
CHOReOSynt: Enforcing Choreography Realizability in the
Future Internet∗

Marco Autili, Davide Di Ruscio, Amleto Di Salle, Alexander Perucci
University of L’Aquila, Italy

{marco.autili|davide.diruscio|amleto.disalle|alexander.perucci}@univaq.it

ABSTRACT
Choreographies are an emergent Service Engineering (SE)
approach to compose together and coordinate services in a
distributed way. A choreography formalizes the way busi-
ness participants coordinate their interactions. The focus is
not on orchestrations of the work performed within them,
but rather on the exchange of messages between these par-
ticipants. The problems usually addressed when considering
a choreography-based specification of the system to be real-
ized are realizability check, and conformance check.

In this paper we describe the CHOReOSynt tool, which has
been conceived to deal with an additional problem, namely,
automated choreography enforcement. That is, when the goal
is to actually realize a service choreography by reusing third-
party services, their uncontrolled (or wrongly coordinated)
composite behavior may show undesired interactions that
preclude the choreography realization. CHOReOSynt solves
this problem by automatically synthesizing additional soft-
ware entities that, when interposed among the services, al-
low for preventing undesired interactions.
Screencast: http://choreos.disim.univaq.it/downloads/

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Miscellaneous

General Terms
Design, Languages

Keywords
Choreography Synthesis, Distributed Coordination

1. INTRODUCTION
Service-Oriented Computing (SOC)is now largely ac-

cepted as a well-founded reference paradigm for the Fu-
ture Internet [7, 9] computing. The near future in service-
oriented system development envisions an ultra large num-
ber of diverse service providers and consumers that can be

∗This work is supported by the European Community - Seventh
Framework Programme FP7/2007-2013 under grant agreement
number 257178 (project CHOReOS - Large Scale Choreographies
for the Future Internet - www.choreos.eu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

composed to fit users’ needs.The trend is to build mod-
ern applications by reusing and assembling distributed ser-
vices rather than realizing stand-alone and monolithic pro-
grams [14, 11].

Today service composition is heavily based on Business
Process Model, and mainly on service orchestrations that
can be specified in various formats, such as BPEL [13] or
BPMN 2.0 [12]. Service orchestration is a centralized ap-
proach to composing multiple services into a larger applica-
tion. It works well in static environments where services are
predefined and environment changes are minimal. This is a
wrong assumption for the Future Internet, which envisions
an ultra large number of diverse service providers and con-
sumers that are impossible to coordinate using centralized
approaches [9, 11].

Choreographies are an emergent Service Engineering (SE)
approach to compose together and coordinate services in a
distributed way. Service choreographies will certainly have
an important role in shaping the SOC within the vision of
Future Internet. A choreography formalizes the way busi-
ness participants coordinate their interactions. The focus is
not on orchestrations of the work performed within them,
but rather on the exchange of messages between these par-
ticipants. In this respect, a choreography defines the global
expected behavior between interacting participants. More
precisely, service choreography is a decentralized approach,
which provides a looser way to design service composition by
specifying tasks, their participants and message protocol be-
tween them but not coupling choreography tasks to concrete
services. The need for service choreography was recognized
also in BPMN 2.0, which introduced choreography model-
ing constructs. However, until now service choreographies
were solely used for design purposes only as there was no
technology support for enabling a smooth transition from
service choreography design to execution.

Within the Future Internet, we imagine the establishment
of service federations in which different providers and users
interact, following specific rules established to foster and
simplify inter-organization integration according to the re-
quirements coming from a specific context. In this vision,
service choreographies will contribute to the SOC vision
within the Future Internet only if automatically supported
by suitable design and development environments, as well
as a set of infrastructural services.

The problems usually addressed when considering a
choreography-based specification C of the system to be re-
alized (where roles characterize the expected behavior of the
participants) are: (a) realizability check, i.e., whether C can

http://choreos.disim.univaq.it/downloads/
www.choreos.eu

be realized by implementing each participant as specified
by the role to be played; and (b) conformance check, i.e.,
whether the global interaction of a set of services, discovered
as suitable participants, satisfies C or not. In the research
literature many approaches have been proposed to address
these problems (e.g., [8, 14, 6, 5]). However, when the goal is
to actually realize a service choreography by reusing third-
party services, hence going beyond just checking its effec-
tiveness, a further problem worth to be considered concerns
automated choreography enforcement. That is, how to co-
ordinate the interactions of a set of services discovered as
suitable participants in order to fit the choreography speci-
fication. This requires to distribute and enforce, among the
participants, the global coordination logic extracted from
the choreography specification.

The general problem here is that, although for each chore-
ography participant a suitable third-party service may have
been discovered (and hence, its interaction behavior fits the
behavior of the participant in isolation), the uncontrolled (or
wrongly coordinated) composite behavior of all the discov-
ered services may show undesired interactions that prevent
the choreography realization. For a detailed and formal de-
scription of the notion of undesired interaction, please refer
to [1, 3, 4].

In this paper we present CHOReOSynt, a tool that has
been developed in the context of the EU project CHOReOS
(http://www.choreos.eu). CHOReOSynt leverages model-
based methodologies and relevant SOA standards in or-
der to make choreography development a systematic pro-
cess to the reuse and the assembling of services discovered
within the Future Internet. CHOReOSynt enables the con-
struction of choreography-based service-oriented systems by
introducing a model-based development process and asso-
ciated synthesis methods for choreographing services. A
detailed description of the underlying methodology imple-
mented by CHOReOSynt can be found in [1, 2, 3, 4, 10].
CHOReOSynt has been released also under the FISSi initia-
tive (http://www.ow2.org/view/Future_Internet).

2. BACKGROUND
The CHOReOS project concerns the development of

choreography-based service-oriented systems. To this aim,
within CHOReOS we have precisely defined a development
process and implemented a supporting Integrated Develop-
ment and Run-time Environment (IDRE). At a very high-
level, the development phase consists of a set of activities
(see Figure 1), and related artifacts, that allow to:

A.1. specify requirements by using a dedicated tool,
A.2. derive an initial choreography specification from them,

given in BPMN 2.0,
A.3. refine the initial choreography specification to allow for

automation,
A.4. concretize the choreography specification by discover-

ing services suitable to play the roles of the choreogra-
phy,

A.5. assess the quality of the choreography, and
A.6. automatically synthesize a distributed choreographer

to be then used to enact the choreography, hence en-
forcing the choreography realizability.

According to the described CHOReOS process, we pro-
poses a model-driven synthesis approach to generate from a

Figure 1: Development Process

BPMN 2.0 choreography model C an automata-based speci-
fication (called CLTS) of the coordination logic “implied” by
the choreography. A CLTS provides an explicit description
of the allowed sequences of In/Out service operation calls
and, as such, represents an intermediate representation of
the choreography that allows for the extraction of the com-
plex coordination logics“hidden”in BPMN 2.0 choreography
specifications [1, 4, 10]. Basically, a CLTS is an extended
Labeled Transition System (LTS) that allows handling com-
plex constructs of BPMN 2.0 Choreography Diagrams, such
as gateways, loops, forks and joins. For the choreography
to be externally enforced, the coordination logic modeled by
the CLTS is distributed between additional software entities,
whose goal is to coordinate (from outside) the interaction
of the participant services in a way that the resulting col-
laboration realizes the specified choreography. The synthe-
sis processor automatically derives these software entities,
called Coordination Delegates (CDs), and interposes them
among the participant services according to the CHOReOS
architectural style (see Figure 2). The generated CDs are
then able to properly access and coordinate the discovered
services relying on the communication facilities provided by
the CHOReOS middleware.

More precisely, the coordination logic modelled by the de-
rived CLTS is distributed into a set of Coordination Models
(CMs), one for each CD. The CDs exploit the CMs in order
to coordinate the interaction of the participants in a way
that the resulting collaboration realizes the choreography
specified by C. CDs perform pure business-level coordina-
tion by intercepting/proxifying the service interaction (i.e.,
standard communication in Figure 2), and mediate it by ex-
changing the coordination information (i.e., additional com-
munication in the figure) contained in their CMs. In this
way, the CDs prevent possible undesired interactions. The

http://www.choreos.eu
http://www.ow2.org/view/Future_Internet

latter are those interactions that do not belong to the set
of interactions allowed by C and can happen when the dis-
covered third-party services collaborate in an uncontrolled
way. CDs implement a distributed coordination algorithm
that we have formally defined to describes the coordination
logic to be performed by a CD, while relying on its CM.

3. CHOREOSYNT
In this section we outline the CHOReOSynt tool, which sup-

ports the activity A.6 mentioned in the previous section.
CHOReOSynt consists of a number of RESTful services, and
a set of Eclipse plugins that have been developed to interact
with such services. By referring to Figure 3, the Chore-

ography Synthesis Processor allows for deriving the CD
artefacts from the BPMN 2.0 specification of the choreog-
raphy. To this end, model transformations are employed
and interoperation with the Service Discovery is required
(not in the focus of this paper). The coordination delegates,
when deployed by the Enactment Engine (not in the focus
of this paper), allow for enacting the choreography by realiz-
ing the distributed coordination logic between the discovered
services. The services offer bespoke functionalities to:

• start the synthesis process giving as input a BPMN 2.0
Choreography Diagram;

• transform the BPMN2 Choreography Diagram into an
extended LTS called choreography LTS (CLTS);

• derive a set of Coordination Models containing infor-
mation that serve to coordinate the services involved
in the choreography in a distributed way;

• extract the participants of the choreography and
project the choreography on their behavioral role;

• simulate the behavioral role of the participants in the
choreography against the behavior of the services dis-
covered by the eXtensible Service Discovery;

• generate the Coordination Delegate artefacts and the
so called “ChorSpec” specification to be used by the
Enactment Engine component for deploying and en-
acting the choreography;

Such functionalities are implemented by the components
of the Choreography Synthesis Processor shown in Fig-
ure 3 and described below.
M2M Transformator – The Model-to-Model (M2M)

Transformator offers a set of model transformations. Specif-
ically, it offers a operation bpmn2clts() that takes as input
the BPMN specification of the choreography and performs
the model-to-model transformation to derive the CLTS.
The transformation is implemented by means of the At-
las Transformation Language (ATL - http://www.eclipse.

Figure 2: CHOReOS architectural style

org/atl/) which is a domain specific language for realizing
model-to-model transformations.

Then, starting from the CLTS specification of the chore-
ography, the synthesis process extracts the list of the partic-
ipants and, applying a further model-to-model transforma-
tion, automatically derives, for each participant, the CLTS
model of the expected behavior with respect to the spec-
ified choreography. To this end another operation named
extractParticipants() is offered. The CLTS model of ex-
pected behavior is achieved by projecting (projection())
the choreography onto the participant, hence filtering out
those transitions, and related states, that do not belong to
the participant. Basically, for each participant, this CLTS
model specifies the interaction behavior that a candidate
service (to be discovered) has to support in order to be able
to play the role of the participant in the choreography.

Synthesis Discovery Manager – The Synthesis pro-
cess and the Discovery process interact each other to re-
trieve, from the service base, those candidate services that
are suitable for playing the participant roles required by the
choreography specification, and hence, those services whose
(offered and required) operations and behavior are compati-
ble with the expected behavior as extracted from the chore-
ography through projection. In particular, for each partic-
ipant, the Synthesis Processor interacts with the Synthesis
Discovery Manager by performing the call to the discover-

Services() operation that takes the participant (abstract)
CLTS as input. Then, a query is issued to the eXtensible
Service Discovery (XSD) component.

Behavior Simulator – Once a set of concrete candi-
date services has been discovered, the synthesis process has
to select them by checking, for each participant, if its ex-
pected behavior can be simulated by some candidate service.
Note that, for a given participant, behavioral simulation is
required since, although the discovered candidate services
for it are able to offer and require (at least) the operations
needed to play the role of the participant, one cannot be sure
that the candidate services are able to support the opera-
tions flow as expected by the choreography. Thus, in order
to simulate the expected behavior of a participant with the
behavior of a service, the Behavior Simulator offers a opera-
tion named simulation() that takes as input the projected
(abstract) CLTS of the participant and the extended (con-
crete) LTS of the service as retrieved by the URI returned by
the discovery service. It might be interesting to mention that
the simulation method implements a notion of strong sim-
ulation suitably extended to treat the CLTSs and extended
the LTSs we use in CHOReOS. After simulation, if all the
participant roles have been “covered” by (some of) the dis-
covered services, the abstract CLTS is concretized with the
actual names of the selected services and the actual names of
the offered and requested operations. This step is performed
by the operation absctractCLTS2concreteCLTS(). Then,
the automated synthesis process distributes the coordination
logic specified by the obtained CLTS into a set of Coordina-
tion Models by means of the functionality clts2coord().

Coordination Delegate Generator – Once the ser-
vices have been selected for all the choreography partici-
pants, and hence the CLTS has been concretized, the syn-
thesis processor can generate the Coordination Delegates
through the operation generateCD() offered by the Coor-
dination Delegate Generator component.

Next step in the process – Once the Coordination

http://www.eclipse.org/atl/
http://www.eclipse.org/atl/

Figure 3: REST Architecture of the Synthesis Processor

Delegates have been generated, the Coordination Delegate
Generator component can further generate a specification
of the choreography (called ChorSpec) to be passed to the
Enactment Engine. To this end, the operation createChor-

Spec() is offered. It takes as input the selected services
and the coordination delegates generated for them. The
ChorSpec is an XML-based declarative description of the
choreography that specifies the locations of the selected ser-
vices and of the generated Coordination Delegate artifacts
that can be deployed. Indeed, before passing the ChorSpec

to the Enactment Engine, the Choreography Offline Testing
process activity is performed to assess the quality of the
choreography specification, its well formedness, etc.

4. CONCLUSIONS
In this paper we described CHOReOSynt, a tool which has

been conceived in the context of the EU CHOReOS project
to deal with the automated choreography enforcement prob-
lem when developing software systems in terms of choreogra-
phies of services. The tool consists of a number of RESTful
services, which have been integrated into the CHOReOS In-
tegrated Development and Run-time Environment (IDRE).
CHOReOSynt has been successfully applied to a number

of use cases in different applicative domains, e.g., dynamic
marketing planning and strategies, air transportation, and
for managing fleets of taxis in large cities. The use cases
have highlighted the benefits of using the synthesis ap-
proach to automatically realize choreographies, and to co-
ordinate (in a distributed way) complex interactions involv-
ing a large number of services. To download CHOReOSynt

and for more details about its evaluation interested read-
ers can refer to http://choreos.disim.univaq.it/ and
http://choreos.eu/bin/view/Develop/Forge.

5. REFERENCES
[1] M. Autili, D. Di Ruscio, A. Di Salle, P. Inverardi, and

M. Tivoli. A model-based synthesis process for
choreography realizability enforcement. In FASE,
volume 7793 of LNCS, pages 37–52. 2013.

[2] M. Autili, D. Di Ruscio, P. Inverardi, James
Lockerbie, and M. Tivoli. A development process for

requirements based service choreography. In RESS,
pages 59–62, 2011.

[3] M. Autili, A. Salle, and M. Tivoli. Synthesis of
resilient choreographies. In SERENE, volume 8166 of
LNCS, pages 94–108. 2013.

[4] M. Autili and M. Tivoli. Distributed enforcement of
service choreographies. In FOCLASA, 2014.

[5] S. Basu, T. Bultan, and M. Ouederni. Deciding
choreography realizability. In Procs. of POPL, pages
191–202. ACM, 2012.

[6] Samik Basu and Tevfik Bultan. Choreography
conformance via synchronizability. In Proc. of WWW
’11, pages 795–804, 2011.

[7] Bruxelles: European Commission. Future Internet
2020: Visions of an Industry Expert Group, 2009.

[8] D. Calvanese, G. De Giacomo, M. Lenzerini,
M. Mecella, and F. Patrizi. Automatic service
composition and synthesis: the roman model. IEEE
Data Eng. Bull., 31(3):18–22, 2008.

[9] V. Issarny, N. Georgantas, S. Hachem, A. Zarras,
P. Vassiliadist, M. Autili, M.A. Gerosa, and
A. Hamida. Service-oriented middleware for the future
internet: state of the art and research directions. JISA
Journal, 2(1):23–45, 2011.

[10] A. Di Salle M. Autili, D. Di Ruscio and P. Inverardi.
Synthesizing an automata-based representation of
bpmn2 choreography diagrams. In ModComp at
MoDELS’14, 2014.

[11] G. De Angelis M. Autili, A. Ben Hamida and
D. Silingas. Composing Services in the Future
Internet: Choreography-Based Approach, volume
Intelligent BPM Systems (iBPMS) Book: Impact and
Opportunity, pages 163–174. 2013.

[12] Object Management Group (OMG). Business Process
Model and Notation (BPMN), version 2.0, 2011.

[13] Organization for the Advancement of Structured
Information Standards (OASIS). BPEL 2.0, 2007.

[14] Pascal Poizat and Gwen Salaün. Checking the
Realizability of BPMN 2.0 Choreographies. In Proc. of
SAC 2012, pages 1927–1934, 2012.

http://choreos.disim.univaq.it/
http://choreos.eu/bin/view/Develop/Forge

	Introduction
	Background
	CHOReOSynt
	Conclusions
	References

