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Abstract. Choreographies are an emergent Service Engineering ap-
proach to compose together and coordinate distributed services. They
represent a global specification of the interactions between the partic-
ipant services. BPMN2 provides a dedicated notation, called Choreog-
raphy Diagrams, to define choreographies. This paper presents a model
transformation to automatically transform a BPMN2 choreography spec-
ification into an automata-based representation called Choreography
LTS (CLTS). The latter is a LTS suitably extended to, on one side
model the complex interactions that can be specified by choreography di-
agrams, on the other provide modelers with a means to precisely extract
the not-easy-to-grasp coordination logic “hidden” into BPMN2 Chore-
ography Diagrams. Dedicated Eclipse plugins, within the CHOReOSynt
tool, have been developed to support the presented transformation.

1 Introduction

Choreographies are an emergent Service Engineering approach to compose to-
gether and coordinate distributed services. They describe the interactions be-
tween the participant services by specifying the way business participants co-
ordinate their interactions from a global perspective. The OMG BPMN2 [18]
Choreography Diagrams are the standard de facto for specifying service chore-
ographies by providing powerful constructs to specify complex interactions where
message exchanges between participants go far beyond simple request-response
interactions that follow a sequential flow. Choreography diagrams permit to spec-
ify inclusive and exclusive conditional branches, parallel branches to be joined
at later execution points, looping tasks, and so on.

BPMN2 specifications can be very complex and the standard specification
introduces constraints that a choreography designer shall obey to achieve well-
formed choreography specifications. Unfortunately, the standard only provides
a textual description for these constraints, hence making their correct under-
standing difficult. In the literature many approaches have been proposed to
deal with the problems of choreography realizability, conformance, and enforce-
ment, e.g., [21,8,4,23,9,2]). These approaches are based on different interpreta-
tions of the choreography interaction semantics in terms of both the subset of
considered choreography constructs and the used formal notation. Moreover, the
adopted notations, although powerful and well known in the formal community,
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do not completely satisfy requirements related to usability and pragmatism that
BPMN2 choreography modelers usually require.

In this paper we overview the model transformation we have adopted within
the CHOReOS EU project (www.choreos.eu) to generate from a BPMN2 chore-
ography diagram an automata-based specification of the coordination logic “im-
plied” by the choreography. The transformation constitutes the core of the overall
methodology we apply in CHOReOS to solve the problem of automatic choreog-
raphy enforcement. The core objective of CHOReOS is to leverage model-based
methodologies [5] and relevant SOA standards, while making choreography de-
velopment a systematic process to the reuse and the assembling of services dis-
covered within the Internet. Our approach has two main advances: (i) most of
the complex constructs of BPMN2 choreography diagrams, e.g., inclusive and
parallel gateways, are handled; (ii) an extension of LTSs, called Choreography
LTS (CLTS), is provided to enable explicit descriptions of the coordination logic
that must be applied to enforce the choreography, by adopting a notation that is
closer to the BPMN2 choreography one; (iii) CLTS makes explicit coordination-
related information that in BPMN2 is implicit. This allows to statically infer the
information needed for enabling distributed coordination that, otherwise, should
be calculated at run time for each choreography instance and for each execu-
tion of it. For instance, the CLTS model specifies the source and target state
from which a task is initiated and terminated, the corresponding transition and
enabling condition.

The paper is structured as follows. Section 2 introduces the considered
BPMN2 choreography constructs. Section 3 briefly outlines the model trans-
formation we have developed and how the introduced BPMN2 constructs are
mapped to CLTS constructs. Related works are discussed in Section 4 and con-
clusions and future directions are given in Section 5.

2 BPMN2 choreography diagram constructs
In the following we leverage the in-depth study of the “meanders” of the BPMN2
standard specification document, and introduce the considered BPMN2 chore-
ography diagram constructs by concisely describing their crucial characteristics.
In Figures 1 and 2, besides the BPMN2 constructs on the left side, we report
the corresponding CLTS translation that will be then discussed in Section 3.

The selection of the considered BPMN2 constructs has been performed by
analysing the intrinsic aspects related to the choreography enforcement problem
and by fulfilling the requirements of all the CHOReOS use cases.
With reference to Figure 1 (a)..(d), a choreography Task is an atomic activity
that represents an interaction by means of one or two (request and optionally
response) message exchanges between two participants. Graphically, BPMN2 di-
agrams uses rounded-corner boxes to denote choreography tasks. Each of them
is labeled with the roles of the two participants involved in the task, and the
name of the service operation performed by the initiating participant and pro-
vided by the other one. A role contained in the white box denotes the initiating
participant. In particular, we recall that the BPMN2 specification employs the
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Fig. 1. From BPMN2 choreography to CLTS

Fig. 2. From BPMN2 choreography to CLTS (Cont’d)
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theoretical concept of a token that, traversing the sequence flows and passing
through the elements in a process, aids to define its behavior. The start event
generates the token that must eventually be consumed at an end event.

Depending on its type (i.e., ChoreographyLoopType in the BPMN2 specifi-
cation), a task may have one of the three markers: sequential multi-instance (b),
standard loop (c), and parallel multi-instance (d).

With reference to Figure 1 (e) & (f), a Parallel Gateway is used to (e)
create and/or (f) synchronize parallel flows without checking any condition. Each
outgoing flow receives a token upon execution of this gateway. For incoming
flows, this gateway will wait for all incoming flows before triggering the flow
through its outgoing arrow. They create parallel paths of the choreography that
all Participants are aware of. With respect to the constraints imposed by the
BPMN2 official specification, the initiator participant(s) of all the tasks after the
gateway must be involved in all tasks that immediately precede such gateway.
The task that precedes the chain must also satisfy this constraint in the case
where there is a chain of gateways with no tasks in between.

With reference to Figure 1 (g) & (h), a Diverging (Decision) Exclusive
Gateway (g) is used to create alternative paths within a choreography. If none
of the conditional expressions (see cond1 and cond2) evaluate to true, a default
path can optionally be specified (see task op4). A Converging Exclusive Gateway
(h) is used to merge alternative paths. Each incoming flow token is routed to
the outgoing flow without synchronization. Being in a fully decentralized setting,
there is no central mechanism to store the data that will be used in the condition
expressions of the outgoing flows. The gateway’s conditions may have natural
language descriptions but, as clarified by the BPMN2 official specification, such
choreographies would be underspecified and would not be enforceable. To create
an enforceable choreography, the gateway conditions must be formal expressions
that can be precisely (and automatically for tool supported approaches) checked.
Still according to the BPMN2 official specification, the initiating participants of
the choreography tasks that follow the gateway must have sent or received the
message that provided the data upon which the conditional decision is made. In
addition, the message that provides the data for the gateway conditional decision
may be in any choreography task prior to the gateway (i.e., it does not have to
immediately precede the gateway). Thus, for the gateway to be automatically
enforced, we assume to have the specification of what messages provide the data
upon which the conditional decision can be actually made.

With reference to Figure 2 (i) & (j), a Diverging Inclusive Gateway (i) can
be used to create alternative but also parallel paths. Unlike the Exclusive Gate-
way, all condition expressions are evaluated. All flows that evaluate to true will
be traversed by a token. Since each path is considered to be independent, any
combination of the paths may be taken, from zero to all. However, it should
be designed so that at least one path is taken. If none of the conditional ex-
pressions (see cond1 and cond2) evaluate to true, a default path can optionally
be specified. A converging Inclusive Gateway (j) is used to merge a combina-
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tion of alternative and parallel paths. A control flow token entering an Inclusive
Gateway may be synchronized with some other token that arrives later.

With reference to Figure 2 (k), a Sub-Choreography is a compound activity
task that defines a flow of other tasks. Each sub-choreography involves two or
more participants.

3 BPMN2-to-CLTS
In this section we discuss how it is possible to derive CLTS models out of BPMN2
choreography specifications. Such a translation can be done in different manners
including the adoption of general purpose programming languages. However,
as previously said, the presented work has been done in the context of the
CHOReOS EU project where model-driven principles and techniques [5] have
been employed to support the development of choreography-based systems.

Before describing the model transformation, we introduce the CLTS meta-
model defined for extending LTSs, and constitutes the foundation of the coordi-
nation logic extracted by the synthesis process. The definition of these metamod-
els is the result of a survey we have conducted within CHOReOS. Specifically,
in the literature a number of valuable approaches have been proposed to trans-
form different kinds of choreography notations into more formal specifications.
For instance, by leveraging the concept of token, alternative models, such as
free-choice Petri Nets, might have been adopted (see Section 4). However, the
deep study we have initially conducted within CHOReOS to precisely define,
at the project level, the integration architecture for the CHOReOS Integrated
Development and Run-time Environment1 (IDRE), led the whole consortium to
agree on the definition of the CLTS model, which best met the (both formal and
technical) requirements of all the software tools now integrated by the IDRE.
Indeed, to the purposes of defining an integrated suite of tools to support the
whole choreography life cycle, the CLTS model brings together many features of
already existing formalisms and notations in the literature, and filters out those
ones not strictly needed. Last but not least, the main requirement was to have
a notation as close as possible to the BPMN2 choreography diagrams, while en-
abling formal reasoning and automatic treatment by all the IDRE components.

A fragment of the CLTS metamodel is shown in Figure 3. The metamodel
extends the basic notion of LTS state by introducing new elements to model
complex states, i.e., initial and final states, fork and join states, as well as,
activity loop and alternative states. The basic notion of labeled transition
has been extended to have the possibility of specifying participants roles,
service operations request/response/fault messages and related types,
as well as, conditions.

As discussed later in the section, the BPMN2-to-CLTS transformation has
been implemented in a model-driven setting by means of the ATLAS Transfor-
mation Language (ATL) [13]. A model transformation takes as input one or more
models conforming to the source metamodels and generates one or more models
conforming to the target metamodels. Thus, to develop the BPMN2-to-CLTS

1 http://www.choreos.eu/bin/view/Documentation/WebHome
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Fig. 3. CLTS metamodel

transformation, both the BPMN2 and CLTS metamodels are required. The for-
mer is available in the Eclipse ecosystem; the latter consists of the following
elements (see Figure 3):
. the metaclass Model and its composition relations represent a choreography;
. plain states are represented by means of the metaclass State;
. initial and final states are represented by means of the metaclasses
InitialState and FinalState, respectively;
. loop and alternative elements are represented by means of the metaclasses
ActivityLoop and Alternative, respectively;
. fork and join elements are represented by means of the metaclasses Fork and
Join, respectively;
. the set or roles played by the different participants in the choreography are
represented by means of the metaclass RoleDefinition, which consists of a
number of Role elements.
. the set of transition labels is represented by means of the metaclass
OperationDefinition, which contains Operation elements.
. transition relations are represented by means of the metaclass
LabeledTransition. The references initiatingParticipant, and
participant are defined to represent the participants involved in the
considered interactions;

In the remaining of the section we discuss how BPMN2 choreography diagram
constructs can be mapped to CLTS model element. The discussion is based on
the representative cases shown in Figure 1 and Figure 2.
(a)..(d) – As previously said, depending on its type (i.e.,
ChoreographyLoopType in the BPMN2 specification), a task may have
one of the three markers: sequential multi-instance (b), standard loop (c), and
parallel multi-instance (d). Accordingly, a task is transformed into a basic
state-to-state transition if no marker is specified (a), a CLTS ActivityLoop

transition with a fixed number |n| of possible iterations if a BPMN2 sequential
multi-instance marker is specified (b), a conditional CLTS ActivityLoop
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transition if a BPMN2 standard loop marker is specified (c), and a CLTS
state-to-state transition that can be forked (and then joined) a fixed number
|n| of times if a BPMN2 parallel multi-instance marker is specified (d). In the
corresponding CLTS fragments, the transition label p1.m2::op1(m1).p2 specifies
that the participant p1 initiates the task op1 by sending the message m1 to the
receiving participant p2 which, in turn, returns the message m2.

Note that the BPMN2 graphical elements do not show, neither the condition
expressions nor the specified fixed number, which can only be internally specified.
In/out messages (i.e., request/response messages) are reported in the CLTS tran-
sitions on the right-hand and left-hand sides of the operation name, respectively.
To bound the number of times a loop is repeated, either the condition expressions
must be evaluated (based on the data contained in the exchanged messages) in
the case of a standard loops, or counters must be employed (updated upon the
observed message exchanges) in the case of sequential and parallel multi-instance
loops. In any case, the task must be performed at least once, before checking the
condition or the counter. In this respect, it is worth to mention that one of the
reported critical issues (issue number 16554 - published in the official web site) is
about “underspecification of ChoreographyLoopType”. The reported issue basi-
cally says that it is mandatory to specify either the number of loop repetitions
or the expression that must be evaluated, on what messages and (for reasons
of enforceability) by which participant(s). In our model transformation we have
anticipated the resolution of this issue.

(e) & (f) – When used to create parallel flows, the parallel diverging gateway is
transformed using a CLTS Fork state that splits into all the outgoing flows. Note
that, in order to enforce the coordination logic implied by a parallel gateway, the
Fork state is used in a CLTS to model real parallelism (and not abstract par-
allelism by means of interleaving). Complementarily, when a parallel converging
gateway is used to join parallel flows, a CLTS Join state is used.

The sequences for the remaining cases (g)..(k) can be easily obtained by fol-
lowing the same method as for the previous cases.

(g) & (h) – When used to create alternative paths, a diverging exclusive gate-
way is transformed using a CLTS Alternative state. Note that the conditions
cond1 and cond2 are suitably combined to achieve exclusivity. When used to
merge alternative paths, a converging exclusive gateway is transformed using
state-to-state transitions that, by modeling the flows immediately preceding the
gateway, collapse into a further state-to-state transition that models the flow
immediately following the gateway. As a further clarification, the very same
converging exclusive gateway behavior can be equivalently specified in BPMN2
without using the gateway construct. That is, with reference to the figure, it is
sufficient to have three arrows that directly connect the tasks on the left to the
task on the right.

(i) & (j) – Similarly to a diverging exclusive gateway, diverging inclusive gate-
way is transformed using a CLTS Alternative state. However, to model that all
combinations of the paths may be taken, combined forking and joining paths are
used. To conform with this characteristic, the conditions cond1 and cond2 are

73



Fig. 4. BPMN2 choreography diagram example

suitably combined to achieve exclusivity between not only single paths, but also
between the combined forking and joining paths and single paths. Considering
the previous explanations for the converging exclusive gateway and the diverging
inclusive gateway, the transformation for a converging exclusive gateway, when
merging combinations of alternative and parallel paths, is rather intuitive.

(k) Compound activities tasks are transformed by recursively applying the pre-
vious rules. In Figure 2, only a very simple case is shown.

All the previously discussed mappings have been automatized by means an
ATL [13] model transformation consisting of about 4.000 lines of code. By apply-
ing the transformation rules described above, the BPMN2 choreography diagram
of Figure 4 is transformed to the corresponding CLTS diagram in Figure 5 (the
CLTS diagram has been drawn by means of the GMF-based editor we have
developed in CHOReOS). It is worth to clarify that the choreography in the
figure has been aptly created to highlight, in one choreography, most of the
crucial subtitles the transformation needs to handle. Therefore, it looks arti-
ficial from a use case point of view. For a set of realistic use cases, provided
by the CHOReOS industrial partners, and for downloading the Eclipse plug-

Fig. 5. CLTS derived from the BPMN2 choreography diagram in Figure 4
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ins implementing the model transformation the interested reader can refer to
http://choreos.disim.univaq.it/.

4 Related Work
The approach presented in this paper is related to a number of other valuable
approaches in the literature that, to different purposes, transform different kinds
of choreography notations into more formal specifications.

The definition of our approach required the consideration of valuable ap-
proaches in the literature (most notably [21,8,4,23,9,2]) and state-of-the-art lan-
guages, systems, and techniques that have emerged in different contexts including
SOA, model-transformations, and seminal work on distributed coordination [15].
Their consideration within the same research and development space [1] is so far
being representing the opportunity for us to harness our knowledge towards the
systematic development of choreography-based systems.

The common idea underlying the approaches in [6,7,16,17,20] is to assume a
high-level specification of the requirements that the choreography has to fulfill
and a behavioral specification of the services participating in the choreogra-
phy. From these two assumptions, by applying data and control-flow analysis, a
BPEL, WSCI or WS-CDL description of a centralized choreographer specifica-
tion is automatically derived. This description is derived in order to satisfy the
specified choreography requirements.

The works described in [22,24,3,11,4] address the problem of checking
whether a choreography can be realized by a set of interacting services, each
of them synthesized by projecting the choreography specification on the role to
be played. This problem is known as choreography realizability check. The focus
is on verifying whether the set of services, required to realize a given chore-
ography, can be easily implemented by simply considering the role-based local
views of the specified choreography. That is, this verification does not aim at
extracting the global coordination logic that, as we do in CHOReOS, is needed
to check whether the collaboration among the discovered services leads to global
interactions that violate the choreography behavior.

In [9] the authors presents a framework for verifying choreographies using
model and equivalence checking techniques. Leveraging a translation of the
choreography into LOTUS NT algebra, the framework enables the verification
of some analysis tasks, i.e., repairability, realizability, conformance, synchroniz-
ability, and control for enforcing the choreography. In order to check in sequence
the system synchronizability and realizability using equivalence checking, dis-
tributed controllers are generated through an iterative process presented in [10].

In [19], the authors show how to automatically generate a partial DAML-S
process model out of a WSDL description. The generated process model can be
then possibly completed manually by the developer. Although the aim of this
work is completely different from ours, it shows that DAML-S can be considered
as another possible notation BPMN2 choreographies could be mapped to.

The work in [14] presents an approach that generates a set of related or-
chestrations from a choreography specification. Specifically, a transformation to
derive a set of BPEL specifications out of a CDL specification of the choreogra-
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phy is formalized. Similarly to us, the transformation mappings is implemented
as transformation rules in ATL.

In [12] the authors propose a model-driven method to develop collaborative
systems. The methods uses a graph transformation to derive a flow-local chore-
ography from a flow-global choreography. UML Activity Diagrams are used to
specify both the source model and the target model.

Most of the previous approaches consider as input choreography specified by
using different notations and formalisms. Only few of them uses BPMN2 Chore-
ography Diagrams, notably, [9] and [21]. Depending on the specific purposes, the
different approaches transform the choreography into different (formal) represen-
tations such as Petri Net, LOTUS NT, various state machines, etc. Moreover, all
these approaches are based on different interpretations of the choreography in-
teraction semantics and consider different subsets of choreography constructs. A
weakness here resides on the fact that all the adopted formal notations are dis-
tant from BPMN2.

5 Conclusions and Future Work
This paper presents a model transformation to extract from a BPMN2 choreog-
raphy specification the global coordination logic and codify it into an extended
LTS, called Choreography LTS (CLTS). The expressiveness of the CLTS meta-
model allows us to fully automate the approach and to transform very complex
choreography specifications into rigorous descriptions. The presented approach is
implemented as a REST service and it part of a model-based tool chain (named
CHOReOSynt2) released to support the development of choreography-based sys-
tems in the CHOReOS EU project.

The approach has been applied to real-world use cases, provided by the
CHOReOS industrial partners, in the Airport, Marketing and Sale, and Taxy
Transportation domains. Interested readers can refer to the CHOReOS project
and CHOReOSynt web sites for documentation. The application of our approach
to these use cases has shown that the method is viable and practical. However,
although our preliminary validation has been carried out in a context in which
the presence of relevant to the approach stackholders are present, a real quan-
titative assessment of the method needs further investigation. This is part of
our ongoing work together with an industrial partner of the CHOReOS project.
Another direction of future work will address the extension of the implemented
transformations to transform also BPMN2 choreography specifications contain-
ing events, as well as event-based and complex gateways.
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9. M. Güdemann, P. Poizat, G. Salaün, and A. Dumont. Verchor: A framework for
verifying choreographies. In FASE, volume 7793 of LNCS, pages 226–230. 2013.
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