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Abstract. The spectral and Jordan structures of the Web hyperlink matrix G(c) = cG + (1 −
c)evT have been analyzed when G is the basic (stochastic) Google matrix, c is a real parameter such
that 0 < c < 1, v is a nonnegative probability vector, and e is the all-ones vector. Typical studies
have relied heavily on special properties of nonnegative, positive, and stochastic matrices. There is a
unique nonnegative vector y(c) such that y(c)TG(c) = y(c)T and y(c)T e = 1. This PageRank vector
y(c) can be computed effectively by the power method.

We consider a square complex matrix A and nonzero complex vectors x and v such that Ax = λx
and v∗x = 1. We use standard matrix analytic tools to determine the eigenvalues, the Jordan blocks,
and a distinguished left λ-eigenvector of A(c) = cA+ (1− c)λxv∗ as a function of a complex variable
c. If λ is a semisimple eigenvalue of A, there is a uniquely determined projection N such that
lim
c→1

y(c) = Nv for all v; this limit may fail to exist for some v if λ is not semisimple. As a special

case of our results, we obtain a complex analog of PageRank for the Web hyperlink matrix G(c) with
a complex parameter c. We study regularity, limits, expansions, and conditioning of y(c) and we
propose algorithms (e.g., complex extrapolation, power method on a modified matrix etc.) that may
provide an efficient way to compute PageRank also with c close or equal to 1. An interpretation of
the limit vector Nv and a related critical discussion on the model, on its adherence to reality, and
possible ways for its improvement, represent the contribution of the paper on modeling issues.
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This material was partly presented at the Seminar “Web Information Retrieval and
Linear Algebra Algorithms”, Schloss Dagstuhl-Wadern (Germany), february 2007, see
[38], and at the Workshop “Numerical Linear Algebra in Internet Algorithms”, Mo-
nopoli - Bari (Italy), September 2007. The resulting paper could be viewed into two
parts: the part regarding the model is new and the part regarding the analysis is
based for large part on a joint work with Roger Horn [24] and on [37].

1. Introduction. As customary in the literature (see e.g. [31]), the Web can be
regarded as a huge directed graph whose n nodes are all the Web pages and whose
edges are constituted by all the direct links between pages. If deg(i) indicates the
cardinality of the pages different from i which are reached by a direct link from page
i, the simplest Google matrix G is defined as Gi,j = 1/deg(i) if deg(i) > 0 and there
exists a link in the Web from page i to a certain page j 6= i. In the case where
deg(i) = 0 (the so-called dangling nodes), we set Gi,j = 1/n where n is the size of the
matrix, i.e., the cardinality of all the Web pages. This definition is a model for the
behavior of a generic Web user: if the user is visiting page i with deg(i) > 0, then
with probability 1/deg(i) he/she will move to one of the pages j 6= i linked by i; if i
is a dangling node, i.e., it has no links, then the user will make just a random choice
with uniform distribution 1/n. The basic PageRank is an n sized vector which gives
a measure of the importance of every page in the Web and this notion of importance
of a given page is measured according to the limit probability that a generic user
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reaches that page asymptotically, i.e., after infinitely many clicks: this is the surfing
model. On the other hand, we would like to have a more intrinsic and intuitive notion
of importance or ranking of the Web pages. Indeed, taking inspiration from social
sciences, the following ideas are quite natural:

• a page j is more important if there exists a page i referring to it,
• if i is a “very important page” and is referring j, then the importance of j is

increased,
• if i is referring to many pages including j 6= i, i.e. deg(i) is large, then this

adds little importance to j.
It is worth mentioning that the idea contained in the above itemized sentences is ex-
actly a quantification of the notion of VIP (very important people) appearing in social
sciences or, quite equivalently, according to a famous sentence of the PopArt master
Andy Warhol “Don’t pay attention to what they write about you. Just measure it in
inches” (with several distinguished precursors “I don’t care what you say about me, as
long as you say something about me, and as long as you spell my name right” (George
Cohan), “The only thing worse than being talked about is not being talked about”
(Oscar Wilde), etc.). By the way, this basic observation shows the large potential of
these researches in terms of the broad range of possible applications; see e.g. [4] for a
recent study in the context of bibliometry.

Now we translate in formulae these concepts. More in detail, after a reasonable
normalization, for every j = 1, . . . , n, the importance y[j] of page j is defined as
follows

y[j] =
∑
i→j

y[i]

deg(i)
, y[j] ≥ 0,

n∑
i=1

y[i] = 1.

The definition is nice in principle and can be interpreted in matrix-vector terms as
yT Ĝ = yT , y[j] ≥ 0, for all j,

∑n
i=1 y[i] = 1, where Ĝi,j = Gi,j if there exists in

the Web a link from i to j and Ĝi,j = 0 otherwise: G and Ĝ are the same with the
exception of the management of dangling nodes. However, even by interpreting the
above relations as an eigenvector problem with respect to the eigenvalue 1, either 1
may belong or may fail to belong to the spectrum of the resulting matrix. Explicit
and very simple examples can be constructed: take e.g. the matrix[

0 1
0 0

]
associated to a toy Web with only two nodes i, j with i < j and a unique link from i to
j; it is clear that the problem defined by yT Ĝ = yT , y[j] ≥ 0, for all j,

∑n
i=1 y[i] = 1

has no solution, since 1 is not in the spectrum of Ĝ. The reason is again the presence
of dangling nodes that in turn implies the existence of identically zero rows. Hence,
for giving a solution to the above mathematical incongruence, we define

deg∗(i) = deg(i), if deg(i) > 0, (1.1)

deg∗(i) = n, if deg(i) = 0,

and we correct accordingly the relations concerning y[j] in the following way:

y[j] =
∑
i→j

y[i]

deg∗(i)
, y[j] ≥ 0,

n∑
i=1

y[i] = 1.
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Putting the above relations in matrix terms, and introducing the l1 norm of a real or
complex vector w as ‖w‖1 =

∑n
j=1 |w[j]|, we have

yTG = yT , y ≥ 0, ‖y‖1 = 1. (1.2)

Interestingly enough, it should be observed that any vector y solution to (1.2) repre-
sents also a solution in the sense of the surfing model and vice versa. Therefore, in
other words, with the above choice, there is an identification, which can be criticized
between the surfing model and the definition of importance: in fact the definition of
G referred to the dangling nodes is perfectly coherent in the surfing model, while is
not justified at all when defining a notion of importance (see Section 2).

Now looking at (1.2), a basic PageRank is a nonnegative left eigenvector y of G
associated to the dominating eigenvalue 1 normalized so that ‖y‖1 = yT e = 1, e being
the vector of all ones (see e.g. [35, 27]). Since the matrix G is nonnegative and has
row sum equal to 1 it is clear that a (canonical) right eigenvector related to 1 is e and
that all the other eigenvalues are in modulus at most equal to 1.

As a consequence, the good news is that a solution always exists; the bad news is
that there might be multiple independent nonnegative solutions. And even if there is
a unique solution, computing it by standard methods such as the power method [21]
may fail, because G has one or more eigenvalues different from 1 that have modulus
1, see [22].

In fact, the structure of G is such that we have no guarantee for its aperiodicity
and for its irreducibility: therefore the gap between 1 and the modulus of the second
largest eigenvalue can be zero, see [22]. This means that the computation of the
PageRank by the application of the standard power method (see e.g. [21]) to the
matrix GT (or one of its variations for our specific problem) is not convergent in
general. A solution is found by considering a change in the model: given a value
c ∈ [0, 1), from the basic Google matrix G we define the parametric Google matrix
G(c) as cG + (1 − c)evT with v[i] ≥ 0, ‖v‖1 = 1. This change corresponds to the
following user behavior: if the user is visiting page i, then the next move will be with
probability c according to the rule described by the basic Google matrix G and with
probability 1− c according to the rule described by v. We notice that this change is
again meaningful in terms of the surfing model, but there is no clear interpretation
in terms of notion of importance. Generally a value of c as 0.85 is considered in
the literature (see e.g. [27]). For c � 1, the good news is that the y(c), i.e., the
left dominating nonnegative eigenvector solution of (1.2) with G = G(c), is unique
and can be computed in a fast way since G(c) has second eigenvalue whose modulus
is dominated by c (see [31] and references therein): therefore the convergence to
y(c) is such that the error at step k decays in the generic case as ck. Of course
the computation becomes slow if c is chosen close to 1 and there is no guarantee of
convergence if c = 1.

In this paper we have four main expository and research goals.

The first concerns a discussion on the model and on its adherence to the reality: a
basic example presented in Section 2 is used to point out pathologies and limitations
of the actual model and to propose some possible improvements to the model.

Second we would like to understand the characteristics of the matrix G(c) as a
function of the parameter c (by completing the analysis in [37, 8]): we are interested
in the eigenvalues and in the eigenvector structure, so that the analysis of canonical
forms (Jordan, Schur etc.) is of prominent interest.
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Third we would like to understand the behavior (regularity, expansions, limits,
conditioning etc.) of the PageRank vector y(c) as a function of c also for c close or
equal to 1, and fourth we are interested in using the analytical characterization of
y(c) for computational purposes. In particular, it is known that for c = 1 the problem
is ill-posed since there exist infinitely many solutions, forming a convex set, satisfying
relations (1.2). On the other hand, for c ∈ [0, 1), the solution exists and is unique,
but the known algorithms become very slow when c is close to 1. Our interest is to
compute y(c) in these difficult cases, especially in the limit as c tends to 1.

The philosophical message that can be extracted from the latter three points is
as follows: it has been said that the “PageRank problem is closely related to Markov
chains” [13, p. 553]; however, framing the PageRank problem in the general setting
of standard matrix-analytic properties of complex matrices can liberate one’s imag-
ination and stimulate novel approaches that might not be considered in the context
of Markov chains.

More in concrete terms, our results are the following:
1. the eigenvalues of G(c), ∀c ∈ C;
2. the canonical forms of G(c), ∀c ∈ C such that |c| < 1 (in fact the condition
|c| < 1 can be replaced by the less restrictive (*): ∀c ∈ C such that cλj 6= 1,
j = 2, . . . , n, λ1 = 1, λ2, . . . , λn being the eigenvalues of G = G(1));

3. a rational expansion for y(c), ∀c ∈ C : |c| < 1 (in fact only (*) is required);
4. for c = 1 the problem (1.2) is ill-posed, but

lim
c→ 1

(∗) holds

y(c) = lim
c→ 1−

c ∈ R

y(c) = ỹ

and ỹ is a solution of (1.2);
5. for this special solution ỹ we show that it coincides with Nv where v is the

personalization vector and NT is a nonnegative projector coinciding with the

Cesaro mean lim
r→∞

1

r + 1

r∑
j=0

Gj(1): the result is due to Lasserre, who calls N

the ergodic projector, in a context of probability theory [30], and is known in
the field of Web searching engines thanks to [9];

6. if we set y(1) = ỹ, then y(c) is analytic in a proper neighborhood of 1 and

its sensitivity κ(y(c), δ) = ‖y(c̃)−y(c)‖
‖(y(c)‖ , c̃ = c(1 + δ), δ complex parameter of

small modulus, is defined by the quantity κc where κ(y(c), δ) = κc|cδ|(1 +
O(δ))/‖y(c)‖ with respect to a generic induced norm ‖ · ‖; moreover, in a
proper neighborhood of c = µ−1, µ belonging to the spectrum of G = G(1)
and up to a function independent of c, the factor κc grows generically as

max
µ6=1,µ∈Σ(G(1)),n(µ)∈S(µ)

F (µ, c), (1.3)

F (µ, c) =
∣∣∣z1(1− cµ)−n(µ) + z2(1− cµ)−n(µ)−1(1− c)

∣∣∣ |c|n(µ)−2, (1.4)

with z1 = (n(µ) − 1)(1 − c) − c, z2 = cµn(µ), Σ(W ) denoting the spectrum
of a given square matrix W and S(µ) denoting the set of all possible sizes of
the Jordan blocks related to the eigenvalue µ.

7. numerical procedures of extrapolation type, based on the third item, for the
computation of y(c), when c is close or equal to 1 (i.e. the limit Cesaro vector
ỹ of the fourth item and fifth item).
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The results in 1) follows from Brauer’s Theorem. We discuss the proof and we provide
a short historical account both in Section 4 and 9. Findings 2)-7) are obtained in the
more general setting of a special type of rank one perturbations. More specifically,
instead of G(c) we consider A(c) := cA+ (1− c)λxv∗ where Ax = λx, v ∈ Cn, c ∈ C,
and v∗x = 1. It is clear that our setting is a special instance of the latter: however
it is important to stress that this generality allows to clarify and even to simplify
the mathematical reasoning and the proofs of the results. For instance, the existence
of the limit as c tends to 1 via any complex path requires that the eigenvalue λ is
semisimple and this is the case in the Google setting; it is worthwhile observing that
such an assumption is essential as the following two examples show.

Example 1. Consider

A =

 1 0 0
0 1 0
0 0 2

 , λ = 1, x = y = e1, v
∗ =

[
1 α β

]
and the vector y(c) defined by

y(c)∗ =
[

1 α (c−1)β
2c−1

]
.

y(c)∗ is the normalized left eigenvector of

cA+ (1− c)λxv∗ =

 λ+ c(1− λ) λ(1− c)α λ(1− c)β
0 c 0
0 0 2c


associated with the eigenvalue λ = 1. Moreover,

lim
c→1

y(c)∗ =
[

1 α 0
]
.

Although λ = 1 is not a simple eigenvalue of A, it is semisimple.

Example 2. Consider

A =

 1 0 0
0 1 1
0 0 1

 , λ = 1, x = y = e1, v
∗ =

[
1 α β

]
and the vector y(c) defined by

y(c)∗ =
[

1 α β + cα
1−c

]
.

y(c)∗ is the normalized left eigenvector of

cA+ (1− c)λxv∗ =

 λ+ c(1− λ) λ(1− c)α λ(1− c)β
0 c c
0 0 c


associated with the eigenvalue λ = 1. However, lim

c→1
y(c)∗ does not exist unless α = 0.

In this case, λ = 1 is not semisimple.

Here we report some further comments.
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• The results in items 3)-4) were obtained in [37] with the constraint that c ∈
[0, 1). Moreover, item 4) shows that the parameter c acts like a regularization
parameter that stabilizes problem (for a general treatment of regularization
techniques see [19]): the nice thing is that, as c tends to 1, we obtain a limit
vector ỹ, one of the solutions of the original problem.

• The above analysis can be attacked also by transforming the PageRank prob-
lem into an equivalent linear system formulation (see e.g. [31]). In that case
we write y(c) = (1 − c)(I − cGT )−1v and indeed this is a compact version
of formula (7.6), used in Section 7 for a detailed analysis of y(c) and of its
conditioning as a function of the parameter c.

• The algorithms that we propose are new and are partly based on specialized
extrapolation procedures discussed in [15, 13]; moreover, we should benefit
from the choice of a complex parameter thanks to items 2)-4) with respect to
[14], especially in terms of stability.

• Another important issue is how to interpret the computed vector y(c) when
c is equal or close to 1 and how to distinguish it from the infinitely many
solutions existing when c = 1.

The paper is organized as follows. Section 2 is devoted to a critical view of the
basic Google model and to propose improvements that prevent pathologic behaviors.
In Section 3, we set notation and terminology for the basic matrix-theoretic concepts
that we employ to analyze a generalization of G(c): for a square complex matrix A,
nonzero complex vectors x and v such that Ax = λx and v∗x = 1, and a complex
variable c, we study A(c) = cA + (1 − c)λxv∗. In Section 4 we explain how Alfred
Brauer used the classical principle of biorthogonality in 1952 to prove a theorem that
reveals the eigenvalues of A(c). In Section 5 we introduce the complete principle of
biorthogonality and use it to obtain the Jordan blocks of A(c) under the assumption
that there is a nonzero vector y such that y∗A = λy∗ and y∗x = 1. In particular, such
a vector y exists if λ is a simple or semisimple eigenvalue of A. In Section 6 we derive
a representation for a distinguished left λ-eigenvector y(c) of A(c); this representation
is an explicit rational vector-valued function of the complex variable c. In Subsection
6.1 we study lim

c→1
y(c), and in Subsection 6.2 we focus on the special case in which A

is the basic Google matrix G, λ = 1, x = e, and v is a nonnegative probability vector;
in this respect Section 7 is devoted to a comparison with the explicit formulae of y(c)
and of the Jordan form in [37], to a detailed analysis of the conditioning of y(c) also
for c = 1, and of the eigenvector structure of G(c). In Section 8, we propose few
algorithmic ideas for computing PageRank. The first exploits properties of G(c) as a
function of the complex variable c, especially in the unit open disk and in a proper
disk centered at c = 1, while the second is based on a proper shift of the matrix
G. Furthermore some remarks on the interpretation of the limit vector ỹ are given.
Section 9 mentions some prior work and Section 10 is devoted to final conclusions and
future work.

2. Comments and proposals on the model. Let us start our discussion on
the model, by considering in detail the following (extreme) example:
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According to the classical algorithm in the ideal case (i.e. for c = 1, y(1) = ỹ) the
page A has zero PageRank (as the 109 pages in the first row) and the importance is
concentrated in B and C. In some sense the obtained ranking is against common sense
since, given the topology of the graph, it is clear that page A should have a significant
PageRank measure. This and other related pathologies need further investigations
and this is the goal of the rest of this section in which we will suggest a revision of
the PageRank model.

2.1. A monotonicity principle and the transient behavior. As already
mentioned, according to the classical algorithm in the “ideal case”, page A has zero
ranking (as the 109 pages in the first row) and the importance is concentrated in
B and C. This ranking is highly counter-intuitive and indeed wrong: if you are a
leader of 109 people, you are really powerful no matter if any of your followers has
low ranking, i.e., he/she is not important . . . .

Now suppose that C is deleted, i.e., the considered Web page is deleted: this can
be also interpreted as merging B and C in a unique node that we can still call B.
Then the rankings of any of 109 pages in the first row will move slightly from 0 to
1/(3(109 + 1)); on the other hand the ranking of B goes down dramatically from 1/2
to 1/3 + 1/(3(109 + 1)) and A becomes really a leader moving from 0 to 1/3. Again
this sharp modification of the ranking is highly counter-intuitive and indeed wrong.
At least, one would expect that the cumulative ranking of B and C equal to 1, before
deletion of C, and the ranking of B alone after deletion of C should remain roughly
speaking equal: a sort of monotonicity which is substantially violated by the actual
model, which, on the other hand, induces an unmotivated discontinuous behavior
in the solutions. In this respect, the original reason of such a pathology relies on
the opposite extremal behavior of functions deg(·) and deg∗(·) in which a zero row is
replaced by eT /n. We notice that in the literature a wider idea has been considered by
replacing eT /n by any stochastic vector wT : however the discontinuity in the model
still remains and in the following different solutions to the problem are considered.

A strong and macroscopic evidence of the problems in the actual model is that
for most of the nodes in real Web examples (what is called “core” in the literature)
the ranking is zero. Indeed, only the use of values of the teleportation parameter c
far away from 1 (e.g. 0.85) partly alleviates the problem (in Latin “ex falso quod
libet” . . ., is an expression capturing the fact that from something wrong anything
can derive and, by coincidence, also good things. . .). In actuality, a basic error is
the confusion between the notion of “importance” (PageRanking) and the stochastic
model for surfing on the web. We can identify two critical points.

We have a somehow unnatural (wrong) treatment of dangling nodes: with the
actual model, there is no monotonicity as the example of deletion of node C in the
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above graph shows. In a new model, the management of dangling nodes should be
changed for insuring a sort of monotonicity.

The other substantial problem is that the transient effects are not taken into
account. A user is on the Web for a finite number of clicks, at every visit. This implies
that looking at the stationary vector, as the number of clicks tends to infinity, is just
theoretical and far from reality. A new model has to incorporate the transient behavior
(see also the functional approach in [1]), which would give the right importance to a
node as A in our example.

2.2. New proposals. Following Del Corso, Gulĺı and Romani [17], one objective
of the section is a precise policy for providing to any dangling node a link to itself or
to itself and its parents, with a given distribution (in order to impose monotonicity,
at least in a weak sense). A link to itself models a reload action and hence it could
be also used for the other non-dangling nodes.

A second and more relevant objective is to incorporate the transient behavior for
differentiating our ranking from the limit solution to the surfing model. This will be
done:

• by eliminating the teleportation parameter that induces a confusion between
the notion of ranking and the surfing model,

• by introducing a weighting by experience for reinforcing the role of the tran-
sient phenomena,

• by using the Cesaro mean for avoiding oscillatory phenomena at the limit,
• by defining a nonlinear model, in the spirit of a dynamical system, for using

the computed PageRank at time t in order to update the PageRank at time
t+ ∆t.

2.2.1. A new policy for dangling nodes. Now we describe a way for imple-
menting weighted self-loops and weighted links to parents.

Let in(A) be the set of ingoing edges to node A including possibly the node A
itself, let deg−(A) be its cardinality (this number could be theoretically zero), out(A)
be the set of outgoing edges from node A including possibly the node A itself, and
let deg(A) be its cardinality (this number could be theoretically zero and in this case,
as already observed, node A is a dangling node). In the following v[in(A)] is the sum
of v[B] for B such that the edge from B to A exists, v[out(A)] is the sum of v[B]
for B such that the edge from A to B exists, v being as usual the personalization
vector, and g is a positive damping parameter. A reasonable choice is g such that
g/(1 + g) = 1/10, i.e., g = 1/9 (ref. Fig. 2.1).

The resulting policy will be the following (any form 0/0 is set to zero).
Case 1 If deg−(A) = deg(A) = 0 then there will be a unique edge from A to A (a

loop) with weight of the node equal to 1; in case v[A] = 0 the node is simply
deleted with its edges.

Case 2 If deg(A) = 0 and deg−(A) > 0 then there will an edge from A to A with
weight

v[A]/(v[in(A)]/deg−(A) + v[A])

and deg−(A) edges from A to B, with B belonging to the set of ingoing nodes
of A and with weight

v[B]/(v[in(A)] + deg−(A)v[A]);

in case v[in(A)] + v[A] = 0 the node is simply deleted with its edges.
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Fig. 2.1.

Case 3 If deg(A) > 0 and deg−(A) = 0, then there will an edge from A to A with
weight

gv[A]/(v[out(A)]/deg(A) + gv[A])

and deg(A) edges from A to B, with B belonging to the set of outgoing nodes
of A and with weight

v[B]/(v[out(A)] + gdeg(A)v[A]);

in case v[out(A)] + v[A] = 0 the node is simply deleted with its edges.
Case 4 Otherwise, there will be an edge from A to A with weight

gv[A]deg−(A)/{(1 + g)(v[in(A)] + deg−(A)v[A])},

deg(A) edges from A to B, with B belonging to the set of outgoing nodes of
A and with weight

v[B]/{(1 + g)v[out(A)]},

and deg−(A) edges from A to B, with B belonging to the set of ingoing nodes
of A and with weight

gv[B]/{(1 + g)(v[in(A)] + deg−(A)v[A])}.

in case v[in(A)] + v[out(A)] + v[A] = 0 the node is simply deleted with its
edges.

To have an idea in a concrete but exemplified case, by setting g = 1/9, i.e.,
g/(1 + g) = 1/10 and by supposing the personalization vector v uniform, i.e., with
all entries equal to 1/n, the described policy amounts to the following scheme: If
deg−(A) = deg(A) = 0 then there will be a unique edge from A to A (a loop) with
weight of the node equal to 1; If deg(A) = 0 and deg−(A) > 0 then there will an
edge from A to A with weight 1/2 and deg−(A) edges from A to B, with B belonging
to the set of ingoing nodes of A and with weight 1/(2 deg−(A)); If deg(A) > 0 and
deg−(A) = 0, then there will an edge from A to A with weight 1/10 and deg(A)
edges from A to B, with B belonging to the set of outgoing nodes of A and with
weight 9/(10 deg(A)); Otherwise, there will be an edge from A to A with weight 1/20,
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deg(A) edges from A to B, with B belonging to the set of outgoing nodes of A and
with weight 9/(10 deg(A)), and deg−(A) edges from A to B, with B belonging to the
set of ingoing nodes of A and with weight 1/(20 deg−(A)).

We observe that is it possible to apply this new policy in the construction of
the matrix G of the PageRank model. In this way we get a matrix G that can
be reduced into the direct sum of irreducible and primitive blocks and the Perron
Frobenius theory ensures us that there exists always a unique ranking, function of
the personalization vector v. It is possible to obtain this solution applying the power
method to the matrix G(1) = G. At this point the problem related to the presence
of dangling nodes is solved, but transient phenomena are not yet taken into account.
A further modification of the PageRank model must be considered.

2.2.2. Introducing transient phenomena. An improved ranking may be
computed starting from the uniform vector u with components all equal to w[0]/n
(with n being the size of the Web) and adding all the vectors w[j]P je/n, where
P = GT , G = G(1), is the transpose of the Google matrix with parameter c = 1, j
ranges from 0 to a reasonable number of clicks, w[j] > 0 is the jth term of a sequence
forming a convergent series. Here the Google matrix is that of the old model with
c = 1 and classical treatment of dangling nodes: moreover, the present proposal is not
limited to choosing a hyperlink at random within a page with uniform distribution; if
statistical data are known about actual usage patterns, then that information can be
included since any arbitrary distribution u describing the choice of the hyperlink can
be considered. Here the speed of the decay of w[j] to zero, as j tends to infinity, can be
used for deciding to give more or less importance to the stationary limit distribution
(solution to the surfing model) or to the transient behavior. Indeed, if one should
choose a page where to put the advertisement of a new product, the user would prefer
a page with high transient ranking (transient, i.e., for j moderate e.g. at most 10, 15)
because many people will have a chance of looking at it, instead of a page with low
transient ranking and high final ranking (final, i.e., as j tends to infinity). In fact no
user will wait so much or, if he/she waits on the Web, then he/she will be probably
terribly tired and unable to appreciate any commercial suggestion. This can motivate
a first concrete proposal of w[0] = w[1] = . . . = w[k] = (p− 1)/(pk), for a reasonably
moderate k (e.g. k integer with k in the interval [7, 20]), p belonging to [2, 10], and
the remaining w[j], j > k, such that w[k + 1] + w[k + 2] + . . . = 1/p. In practice, for
j larger of any reasonable number of clicks, dictated e.g. by the “physical resistance”
of a generic user, we could set w[j] = 0. Furthermore, since the Cesaro sum of the
P ju tends to a stationary distribution (as in the Google model) and this stationary
distribution is the limit as the teleportation parameter c tends to 1 of y(c), y(c) being
the PageRank, instead of the general condition w[k + 1] + w[k + 2] + . . . = 1/p we
can safely choose w[k + 1] = 1/p, w[m] = 0 for every m larger than k + 1 and the
classical y(1) instead of P k+1u. The choice of y(1) is recommended for stabilizing the
computation: indeed the sequence P ju may fail to converge, while its Cesaro mean
converges to the ergodic projector.

A natural problem at this point is: how to manage SPAM pages? An interesting
idea used in the previous model is based on a careful choice of the personalization
vector v (see below): hence as before, in the previous sum, the uniform vector u is
replaced by the personalization vector v.

A second natural problem is the computation of y(1) intended, by definition, as
the limit as the teleportation parameter c tends to 1 of y(c) with generic personaliza-
tion vector v.
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In fact from the analysis in [37, 24] we know that y(c) is an analytic function of
c on the complex plane, except for a finite number of points different from 1 outside
the open unit disk (see Sections 6.2 and 7). Therefore y(1) can be approximated,
just by continuity, by y(c) with c close to 1 (0.9, 0.99): there is a lot of work by
Golub and Greif (using Arnoldi, see [20]), Del Corso, Gulĺı, Romani (using the linear
system representation and preconditioned GMRES, see [17]), Breziski et al. (vector
extrapolation based on explicit rational formulae of y(c), see [13, 14, 15]) etc. for
making such computations fast. Otherwise the straightforward but effective algorithm
in Subsection 8.2 can be conveniently employed.

An appropriate choice of the involved parameters, based on the experience, is
also possible with special reference to k, p and to the weights w[j]. Here is a first
embodiment: a visit to the page A will make A more important if it is longer: following
this principle the value w[j] could be decided as a monotone function of the average
time of a generic user between the click j and the click j + 1 (see below). While
the previous model is trying to rank the importance at the limit (the asymptotic
stationary distribution, i.e., the solution to the surfing model), the present approach
can be seen as a global ranking, i.e., as a weighted integral over the discrete time
(decided by clicks on the Web) of the ranking. Of course, as already informally
observed, the weights w[j], like in any weighted quadrature formula, decide where to
put the attention for giving the final decision on the global ranking.

Another healthy effect of the integral approach is the stabilization of the involved
quantities which prevent from spurious oscillations and this stabilization is typical
of any Cesaro like process. Indeed, by considering again the example above, with
the old model the ranking of page B and C are oscillating. Depending on starting
distribution vector, they exchange the first and the second top positions at every
j and the difference between their ranking is not negligible. Of course, the use of
teleportation just alleviates the phenomenon, which is eliminated at the limit, but
in practice it remains well visible. The averaging implied by the integral approach
substantially reduces this fact as any Cesaro like process does: however, it should be
noticed that a plain Cesaro approach would again give emphasis only on the limit
behavior, since its representing matrix would converge to the spectral projector (see
again [30, 38]).

Furthermore, let us give more details on a more accurate proposal for the deter-
mination of the sequence w[j], based on experience. Consider for a moment to have
the following information on all the visits on the Web for a certain window of observa-
tion (one week for instance). Let surfing[ j ] with j ≥ 0 be a nonnegative integer that
represents the number of visits to the Web that last at least j clicks. If you are on
the Web and you change Web page not clicking, but by writing explicitly the address,
then this is counted as a restart, i.e., in the number surfing[0]. Moreover, there exists
only a finite number of indices j with nonzero surfing[ j ], due to the finiteness of the
time interval and due to the physical resistance of the generic user. Now we make
a statistic on the lengths tj+1, with j ≥ 0, of the time intervals between the click
number j and the click j + 1, if the click j is not the last click, or the time intervals
between the click number j and the exit, if the click j is the last. Let us denote by
T [j + 1] the average value of these tj+1 based on our observations over all the visits.
Then calling γ[j] = surfing[ j ] ·T[j + 1], j ≥ 0, and s[h] the sum of all γ[j] with j ≥ h,
our integral will be

y = F (P, v, w) = w[0]v + w[1]Pv + · · ·+ w[k]P kv + w[k + 1]y(1) (2.1)

with w[j] = γ[j]/s[0], j = 0, . . . , k, and w[k + 1] = s[k + 1]/s[0].
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In this way more influence is given to P sv if the “area” w[s] is maximal: w[j]
may be viewed as the area of a rectangle where the length of the basis is the average
time between click j and click j + 1 and the length of the height is equal to the
value surfing[ j ] i.e. the number of visits that last at least j clicks. It is not excluded
that the behavior of such a sequence w[j] can be roughly approximated by a Poisson
distribution with a given mean.

Along the same line the personalization vector v can be described. It should be
nonnegative and with unit l1 norm (just a matter of scaling). Moreover v[j] should
be put at zero if j is recognized as a SPAM page and for the other pages the value
v[j] has to be proportional to the sum over the visits to j at the first click of the
visit-time.

Of course these parameters have to be estimated, but the leaders of Web-Searching
Market (as Google, Microsoft, Yahoo etc.) for sure have access to such information.

We can now apply the new policy for nodes, described in the former subsection,
in the construction of the matrix P = GT that appears in the formula (2.1). Thanks
to the structure of this new P there are no more spurious oscillations in the terms P jv
for j increasing. So instead of y(1) in (2.1) we can consider safely the term P k+1v.

y = F (P, v, w) = w[0]v + w[1]Pv + · · ·+ w[k + 1]P k+1v (2.2)

with w[j] evaluated as previously proposed.
The ranking coming out of the joining of these two techniques seems to be exempt

from the pathologies of the classical PageRank.
Finally, the latter statement suggests to look at the problem in a time dependent

and nonlinear way, since the Web evolves in time and the expected values of the
various time intervals, i.e. T [j] for j = 1, 2, . . . , also depend on the ranking that we
attribute to Web pages. A concrete proposal is the following: if ŷ(t) denotes this new
definition of the PageRank according to the formula (2.2), then we define the new
ranking at t+ ∆t as

ŷ(t+∆t) = F (P (t+∆t), z, w(t+∆t)), z = mŷ(t)+(1−m)v(t+∆t), 0 ≤ m ≤ 1,

where P (t + ∆t) is the Web matrix at the time t + ∆t, w(t + ∆t) is the vector
of the weights at the time t+ ∆t, and where z is defined as a convex combination of
v(t+ ∆t) (the personalization vector defined as before at time t+ ∆t) and ŷ(t) which
carries the information on ranking at the older time t. The nonnegative parameters
m and 1 −m of the convex combination can be interpreted as weights that measure
the level of fidelity, which is based on the “past importance”.

2.2.3. Further possibilities. In summary two goals are achieved by the new
model. The actual efficiency (fast computation) is preserved, since the new computa-
tion will involve at most two vectors, which already were computed in the preceding
model, and it seems that the old pathologies are removed without introducing new
ones. The new ranking method according to the proposal may be called the Visibil-
ityRank or the CommercialRank, since a query-independent measure is given of the
“fair value” of any Web page for deciding e.g. the cost of putting an advertisement
in that page, as in the determination of the cost of renting a space for advertisement
in a given place of a given street, square in a given town etc.

As a final remark on this model part, it is worth mentioning that this model
could be of interest not only in Web ranking, but also in political/social sciences e.g.
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for ranking who/what is influential and who/what is not (as an example one could
be interested in answering to the following questions: Bill Clinton’s opinion is really
influential and at which level? How to rank immaterial forces such as a religious
authority vs material forces such as economic/military powers?), in many aspects of
marketing, for ranking human resources, for ranking the importance of a paper and/or
of a researcher looking in scientific databases, see [4]. Let us think to MathSciNet for
Mathematicians where a generic node is any paper in the database and a link from
A to B is just a bibliographic reference to paper B in paper A. For evaluating the
impact (i.e. the ranking) of a paper the very same model and the same procedure
as described before could be applied to the related graph. For evaluating or ranking
a researcher (a very hot topic nowadays in several countries) it would be enough to
modify the graph where every single node is a researcher and a link from A to B means
that the researcher A has written at least one paper referring to at least one paper
of the researcher B: the links have to be weighted and the related weights will be
proportional to the number of such papers and will be properly normalized according
to the number of authors in the referring papers of A and in the referred papers of B.
The algorithm will be again the same and again the same idea would work for ranking
researcher groups or Institutions such as Departments, Faculties, Universities (see e.g.
the hierarchical approach in European Patent 1, 653, 380 A1). In addition it is worth
stressing that the described procedures for defining the graph and for computing the
ranking are unchanged in any Scientific homogeneous community.

Of course, for modeling in a convincing way such complex phenomena, it would be
recommended to enrich the structure of the graph by adding to nodes and/or to edges
more information (meta-graph? . . .). However, the essential basic idea for defining
and computing the ranking has to remain virtually the same.

3. Terminology and notation. All the matrices and vectors that we consider
have real or complex entries. We denote the conjugate transpose of an m-by-n matrix
X = [xij ] by X∗ = [x̄ji]. For p ∈ [1,∞) for a vector w ∈ Cn, its lp norm is given

by ‖w‖p =
[∑n

j=1 |w[j]|p
]1/p

while its l∞ norm is ‖w‖∞ = maxj=1,...,n |w[j]|; for a

square matrix A and for p ∈ [1,∞], ‖A‖p is the associated induced norm. If A is a
square matrix, its characteristic polynomial is pA(t) := det(tI − A); the (complex)
zeroes of pA(t) are the eigenvalues of A. A complex number λ is an eigenvalue of A if
and only if there are nonzero vectors x and y such that Ax = λx and y∗A = λy∗; x is
said to be an eigenvector (more specifically, a right eigenvector) of A associated with λ
and y is said to be a left eigenvector of A associated with λ. If λ is an eigenvalue of A,
its algebraic multiplicity is its multiplicity as a zero of pA(t); its geometric multiplicity
is the maximum number of linearly independent eigenvectors associated with it. The
geometric multiplicity of an eigenvalue is never greater than its algebraic multiplicity.
An eigenvalue whose algebraic multiplicity is one is said to be simple. An eigenvalue
whose algebraic and geometric multiplicities are equal is said to be semisimple; an
eigenvalue λ of A is semisimple if and only if rank(A− λI) =rank(A− λI)2.

We let e1 indicate the first column of the identity matrix I: e1 = [1 0 . . . 0]T .
We let e = [1 1 . . . 1]T denote the all-ones vector. Whenever it is useful to indicate
that an identity or zero matrix has a specific size, e.g., r-by-r, we write Ir or 0r.

Two vectors x and y of the same size are orthogonal if x∗y = 0. The orthogonal
complement of a given set of vectors is the set (actually, a vector space) of all vectors
that are orthogonal to every vector in the given set.

An n-by-r matrix X has orthonormal columns if X∗X = Ir. A square matrix U
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is unitary if it has orthonormal columns, that is, if U∗ is the inverse of U .
A square matrix A is a projection if A2 = A.
A square matrix A is row-stochastic if it has real nonnegative entries and Ae = e,

which means that the sum of the entries in each row is 1; A is column-stochastic if
AT is row-stochastic. We say that A is stochastic if it is either row-stochastic or
column-stochastic.

The direct sum of k given square matrices X1, . . . , Xk is the block diagonal matrix X1 · · · 0
...

. . .
...

0 · · · Xk

 = X1 ⊕ · · · ⊕Xk.

The k-by-k Jordan block with eigenvalue λ is

Jk(λ) =


λ 1 0

. . .
. . .

. . . 1
λ

 , J1(λ) = [λ].

Each square complex matrix A is similar to a direct sum of Jordan blocks, which is
unique up to permutation of the blocks; this direct sum is the Jordan canonical form
of A. The algebraic multiplicity of λ as an eigenvalue of Jk(λ) is k; its geometric
multiplicity is 1. If λ is a semisimple eigenvalue of A with multiplicity m, then the
Jordan canonical form of A is λIm ⊕ J , in which J is a direct sum of Jordan blocks
with eigenvalues different from λ; if λ is a simple eigenvalue, then m = 1 and the
Jordan canonical form of A is [λ]⊕ J .

Suppose that a square matrix A is similar to the direct sum of a zero matrix and
a nonsingular matrix, that is,

A = S

[
0m 0
0 B

]
S−1, B is nonsingular. (3.1)

The matrix

AD = S

[
0m 0
0 B−1

]
S−1

is called the Drazin inverse of A; it does not depend on the choice of S or B in the
representation (3.1). [16, Chapter 7] Moreover, both AAD = ADA and I − AAD are
projections. If X and Y have m columns, S = [X S2], and (S−1)∗ = [Y Z2], then
AD = S2B

−1Z∗2 and I −AAD = XY ∗.
In a block matrix, the symbol F denotes a block whose entries are not required

to take particular values. Finally we consider A0 = I.For a systematic discussion of a
broad range of matrix analysis issues, see [23].

4. Basic principle of biorthogonality and eigenvalues. The following ob-
servation about left and right eigenvectors associated with different eigenvalues is the
basic principle of biorthogonality [23, Theorem 1.4.7].

Lemma 4.1. Let A be a square complex matrix and let x and y be nonzero complex
vectors such that Ax = λx and y∗A = µy∗. If λ 6= µ, then y∗x = 0 (that is, x and y
are orthogonal).
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Proof. Compute y∗Ax in two ways: (i) as y∗(Ax) = y∗(λx) = λ(y∗x), and (ii)
as (y∗A)x = (µy∗)x = µ(y∗x). Since λ(y∗x) = µ(y∗x) and λ 6= µ, it follows that
y∗x = 0.

For a given vector v and a matrix A with eigenvalue λ and associated eigenvector
x, how are the eigenvalues of A+ xv∗ related to those of A? This question was asked
and answered by Alfred Brauer in 1952 [11, Theorem 26]:

Theorem 4.2 (Brauer). Let A be an n-by-n complex matrix and let x be a
nonzero complex vector such that Ax = λx. Let

λ, λ2, . . . , λn

be the eigenvalues of A. Then for any complex n-vector v the eigenvalues of A+ xv∗

are

λ+ v∗x, λ2, . . . , λn.

Brauer’s proof involved three steps: (i) Compute

(A+ xv∗)x = Ax+ xv∗x = λx+ (v∗x)x = (λ+ v∗x)x,

which shows that λ + v∗x is an eigenvalue of A + xv∗. (ii) If µ is an eigenvalue of
A that is different from λ, and if y is a left eigenvector of A associated with µ, then
Lemma 4.1 ensures that

y∗(A+ xv∗) = y∗A+ y∗xv∗ = µy∗ + (y∗x)v = µy∗ + 0 · v = µy∗.

Thus, the distinct eigenvalues of A that are different from λ are all eigenvalues of
A+xv∗, but perhaps not with the same multiplicities. (iii) Brauer completed his proof
with a continuity argument to show that the multiplicities of the common eigenvalues
of A and A + xv∗ (setting aside the respective eigenvalues λ and λ + v∗x) are the
same.

Brauer’s theorem tells us something interesting about the eigenvalues of A(c).

Corollary 4.3. Let A be an n-by-n complex matrix. Let λ be an eigenvalue of
A, let x and v be nonzero complex vectors such that Ax = λx and v∗x = 1, and let
A(c) = cA+ (1− c)λxv∗. Let

λ, λ2, . . . , λn

be the eigenvalues of A. Then for any complex number c, the eigenvalues of A(c) are

λ, cλ2, . . . , cλn.

Proof. In the statement of Brauer’s Theorem, replace A and v by cA and (1−c̄)λ̄v,
respectively. The eigenvalues of cA are cλ, cλ2, . . . , cλn, x is an eigenvector of cA
associated with the eigenvalue cλ, and Brauer’s Theorem tells us that the eigenvalues
of cA + x((1 − c̄)λ̄v)∗ = cA + (1 − c)λxv∗ are cλ + (1 − c)λv∗x, cλ2, . . . , cλn, which
are λ, cλ2, . . . , cλn since v∗x = 1.

Robert Reams [36, p. 368] revisited Brauer’s theorem in 1996. He observed that
the Schur triangularization theorem [23, Theorem 2.3.1] can be used to prove Brauer’s
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Theorem without a continuity argument: Let S = [x S1] be any nonsingular matrix
that upper triangularizes A as

S−1AS =


λ F · · · F

λ2
. . .

...
. . . F

0 λn


and whose first column is an eigenvector x associated with the eigenvalue λ. Since
I = S−1S = [S−1x F], we see that S−1x = e1. Compute

S−1 (xv∗)S =
(
S−1x

)
(v∗S) =


1
0
...
0

 [ v∗x F · · · F
]

=


v∗x F · · · F
0 0 · · · 0
...

...
. . . 0

0 0 · · · 0

 .

Therefore, the similarity

S−1 (A+ xv∗)S =


λ+ v∗x F · · · F

0 λ2
. . .

...
...

. . .
. . . F

0 · · · 0 λn

 ,
reveals both the eigenvalues of A+ xv∗ and their multiplicities.

A new alternative proof that the eigenvalues of A(c) are λ, cλ2, . . . , cλn, only
based on polynomial identities, is proposed below.

For any n-by-k complex matrices Z and W with n ≥ k, the n eigenvalues of ZW ∗

are the k eigenvalues of W ∗Z together with n−k zero eigenvalues [23, Theorem 1.3.20].
In particular, for any vectors z, w ∈ Cn the n eigenvalues of zw∗ are w∗z, 0, . . . , 0, so
the n eigenvalues of I+zw∗ are 1+w∗z, 1, . . . , 1. It follows that det(I+zw∗) = 1+w∗z.

Since (tI − cA)x = (t− cλ)x, we have (tI − cA)−1x = (t− cλ)−1x for any t 6= cλ.
For any z ∈ Cn and for t 6= cλ, compute

pcA+xz∗(t) = det(tI − (cA+ xz∗))

= det((tI − cA)− xz∗)
= det(tI − cA)det(I − (tI − cA)−1xz∗)

= pcA(t)det(I − (t− cλ)−1xz∗)

= pcA(t)
(
1− (t− cλ)−1z∗x

)
=
pcA(t) (t− cλ− z∗x)

t− cλ
.

Thus, for any z ∈ Cn we have the polynomial identity

(t− cλ)pcA+xz∗(t) = (t− (cλ+ z∗x))pcA(t), (4.1)
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where it is again legal to have t = cλ by continuity arguments. The zeroes of the
left-hand side are cλ together with the eigenvalues of cA+xz∗; the zeroes of the right-
hand side are cλ + z∗x, cλ, cλ2, . . . , cλn. It follows that the eigenvalues of cA + xz∗

are cλ+ z∗x, cλ2, . . . , cλn.
Now set z = (1 − c)λv, use the condition v∗x = 1, and conclude that the eigen-

values of A(c) are λ, cλ2, . . . , cλn for any c ∈ C.
Finally, it is worth mentioning a two-lines proof of Brauer’s theorem due to Ian-

nazzo [25] which could be considered a special case of a proof trick used in the func-
tional formulation of the shift [6][Section 3.2], in a structured Markov chains context.
Based on the matrix-polynomial identity and Axv∗ = λxv∗

(A+ xv∗ − µI)(µ− λ)I = (A− µI)((µ− λ)I − xv∗),

by taking the determinant of both members and using the formula for the character-
istic polynomial of a dyad, it holds that

pA+xv∗(µ)(µ− λ)n = (−1)npA(µ)px∗v(µ− λ)

= (−1)npA(µ)(µ− λ)n−1(µ− λ− v∗x).

The unique factorization theorem for polynomials achieves the proof.
It is worthwhile to remark that the interest of Iannazzo for Brauer’s theorem does

not come from the Google matrix, but from fast Markov chains computations, Riccati
matrix equations etc. See [5] and references reported therein.

5. Complete principle of biorthogonality and Jordan blocks. Brauer used
the basic principle of biorthogonality to analyze the eigenvalues of A+ xv∗. We now
want to analyze the Jordan blocks of A+ xv∗.

The basic principle of biorthogonality is silent about what happens when λ = µ.
In that event, there are three possibilities: (i) y∗x = 0 (we can normalize so that
x∗x = y∗y = 1); (ii) y∗x 6= 0 (we can normalize so that y∗x = 1); or (iii) x = αy
(we can normalize so that x = y and x∗x = 1). The following complete principle of
biorthogonality addresses all the possibilities and describes reduced forms for A that
can be achieved in each case.

Theorem 5.1. Let A be an n-by-n complex matrix and let x and y be nonzero
complex vectors such that Ax = λx and y∗A = µy∗.

(a) Suppose that λ 6= µ and x∗x = y∗y = 1. Then y∗x = 0. Let U = [x y U1], in which
the columns of U1 are any given orthonormal basis for the orthogonal complement of
x and y. Then U is unitary and

U∗AU =

 λ F F
0 µ 0
0 F B

 , B = U∗1AU1 is (n− 2)-by-(n− 2).

(b) Suppose that λ = µ, y∗x = 0, and x∗x = y∗y = 1. Let U = [x y U1], in which
the columns of U1 are any given orthonormal basis for the orthogonal complement of
x and y. Then U is unitary, the algebraic multiplicity of λ is at least two, and

U∗AU =

 λ F F
0 λ 0
0 F B

 , B = U∗1AU1 is (n− 2)-by-(n− 2).
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(c) Suppose that λ = µ and y∗x = 1. Let S = [x S1], in which the columns of
S1 are any given basis for the orthogonal complement of y. Then S is nonsingular,
(S−1)∗ = [y Z1], the columns of Z1 are a basis for the orthogonal complement of x,
and

S−1AS =

[
λ 0
0 B

]
, B = Z∗1AS1 is (n− 1)-by-(n− 1). (5.1)

(d) Suppose that λ = µ, x = y, and x∗x = 1. Let U = [x U1], in which the columns
of U1 are any given orthonormal basis for the orthogonal complement of x. Then U
is unitary and

U∗AU =

[
λ 0
0 B

]
, B = U∗1AU1 is (n− 1)-by-(n− 1). (5.2)

Proof. (a) Lemma 4.1 ensures that x and y are orthogonal. Let U = [x y U1], in
which the columns of U1 are a given orthonormal basis for the orthogonal complement
of x and y. The n columns of U are an orthonormal set, so U is unitary. Compute
the unitary similarity

U∗AU =

 x∗

y∗

U∗1

A[x y U1] =

 x∗Ax x∗Ay x∗AU1

y∗Ax y∗Ay y∗AU1

U∗1Ax U∗1Ay U∗1AU1


=

 λx∗x x∗Ay x∗AU1

λy∗x µy∗y µy∗U1

λU∗1x U∗1Ay U∗1AU1

 =

 λ F F
0 µ 0
0 F U∗1AU1

 .
(b) As in (a), construct a unitary matrix U = [x y U1], in which the columns of U1

are a given orthonormal basis for the orthogonal complement of x and y. The reduced
form of A under unitary similarity via U is the same as in (a), but with λ = µ. The
characteristic polynomial of A is

pA(t) = det(tI −A) = det

 t− λ F F
0 t− λ 0
0 F tI −B


A Laplace expansion by minors down the first column gives

pA(t) = (t− λ) det

[
t− λ 0
F tI −B

]
.

Finally, a Laplace expansion by minors across the first row gives

pA(t) = (t− λ)
2

det (tI −B) = (t− λ)
2
pB(t),

so λ is a zero of pA(t) with multiplicity at least two.

(c) Let the columns of S1 be a given basis for the orthogonal complement of y and let
S = [x S1]. The columns of S1 are linearly independent, so S is singular only if x is
a linear combination of the columns of S1, that is, only if x = S1ξ for some vector ξ.
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But then 1 = y∗x = y∗S1ξ = 0ξ = 0. This contradiction shows that S is nonsingular.
Partition (S−1)∗ = [η Z1] and compute

I = S−1S =

[
η∗

Z∗1

] [
x S1

]
=

[
η∗x η∗S1

Z∗1x Z∗1S1

]
=

[
1 0
0 In−1

]
. (5.3)

Thus, the n− 1 columns of Z1, necessarily linearly independent, are orthogonal to x,
so they are a basis for the orthogonal complement of x. Also, η∗S1 = 0 means that η
is orthogonal to the orthogonal complement of y, so η = αy. But 1 = η∗x = (αy)∗x =
ᾱy∗x = ᾱ, so α = 1 and η = y. Finally, compute the similarity

S−1AS =

[
y∗

Z∗1

]
A
[
x S1

]
=

[
y∗Ax y∗AS1

Z∗1Ax Z∗1AS1

]
=

[
λy∗x λy∗S1

λZ∗1x Z∗1AS1

]
=

[
λ 0
0 Z∗1AS1

]
.

(d) Let the columns of U1 be a given orthonormal basis for the orthogonal complement
of x. Then the n columns of U = [x U1] are an orthonormal set, so U is unitary.
Compute the unitary similarity

U∗AU =

[
x∗

U∗1

]
A
[
x U1

]
=

[
x∗Ax x∗AU1

U∗1Ax U∗1AU1

]
=

[
λx∗x λx∗U1

λU∗1x U∗1AU1

]
=

[
λ 0
0 U∗1AU1

]
.

We now use the complete principle of biorthogonality to establish an analog of
Brauer’s Theorem 4.2 for Jordan blocks.

Theorem 5.2. Let A be an n-by-n complex matrix. Let λ, λ2, . . . , λn be the
eigenvalues of A, and let x and y be nonzero complex vectors such that Ax = λx and
y∗A = λy∗. Assume that y∗x = 1. Then the Jordan canonical form of A is

[λ]⊕ Jn1
(ν1)⊕ · · · ⊕ Jnk

(νk)

for some positive integers k, n1, . . . , nk and some set of eigenvalues {ν1, . . . , νk} ⊆
{λ2, . . . , λn}. For any complex vector v such that λ+ v∗x 6= λj for each j = 2, . . . , n,
the Jordan canonical form of A+ xv∗ is

[λ+ v∗x]⊕ Jn1(ν1)⊕ · · · ⊕ Jnk
(νk). (5.4)

Proof. The hypotheses and Theorem 5.1(c) ensure that

S−1AS =

[
λ 0
0 B

]
(5.5)

for some nonsingular S of the form S = [x S1], so that S−1x = e1. The eigenvalues
of B are λ2, . . . , λn; let

Jn1(ν1)⊕ · · · ⊕ Jnk
(νk)

be the Jordan canonical form of B. Just as in Reams’ proof of Brauer’s Theorem, we
have

S−1 (xv∗)S =
(
S−1x

)
(v∗S) = e1

[
v∗x v∗S1

]
=

[
v∗x w∗

0 0

]
, (5.6)
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in which we set w∗ := v∗S1. Combining the similarities (5.5) and (5.6), we see that

S−1(A+ xv∗)S =

[
λ+ v∗x w∗

0 B

]
.

Now let ξ be any given (n− 1)-vector, verify that[
1 ξ∗

0 I

]−1

=

[
1 −ξ∗
0 I

]
,

and compute the similarity[
1 −ξ∗
0 I

] [
λ+ v∗x w∗

0 B

] [
1 ξ∗

0 I

]
=

[
λ+ v∗x w∗ + ξ∗((λ+ v∗x)I −B)

0 B

]
.

We have assumed that λ+ v∗x is not an eigenvalue of B, so we may take

ξ∗ := −w∗((λ+ v∗x)I −B)−1,

in which case w∗ + ξ∗((λ+ v∗x)I −B) = 0 and A+ xv∗ is revealed to be similar to[
λ+ v∗x 0

0 B

]
.

Thus, the Jordan canonical form of A+ xv∗ is (5.4): the direct sum of [λ+ v∗x] and
the Jordan canonical form of B.

The following result strengthens the conclusion of Corollary 4.3 to describe not
only the eigenvalues of A(c), but also its Jordan blocks.

Corollary 5.3. Let A be an n-by-n complex matrix. Let λ, λ2, . . . , λn be the
eigenvalues of A; let x, y, and v be nonzero complex vectors such that Ax = λx,
y∗A = λy∗, and v∗x = 1; and let A(c) = cA+ (1− c)λxv∗. Assume that y∗x = 1 and
integers k, n1, . . . , nk and the set {ν1, . . . , νk} are defined as in the previous Theorem.
Let the Jordan canonical form of A be

[λ]⊕ Jn1
(ν1)⊕ · · · ⊕ Jnk

(νk).

Then for any nonzero complex number c such that

cλj 6= λ for each j = 2, . . . , n, (5.7)

the Jordan canonical form of A(c) is

[λ]⊕ Jn1
(cν1)⊕ · · · ⊕ Jnk

(cνk).

Proof. We proceed as in the proof of Corollary 4.3. In the statement of Theorem
5.2, replace A and v, respectively, by cA and (1− c̄)λ̄v, respectively. For any c, cA is
similar to

[cλ]⊕ cJn1
(ν1)⊕ · · · ⊕ cJnk

(νk),

but if c 6= 0, we can say more: this direct sum is similar to

[cλ]⊕ Jn1
(cν1)⊕ · · · ⊕ Jnk

(cνk).
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Moreover, x is an eigenvector of cA associated with the eigenvalue cλ, the remaining
eigenvalues of cA are cλ2, . . . , cλn, and

cλ+ ((1− c̄)λ̄v)∗x = cλ+ (1− c)λv∗x = cλ+ (1− c)λ = λ.

Thus, our assumption (5.7) and Theorem 5.2 ensure that the Jordan canonical form
of

cA+ x((1− c̄)λ̄v)∗ = cA+ (1− c)λxv∗ = A(c)

is

[λ]⊕ Jn1(cν1)⊕ · · · ⊕ Jnk
(cνk).

In the above analysis, often the matrix B is determined only up to similarity. If
convenient, we can take B to be a Jordan canonical form, upper triangular, a real
Jordan form (if A is real), a Schur canonical form, etc. Perhaps this flexibility can be
exploited to achieve a computational advantage.

Finally we stress a pleasant contrast between Corollary 4.3 and Corollary 5.3.
In Corollary 4.3 the hypothesis is weaker than that of Corollary 5.3, and of course
a weaker conclusion is obtained. However, Corollary 4.3 is of independent interest,
since it gives a broader context for the famous eigenvalue properties of the Google
matrix perturbation: for instance, similar problems appear and Corollary 4.3 is useful
in the context of iterative solvers for algebraic Riccati equation, for accelerating the
convergence of cyclic reduction based algorithms (see [7, 5] and references therein and
[28] for further applications of mathematical physics).

6. The normalized left λ-eigenvector of A(c). If λ 6= 0, Corollary 4.3 ensures
that it is a simple eigenvalue of A(c) for all but finitely many values of c. We would
like to have an explicit expression for its associated left eigenvector y(c), normalized
so that y(c)∗x = 1.

Theorem 6.1. Let A be an n-by-n complex matrix. Let λ, λ2, . . . , λn be the
eigenvalues of A; let µ1, . . . , µd be the nonzero eigenvalues of A that are different
from λ; let x and v be nonzero complex vectors such that Ax = λx and v∗x = 1; and
let A(c) = cA+ (1− c)λxv∗. Assume that λ 6= 0.
(i) Suppose that there is a complex vector y such that y∗A = λy∗ and y∗x = 1. Assume
that cλj 6= λ for each j = 2, . . . , n. Let S1, Z1, and B be defined as in Theorem 5.1(c).
Then λ is not an eigenvalue of cB. Define the vector y(c) by

y(c)∗ = y∗ + (1− c)λv∗S1(λIn−1 − cB)−1Z∗1 . (6.1)

Then y(c) is the only vector that satisfies the conditions

y(c)∗A(c) = λy(c)∗ and y(c)∗x = 1. (6.2)

If λ is a simple eigenvalue of A, then it is not an eigenvalue of B.
(ii) Suppose that λ is a semisimple eigenvalue of A with multiplicity m ≥ 2 and
suppose that

cµj 6= λ for each j = 1, . . . , d. (6.3)
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Let S = [X S2] be any nonsingular matrix such that X has m columns and

S−1AS =

[
λIm 0

0 E

]
, E is (n−m)-by-(n−m). (6.4)

Then λ is not an eigenvalue of cE or E. Partition (S−1)∗ = [Y Z2], in which Y has
m columns. Then AX = λX, Y ∗A = λY ∗, and Y ∗X = Im. Moreover, the columns
of X may be chosen to be any m linearly independent right λ-eigenvectors of A, and

XY ∗ = I − (λI −A)(λI −A)D (6.5)

is a projection that is determined uniquely by A and λ, regardless of the choice of
columns of X. Define the vector y(c) by

y(c)∗ = v∗XY ∗ + (1− c)λv∗S2(λIn−m − cE)−1Z∗2 . (6.6)

Then y(c) satisfies the conditions (6.2); if, in addition, c 6= 1, then y(c) is the only
vector that satisfies these conditions. If both A and λ are real, then XY ∗ is a real
projection.

(iii) Suppose that λ is a semisimple eigenvalue of A with multiplicity m. Let K be
a given compact complex set that does not contain any of the points λµ−1

1 , . . . , λµ−1
d .

Let c̃ and c be distinct points in K. If m ≥ 2, let y(·)∗ be defined by (6.6). Then

y(c̃)∗ − y(c)∗

c̃− c
= λv∗S2(c̃E − λI)−1(E − λI)(cE − λI)−1Z∗2 ; (6.7)

the derivative of y(c) is

y′(c)∗ = λv∗S2(cE − λI)−2(E − λI)Z∗2 ; (6.8)

the derivative of y(c)∗ at c = 0 is

y′(0)∗ = λ−1v∗S2(E − λI)Z∗2 = λ−1v∗(A− λI); (6.9)

and the derivative of y(c)∗ at c = 1 is

y′(1)∗ = λv∗S2(E − λI)−1Z∗2 = λv∗(A− λI)D. (6.10)

If m = 1 and y(·) is defined by (6.1), then the four preceding identities are correct if
we replace E with B, S2 with S1, and Z2 with Z1. Finally, independently of m ≥ 1,
for each given vector norm ‖ · ‖ there is a positive constant M (depending on A, λ,
v, and K) such that

‖y(c̃)− y(c)‖ ≤M |c̃− c| for all c̃, c ∈ K. (6.11)

Proof. (i) The similarity (5.1) shows that the eigenvalues of B are λ2, . . . , λn, so
our assumption that λ 6= cλj for all j = 2, . . . , n ensures that λ is not an eigenvalue of
cB. If λ is an eigenvalue of B it must have multiplicity at least two as an eigenvalue
of A, so if it is a simple eigenvalue of A it is not an eigenvalue of B. The vector y(c)
defined by (6.1) satisfies the condition y(c)∗x = 1 because y∗x = 1 and Z∗1x = 0. To
show that it is a left λ-eigenvector of A(c), we begin by combining (5.5) and (5.6):

S−1(cA+ (1− c)λxv∗)S =

[
λ (1− c)λv∗S1

0 cB

]
. (6.12)
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A calculation verifies that the vector η(c) defined by

η(c)∗ = [1 (1− c)λv∗S1(λIn−1 − cB)−1]

is a left λ-eigenvector of the matrix in (6.12) and η(c)∗e1 = 1; if c 6= 1, it is the only
such vector. Therefore, the vector y(c) defined by

y(c)∗ = η(c)∗S−1 = [1 (1− c)λv∗S1(λIn−1 − cB)−1]

[
y∗

Z∗1

]
= y∗ + (1− c)λv∗S1(λIn−1 − cB)−1Z∗1

is a normalized left λ-eigenvector of A(c), and it is the only vector that satisfies the
conditions (6.2).

(ii) Let D denote the block diagonal matrix in (6.4), and let S be any nonsingular
matrix such that S−1AS = D. Partition S = [X S2] and (S−1)∗ = [Y Z2], in which
X and Y have m columns. Then

[AX AS2] = AS = SD = [λX S2D],

and [
Y ∗A
Z∗2A

]
= S−1A = DS−1 =

[
λY ∗

EZ∗2

]
,

which tells us that the columns of X are a linearly independent set of right λ-
eigenvectors of A and the columns of Y are a linearly independent set of left λ-
eigenvectors of A. The identity S−1S = I tells us that Y ∗X = Im and hence that
X∗Y = (Y ∗X)∗ = I∗m = Im.

Now let R be any given nonsingular m-by-m matrix, let Ŝ = [XR S2] := [X̂ S2],
partition (Ŝ−1)∗ = [Ŷ Ẑ2], compute (Ŝ−1)∗ = [Y (R−1)∗ Z2], and notice that Ŷ X̂∗ =
Y X∗. We draw two conclusions from these observations: (1) We are free to let
the columns of X be any linearly independent set of right λ-eigenvectors of A; and
(2) Regardless of the choice of columns of X, the product Y X∗ remains the same.
Moreover, (Y X∗)2 = Y (X∗Y )X∗ = Y ImX

∗ = Y X∗, so Y X∗ (and hence also XY ∗)
is a projection.

This second conclusion also follows from a useful representation for XY ∗. We
have

λI −A = S

[
0 0
0 λI − E

]
S−1 and (λI −A)D = S

[
0 0
0 (λI − E)−1

]
S−1,

and hence

I−(λI−A)(λI−A)D = I−S
[

0 0
0 In−m

]
S−1 = [X S2]

[
Im 0
0 0

] [
Y ∗

Z∗2

]
= XY ∗.

Let the first column of X be the given λ-eigenvector x such that v∗x = 1, and
write X = [x X̃]. Then x is the first column of S, so S−1x = e1 and

v∗S = [v∗X v∗S2] = [v∗x v∗X̃ v∗S2] = [1 v∗X̃ v∗S2].

Thus,

S−1(xv∗)S = (S−1x)(v∗S) =

 1
0
0

 [ 1 v∗X̃ v∗S2

]
=

 1 v∗X̃ v∗S2

0 0 0
0 0 0

 ,

(6.13)
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and so

S−1 (cA+ (1− c)λxv∗)S =

 λ (1− c)λv∗X̃ (1− c)λv∗S2

0 cλIm−1 0
0 0 cE

 . (6.14)

The assumption (6.3) (which is satisfied for c = 1) ensures that λ is not an eigenvalue
of cE, and a calculation verifies that η(c) defined by

η(c)∗ = [1 v∗X̃ (1− c)λv∗S2(λI − cE)−1]

= [v∗X (1− c)λv∗S2(λI − cE)−1]

is a left λ-eigenvector of the matrix in (6.14) and η(c)∗e1 = 1; if c 6= 1 it is the unique
such vector. Therefore, y(c) defined by

y(c)∗ = η(c)∗S−1 =
[
v∗X (1− c)λv∗S2 (λI − cE)

−1
] [ Y ∗

Z∗2

]
= v∗XY ∗ + (1− c)λv∗S2(λI − cE)−1Z∗2

satisfies the conditions (6.2); if c 6= 1 it is the only vector that satisfies these conditions.

If A and λ are real, the matrix S = [X S2] that gives the reduced form (6.4)
may be taken to be real (one may reduce to the real Jordan form, for example [23,
Theorem 3.4.5]). Then (S−1)∗ = [Y Z2] is real, so the uniquely determined product
XY ∗ must always be real, regardless of the choice of X.

(iii) Using the identity αR−1 − βT−1 = R−1(αT − βR)T−1, we compute

y(c̃)∗ − y(c)∗ = λv∗S2((1− c̃)(λI − c̃E)−1 − (1− c)(λI − cE)−1)Z∗2

= (c̃− c)λv∗S2(c̃E − λI)−1(E − λI)(cE − λI)−1Z∗2 .

This identity verifies (6.7). One obtains (6.8) by letting c̃→ c; (6.9) and (6.10) follow
by setting c = 1 and c = 0, respectively. The bound (6.11) follows from taking the
norm of both sides of (6.7) and observing that the right-hand side is a continuous
function on a compact set, so it is bounded.

The vector function y(c) defined by (6.6) is a complex analytic function at all but
finitely many points in the complex plane, provided that λ is a nonzero semisimple
eigenvalue of A. The points c = 0 and c = 1 are of special interest.

• The condition (6.3) is satisfied for all c such that |c| < min{|λµ−1
j | : j =

1, . . . , d}. Thus, y(c) is analytic in an open neighborhood of c = 0 and can
be represented there by a Maclaurin series obtained from (6.6) by expanding
(λIn−m − cE)−1 as a power series in c:

y(c)∗ = v∗

(
I +

∞∑
k=1

λ−k
(
S2(E − λI)Ek−1Z∗2

)
ck

)

= v∗

(
I +

∞∑
k=1

λ−k
(
(A− λI)Ak−1

)
ck

)
. (6.15)

This representation reveals all of the derivatives of y(c) at c = 0.
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• The condition (6.3) is also satisfied for all c such that |c−1| < min{|λµ−1
j −1| :

j = 1, . . . , d}. Thus, y(c) is analytic in an open neighborhood of c = 1. If we
let γ = c− 1, use (6.6), and expand

(λI − cE)−1 = (λI − E)−1
(
I − γE(λI − E)−1

)−1

as a power series in γ, we obtain

y(γ + 1)∗ = v∗

(
XY ∗ − λ

∞∑
k=1

(
S2(λI − E)−kEk−1Z∗2

)
γk

)
. (6.16)

This series reveals all the derivatives of y(c) at c = 1. We can use the Drazin
inverse to write this series as

y(γ + 1)∗ = v∗

(
XY ∗ − λ

∞∑
k=1

(
((λI −A)D)kAk−1

)
γk

)
. (6.17)

In particular, the first derivative is

y′(1)∗ = λv∗S2(E − λI)−1Z∗2 = λv∗(A− λI)D. (6.18)

6.1. The behavior of y(c) as c→ 1. We are interested in the behavior of the
left eigenvector y(c) defined by (6.1) as c→ 1 in the complex plane, and to understand
it better we considered two examples in the Introduction. These two examples are
not exceptional: when λ 6= 0, the essential hypothesis required to ensure that lim

c→1
y(c)

exists for all choices of v is that λ is semisimple. The following theorem verifies this
assertion and gives an explicit formula for the limit.

Theorem 6.2. Let A be an n-by-n complex matrix with eigenvalues λ, λ2, . . . , λn.
Suppose that λ is a nonzero semisimple eigenvalue of A with multiplicity m ≥ 1; let
x and v be given nonzero complex vectors such that Ax = λx and v∗x = 1; and let
A(c) = cA + (1 − c)λxv∗. If m = 1, let y be the unique vector such that y∗A = λy
and y∗x = 1. If m > 1, let XY ∗ = I − (λI − A)(λI − A)D be the projection defined
in Theorem 6.1(ii). Then

(i) For some ε > 0 and all complex c such that 0 < |c− 1| < ε, as well as for all
complex c such that λ 6= cλj for all j = 2, . . . , n, the vector y(c) defined by (6.1) when
λ is simple, or by (6.6) when it is not, is the unique vector that satisfies y(c)∗A(c) =
λy(c)∗ and y(c)∗x = 1.

(ii) If λ is a simple eigenvalue of A, then lim
c→1

y(c) = yx∗v = y.

(iii) If m > 1, then

lim
c→1

y(c) = Y X∗v = (XY ∗)∗v. (6.19)

Proof. (i) If λ and 0 are the only eigenvalues of A, then any positive value of ε
will do. If the nonzero eigenvalues of A that are different from λ are µ1, . . . , µd, let

ε = min{|1− λµ−1
1 |, . . . , |1− λµ

−1
d |}.

Then the hypothesis (5.7) is satisfied and the assertion follows from Theorem 6.1.
Since y(c) is defined in a punctured open complex neighborhood of the point c = 1,
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it is reasonable to ask about the limit of y(c) (as a function of the complex variable
c) as c→ 1.

(ii) The assertion follows from (6.1) since λ is not an eigenvalue of B:

lim
c→1

y∗(c) = y∗ + lim
c→1

(
(1− c)λv∗S1(λI − cB)−1Z∗1

)
= y∗ + lim

c→1
(1− c) · λv∗S1 · lim

c→1
(λI − cB)−1Z∗1

= y∗ +
(
0 · λv∗S1(λI −B)−1Z∗1

)
= y∗ = v∗xy∗.

(iii) This assertion follows in the same way from (6.6):

lim
c→1

y(c)∗ = v∗XY ∗ + lim
c→1

(
(1− c)λv∗S2(λIn−m − cE)−1Z∗2

)
= v∗XY ∗ + lim

c→1
(1− c) · λv∗S2 · lim

c→1
(λIn−m − cE)−1Z∗2

= v∗XY ∗ + 0 · λv∗S2 · (λIn−m − E)−1Z∗2 = v∗XY ∗.

6.2. A special case: The general parametric Google matrix. We begin
with a summary of the properties of a row-stochastic matrix that are relevant to our
analysis of the general parametric Google matrix.

Lemma 6.3. [2, 24] Let A be a row-stochastic matrix. Then

(i) λ = 1 is an eigenvalue of A associated with the right eigenvector x = e.

(ii) Every entry of A is in the real interval [0, 1].

(iii) For each k = 1, 2, . . ., Ak is row-stochastic, so its entries remain bounded as
k →∞.

(iv) Every eigenvalue of A has modulus at most 1.

(v) Every eigenvalue of A that has modulus 1 is semisimple.

(vi) If the eigenvalue 1 has multiplicity m, then the Jordan canonical form of A is

Im ⊕ Jn1
(ν1)⊕ · · · ⊕ Jnk

(νk),

in which each νj 6= 1, each |νj | ≤ 1, and nj = 1 if |νj | = 1.

(vii) If 1 is a simple eigenvalue of A, then there is a unique vector y with nonnegative
entries such that yTA = yT and yT e = 1.

Since the basic Google matrix G has all the properties stated in the preceding
lemma, and since these properties are special cases of the key hypotheses in our
analyses in the preceding sections, specialization of our general results permits us to
identify several pleasant and useful properties of the general parametric Google matrix
G(c) = cG + (1 − c)xv∗ with complex c and v. In fact the following theorem is an
interpretation of Theorems 6.1 and 6.2 when A is the Google matrix and hence λ = 1.

Theorem 6.4. Let G be an n-by-n row stochastic matrix, and let its eigenvalue
λ = 1 (necessarily semisimple) have multiplicity m ≥ 1. If m = 1, let y be the unique
vector with nonnegative entries such that yTG = yT and yT e = 1. If m > 1, let the
m columns of X be any linearly independent set of right 1-eigenvectors of G, and let
Y be the matrix defined in Theorem 6.1(ii); its columns are an independent set of left
1-eigenvectors of G. Let v be a given complex vector such that v∗e = 1, let c be a
complex number, and let G(c) = cG+ (1− c)ev∗. Let 1, λ2, . . . , λn be the eigenvalues
of G, let µ1, . . . , µd be the nonzero eigenvalues of G that are different from 1, let

ε = min{|1− µ−1
1 |, . . . , |1− µ

−1
d |},
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and let

Im ⊕ Jn1(ν1)⊕ · · · ⊕ Jnk
(νk), each νj 6= 1 (6.20)

be the Jordan canonical form of G, with {µ1, . . . , µd} ⊆ {ν1, . . . , νk} ⊆ {λ2, . . . , λn}.
Then

(i) The eigenvalues of G(c) are 1, cλ2, . . . , cλn, and |cλj | ≤ |c| for each j = 2, . . . , n.

(ii) In the Jordan canonical form (6.20), nj = 1 for each j such that |νj | = 1.

(iii) If 0 < |c| < 1 (or, more generally, if c 6= 0 and 1 6= cµj for each j = 1, . . . , d),
then the Jordan canonical form of G(c) is

[1]⊕ cIm−1 ⊕ Jn1
(cν1)⊕ · · · ⊕ Jnk

(cνk)

if m > 1; it is

[1]⊕ Jn1
(cν1)⊕ · · · ⊕ Jnk

(cνk)

if m = 1.

(iv) Suppose either that |c| < 1 or that 0 < |1− c| < ε. Then 1 is a simple eigenvalue
of G(c).

(v) Suppose either that |c| < 1 or that 0 < |1 − c| < ε. If m > 1, the unique left
1-eigenvector y(c) of G(c) such that y(c)∗e = 1 is defined by

y(c)∗ = v∗XY ∗ + (1− c)v∗S2(In−m − cE)−1Z∗2 , (6.21)

and

lim
c→1

y(c) = Y X∗v. (6.22)

The matrices S2, E, and Z2 are defined in Theorem 6.1(ii); 1 is not an eigenvalue of
E. The matrix

Y X∗ = I − (I −GT )(I −GT )D (6.23)

is a real projection with nonnegative entries.

(vi) Suppose either that |c| < 1 or that 0 < |1 − c| < ε. If m = 1, the unique left
1-eigenvector y(c) of G(c) such that y(c)∗e = 1 is defined by

y(c)∗ = y∗ + (1− c)v∗S1(In−1 − cB)−1Z∗1 , (6.24)

and

lim
c→1

y(c) = y. (6.25)

The matrices S1, Z1, and B are defined in Theorem 6.1(i); 1 is not an eigenvalue of
B.

(vii) The vector function y(c) defined by (6.21) if m > 1, and by (6.24) if m = 1, is
analytic in the unit disk {c : |c| < 1} and is represented there by the Maclaurin series

y(c)∗ = v∗

(
I +

∞∑
k=1

(
(G− I)Gk−1

)
ck

)
. (6.26)
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(viii) Let γ = c − 1. The vector function y(c) defined by (6.21) if m > 1, and by
(6.24) if m = 1, is analytic in the disk {c : |1− c| < ε} and is represented there by the
power series

y(c)∗ = y(γ + 1)∗ = v∗

(
XY ∗ −

∞∑
k=1

(
((I −G)D)kGk−1

)
γk

)
. (6.27)

In particular, the first derivative at c = 1 is

y′(1)∗ = v∗(G− I)D. (6.28)

(ix) Let K be a given compact complex set that does not contain any of the points
µ−1

1 , . . . , µ−1
d . Define y(c) on K by (6.21) if m > 1 and by (6.24) if m = 1. Then

‖y(c)‖1 ≥ 1 for all c ∈ K and there is a positive constant M such that

‖y(c̃)− y(c)‖1
‖y(c)‖1

≤ ‖y(c̃)− y(c)‖1 ≤M |c̃− c| for all c̃, c ∈ K.

The assertions in (vii) and (viii) of the preceding Theorem follow from (6.15),
(6.17), and (6.18). The assertion (ix) follows from Theorem 6.1(iii) and the observa-
tion that 1 = |y(c)∗e| ≤ ‖y(c)∗‖1.

We emphasize that the representations (6.21) and (6.24) for the unique normalized
left 1-eigenvector of G(c) are valid not only for all real c ∈ (0, 1), but also for all
complex c in the open unit disk, as well as for all c in a punctured open neighborhood
of the point 1 in the complex plane. The limits (6.22) and (6.25) are to be understood
as limits of functions of a complex variable; the existence of these limits ensures that
they may be computed via any sequence of values of c that tends to 1.

The preceding comments have an important consequence. Suppose the vector v
has positive real entries and satisfies vT e = 1. Then for all real c such that 0 < c < 1,
G(c) has positive entries. The Perron-Frobenius Theorem ensures that each such G(c)
has a unique left 1-eigenvector y(c) that has positive entries and satisfies y(c)T e = 1.
Theorem 6.4 ensures that lim

c→1
y(c) = ỹ exists, so if we take this limit with c ∈ (0, 1)

we know that ỹ has real nonnegative entries. However, we can also take this limit
with c tending to 1 along some non-real path in the complex plane. Regardless of
the path taken, and even though y(c) can be non-real on that path, nevertheless the
limit obtained is always the nonnegative vector ỹ (this further degree of freedom is
exploited in the algorithm presented in Section 8).

We can draw one more conclusion from the preceding discussion, which is the last
statement in Theorem 6.4(v). For each given nonnegative vector v, we have argued
that the vector

ỹ = lim
c→1

y(c) = Y X∗v

has nonnegative entries. But a matrix N has the property that the entries of Nv are
nonnegative whenever the entries of v are nonnegative if and only if all the entries of
N are nonnegative. Thus, the projection

Y X∗ = [η1 . . . ηn] = I − (I −GT )(I −GT )D

is both real and nonnegative. Its columns η1, . . . , ηn are a uniquely determined set of
nonnegative left 1-eigenvectors of G such that, for any given nonnegative probability
vector v, lim

c→1
y(c) = v1η1 + · · ·+ vnηn is a convex combination of them.
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Of course the nonnegativity of N could be obtained elementarily also by using
Markov chains arguments.

7. Comparison with an explicit prior expression of Google Jordan form.
We now consider a result from [37] and we ask ourselves how one can obtain, extend,
and interpret them, by employing our findings in the previous sections and by allowing
the parameter c in the complex field.

Indeed, we study the Jordan form general case, in which G is not necessarily
diagonalizable, where the decomposition G = SJS−1,

J =



1 0 · · · · · · 0
0 λ2 �
...

. . .
. . .

... λn−1 �
0 · · · · · · 0 λn

 (7.1)

is the Jordan Canonical Form of G and � denotes a value that can be either 0 or 1.
Theorem 7.1. Let G be a row stochastic matrix of size n, let c ∈ (0, 1), and

suppose that v is a nonnegative n-vector whose entries add to 1. Consider the matrix
G(c) = cG + (1 − c)evT and let G = SJ(1)S−1, S = [e x2 . . . xn], [S−1]T =
[y y2 . . . yn], and

J(c) =



1 0 0 · · · 0

0 cλ2 c · �
. . .

...
...

. . .
. . . 0

... cλn−1 c · �
0 · · · · · · 0 cλn


,

J(c) = D−1



1 0 0 · · · 0

0 cλ2 �
. . .

...
...

. . .
. . . 0

... cλn−1 �
0 · · · · · · 0 cλn


D (7.2)

in which D = diag(1, c, . . . , cn−1) and � denotes a value that can be 0 or 1. Then

G(c) = ZJ(c)Z−1,

in which

Z = SR−1,

R = In + e1w
T , wT = [0 w[2] . . . w[n]],

w[2] = (1− c)vTx2/(1− cλ2), (7.3)

w[j] = [(1− c)vTxj + [J(c)]j−1,jw[j − 1]]/(1− cλj), j = 3, . . . , n. (7.4)
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In particular

y(c) = y +

n∑
j=2

w[j]yj (7.5)

where y = y(1) if the eigenvalue 1 of G = G(1) is simple and where the quantities w[j]
are expressed as in (7.3)-(7.4). Conversely, y is one of the basic PageRank vectors
when the eigenvalue 1 of G(1) is semisimple but not simple.

Notice that in the original paper [37], there is a typo since D and D−1 are ex-
changed in (7.2): we thank Gang Wu and Yimin Wei for pointing this out to our
attention, see [40].

7.1. Matching old and new representations. Here we make a critical analy-
sis of the above results in the light of the conclusions in Subsection 6.2. From Lemma
6.3(vi) and Theorem 6.4 we know that the eigenvalue 1 in the matrix G = G(1)
is semisimple with multiplicity m. Therefore [J(c)]j−1,j = 0 and 1 − cλj = 1 − c,
j = 2, . . . ,m. Hence, as already acknowledged in [37][Section 3], the coefficient w[j],
j = 2, . . . ,m, is equal to vTxj = xTj v and then

y(c) = y +

m∑
j=2

yj(x
T
j v) +

n∑
j=m+1

w[j]yj .

Therefore the Cesaro averaging projector N already discussed in the previous sections
has the form N = Y X∗ = [y y2 · · · ym][e x2 · · · xm]T and hence y(c) = Nv +∑n
j=m+1 w[j]yj . Moreover the eigenvalue λj , j ≥ m + 1, is different from 1, is in

modulus bounded by 1, and if unimodular then it is semisimple. As a consequence,
by (7.3)–(7.4), we obtain lim

c→1
w[j] = 0, j = m+ 1, . . . , n, so that

lim
c→1

y(c) = Nv

which agrees with (6.19), (6.22), and (6.23): moreover, by the general reasoning at
the end of Subsection 6.2, we deduce that N is entry-wise nonnegative.

Now, by taking into account the notations in (6.20) considered in Theorem 6.4,
and by looking carefully at the expression of coefficients w[j], j = m + 1, . . . , n, in
(7.3)–(7.4), we can rewrite the vector y(c) as

y(c) = Nv +

n∑
j=m+1

w[j]yj = Nv + (1− c)
k∑
j=1

nj∑
s=1

nj+1−s∑
t=1

ct−1(1− cνj)−t(xTj,sv) yj,t,

(7.6)
where the vectors xj , yj , j = m + 1, . . . , n, in the former representation, have been
reorganized according to the Jordan structure as xj,s, yj,s, j = 1, . . . , k, s = 1, . . . , nj
(ref. Theorem 6.4). If we compare the latter equation with the Toeplitz matrices
(Toeplitz, i.e., constant along diagonals, see e.g. [10]) of size nj

Jnj (νj) =



νj 1 0 · · · 0

0 νj 1
. . .

...
...

. . .
. . . 0

... νj 1
0 · · · · · · 0 νj


,
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Tnj
(c) =



1− cνj −c 0 · · · 0

0 1− cνj −c
. . .

...
...

. . .
. . . 0

... 1− cνj −c
0 · · · · · · 0 1− cνj



−1

=

=
1

1− cνj



1 c
1−cνj

c2

(1−cνj)2 · · · cnj−1

(1−cνj)nj−1

0 1 c
1−cνj · · · cnj−2

(1−cνj)nj−2

...
. . .

. . .
...

... 1 c
1−cνj

0 · · · · · · 0 1


,

we observe Tnj (c) = (Inj − cJnj (νj))
−1 and therefore

nj∑
s=1

nj+1−s∑
t=1

ct−1(1− cνj)−t(xTj,sv) yj,t = [yj,1 · · · yj,nj
]TTnj

(c)[xj,1 · · · xj,nj
]T v.

Hence, taking into account (7.6), we can write

y(c) = Nv + (1− c)
k∑
j=1

[yj,1 · · · yj,nj
] · (7.7)

·(Inj
− cJTnj

(νj))
−1[xj,1 · · · xj,nj

]T v

= (1− c)(I − cGT )−1v

which coincides with the general representation (6.6), where X = [e x2 · · · xm],
Y = [y y2 · · · ym], N = Y XT , E = Jn1(ν1)⊕· · ·⊕Jnk

(νk), as in the expression (6.20),
and S2 = [X1 · · · Xk], Z2 = [Y1 · · · Yk], Xj = [xj,1 · · · xj,nj ], Yj = [yj,1 · · · yj,nj ],
j = 1, . . . , k.

7.2. Eigenvector structure of G(c), discontinuity points in its Jordan
form. When writing the Jordan form in Theorem 7.1, the matrix D is chosen as

diag(1, c, . . . , cn−1).

However, that matrix is not unique: for instance the matrix

D̂ = Im ⊕ diag(1, c, . . . , cn−m−1)

is also a feasible choice, since the Jordan structure of G(c) is equally obtained as
DJ(c)D−1 = D̂J(c)D̂−1. Indeed, following the Jordan blocks structure in (6.6),
we can define a new optimal diagonal matrix D̃ of minimal conditioning with the
constraint that DJ(c)D−1 = D̃J(c)D̃−1. This optimal matrix takes the form

D̃ = Im ⊕ diag(1, c, . . . , cn1−1)⊕ diag(1, c, . . . , cn2−1)⊕ · · · ⊕ diag(1, c, . . . , cnk−1).

Therefore, switching from G = G(1) to G(c), while the eigenvalues change in a smooth
way since 1 → 1 with the same multiplicity m, νj → cνj , j = 1, . . . , k, the left and
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right vectors change as follows

xj,t → c1−t
[
xj,t − (1− c) ct

1−cνj e
]
, yj,t → ct−1yj,t, t = 1, . . . , nj ,

xt → xt − e, yt → yt, t = 2, . . . ,m,
x1 ≡ e→ e, y1 ≡ y → y(1) = Nv.

Therefore, in the given representation and under the assumption of nondiagonalizable
G, the Jordan canonical form has a discontinuity at c = 0, while it behaves smoothly at
c = 1. In fact, lim

c→0
G(c) = evT is not normal in general but it is diagonalizable, while

G(c) with c 6= 0 is not diagonalizable in general: in fact G(c) has the same Jordan
pattern as G(1) for c 6= 0 while it is diagonalizable for c = 0. Hence, as emphasized
in the previous displayed equations, it is clear that the discontinuity/degeneracy is
located in the left and right vectors associated to nontrivial Jordan blocks. As a
consequence the matrix G(c) is continuous at c = 0, but it is not so for its Jordan
representation. On the other hand the other discontinuities at c = ν−1

j , for every
j = 1, . . . , k, are essential not only in the representations, but also in the matrix G(c),
and at the point c = 1 every involved quantity is analytic.

Finally it should be noted the following “surprising” fact: not only nothing bad
happens at c = 1, but indeed nothing bad happens for c > 1 (at least, a little bit
bigger than 1) and this is not seen by the power series representations of y(c) described
in the literature, which diverge for c > 1 (see [8]).

7.3. Condition number of y(c): general derivation. Given its relevance
for numerical stability, we consider in some detail the conditioning of y(c) in several
norms and especially in the more natural l1 norm. More precisely, we are interested
in estimating

κ(y(c), δ) =
‖y(c̃)− y(c)‖
‖y(c)‖

,

with c̃ = c(1 + δ), δ complex parameter of small modulus, K compact set in the
complex field nonintersecting {µ−1

j : j = 1, . . . , d}, and c, c̃ ∈ K. Since y(c) is
analytic in its domain, it is clear that

κ(y(c), δ) = κc
|cδ|
‖y(c)‖

(1 +O(δ))

with κc = ‖y′(c)‖. Our next task is the differentiation of y(c) in the light of (7.7),
and especially its norm evaluation. We have

y′(c) = −
k∑
j=1

[yj,1 · · · yj,nj ](Inj − cJTnj
(νj))

−1[xj,1 · · · xj,nj ]T v + (7.8)

+(1− c)
k∑
j=1

[yj,1 · · · yj,nj
](Inj

− cJTnj
(νj))

−2JTnj
(νj)[xj,1 · · · xj,nj

]T v,

which of course agrees with the differentiation of (7.6), after observing that

(Inj − cJnj (νj))
−2Jnj (νj) =

1

1− cνj



t0 t1 t2 · · · tnj−1

0 t0 t1 · · · tnj−2

...
. . .

. . .
...

... t0 t1
0 · · · · · · 0 t0
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with ts = scs−1

(1−cνj)s +
(s+1)νjc

s

(1−cνj)s+1 , s = 0, . . . , nj − 1. In fact, upper triangular Toeplitz

matrices form a commutative algebra and the generic coefficient on the diagonal in
the result is a simple convolution of the coefficients of the factors. Therefore, putting
the two terms of (7.8) together, we find

y′(c) =

k∑
j=1

[yj,1 · · · yj,nj ]T̃Tnj
(c)[xj,1 · · · xj,nj ]T v

=

k∑
j=1

Yj T̃
T
nj

(c)XT
j v (7.9)

= Z2

[
⊕kj=1T̃

T
nj

(c)
]
ST2 v,

with

T̃nj
(c) =

1

1− cνj



t̃0 t̃1 t̃2 · · · t̃nj−1

0 t̃0 t̃1 · · · t̃nj−2

...
. . .

. . .
...

... t̃0 t̃1
0 · · · · · · 0 t̃0

 ,

t̃s = − cs

(1−cνj)s + (1 − c)
[

scs−1

(1−cνj)s +
(s+1)νjc

s

(1−cνj)s+1

]
, s = 0, . . . , nj − 1, and with S2 =

[X1 · · · Xk], Z2 = [Y1 · · · Yk].
Therefore looking at the dependence with respect to the parameter c we find that

κc grows generically, in a neighborhood of 1, µ−1
j , j = 1, . . . , d, as

max
j=1,...,k

∣∣∣∣∣ t̃nj−1

1− cνj

∣∣∣∣∣ , t̃nj−1

1− cνj
=
[
z1(1− cνj)−nj + z2(1− cνj)−nj−1(1− c)

]
cnj−2,

(7.10)
z1 = (nj−1)(1−c)−c, z2 = cνjnj , which agrees with the estimate in the introduction
(see (1.3)-(1.4)). More precisely, for almost every v nonnegative and with unit l1 norm,
there exists a positive constant θ = θ(S, v), independent of c, such that

κc ≥ θ max
j=1,...,k

∣∣z1(1− cνj)−nj + z2(1− cνj)−nj−1(1− c)
∣∣ |c|nj−2. (7.11)

In fact by elementary measure theory argument, the set of all possible v such that
xTj,sv = 0 for at least one index j = 1, . . . , k and one index s = 1, . . . , nj has zero
Lebesgue measure. On the other hand, taking into account (7.9), a direct majorization
of the quantity κc leads to

κc ≤
k∑
j=1

‖Yj‖‖T̃Tnj
(c)‖‖XT

j v‖

and to the more appealing

κc ≤ ‖Z2‖ · ‖ ⊕kj=1 T̃
T
nj

(c)‖ · ‖ST2 v‖. (7.12)

If we take reasonable norms as the lp norms with p ∈ [1,∞], then by recalling G =
G(1) = SJS−1 and since S2, Z2 are submatrices of S, S−1 respectively, the bound in
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(7.12) directly implies the following

κc ≤ κ(S) max
j=1,...,k

∥∥∥T̃Tnj
(c)
∥∥∥ ‖v‖. (7.13)

In other words, the first part which does not depend on c, tells us that the conditioning
of y(c) can be associated with the (lack of) orthogonality of the left and right vectors in
the Jordan form of G not associated to the eigenvalue 1, while the second part carries
the information on the parameter c. Notice that the generic, lower, and upper bounds
in (7.10)–(7.13) are all well defined also at c = 1, and indeed the latter improves the
estimates known in the literature, where, for 0 ≤ c < 1, the amplification factor
upper-bound grows as (1− c)−1 and blows up at c = 1: see [29] and references there
reported; however, it has to be pointed out that these estimates in [29] are more
general since they are based on an arbitrary perturbation G̃ of G = G(1) subject to
the only constraint that G̃ is irreducible and stochastic. Furthermore, for c in the unit
disk and far away from c = 1, the obtained amplification factor is simpler and more
useful, i.e., (1− |c|)−1 + |1− c|(1− |c|)−2 which reduces to 2(1− c)−1 for 0 ≤ c < 1:
therefore our more detailed analysis is of interest essentially in the vicinity of critical
points c = µ−1

j , j = 1, . . . , d, c = 1, all outside or on the frontier of the unity disk.

7.4. Condition number of y(c): norm analysis of T̃Tnj
(c). A critical analysis

of (7.13) shows that the quantities κ(S) and ‖v‖ are fixed data of the problem (G =
G(1) and v); in particular, since ‖v‖1 = 1 and ‖ · ‖p ≤ ‖ · ‖1, p ∈ [1,∞], we uniformly

have ‖v‖p ≤ 1. Hence we should focus our attention on
∥∥∥T̃Tnj

(c)
∥∥∥, j = 1, . . . , k.

For instance, by considering the l1 and the l∞ norms, we have∥∥∥T̃Tnj
(c)
∥∥∥

1
=
∥∥∥T̃Tnj

(c)
∥∥∥
∞

=

nj−1∑
s=0

∣∣∣∣ t̃s
1− cνj

∣∣∣∣ ,
which grows as

t̃nj−1

1−cνj , for c in a neighborhood of µ−1
j . However, |µ−1

j | ≥ 1 while,

especially for computational purposes, we are more interested in the behavior of the
conditioning for c of modulus at most 1.

In such a case, independently of the chosen norm among l1, l2, l∞, we observe the
following: for c such that |1−cνj | < |c|, the conditioning of T̃Tnj

(c) grows exponentially
with the size nj of the Jordan blocks; of course, also for Jordan blocks of moderate
size, the conditioning can become very high. For |1 − cνj | = |c|, it is clear that the
conditioning grows as n2

j which can become large only for quite high-dimensional Jor-
dan blocks. For |1− cνj | > |c| the situation is very interesting because, irrespectively
of the size nj the conditioning is bounded. Indeed, by looking at the induced l2 (the
spectral norm), classical results on Toeplitz operators (see the Szegö distribution re-
sult in the classical Böttcher, Silbermann book [10]) tell us that there exists a proper
function gj,c(t) defined on [0, 2π)∥∥∥T̃Tnj

(c)
∥∥∥

2
≤ ‖gj,c(t)‖∞, lim

nj→∞

∥∥∥T̃Tnj
(c)
∥∥∥

2
= ‖gj,c(t)‖∞.

That function gj,c(t) called symbol is obtained through the coefficients of T̃nj
(c) in the

sense that these coefficients are Fourier coefficients of gj,c(t). In our specific setting a
straightforward computation shows that the symbol gj,c(t) is

∂

∂c
(1−c)(1−c[νj+exp(−it)])−1 = (νj−1+exp(−it))(1−c[νj+exp(−it)])−2, i2 = −1.
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Therefore the quantity

max
t∈[0,2π)

∣∣(νj − 1 + exp(−it))(1− c[νj + exp(−it)])−2
∣∣

represents a tight measure, irrespectively of nj , of the contribution of T̃Tnj
(c) to the

conditioning of y(c) in l2 norm. In this context a tight measure of the l1 norm would
have been more desirable, since the l1 norm represents the most natural choice for
the problem at hand.

7.5. Condition number of y(c): extremal examples. Here we are interested
in showing two extremal examples taken from very structured Web graphs. The Web
graph is the one produced by a unique huge loop: page i links only to page i + 1,
i = 1, . . . , n− 1, page n links only to page 1; since the set of dangling nodes is empty
the matrix G = G(1) is a special cyclic permutation matrix which generates the
algebra of circulants. Circulant matrices are normal and diagonalized by the discrete
Fourier transform so that in the Jordan form we have xj = fj , yj = f̄j with

fj =
1√
n

(
exp

(
− i2πjk

n

))n−1

k=0

, j = 0, . . . , n− 1.

The eigenvalues of G = G(1), accordingly to the same ordering of the Fourier eigen-

vectors, are ωj = exp
(
− i2πj

n

)
, j = 0, . . . , n − 1 (the n roots of unity). We notice

that e, the used vector of all ones, coincides with
√
nf0. Therefore if the rank-one

correction is chosen with v = e/n = f0/
√
n, then evT is also a circulant matrix. In

this specific example the computed vector y(c) coincides with v independently of c
and therefore kc = 0. Therefore for this given graph, the chosen vector v lies in the
zero measure set excluded when deriving (7.11). In fact, for this graph and for this
vector v we have that the vectors xj , j = m + 1, . . . , n, m = 1, are all orthogonal to
v and then the whole expression in (7.8) trivially vanishes.

More delicate is to try to satisfy (7.13) with equality. For important examples
the estimate is not tight, but it is not too bad at least in a neighborhood of c = 1.
Take the above graph, consider v = e1 with c = 1. In such a case the estimate (7.13)
of κ1 gives

|1− ω1|−1 =
[
|1− cos(2π(n))|2 + sin2(2π/n)

]−1/2 ∼ n/2π.

A direct computation of y′(c) at c = 1 gives the expression

y′(1) = −
n−1∑
j=1

f̄j(1− ωj)−1(fTj e1)

Since f̄j , j = 1, . . . , n− 1, are orthonormal and since |fTj e1| = 1/
√
n it easily follows

that

‖y′(1)‖2 =

√√√√n−1∑
j=1

(
√
n|1− ωj |)−2 ∼

√
n

√√√√n−1∑
j=1

(2πj)−2

so that the real l2 norm of y′(c) differs, asymptotically, from the bound (7.13) by a
factor

√
n.
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8. Computational suggestions. The spectral structure of G(c) was first com-
prehended in the context of sophisticated results about Markov chains, which required
that c ∈ [0, 1) and v ≥ 0. We now know that the spectral (indeed, the Jordan, Schur
etc.) structure of G(c) follows from basic matrix analytic facts that permit both c
and v to be complex. This new freedom in the Google perturbation is exploited to
compute the PageRank more efficiently, especially when c is close to 1 or even equal
to 1.

The algorithms that we propose have to be regarded as a preliminary step that,
in our opinion, merits further research.

We choose p small integer number (let us say p = 10) and we compute y(cj),
j = 0, . . . , p − 1, at equally-spaced points cj , j = 0, . . . , p − 1, on the complex circle
of radius (let us say) 0.5 or 0.25. The computations are extremely fast since the
standard power method at the kth iteration converges with a relative reduction error
of at least |c|k (see [21, Chapter 7, p. 330]), which is independent of the huge size of
the problem; indeed, the nature of our data permits us to use a vector-valued DFT
procedure, whose numerical stability is excellent. We employ these p vectors as a
starting point for a specific extrapolation algorithm at c = 0.85 or c = 0.99, whose
details are given in [15, 13]. The idea is to use the expansion of y(c) around c = 1
as in (6.27) with γ = c + 1 or as in (6.21) or as in (7.3)-(7.5), and to employ linear
combinations in order to cancel out certain terms in the remainder y(c)−ỹ, ỹ = y(1) =
Nv, and to increase the accuracy; see [12, Chapter 4] for details. The vector ŷ(c),
computed by extrapolation, will be corrupted by errors of approximation and due to
roundoff: therefore, since we know in advance that y(c) has to be nonnegative and
normalized, we set to zero the real part whenever negative and the imaginary part, and
we normalize the resulting nonnegative vector, by dividing by its l1 norm (in this case
the sum of all the coefficients). Finally we can use a standard iterative procedure (the
power method or iterative techniques for an equivalent linear system [27, 32, 17, 26])
as an iterative refinement to increase the precision. We remind that computing the
PageRank with c = 0.99 or 1 is very difficult by straightforward techniques, due to
slow convergence or even to lack of convergence for c = 1; see [17] and references
therein, and [31, Section 6.1] for a specific discussion on the case c = 0.99.

All this comprises a new scheme to compute the PageRank, with c equal to 1 or
very close to it, is:

• Step 1: Compute y(cj), cj = 0.25·exp(i2jπ/p), i2 = −1, j = 0, . . . , p − 1
(Evaluation via vector DFT ).

• Step 2: Vector Extrapolation at the desired (difficult) c ≈ 1 (e.g. c = 0.85,
c = 0.99, c = 1) to obtain ŷ(c).

• Step 3: Project ŷ(c) into the nonnegative cone and do l1 normalization.
• Step 4: Apply Iterative Refinement by classical procedures. Since c ≈ 1, it is

advisable to use preconditioning and Krylov techniques, see [17].

We finally remark that the complex Google setting implicit in Sections 4-6.2 is
useful not only for matrix theoretic purposes, but also for computation; all the needed
formulae (also those in Theorem 7.1, see also [37]) are well defined for c in the open
unit disk and in a proper disk around c = 1. In fact it will be interesting to see
whether an algorithm that exploits complex parameters will work well in practice and
will enhance the numerical stability as expected. The results of numerical experiments
for n of moderate size have been promising. See also [14] for a successful numerical
experimentation with real parameters.

A second simpler and maybe more promising possibility comes from looking at
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the power series in (6.27). The idea is the following: we can zero out the first-order
term by forming y(+γ) + y(−γ). We can zero out the first and second order terms
by forming this sum with γ replaced by ±iγ, and so on. This looks appealing, but
the practical problem is that it requires solution of some large linear systems in a
parameter range where the power method diverges. The equations certainly have
solutions and can be computed by Krylov techniques (see [17]), but they cannot be
obtained by the power method.

8.1. Comments on the “ideal” PageRank vector ỹ. First we look at the
PageRank problem as an ill-posed problem and we draw some analogies with another
famous case of ill-posedness, i.e., the image restoration problem [3, Chapter 1]. Then
we provide an interpretation on the vector ỹ, the limit as c tends to 1 of our regularized
solutions y(c).

When one considers the pure Google matrix with c = 1, i.e., problem (1.2), finding
the PageRank (that is, a nonnegative left 1-eigenvector whose entries sum to one) is
an ill-posed problem (according to Hadamard [19, Section 2, p. 31]): infinitely many
solutions exist and they can all be described as convex combinations of basic nonzero,
nonnegative vectors Z[i], i = 1, . . . ,m [37, Section 4], where m is the multiplicity
of the eigenvalue 1 of G, i.e., the number of irreducible components of the Markov
chain represented by G (see e.g. [22]). These basic vectors are somehow local or
sparse in the sense that they have a huge number of zero entries: in fact, the reason
of such a locality relies on the fact that any Z[i], i = 1, . . . ,m, is associated to a
single irreducible component of G. On the other hand, when we consider instead
G(c) with a parameter c ∈ [0, 1) (or c in the complex open unit disk), we make a
sort of regularization that forces stability of the associated numerical problem and
uniqueness of the solution. Furthermore, just as in the image restoration problem,
our ill-posed problem requires nonnegativity of the solution: in this direction, we may
ask if classical procedures used to solve the image restoration problem can be adapted
to the PageRank computational problem. Indeed, concerning the algorithm sketched
in the Section 8, we already exploited this similarity in the regularization Step 1 and
in the limit process in Step 2, while we borrowed Step 3 again from standard image
restoration techniques. Pushing further this reasoning, we may ask in addition if the
SPAM pages [31, Section 9.2] can be considered as a noise disturbance, whose effect
has to be diminished or eliminated.

Finally let us briefly mention some features of the vector ỹ. Indeed, in the limit
as c tends to 1, we obtain a special convex combination of nonnegative solutions, but
it is much less local: it has a larger support (i.e. the set of indices related to nonzero
entries), which clearly depends on the personalization vector v, since ỹ = Nv with N
being the Cesaro averaging projector. For the modeler, this is a good thing, since all
of the Web is taken into account, not just a smaller irreducible subset as in the local
vectors Z[i], i = 1, . . . ,m. The nature of the dependence of the support on v is not yet
completely understood and deserves further investigation. However, even the vector
ỹ in the real Web shows still a huge number of components with zero ranking; not
only this, but many of these pages with zero PageRank are quite important according
to common sense, see [8] and the discussion and the new proposals of Section 2.

8.2. A plain alternative for computing ỹ = lim
c→1

y(c). Here we make a plain

algebraic modification of the matrix G in such a way that the set of solutions identified
by (1.2) remains the same, but the power method converges unconditionally.

The main idea is to modify the row stochastic Google matrix G via a convex sum
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with the matrix I and more precisely for δ ∈ (0, 1) we set

Gδ = δG+ (1− δ)I.

We apply the power method to this new matrix Gδ, that has λ1(δ) = 1 as spectral
radius and eigenvalue of (geometric and algebraic) multiplicity m and |λj(δ)| < 1 for
every m + 1 ≤ j ≤ n. Therefore we will observe convergence with an asymptotical
rate given by

max
j∈{m+1,...,n}

|λj(δ)| < 1. (8.1)

Of course the strictly dominating eigenvalue 1 will have an algebraic multiplicity and
geometrical multiplicity m ≥ 1 as in (1.2). So the power method will give back an
eigenvector that is function of the initial choice x0, but, may be surprisingly, not
depending on the parameter δ.

An important question arises: how to choose x0 for which the solution of the
power method applied to Gδ coincides with ỹ = lim

c→1
y(c)?

The interesting fact is that Gδ = NT ⊕ Rδ where any eigenvalue of Rδ is of the
form 1− δ + δλj , j = m+ 1, . . . , n, N is the nonnegative projector given in (7.6) and
previously described, and the λj ’s are the eigenvalues of the pure Google matrix G.
We know that |λj | ≤ 1 and λj 6= 1 for j = m+ 1, . . . , n. Hence for any δ ∈ (0, 1) we
have |1− δ + δλj | < 1 for j = m+ 1, . . . , n. As a consequence the unique solution of
the power method applied to GTδ with starting vector x0 is exactly Nx0. We notice
that if x0 is strictly positive then every iterate is also strictly positive but many of
the entries of the limit vector could be zero. Therefore for computing numerically
ỹ = lim

c→1
y(c) = Nv it is sufficient to set δ ∈ (0, 1) and to apply the power method

to GTδ with initial guess v. As already observed the convergence is unconditional,
but the speed of convergence depends on δ. In conclusion a proper choice of δ for
maximizing the convergence rate of the power method is an interesting issue that we
discuss in the next subsection.

8.3. Rate of convergence of the power method. As we will see the matrix
Gδ with eigenvalues λj(δ) is such that the power method shows a rate of convergence
given by (8.1): now we allow the value δ = 1, i.e., we consider δ ∈ (0, 1]. The question
is which eigenvalue λj(δ) is of maximal modulus for j ∈ {m+ 1, . . . , n}, with n size of
Gδ, and how to choose δ in order to maximize the rate of convergence. We know that
for δ = 1 every eigenvalue λj(1) = λj that lies on the unit circle in the complex plane
has a maximal modulus. In this case there is no convergence since |λj | = |eiϕ| = 1
for some j ≥ m+ 1, ϕ ∈ R.

In general for λ ∈ {λm+1, . . . , λn} we set λ = reiϕ and then, since λj 6= 1 for
j ∈ {m + 1, . . . , n} (i.e. we cannot have simultaneously r = 1 and cos(ϕ) = 1), we
find

λj(δ) = δλj + 1− δ = δr cos(ϕ) + 1− δ + iδr sin(ϕ).

Hence

|λj(δ)|2 = δ2r2 cos2(ϕ) + δ2r2 sin2(ϕ) + (1− δ)2 + 2δr(1− δ) cos(ϕ)

= δ2r2 + (1− δ)2 + 2δr(1− δ) cos(ϕ)

≤setting cos(ϕ)=1 δ
2r2 + (1− δ)2 + 2δr(1− δ)

= (δr + 1− δ)2

≤setting r=1 (δ + 1− δ)2 = 1
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and where equality to 1 is impossible since we cannot have at the same time r = 1
and cos(ϕ) = 1. This proves the unconditioned convergence of the power method for
δ ∈ (0, 1).

This result can be seen also graphically (ref. Fig. 8.1) since for δ ∈ (0, 1) all
the eigenvalues λj(δ) with j ∈ {m+ 1, . . . , n} lie in the disc with boundary given by
Cδ/{1}.

Now the question is how to maximize the rate of convergence i.e. how to choose
δ ∈ (0, 1] for minimizing s(δ) = max

j∈{m+1,...,n}
|λj(δ)|. This translates into a typical

min-max problem:

ĝ ≡ min
δ∈(0,1]

max
j∈{m+1,...,n}

δ2r2
j + (1− δ)2 + 2δrj(1− δ) cos(ϕj) (8.2)

with λj(1) = λj = rje
iϕj . Indeed for δ = 0, Gδ = I and therefore s(0) = 1 so that the

minimum exists in the set (0, 1] and is located in the open set (0, 1) if, as it usually
happens for large Web matrices, at least one rj equals 1 for j ≥ m+ 1.

Looking at the function δ2r2
j + (1− δ)2 + 2δrj(1− δ) cos(ϕj) as a function of the

radius rj we notice that it is increasing for δ ∈ (0, 1) and cos(ϕj); moreover, setting
xj = rj cos(ϕj) the real part of λj , the same function δ2r2

j + (1− δ)2 + 2δ(1− δ)xj as
a function of xj is increasing again for δ ∈ (0, 1). Therefore, if x̄ is the maximal real
part of the eigenvalues λj , j = m+ 1, . . . , n, then it is evident that |x̄| < 1 and

fx̄(δ) ≡ δ2 + (1− δ)2 + 2δ(1− δ)x̄ ≥ max
j∈{m+1,...,n}

δ2r2
j + (1− δ)2 + 2δrj(1− δ) cos(ϕj)

so that, by minimizing fx̄(δ) with respect to δ, we find δopt = 1/2 and the upper-bound

ĝ ≤ fx̄(1/2) =
1

2
(1 + x̄) ∈ [0, 1). (8.3)

Finally, if the eigenvalue of Gδ coming from that of G with maximal real part is the
one maximizing δ2r2

j + (1− δ)2 + 2δ(1− δ)xj over j = m+ 1, . . . , n, then we can give
interesting lower bounds that is

ĝ ≥ 1

4
(1 + 2x̄+ r̄2) ≥ 1

4
(1 + x̄)2 (8.4)

and

ĝ ≥ r̄2 − x̄2

1 + r̄2 − 2x̄
, (8.5)

where r̄ ∈ [x̄, 1] is the modulus of the eigenvalue with real part equal to x̄ and ϕ̄ its
angle.

This last relation it is obtained evaluating

∂

∂δ

(
δ2r̄2 + (1− δ)2 + 2δx̄(1− δ)

)
= 0 (8.6)

and substituting the result

δ =
1− x̄

1 + r̄2 − 2x̄
for cos(ϕ̄)2 6= 1 (8.7)

in the square modulus of the eigenvalue with maximal real part, that becomes exactly
(r̄2 − x̄2)/(1 + r̄2 − 2x̄).
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Fig. 8.1. Geršgorin circles of Gδ for δ ∈ [0, 1]

These results can also be represented graphically. We start plotting in the complex
plane C1 i.e. the upper half boundary of the Geršgorin region of matrix G (ref. Fig.
8.1), since G is real we have specularity with respect to the real axis. If we consider
the matrix Gδ for δ ∈ (0, 1) we get the circle Cδ. Finally, when δ = 0 the circle
collapses in the point 1 on the real axis.

We can observe that for δ ∈ (0, 1) the trajectory of the generic eigenvalue of
Gδ, λj(δ) with j ∈ {m + 1, . . . , n}, is given by the convex combination of the two
vectors [ rj cos(ϕj), rj sin(ϕj) ]T and [ 1, 0 ]T . It is plain that the minimal modulus of
any of these eigenvalues is achieved for the unique δ such that the single trajectory
intersects the circumference of radius 1/2 centered in (1/2, 0). This coincides with
C1/2, i.e. boundary of the Geršgorin region associated to Gδ for δ = 1/2, that is given
by the points satisfying the relation r = cos(ϕ).

As δ varies in the interval [0, 1], it is straightforward that the relative position
of the eigenvalues does not change. This means that if we suppose to know, for
a particular value of δ ∈ (0, 1], the eigenvalue with maximal real part, λh(δ) with
h ∈ {m+ 1, . . . , n}, this will remain always the one with maximal real part for every
δ ∈ [0, 1].

Interesting enough we observe that given δ ∈ [0, 1/2] the problem stated in (8.2)
(i.e. minimize, with respect to δ, the maximal modulus of the eigenvalues λj(δ) of Gδ
for j ∈ {m+ 1, . . . , n}) becomes simply ĝ ≡ maxj∈{m+1,...,n} 1/4[r2

j + 1 + 2rj cos(ϕj)]
since for δ decreasing from 1/2 to 0 every eigenvalue increases its modulus. Hence we
can restate (8.2) as

ĝ ≡ min
δ∈[ 1

2 ,1]
max

j∈{m+1,...,n}
δ2r2

j + (1− δ)2 + 2δrj(1− δ) cos(ϕj) (8.8)

Furthermore, for every δ ∈ (0, 1), eigenvalues different from 1 with maximal
distance from the origin are the ones on the circumference Cδ and among these the
greatest are the ones with maximal real part.

Now, assuming that we know the eigenvalue λh(1), except 1 of course, with maxi-
mal real part x̄ = r̄ cos(ϕ̄). We draw in the complex plane the vertical line that passes
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through this eigenvalue. This line intersects the circumference C1 in A1 and the real
axis in H1. For a generic δ we do the same and we get the points Aδ and Hδ with
real part equal to δx̄ + 1 − δ. In particular A1/2 has a minimal distance from the
origin among all the possible Aδ. The previous considerations allow us to state that
the quantity ĝ will be bounded by∣∣OH1/2

∣∣2 ≤ ĝ ≤ ∣∣OA1/2

∣∣2 (8.9)

i.e. relations (8.3) and (8.4).
If we suppose that the trajectory, in function of δ, of the eigenvalue with maximal

real part λh intersects the circumference C1/2 in the point B, we can rewrite relation
(8.5) as

ĝ ≥
∣∣OB∣∣2 (8.10)

Hence if λh lies inside the circle C1/2 the above relation becomes simply ĝ ≥ r̄2. In
fact if we impose in (8.7) that δ ∈ [0, 1] we get r̄ ≥ cos(ϕ̄) i.e. the relation (8.5) is
valid when λh lies outside circle C1/2.

We observe that in the light of the model proposed in Section 2, all these reason-
ings hold. We add only that in this last case we do not have roots of unity among the
λj for j ∈ {m+ 1, . . . , n} since the graph associated to the matrix G can be reduced
into the direct sum of irreducible and primitive blocks. This implies that relation
(8.3) becomes a strict inequality and that the power method will converge even in the
case of δ = 1, but of course not necessarily with a maximal rate of convergence.

Furthermore, we observe that Gδ = δG+(1−δ)I, δ ∈ (0, 1], is a linear polynomial
of G with the condition that the eigenvalue 1 is a fixed point of the transformation and
the coefficients are nonnegative. If instead of Gδ we consider any polynomial p(G) of
G with nonnegative coefficients and such that p(1) = 1, then we could have a larger
degree of freedom for maximizing the convergence rate but, of course, the already
difficult min-max problem (8.2) would become analytically very intricate. This and
other issues such as a more careful study of the min-max problem (8.2) will be the
subject of future researches.

9. Some comments about prior work. The eigenvalues of the standard real
parametric Google matrix G(c) were analyzed by Haveliwala and Kamvar [22] (only
the second eigenvalue), Eldén [18], and Langville and Meyer [31] (their proof is the
same as that of Reams). A different approach via the characteristic polynomial is
suggested in [34, Problem 7.1.17, p. 502]. These authors were apparently unaware of
the prior work of Brauer [11] and Reams [36].

Relying on sophisticated results about Markov chains, [37] gives an analysis of the
Jordan canonical form of the standard real G(c); it also gives a rational representation
for y(c) and computes its limit as c → 1, again in the standard real case only. The
Maclaurin series for y(c) was studied in [8], where the partial sums of (6.26) for
nonnegative real v and 0 < c < 1 were identified as the iterates obtained in solving
yTG(c) = yT with the power method starting at v. Finally, comparing our findings
with the results in [8, 29], one important message of the present paper is that the
point c = 1 is not a singularity point for y(c), and hence limits and conditioning of
y(c) can be derived and safely handled, both in theory and in practical computations.

10. Concluding remarks and future work. As a final remark, we stress that
the analysis of our matrix-theoretic oriented approach is also valid for the modified
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enhanced models proposed e.g. in [1, 39] etc. or discussed here in Section 2. Indeed
the interest in the general matrix-theoretic analysis relies on its level of adaptability.
In fact the results and the conclusions of Sections 4–7 are virtually unchanged if one
considers a different way of handling nodes or if one allows self-links giving raise
to a different definition of G(1). Moreover, in this context we must no forget that
there exist completely different applications [6, 28] including dynamical agents theory
[33, 41], where the idea and the computational suggestions in Section 8 have a lot of
potential to be further developed and studied.
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