagel and D. Garlan. A compositional formalization of connector wrappers. In ICSE,
2003.

25. J. Su, T. Bultan, X. Fu, and X. Zhao. Towards a theory of web service choreographies. In
WS-FM, pages 1–16, 2007.

26. E. Toch, A. Gal, I. Reinhartz-Berger, and D. Dori. A semantic approach to approximate
service retrieval. ACM Trans. Internet Technol., 8(1), 2007.

27. R. Vaculı́n, R. Neruda, and K. P. Sycara. An agent for asymmetric process mediation in open
environments. In SOCASE, 2008.

28. R. Vaculı́n and K. Sycara. Towards automatic mediation of OWL-S process models. Web
Services, IEEE International Conference on, 2007.

29. D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors. ACM Trans.
Program. Lang. Syst., 19, March 1997.

	Synthesis of resilient choreographies

