
On the Model-driven Synthesis of Evolvable Service
Choreographies

Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio, Massimo Tivoli
University of L’Aquila, Italy

{marco.autili,amleto.disalle,francesco.gallo,massimo.tivoli}@univaq.it
claudio.pompilio@graduate.univaq.it

ABSTRACT
Choreographies are a form of decentralized composition that model
the external interaction of the participant services by specifying
peer-to-peer message exchanges from a global perspective. When
mismatching third-party services are to be composed, obtaining
the distributed coordination and adaptation logic required to suit-
ably realize a choreography is a non-trivial and error prone task.
Automatic support is then needed. Nowadays, very few approaches
address the problem of actually realizing choreographies in an au-
tomatic way. In this paper, we share the experience we had in two
EU projects specically targeted at choreographies, and report on
a novel model-driven approach to the automatic synthesis of evolv-
ing choreographies we are currently working on. We illustrate our
method at work on a use case in the domain of Smart Mobility &
Tourism.

CCS CONCEPTS
• Information systems→Web services; • Software and its en-
gineering →Model-driven software engineering; • Computing
methodologies→ Distributed computing methodologies;

KEYWORDS
Service choreographies, Coordination, Evolution
ACM Reference Format:
Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio, Massimo
Tivoli. 2018. On the Model-driven Synthesis of Evolvable Service Chore-
ographies. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Service choreographies represent a powerful and exible approach
to compose software services in a fully distributed way. Service
choreographies have been around since many years, and many
valuable (mostly theoretic) approaches have been proposed [12, 19,
20, 24, 33] (just to mention a few).

With the objective of bringing the adoption of choreographies to
the development practices currently adopted by IT companies, our
research and development activity has been focused on practical
and automatic approaches to support the realization of model-based

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’17, July 2017, Washington, DC, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

reuse-oriented service choreographies [1–9, 14]. During the last
decade, this research and development activity has been funded (in
particular) by two EU projects: the FP7 CHOReOS and its follow-up
H2020 CHOReVOLUTION1.

The need for service choreographies was recognized in the Busi-
ness Process Modeling Notation version 2.02 (BPMN2), which in-
troduced Choreography Diagrams to oer choreography modeling
constructs. In BPMN2 choreography diagrams, a participant role
models the expected behavior (i.e., the expected interaction proto-
col) that a concrete service should support in order to be able to play
the role of the participant in the choreography. When third-party
services are involved, usually black-box services to be reused, one
of the main problems to be solved when realizing choreographies
is that of automatic realizability enforcement. It can be informally
phrased as follows: given a choreography specication and a set of
existing services to be reused, externally coordinate and adapt their in-
teraction so to fulll the collaboration prescribed by the choreography
specication, in a fully distributed way.

The approach consists of synthesizing coordination and adap-
tation software entities in order to proxify and control the inter-
actions of the services participating to the choreography. When
interposed among the services, the synthesized entities enforce the
collaboration prescribed by the choreography specication. The
ability to evolve the coordination logic in order to enable modular
choreography evolution in response to possible context changes
is a key factor. In this paper, we rst describe the approach to the
automatic synthesis of service choreographies we have developed
within the CHOReVOLUTION project [1–3, 5–7, 9, 14]. Then, we
focus on coordination aspects and describe the novel model-driven
approach we are working on to manage choreography evolution
through variability. The important body of knowledge on Software
Product Lines (SPLs) [10, 16, 28, 38] is exploited for that purpose.

The paper is structured as follow. Section 2 sets the context
and discusses variability aspects. Section 3 introduces an explana-
tory example. Section 4 presents the novel approach to manage
choreography variability, and Section 5 describes it at work on the
explanatory example. Related work is discussed in Section 6, and
conclusions are given in Section 7.

2 SETTING THE CONTEXT
Software variability [28] is widely addressed in the SPLs [16] re-
search domain. Within SPLs, at the level of the system’s software
architecture, variability is usually expressed by dening variation
points [10, 38]. Each variation point represents a portion of the
system that can be realized in dierent ways depending on, e.g.,
1www.choreos.eu – www.chorevolution.eu
2http://www.omg.org/spec/BPMN/2.0.2/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
www.choreos.eu
www.chorevolution.eu
http://www.omg.org/spec/BPMN/2.0.2/


Conference’17, July 2017, Washington, DC, USA Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio, Massimo Tivoli

development decisions that can be taken only later in the devel-
opment process, specic customizations of the system needed to
satisfy dierent needs of dierent kinds of end users, in dierent
contexts, or the availability of certain computing resources in the
system’s execution environment.

The specication of variation points is not natively supported
by BPMN2 Choreography Diagrams, which lack of both explicit
expressiveness of variability and ability to identify one or more
points in the choreography model where a variation may occur [35].
A variation point may be needed when multiple choreography
design options, i.e., variants, are available. According to this, for our
purpose, a variation point species dierent choreography variants
that, during the runtime, can be active or not depending on the
context. In order to make the paper self-contained, in the following
we briey describe the process we dened in the CHOReVOLUTION
project for the synthesis of choreographies. Then, in Section 4, we
describe how the synthesis process is being updated to support
choreography evolution through variation points.

Figure 1: Architectural style (a sample instance of)

The synthesis process consists of a set of core code generation
phases. It takes as input a choreography specication together with
a set of services as possible candidates to play the choreography
roles, and automatically generates a set of coordination software
entities. When interposed among the services according to a pre-
dened architectural style (see Figure 1), these software entities
“proxify” the participant services to coordinate their interaction,
when needed. Specically, coordination entities are called Coordi-
nation Delegates (CDs) and guarantee the collaboration specied
by the choreography specication through distributed protocol
coordination.

The coordination logic of the CDs is concrete service indepen-
dent, meaning that it is synthesized by considering the expected
interaction protocol specied for the roles instead of the actual
one of the concrete services. This allows our approach to realize
separation of concerns, hence possibly reusing the synthesized co-
ordination logic when (late) binding dierent concrete services to
the choreography roles. Then, service Adapters are synthesized in
order to correctly bind concrete services to abstract roles. Speci-
cally, adapters solve possible protocol mismatches between services
and choreography roles using Enterprise Integration Patterns [22]
(EIP) as adaptation primitives, and composing them to realize the
required adaptation logic. More details on the synthesis process can

be found in [6] (and references there in). The synthesis processor
is fully implemented as part of the CHOReVOLUTION Studio3 4.

The novel contribution of this paper concerns both (i) the exten-
sion of the metamodel underlying the BPMN2 Modeler5 that we
use for specifying choreography diagrams, and (ii) the denition
of a new version of coordination delegates, namely, evolvable CDs
(eCDs). At design time, the extended BPMN2 Modeler will allow
to specify variation points directly within choreography diagrams.
At runtime, eCDs will permit to handle choreography evolution in
response to context changes.

3 EXPLANATORY EXAMPLE
This section introduces an explanatory example in the domain of
SmartMobility & Tourism (SMT). The related BPMN2 choreography
diagram is shown in Figure 2.

The main element of a choreography diagram is the choreog-
raphy task (e.g., Get Tourist Guide task on top of Figure 2).
Graphically, BPMN2 diagrams uses rounded-corner boxes to de-
note choreography tasks. Each of them is labeled with the roles of
the two participants involved in the task. The white box denotes
the initiating participant, i.e., the one deciding when the interac-
tion takes place. A task is an atomic activity that represents an
interaction by means of one or two (request and optionally re-
sponse) message exchanges (getTouristGuideRequest) between
two participants (STApp and Tourist Agent).

The main scope of the SMT scenario is to realize a Collaborative
Travel Agent System (CTAS) through the cooperation of several
content and service providers, organizations and authorities. It en-
visages a mobile application as an “Electronic Touristic Guide” that
interacts with the system in order to provide both smart mobil-
ity and touristic information. The scenario starts with the mobile
application STApp detecting the current position of the user, and
asking which type of point of interest to visit and which type of
transport mode to use. From this information, the choreography
initiaties two main parallel execution ows in order to retrieve
the information required by the electronic touristic guide (see the
parallel branch represented as a rhombus marked with a “+” with
two outgoing arrows after the choreography task Get Tourist
Guide). In particular, the left-most branch of the choreography is
in charge of the retrieval of smart mobility information according
to the selected transport mode (see the conditional branching rep-
resented as a rhombus marked with a “×”), while the right-most
branch is responsible to gather touristic information. Finally, the
two main parallel ows are joined together on the production of
the data needed for the guide (see the merging branch represented
as a rhombus marked with a “+” with two incoming arrows in the
lower part of the choreography), that is then shown to the user by
means of STApp.

4 THE APPROACH
The challenges regarding the specication and the handling of vari-
ability for choreographies have also been studied in [35]. For what
concerns CHOReVOLUTION, the challenges we have addressed can

3https://projects.ow2.org/view/chorevolution/
4https://gitlab.ow2.org/chorevolution
5https://www.eclipse.org/bpmn2-modeler/

https://projects.ow2.org/view/chorevolution/
https://gitlab.ow2.org/chorevolution
https://www.eclipse.org/bpmn2-modeler/


On the Model-driven Synthesis of Evolvable Service Choreographies Conference’17, July 2017, Washington, DC, USA

Figure 2: SMT choreography specication

be summarized as follows: [C1.] lack of constructs for explicitly
specifying variation points and variants in BPMN2 choreography
diagrams; [C2.] lack of support for specifying associations of vari-
ation points with variants and related contexts; [C3.] lack of auto-
matic support for generating the code in charge of managing the
dierent variants without disrupting the choreography execution.

Figure 3 shows the portion of BPMN2 metamodel that we
have extended in order to support the specication of choreog-
raphy variation points and variants. In line with the approach
in [23], choreography variation points can be specied only for
one type of BPMN2 choreography diagram construct. That is, we
dened a new metaclass named ChoreographyVariationPoint as
an extension of the metaclass ChoreographyActivity. The meta-
class ChoreographyVariant, which in turn extends the metaclass
Choreography, describes a possible choreography variant. The def-
inition of these metaclasses solves the challenge C1. The compo-
sition relationship between ChoreographyVariationPoint and
ChoreographyVariant allows the choreography modeler to dene
from 1 to n variations associated to a variation point. Thus, the
challenge C2 is also solved. The association between the meta-
class ChoreographyVariationPoint and the BPMN2 metaclass
Participant permits to specify the participants that initiate the
choreography variants. By following the BPMN2 basic validation
rule for correctly sequencing choreography activities [29], for a
variation point, the initiator participants must have been involved

Figure 3: Variation point metamodel

(as initiators or receivers) in the choreography activities preceding
the variation point.

The source of the choreography evolution is the dynamically
“sensed” choreography context. Concretely, at run-time, context
changes trigger the activation/deactivation of variation points and



Conference’17, July 2017, Washington, DC, USA Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio, Massimo Tivoli

related variants by checking aptly dened context conditions. As
it will be clear soon, only one variation can be enabled at run-
time and the execution of a variation is treated as atomic by CDs.
Based on this, the bottommost side of the metamodel denes the
choreography context as an extension of BaseElement metaclass
by distinguishing among:

• MessageContext – it is described in terms of data contained
in the messages exchanged among the involved services up
to a given point in time.

• ExecutionContext – it is described by using information
about possible computational resources. Thus, in order to
sense an execution context, dedicated functionalities are
provided by the run-time support oered by the CHOReVO-
LUTION middleware and cloud infrastructure layers.

• DomainApplicationContext – it is characterized by condi-
tions on the surrounding environment, given that dedicated
functionalities (e.g., supported by dedicated sensors) are pro-
vided to sense it.

Figure 4: Variation point

Figure 5: Choreography variants

Figure 4 shows a sample choreography consisting of one task
(Choreography Task 1), and one variation point (Variation
Point 1). The latter species three possible choreography variants,
namely V1, V2, and V3 (see Figure 5). The initiating participants
of the variation point are both Participant 1 and 2 (see the white
bands), since Participant 1 initiates the interaction of the variants

V1, V2, and Participant 2 initiates the interaction of the variant V3.
The choreography variant V1 species two tasks: Choreography
Task 2 involving Participant 1 and Participant 3 exchanging the
message Message 2; Choreography Task 3 involving Participant
3 and 1 exchanging the message Message 3. Note that, in order
to enable the specication of variation points, new graphical ele-
ments are introduced in the CHOReVOLUTION Studio by using
the BPMN2 Modeler extension API [30] (see the marker under the
task label).

The ability to specify variations points permits to deal with a
form of choreography evolution through an enhanced notion of
CDs, called evolvable CDs (eCDs). Beyond performing pure coor-
dination logic, eCDs are able to manage choreography variation
points by activating/deactivating the related choreography variants
according to the sensed choreography context. In order to guaran-
tee the correct execution of the choreography activities related to a
variation point, the coordination logic of the CD associated to the
initiating participant of the choreography task preceding the chore-
ography variation point is extended so to be able to interact with
the eCD managing the variation point. The ability to automatically
synthesize the code of eCDs solves the challenge C3.

Figure 6: CD interactions on variation points

Figure 6 exemplies the CDs interaction pattern corresponding
to the choreography variation point in Figure 4, and the related vari-
ations in Figure 5. The scenario is as follows: CDPar ticipant 1 and
CDPar ticipant 2 have just coordinated the exchange of Message
1 so to realize Choreography Task 1, i.e., the task immedi-
ately preceding the variation point. Then, CDPar ticipant 1 in-
teracts with eCDVar iation Point 1 (step 1), which in turn inter-
acts with the Context Evaluator in order to evaluate the con-
text (steps 2 and 3). According to the response of the Con-
text Evaluator, eCDVar iation Point 1 noties the CD that is al-
lowed to initiate the execution of the context-enabled variant.
That is, eCDVar iation Point 1 noties either CDPar ticipant 1 or
CDPar ticipant 2 by sending a message containing the choreogra-
phy context identier (step 4). It is worthwhile to recall that the
context conditions are exclusive, meaning that only one variation
at a time can be enabled.

5 VARIATION POINTS ATWORK
In order to demonstrate the approach at work, Figures 7 shows a
modied version of the SMT choreography containing a variation
point and two variants. As already said in Section 3, one of the
parallel execution ows of the SMT choreography is responsible for
retrieving touristic information. Part of this information concerns
the points of interest (POI) to be visited by a tourist. The variation
point Retrieve Tourism Information species two variants that
are activated/deactivated based on the weather forecast.



On the Model-driven Synthesis of Evolvable Service Choreographies Conference’17, July 2017, Washington, DC, USA

Figure 7: SMT choreography with a variation points and two variants

The choreography corresponding to Variant One involves the
interactions among Tourism Information Planner, PersonalWeather
Stations, and Poi. This choreography variant prescribes the retrieval
of outdoor POIs and, according to the evaluation of the associated
domain context, it is activated when it is not raining.

Variant Two describes a choreography involving Tourism Infor-
mation Planner, Personal Weather Stations, and News. This variant
concerns the retrieval of a list of indoor events (e.g., art exhibitions,
visits to museums), and it is activated when it is raining.

As shown in Figure 8, upon reaching the choreogra-
phy variation point Retrieve Tourism Information,
CDTour ism Inf ormation Planner interacts with the evolvable
CD eCDRetr ieve Tour ism Inf ormation by calling the operation
executeChoreographyVP. Then, after retrieving the choreog-
raphy context, eCDRetr ieve Tour ism Inf ormation noties the
choreography context to CDTour ism Inf ormation Plannner and
the execution of the choreography variant corresponding to the
retrieved context is enabled.

Figure 8: Retrieve tourism information variation point

Figure 9 shows the resulting choreography architecture
automatically generated by the synthesis process. Notably,
CDTour ism Inf ormation Plannner is linked with the newly added
eCDRetr ieve Tour ism Inf ormation , which in turn is connected to
the Context Evaluator.

Figure 9: Architecture conguration with evolvable CDs

6 RELATEDWORK
Software Product Lines (SPL) oers a systematic way for managing
variability. Several approaches have been introduced to facilitate
the development of variable service architectures in the context of
service-oriented SPLs [13, 17, 18, 26, 27, 31, 32, 36, 37].

Several variability models are proposed to capture, organize
and represent variability. A review of variability model catego-
rizations can be found in [15]. For example, COVAMOF-like [34],
OVM-like [11], and CVL-like [21] variation models can be used to



Conference’17, July 2017, Washington, DC, USA Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio, Massimo Tivoli

represent service variability. However, these models do not pro-
vide a mechanism to consistently map choreography variability
specications to actual code.

Most closely related to our work, in [35], the authors propose
XChor, a choreography language for integrating variable orchestra-
tion specications. Dierently from us, the authors do not propose
an extension dedicated to BPMN2 choreography diagrams that,
nowadays, represent the de-facto standard for specifying choreogra-
phies. In [35], the authors also study state-of-the-art orchestration
and choreography languages. The study concludes that existing
languages do not address interface and composition variability
explicitly. Only the VxBPEL [25] language permits explicit variabil-
ity specications based on the COVAMOF [34] model. It enables
the denition of variability in service composition, variability in
interface and connector is not permitted.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we have reported on a novel model-driven approach
to the automatic synthesis of evolving choreographies we are cur-
rently working on. We have described our method at work on an
explanatory example in the Smart Mobility & Tourism domain.
The application to this example shows that the approach is viable
towards proposing a practical approach to choreography evolution.

The ongoing implementation of the described method is part of
a model-based tool chain released as an open-source project6, and
it is supported by the OW2 Future Internet Software and Services
initiative (FISSi7).

8 ACKNOWLEDGMENTS
This research work has been supported by (i) the EU H2020 Pro-
gramme under grant agreement number 644178 (project CHOReV-
OLUTION - Automated Synthesis of Dynamic and Secured Chore-
ographies for the Future Internet), (ii) the Ministry of Economy and
Finance, Cipe resolution n. 135/2012 (project INCIPICT - INnovating
CIty Planning through Information and Communication Technolo-
gies), and (iii) the GAUSS national research project funded by the
MIUR under the PRIN 2015 program (Contract 2015KWREMX).

REFERENCES
[1] Marco Autili, Paola Inverardi, Filippo Mignosi, Romina Spalazzese, and Mas-

simo Tivoli. 2015. Automated Synthesis of Application-Layer Connectors from
Automata-Based Specications. In LATA 2015.

[2] Marco Autili, Paola Inverardi, and Massimo Tivoli. 2014. CHOREOS: Large scale
choreographies for the future internet. In CSMR-WCRE 2014.

[3] Marco Autili, Paola Inverardi, and Massimo Tivoli. 2015. Automated Synthesis
of Service Choreographies. IEEE Software (2015), 50–57.

[4] Marco Autili, Leonardo Mostarda, Alfredo Navarra, and Massimo Tivoli. 2008.
Synthesis of decentralized and concurrent adaptors for correctly assembling
distributed component-based systems. Journal of Systems and Software (2008),
2210–2236.

[5] Marco Autili, Davide Di Ruscio, Amleto Di Salle, Paola Inverardi, and Massimo
Tivoli. 2013. A Model-Based Synthesis Process for Choreography Realizability
Enforcement. In FASE 2013.

[6] Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio, and Massimo
Tivoli. 2018. Model-driven adaptation of service choreographies. In SAC 2018.

[7] Marco Autili, Amleto Di Salle, Alexander Perucci, and Massimo Tivoli. 2015.
On the Automated Synthesis of Enterprise Integration Patterns to Adapt
Choreography-based Distributed Systems. In FOCLASA 2015.

[8] Marco Autili, Amleto Di Salle, and Massimo Tivoli. 2013. Synthesis of Resilient
Choreographies. In SERENE 2013.

6https://projects.ow2.org/view/chorevolution/
7https://www.ow2.org/view/Future_Internet

[9] Marco Autili and Massimo Tivoli. 2014. Distributed Enforcement of Service
Choreographies. In FOCLASA 2014.

[10] Muhammad Ali Babar, Lianping Chen, and Forrest Shull. 2010. Managing Vari-
ability in Software Product Lines. IEEE Software (2010), 89–91.

[11] Felix Bachmann, Michael Goedicke, Julio Cesar Sampaio do Prado Leite, Robert L.
Nord, Klaus Pohl, Balasubramaniam Ramesh, and Alexander Vilbig. 2003. A
Meta-model for Representing Variability in Product Family Development. In PFE
2003.

[12] Samik Basu and Tevk Bultan. 2011. Choreography conformance via synchro-
nizability. In WWW 2011.

[13] Nicola Booli, Marta Cimitile, Fabrizio Maria Maggi, and Giuseppe Visaggio.
2009. Managing SOA System Variation through Business Process Lines and
Process Oriented Development.

[14] Radu Calinescu, Marco Autili, Javier Cámara, Antinisca Di Marco, Simos Gerasi-
mou, Paola Inverardi, Alexander Perucci, Nils Jansen, Joost-Pieter Katoen,
Marta Z. Kwiatkowska, Ole J. Mengshoel, Romina Spalazzese, and Massimo
Tivoli. 2017. Synthesis and Verication of Self-aware Computing Systems. In
Self-Aware Computing Systems.

[15] Lianping Chen, Muhammad Ali Babar, and Nour Ali. 2009. Variability manage-
ment in software product lines: a systematic review. In SPLC 2009.

[16] Patrick Donohoe. 2012. Introduction to software product lines. In SPLC 2012.
[17] Kurt Geihs, Roland Reichle, Michael Wagner, and Mohammad Ullah Khan. 2009.

Modeling of Context-Aware Self-Adaptive Applications in Ubiquitous and Service-
Oriented Environments (LNCS), Vol. 5525. Springer, 146–163.

[18] Kurt Geihs, Roland Reichle, Michael Wagner, and Mohammad Ullah Khan. 2009.
Service-Oriented Adaptation in Ubiquitous Computing Environments. In CSE
2009.

[19] Matthias Güdemann, Pascal Poizat, Gwen Salaün, and Lina Ye. 2016. VerChor:
A Framework for the Design and Verication of Choreographies. IEEE Trans.
Services Computing (2016), 647–660.

[20] Sylvain Hallé and Tevk Bultan. 2010. Realizability analysis for message-based
interactions using shared-state projections. In ACM SIGSOFT 2010.

[21] Øystein Haugen, Andrzej Wasowski, and Krzysztof Czarnecki. 2013. CVL: com-
mon variability language. In SPLC 2013.

[22] Gregor Hohpe and Bobby Woolf. 2004. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions - Fiftheenth printing 2011. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[23] Paul Istoan, Grégory Nain, Gilles Perrouin, and Jean-Marc Jézéquel. 2009. Dy-
namic Software Product Lines for Service-Based Systems. In CIT 2009.

[24] RamanKazhamiakin andMarco Pistore. 2006. Analysis of Realizability Conditions
for Web Service Choreographies. In IFIP WG 2006.

[25] Michiel Koning, Chang-ai Sun, Marco Sinnema, and Paris Avgeriou. 2009.
VxBPEL: Supporting variability for Web services in BPEL. Information & Software
Technology (2009), 258–269.

[26] Ivan Lanese, Antonio Bucchiarone, and Fabrizio Montesi. 2010. A Framework
for Rule-Based Dynamic Adaptation. In TGC 2010.

[27] Bardia Mohabbati, Marek Hatala, Dragan Gasevic, Mohsen Asadi, and Marko
Boskovic. 2011. Development and conguration of service-oriented systems
families. In (SAC) 2011.

[28] Tuan Nguyen, Alan W. Colman, Muhammad Adeel Talib, and Jun Han. 2011.
Managing service variability: state of the art and open issues. In VAMOS 2011.

[29] Object Management Group. 2018. Documents Associated With Business Process
Model And Notation. http://www.omg.org/spec/BPMN/2.0.2/PDF.

[30] Eclipse Project. [n. d.]. BPMN2-Modeler Model Extension. https://wiki.eclipse.
org/BPMN2-Modeler/DeveloperTutorials/ModelExtension, year=2018.

[31] Maryam Razavian and Ramtin Khosravi. 2008. Modeling variability in the com-
ponent and connector view of architecture using UML. In AICCSA 2008.

[32] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein O. Hallsteinsen,
Jorge Lorenzo, Alessandro Mamelli, and Ulrich Scholz. 2009. MUSIC: Middleware
Support for Self-Adaptation in Ubiquitous and Service-Oriented Environments
(LNCS), Vol. 5525. Springer, 164–182.

[33] Gwen Salaün, Tevk Bultan, and Nima Roohi. 2012. Realizability of Choreogra-
phies Using Process Algebra Encodings. IEEE Trans. Services Computing (2012),
290–304.

[34] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, and Jan Bosch. 2004. COVAMOF: A
Framework for Modeling Variability in Software Product Families. In SPLC 2004.

[35] Selma Suloglu, Bedir Tekinerdogan, and Ali Dogru. 2013. XChor Choreography
Language for Integration of Variable Orchestration Specications. In BMSD 2013.

[36] Hongyu Sun, Robyn R. Lutz, and Samik Basu. 2009. Product-line-based require-
ments customization for web service compositions. In SPLC 2009.

[37] N. Yasemin Topaloglu and Rafael Capilla. 2004. Modeling the Variability of Web
Services from a Pattern Point of View. In ECOWS 2004.

[38] Diana L. Webber and Hassan Gomaa. 2004. Modeling variability in software
product lines with the variation point model. Sci. Comput. Program. (2004).

https://projects.ow2.org/view/chorevolution/
https://www.ow2.org/view/Future_Internet
http://www.omg.org/spec/BPMN/2.0.2/PDF
https://wiki.eclipse.org/BPMN2-Modeler/DeveloperTutorials/ModelExtension
https://wiki.eclipse.org/BPMN2-Modeler/DeveloperTutorials/ModelExtension

	Abstract
	1 Introduction
	2 Setting the context
	3 Explanatory example
	4 The Approach
	5 Variation Points at work
	6 Related work
	7 Conclusions and future work
	8 Acknowledgments
	References

