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Abstract

This paper deals with the joint spectral radius of a finite set of matricesayMhat a set
of matrices has théniteness propertif the maximal rate of growth, in the multiplicative
semigroup it generates, is given by the powers of a finite product.

Here we address the problem of establishing the finiteness propertyirefgba x 2
sign-matrices. Such problem is related to the conjecture that pairs of sigicesdulfil
the finiteness property for any dimension. This would imply, by a recenttrieg Blondel
and Jungers, that finite sets of rational matrices fulfil the finiteness gyppdiich would
be very important in terms of the computation of jbant spectral radius The technique
used in this paper could suggest an extension of the analysis tosign-matrices, which
still remains an open problem.

As a main tool of our proof we make use of a procedure to find a so-aaléd@xtremal
polytope nornfor the set. In particular, we present an algorithm which, under some suit-
able assumptions, is able to check if a certain product in the multiplicative samiggo
spectrum maximizing.

For pairs of sign-matrices we develop the computations exactly and hemablarto
prove analytically the finiteness property. On the other hand, the algoréine used in
a floating point arithmetic and provide a general tool for approximating thé $piectral
radius of a set of matrices.

Key words: Joint spectral radius, extremal norm, real polytope norm, finitenegepyo
sign-matrices.
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1 Framework

Let7 = {A(i)}iey be a family ofn x n-matrices,# being a set of indices. Then, for

eachk=0,1,..., consider the s&fy(.%#) of all possible products of lengthwhose

factors are elements of, that is%y(.%) = {A() ... AW | iy, ... i € .#} and set

2(F)= U Zk(.7) (with Zo(.#) = I) the multiplicative semigroup associated with
k>0

Z . Letp(-) denote the spectral radius of axx n-matrix. Then consider

p(F)= sup p(P), k=0.1,...

Pez (F)
and define thgeneralized spectral radiusf .7 (see [8]) as

p(F) = limsup p(F )Y~
k—co
Recently it has been shown (see [2], [9], [28] and [27]) thb&t”) is equal to
the joint spectral radius defined in [26]. This allows to siyngall p the spectral
radius of the family of matrices#. We introduce now a further characterization
of the joint spectral radius. Given a norn || on the vector spac€" and the
corresponding induceal x n-matrix norm, we use the same notation to define

1.7 || = sup| AV,
i€y

where we assume that sjip’)[| < +, that is the family.# is bounded. The fol-

ics
lowing result can be found, for example, in [26] and [9].
Theorem 1.1 The spectral radius of a bounded fami¥ satisfies the equality

F)= inf |.Z], 1
p(#)= inf |17 ®

where._4” denotes the set of all possible induced n-matrix norms.

The actual computation g¥(.%#) is an important problem in several applications
(see e.g.[1,13,14,22,23]). The problem, however, apmpats difficult in general
(see e.g. [29]). We are interested in using Theorem 1.1 astaalaomputational
tool. For this we need that the inf in (1) is a min. This is trtm@, example, for
irreducible families of matrices (see [1,9]). Irredudilyilmeans that the matrices
of the family.# do not admit any non-trivial common invariant subspace. Amo
|- ||+ satisfying the condition

|Z ]« = p(F)

is said to beextremalfor the family . (for an extended discussion see [31]). A
family which admits an extremal norm is said to tien-defectivésee, e.g., [12]).
We are interested in establishing whether a farmlyulfils the following property.



Definition 1.1 A finite family.# has the finiteness property if there exists a product
P € Zx (%) such that

p(P)=p(F) .
Such a product is called spectrum maximizing product (irrtshion.p.)

Although it was conjectured to be valid in all cases (see)|2hE finiteness prop-
erty does not hold for every finite family (see [7], [3], [1®t has been conjectured
to be true for some classes of matrices. Some approachdsefapproximation of
the joint spectral radius have been recently consideredfgeexample [5,6] and
[24]). The problem we handle here, however, is that of antex@mputation.

A way to compute exactly the joint spectral radius is basetherfollowing prop-
erty. If o > 0 then

1
p(F)=uap (aﬁ) .
So, ifQ € x(.#) is a certain product andl = p(Q) /¥, then we have that (+.7) >
1. Therefore, if we are able to find a norm such qWH =1, then we have that
a<p(F)<a = p(F)=a=pQY~

That would mean that the finiteness property holds and theéugt@ is an s.m.p.
The key point is the search for an extremal norm.

The summary of the paper is the following. In Section 2, attenlling some defini-
tions and results on real polytope norms, we introduce the ideas of a procedure
able to find an extremal norm in this class. It is obtained bylyapg the product
semigroup to a suitable initial vector. Then, in Section &, prove the finiteness
property for pairs of X 2 sign-matrices on a case-by-case basis. Finally, in Sectio
5, we outline some conclusions. Section 4 contains an appeiith the details of
the analysis presented in Section 3.

2 Finding real extremal polytope norms

In this section we are concerned with the possible construcif the unit ball of
an extremal norm for a finite family. We focus our attentionaospecial class of
norms. Following [15], where the more general complex caseldeen treated, we
say that a bounded sef C R" is abalanced real polytopéb.r.p.) if there exists a
finite set of vectors?Z™ = {x; }1<i<m (with m > n) such that spai?”) = R" and

z :CO(%v_‘%/)? (2)

where co denotes the convex hull. Therefore

m m
,@:{x:i;)\ixurui(—xi) with Aj, ;>0 and i;()\htui)gl}.



Moreover, if cd. 2”7, —2") C co(Z, -2 )V Z' ¢ 2, then the set?” is called
an essential system of verticksr & and any vectox; is called avertexof .
Clearly, the set? is the unit ball of a norm| - || on R", which we call areal
polytope normand is characterized as follows.

Lemma 2.1 Let 2" = {x }{"; be a set of vectors spanniifitj and % = co(Z", —Z).
Set|| - || » the corresponding real polytope norm. Them.c R", we have

m

12| = min {i;()\ﬁ‘ﬂi)‘Z:ii}\ixi+“i(_xi)}- 3)

Ai>0,1i>0

Note that (3) is a linear programming problem, which can lbeesbefficiently (see
e.g. [30]).

After choosingQ € 2y(.#) such thatr = p(Q)Y% > 0, itis convenient to consider
a scaling of the original family” = {Al)};. » by the scalan so as to obtain

TF flA(i) )
7 {O{ }ieﬂ

In such a way we automatically hayg.%*) > 1, an assumption which will be
useful in the forthcoming Theorem 2.1. Let us consider alésdamily .7 * with
p(Z*) > 1. Then, for any vectax € R", we define theajectory

T[F* X ={Px |PeZ(F")}, 4)

i.e., the set obtained by applying all the produets > (. *) to the vectoix. The

following theorem, which is a slight variant of a result pedvby Protasov [25],
illustrates the possible use of the trajectory to constamceéxtremal norm. For its
proof see also [16], where the more general case of compl&icesis considered.

Theorem 2.1 Let.Z7* be a family of real < n-matrices such that(.#*) > 1 and,
for a given xc R", let the trajectory.7 [.#*,X| be a bounded subset&f such that

spar(ﬁ[ﬁ*,x]) =R". Then.Z* is non-defective angd(.#*) = 1. Furthermore,

y[ﬁ*,x]zco(f[gz*,x],—ﬁ[f*,x]) (5)
is the unit ball of an extremal norip- || for #* (that is, ||.Z7*| = 1).

Whenp(.%#*) = 1, building the trajectory provides a tool for the constiactof

the unit ball of an extremal norm and, hence, for the comutaif the spectral
radius. Assume that the hypotheses of Theorem 2.1 hold. G$siplity of actually
determining an extremal polytope norm, if any, is based ersttarch for guitable
initial vector xto which it corresponds a trajectory such that the. g7 x] is

a balanced real polytope. Such a choice is suggested by ¢batreesult in [11]
and is related to the knowledge (or the guess) of a spectruxammzng product.



In [11] it has been proved that under some suitable conditiatnich we do not
discuss here, if a finite family#*, such thato(.#*) = 1, of realn x n-matrices

has an s.m.pP having a unique leading eigenvectqrthen it admits an extremal
polytope norm. More specifically the sét”[.7* x| 7 [.F*,X| is finite (see (4),

(5)). Hence there exists a finite number of prody&s};_; € = (.#*) such that

ST A = co(%,—%), with 27 = (R x}5_,.

Although the existence of an s.m.p. does not imply the ex¢gteof an extremal
polytope norm (see [20]), such implication is true in sel/esses (see [11]).

2.1 A procedure for finding a real extremal polytope norm

We assume tha¥ is finite and irreducible (for the non-defective althougtiueible
case we can proceed as in [16] and still make use of the metequtapose). The
following procedure is derived by a suitable developmeastficted to the real
case) of previous algorithms (see [16], [17] and [25]). Feud#able initial vector
X, the idea is that of computing iteratively the trajectory.# *, x]. While iterating,
check whetherZ7* maps the convex hull of the balanced trajectsf{.#*, x| into
itself. The idea of the following algorithm is that of appig recursively the scaled
family . * in order to construct the trajectory step-by-step starfiiogn an initial
vector.

Algorithm 2.1 (for the construction of the unit ball of a real extremal polye
norm for.Z = {AD, ... AlD})

1. LetZ ={AV}ic11, 4 be afinitefamily; choose a candidate s.mRe %y (7).

Let v be the leading eigenvector Bf
2. Setd = p(P)/kand define the scaled family

F ={9" AV} gy st p(FT) =1
3. Compute recursively the ségt[.7*, g, that is define
TN =270 s>0  with 70 ={yw}.
4. Let 2 =abscd.7¥). Check at any step it7( is an invariant set foZ*.
If the procedure halts for sonsethen, due to the irreducibility assumptiog?, (S~
determines the unit ball of an extremal real polytope norm#d. We remark that
the initial choice of the produd® may be obtained, for example, by means of the

algorithm of Gripenberg [10], which provides candidate .p.i® of progressively
higher length.



A stopping criterion

A useful criterion to stop the iteration and eventually distthe candidate s.m.p.
P is given by the following theorem (again, see also [25]).

Theorem 2.2 Let.# be a finite irreducible family of matrices. If, at some steff s o
Algorithm 2.1, y lies strictly inside2?(9, that is

Voep ), (6)

thenp(.#*) > 1. Viceversa, ipp(.#*) > 1, then there exists s such that (6) holds.

Proof. Assume that, at some st&pvy 6302 (9, This would mean that there ex-
ists xs € .29 such thatxs = Bsvp with Bs > 1. Let #& = {vj}, be such that
{79, —¥ )} is an essential system of vertices@®. Thus we can write

m m
Xs = i;}\ivi +Hi(—=vi)  with i;()\i +Hi)=1 A>0, y>0.

Since, by construction, for allthere exists a finite produd) € (.#*) such that
vi = Py, there must exist at least a prod&ce Z(.#*) such thal|Pvo|| ;s = 1.
Using the fact that % ||Xs|| ;9 = Bs||Vo|| 59, We have

IPVoll 9 = Bsl|[Voll 559 > [IVoll o9 == [IP|| o9 > Bs > 1.

Thus ||.7*|| s > 1. Since2® C 25+, we would still havevg e +1) and
the previous condition would occur for all subsequent walogs, with (5.1 >
Bs. If p(Z*) = 1, by the irreducibility assumptio#?(® would converge to some
centrally symmetric convex setas- «. As a consequence there would exsistich
that [|P|| ;) < Bs for all r > §, which is not possible. Consequenpy.7*) > 1.
Viceversa, by the irreducibility assumptiongf.#*) > 1 then

lim 29 = R".
S—00

This implies that there existssuch that/ eﬁz SN |

3 Finiteness property of pairs of matrices inM(S)

Now we pass to consider the finiteness property of pairs of-sigtrices. We de-
note byMu(S) the set ofn x n matrices with entries i§ = {—1,0,+1}. We recall
the following conjecture by Blondel and Jungers and Protéses [4] and [19]).

Conjecture 3.1 Every pair of nx n sign-matrices has the finiteness property.



We consider here the case of a fam##y= {A B} whereA B € M(S). The number

of ordered pairt\, = (3* — 3)(3* - 5) = 5928 (obtained discarding the zero matrix,
the identity and its opposite from the set and the cases whersecond matrix

is equal to the first one or its opposite) is very large, butrtbmber of cases to
examine is immediately reduceda = N,/8, since the joint spectral radius of the
sets{+A,+B} does not change as well as it does not depend of the ordering of
the two matrices. Hendds = 741, which is still a quite large number of cases. By
using suitable properties, we shall see that the actual ruftessential cases to
examine is much lower. Mainly, the properties we shall ugeb@sed on suitable
similarity transformations, which do not change the jojmectral radius.

As in [19], in order to analyze the essential cases, we sep#ram into classes
(np,Nn1), whereng is the number of non-zero entries Afand n; is the number

of non-zero entries oB. By symmetry, we can assumg > n;. Our approach

consists in showing the finiteness property of every comsiiease by determining
explicitly the associated s.m.p., in most cases througltdnstruction of the unit
ball of a suitable real extremal polytope norm. This doesatiotv a unified proof

but, instead, requires to treat most of the essential capasately.

Although all the pairs of binary matrices have already bemsiered in [19], here
we reconsider the most difficult cases because our procegiguite different from
that used in [19] and does not rely on the possible non-ngtyatif the matrices.

The set ofrepresentativenatrices (we exclude-A if we considerA) with a single
non-zero entry which has to be considered is givelCby {Ci}# ; with

10 01 00 00
CiL= , Co= , C3= , C=
00 00 10 01

The set of representative matrices with two non-zero entwieich has to be con-
sidered is given b = {D; }1; with

11 00 1-1 00
D1 = , D= , D3= , Dg= )
00 11 0O O -11
10 01 10 0 -1
D5_ 5 D6: y D7: ; D8: 5
10 01 -10 0 1



1 O 01 01
Do = , Dio= , Di11= )
0-1 10 -10

The set of representative matrices with three non-zerdesnirhich has to be con-
sidered is given bf = {E; }1, with

11 1-1 11 1-1

1= 2 — 3 = 5 - 3
10 1 O -10 -1 0
11 1-1 1 1 1 -1

5= , Bs= , E7= , Eg= ,
01 0 1 0-1 0 -1
10 10 -10 -10

9= , Ei0= , En= , E12= ,
11 -11 -11 11

01 0-1 01 0-1
Eiz= , Eua= , Ei15= , Eie= :
11 1 1 -11 -1 1

The set of representative matrices with four non-zero esntrhich has to be con-
sidered is given b = {F}& , with

11 1-1 1-1 11
-1-1 1-1 -1 1 11

Now consider the similarity transformations associateti te following matrices:



01 1 0 01
P].: ) P2: ) P3: Y
10 0-1 -10

which are such tha®? = I, P2 = |, P2 = —I. Clearly, fork = 1,2, 3 we have that
RCP. lc+C, RDR 'c+D, RER'c+E, RFRR lc+F, (7)

so that these similarities do not change the finiteness psop®r the fact that the
matrices are sign-matrices. In detail, denoting~bg similarity relation, we get

D1~ Dz~ D3~ D4, Ds~ Dg~ D7~ Dsg, (8)
Ei~Es~Eiz~Eje, Ex~E3z~Es~Ess, ©)
Es ~ Es ~ Eg ~ E10, E7 ~Eg~ E11~ E1,

Fl ~ F47 F2 ~ F37 F5 ~ F67 r7 ~ F8 (10)

As we have mentioned, in the sequel we shall denote by
F*=(1/p(P)Y*.Z  forsomeP e 5 (F) s.t.p(P)#0

and call it the scaled family. Our aim will be that to provettt¥a has joint spectral
radius equal to 1 (which implies th&t is an s.m.p.). In several cases we shall
observe that one of the following standard northgly, || - ||2 and|| - ||, is extremal.
Some other cases are easily treated by observing that theotgtpe norm|| - ||,
associated with the b.r.g?™ = co(V, —V) with V = {vp,v1,V2}, where

1 1 0

1 1 0
Vo = , V1= , V2= )
0 -1 1

is extremal. The following lemma is also useful to treat saases.

Lemma 3.1 Let|.#| be the family of matrices obtained frofa as follows:
A=fajer — |A={lajl}e|7]

If P € 5 (%) is such thaip(P)Y/k = p (|.#|) then P is an s.m.p. fofZ.

All the other cases are treated by using Algorithm 2.1. Befanmmarizing the
results through different tables, we give an extensive fopban illustrative case.



3.1 lllustrative case

Consider the casd = E,, B=D11.

1/5
We want to prove tha® = ABA2Bis an s.m.p.p(.%) = p(P)Y/> = (%Tﬁ) / and

areal extremal polytope norm s given By = co(V, —V) with V = {vo, v1, V2, V3, V4, Vs, Vs },
wherevg is the leading eigenvector 8f vi = A*vp, Vo = B*Vp, V3 = A"y, Vg = A'vg,

V5 = A*Vy, Vg = B*vs. To this aim, sey = Wl)m ~ 0.825. Then we get
1 2 3+v5
Vo = , |-va=vy LB ) vy =2 1+2\£ ,
1+v/5 -1 1+5
1 2\[ 3+?
_ _ 1+/5 _ 145
V3 V3 3,\/5 , V4 V3 Y , V5 V4 1
1++/5 1+v/5

As illustrated in Figure 1, we analyze the transformed wectt* (V). Some of
them are vertices themselves by constructiongéfand, hence, do not need to
be analyzed. Here we report such vectors together with tmémzing convex
combinations of vertices o#” which determine their norms (see (3)):

V5-1

v5-1 2(3+/5) 2
A*VO:V 1+/5 :)\V3_|_u —Vy), )\:—’IJ:—7
) e T RE N M NN
HA*V()H@ =A+ U= 0.90;
A'vy = vy;
A'vo = v3;
Avz=A(-vi), A=V, |A'vs|p=A~056
5+v5
>tV 4(2+/5) 2
Afv, = 1+v/5 =AVo+ Vs, A=— 7 , =)
=y | 10 2T HYs v Al
1+/5
|A*V4l| 2 = A + p =~ 0.98;
A"V =p;
B*vg=wvy;
Bvi=A(—vo), A=V, |[B"Vol»=2~068;
B*vo = vy;
B*vz =vs;

B'va=A(—\2), A=y> |[B*v4ll»=A~0.68;
B*V5:AV3, A= yz, ||B*V5||gz =A ~0.68.
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This proves the extremality dff- || »» and thatP = ABA B is an s.m.p..

al

1= 1
LI L.

V3

Vo
\) °

Vi

(6]

1 1
L.J L.

Fig. 1. Polytope norm for the pa{iA = E,, B = D11} (left) and the set7*(V) (right). Red
points indicate the vectodA*v; }>_, and blue points indicate the vectdiB*v; }> ..

3.2 Summary of results

We show in the subsequent tables the s.m.p. (s.m.p.’s)Ifsigalificant cases, that
is for those matrix pairs whose analysis cannot be reductidhtaf another matrix
pair appearing in the tables. In the column we indicate th&irma in the pair
Z = {A,B} while in the row we indicate the matri. For a detailed analysis of
specific cases we refer the reader to the appendix in Section 4

The caseng = 1 (families of the type.# = {G;,C;}).

Recall that we suppose > n;. The only possibility is(ng,n;) = (1,1), corre-
sponding to families of the typ& = {G;,C;} (i < j). The analysis is always triv-
ial. In fact, it is very easy to see tha(.%#) = 1 and any among - |1, || - ||2 and

| - |l is @an extremal norm. Moreover, iif=1 or j = 4 an s.m.p. i$> = C; or Cy,
respectively. Only if(i, j) = (2,3) an s.m.p. i = C,Cs.

AB|C | Cs|Cs

C1 Al A A
Co AB| B
Cs B

11



The caseng = 2.
The subcaséng, ny) = (2,1) (families of the type” = {D;,C;}).
Since||Cj|l1 = ||Cj||l= = 1, p(Di) = 1 and eithet|Dj||y = 1 or | Di||» = 1, we have

thatp(.#) = 1 and that an s.m.p. B= D;.

The subcaséng, ny) = (2,2) (families of the type# = {D;,D;}).

In view of (7) and (8), we can restrict the choice of the firsttnxaA to the set
D’ = {D;,Ds5,Dg,D10,D11} and let the choice dB be free inD.

In the sequel we mark by an asterisk ¢r two asterisks*() equivalent columns.

AB| D, | Dy | D | Ds | Dg | D; | Dj | Dg | Dio | D1

D |AB|AB|AB|AB| B |[AB|AB|AB|AB|AB

Ds | B |AB|AB AB| AB|AB|AB|AB|AB
De |AB|AB|AB AB|AB|AB AB|AB
Dio | AB|AB|AB AB|AB|AB AB
D11 |AB|AB|AB AB|AB|AB

The caseng = 3.

In view of (7) and (9), we can restrict the choice of the firsttnaA to the set
E’ = {E1,Ey, Es, E7} and let the choice dB to be free.

The subcaséng, n1) = (3,1) (families of the type# = {E;,C;}).

AB| C |G| G | C
= A|A| A | A
E, |AB|A| A |AB
Es |AB|A|AB|AB
E; |AB|A| A |AB

12



The subcaséng, ny) = (3,2) (families of the type# = {E;,D;}).

A\B D, D, D3 Dy Ds Dg D7 Dg Dg Dio D11
E. | A|A|A| A A|A A|A|A]|A A
E, | AB|A°B|AB|AB|AB|AB| AB |A°B| AB| AB | ABAB
Es |AB|A’°B|AB|A°B|A°B|AB|A°B|AB|AB|AB| A‘B
E; |AB|AB|AB|AB | AB|AB| AB|AB|AB|AB| AB

The subcaséng, ny) = (3,3) (families of the type” = {E,E;}).

A\ B|E Es E, Es Es E; Eg Eg
Ex |A| A |AB| A A A | A A
E, AB | B |AB® | A?B®| AB | AB | A2B3
Es ASB% | B AB |AB|AB| AB
E; AB | B AB AB| AB?
A\B| Eio | E11 | E12 | Ejg Ei14 Eis | Efs
= A A | A |AB A A |AB
E- | ABB |AB| AB| B |ABAAB?’B| AB | B
Es | A‘B*| ASB| AB| B ASB ASB2 | B
E; | ABB| AB|AB| B A,B AB | B

We remark that in this case we find the longest spectrum makimproducts, of
length? = 8, namely for# = {Es, E1o}, whereP = EZE7, and for.# = {E;, E14},
whereP = E;E14E; (E2E14)2Exg.

The caseng = 4.

In view of (7) and (10), we can restrict the choice of the firgttnx A to the set
F' = {F1,Fs,Fs,Fg} and let the choice dB be free.

13




The subcaséng, ny) = (4,1) (families of the type¥ = {F,C;}).

AB|ci|c |G
F Al A A A
B |A|lA|A|A
Fs B|AB|AB| B
Fs Al A A A

The subcaséng, ny) = (4,2) (families of the type¥ = {F,D;}).

A\B | Dj | D; | Dy | Dy | D' | Dy | Dj | D | Dy | Dig | Dij
F1 AlAlAT A AA A A A A|A
Fs AlAlA A AA A A A A|A
Fs B| B|AB|AB|AB|AB| B | B |AB| B |AB
Fs AlAlA A AA A A A A|A

The subcaséng, ny) = (4,3) (families of the type” = {F,E;}).

It is useful observing thalPsFiP;t = —F;, PsRP;t = Fs, PIRsP; ! = —F5 and
that both the similarity transformations associated Wthrand P; are one-to-one
applications between the sets of matrie€s= {E; | 1< j <8} andE” = {E; | 9<

j < 16}. Consequently, wheA = F; (i = 1,3,5), we can restrict the choice of the
matrix B within the setE”.

A\B | E; E, Es Ei| Es | Es | E7 | Es | Eo—Ess
F, | B A A B| A A | A | AB

F | B | (AB)?A’B | A°BA°B | B | A3B? | AB? | A°B | A’B

F | B AB B B| AB* | AB*| B | AB

R | A A A Al A Al A| A A

The subcaséng, n1) = (4,4) (families of the typeZ = {F,F;}).

If A=Fg, B < FthenAisans.m.p..

14



Now it is useful to observe th@sFiP;t = —Fy, PsRPyt = Fs, PsRsPy L = —Fg
andPg,FgPST1 = F,. Consequently, wheA=F, (i = 1, 3), we can restrict the choice
of the matrixB within the set’ = {F,, F3,Fs,Fs}.

AB| R Fs | F4 Fs | Fs
F. ||AB|AB|AB| AB
F || AB A B | A?B
s || AB? AB AB

4 Appendix: detailed analysis of specific cases.

In this section we provide a case-by-case analysis of thexopairs tabulated in
Section 3.2. In particular we provide explicitly the comguitextremal polytope
norm in those cases where they have been used to determima.an s

The caseng = 2
The subcaséng, ny) = (2,2) (families of the type” = {D;,D;}).

e A=D;andB=Dj (j =23,4,9,10,11).
Sincep(A) = p(B) = ||All1 = ||B||1 = 1, we have thap(.#) = 1 and thatA and
B are both s.m.p.s.

e A=Dq andB = Ds.
We find thatP = ABis an s.m.p.p(.%) = p(P)¥2 = /2 and an extremal poly-
tope norm is giver? = co(V, —V) with V = {vo,v1, V2 }, wherevy is the leading
eigenvector oP, v1 = A*vp, Vo = B*vp.

e A=D; andB = De.
We find thatP = Bis an s.m.p.p(.%#) = p(P) = 1 and an extremal polytope norm
is givenZ = co(V,—V) with V = {vp,v1}, wherev is the leading eigenvector
of P, v1 = A*vg.

e A=D;andB=D; (j =7,8).
SinceA? = A, B2 =B, p(AB) = p(BA) = 0 andp(A) = p(B) = 1, we have that
p(#) =1 and thatA andB are both s.m.p.s.

e A=DsandB e D.
SinceDs = D] andDT C 4D and since, ifP is an s.m.p. of the family7 =
{A,B}, thenP' is an s.m.p. of the family#T = {AT BT}, we are led again to
the previous cases.

e A=DjandB =Dy (j =9,10,11 k=2,34,6,7,8).
Since PiDgP; * = —Dg, P.DgP; 1 = Dg, PsDgP;t = —Dg, P1D1oP; * = Dy,
P,D1oP; 1 = —D1g, PsD1oP3 * = —Di1o, PiD11P; * = —D11, PD11Py 1 = —Duy,
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P3D11P§1 = D13 and SinCd31D2P{l =Dy, P2D3P£1 — Dy, P3D4P§1 — _Dy,
PiDgP, * = Ds, P,D7P; * = Ds, PsDgP; = —Ds, by using the similarity trans-
formations associated with , P, andP5; we are led to the previous cases.
A=DjandB =Dy (j,k=19,10,11).

Sincep(A) = p(B) = ||Al| = ||Bl||e = 1, we have thgp(.#) = 1 and thatA and
B are both s.m.p.s.

The caseng =3

The subcaséng, n1) = (3,1) (families of the type” = {E;,C;}).

A=E;,BeC.

We find thatP = Ais an s.m.p.p(%#) = p(P) = ”T\@ and an extremal polytope
norm is given by%? = co(V,—V) with V = {vp,v1}, wherevy is the leading
eigenvector oP, v; = B*vp.

A=Es, B=Cj(j=1,24).

The family.7 is upper triangular and defective wilf.# ) = 1 andAis an s.m.p..
A=Es B=Cs;.

We find thatP = A*Bis an s.m.p.p(.#) = p(P) = 41/% and an extremal polytope
norm is given by%? = co(V,—V) with V = {vg,v1,V2,V3,V4,V5}, wherevy is the
leading eigenvector d?, vi = A*vp, Vo = B*Vg, V3 = A"Vp, V4 = A"vz, V5 = A*vg.
A=E;, BeC.

Sincep(A) = ||A|} = ||Blf = 1, we have thap(.#) = 1 and thaAis an s.m.p..
A=E;,BeC.

Sincep(A) = ||All; =|B|l; =1, we have thgb(.#) = 1 and thatAis an s.m.p..

The subcaséng, ny) = (3,2) (families of the type” = {E;,D;}).

A=E1,BeD.

Sincep(A) = [|A]l2 = /5 and||B||2 < V2, we have thap(.#) = /5 and
thatAis an s.m.p..

A=Ep, B=D1.

We find thatP = ABis an s.m.p.p(.%) = p(P)¥2 = /2 and an extremal poly-
tope norm is giver? = co(V, —V) with V = {vo,v1, V> }, wherevy is the leading
eigenvector oP, v1 = B*vp, Vo = A*v.

A=E;,B=Dj(j=238).

We find thatP = A?B is an s.m.p.p(.%#) = p(P)¥/3 = 2/3 and an extremal
polytope norm is given? = co(V, —V) with V = {vg,v1,v2}, whereyy is the
leading eigenvector d?, vi = B*vg, Vo = A*v;.

A=E;, B=Dj(j=34,56,10).

Sincep(A) = p(B) = |All; = ||B|li = 1, we have thgp(.#) = 1 and thaiA and
B are both s.m.p.s.
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A=E,, B=Ds.
We find thatP = ABis an s.m.p.p(.%) = p(P)¥2 = /2 and an extremal poly-
tope norm is giver”? = co(V, —V) with V = {vp, v1, 2}, wherev, is the leading
eigenvector oP, v; = B*vp, Vo = A*vy.
A=E,, B=D,.
We find thatP = ABis an s.m.p.p(.%) = p(P)¥/? = (%) “2 and an extremal
polytope norm is given by? = co(V,—V) with V = {vp,v1,V> }, wherev is the
leading eigenvector d?, vi = B*vp, vo = A*v.
A=Ey, B=D11.

See the illutrative example in Section 3.1.
A=Es,B=D; (j=1,3,6,8,9).
The family % is upper triangular and defective with(.%#) = 1 and bothA and
B are s.m.p.s.
A=Es,B=Dj (j=2,5).
We find thatP = A?B is an s.m.p.p(.%#) = p(P)¥/3 = 33 and an extremal
polytope normis given by? = co(V, —V) with V = {vp, v1, V2, V3,V4}, Wherevg
is the leading eigenvector &f v1 = A*vg, Vo = B*vp, V3 = A*vy, V4 = A*Va.
A=Es5,B=Dj (j=4,7).
We find thatP = ASB is an s.m.p.p(.%#) = p(P)¥/® = 2/3 and an extremal
polytope normis giver” = co(V, —V) with V = {vo, v1, V2, V3, V4, Vs, Vs }, Where
Vo is the leading eigenvector &, vi = A"V, Vo = B*Vvp, V3 = A*Vp, V4 = A*vg,
Vg = A*V4, Vg = A*V5.
A=Es, B=Dsp.

1/4

We find thatP = A3Bis an s.m.p.p(.%) = p(P)¥/4 = (%”) and an ex-
tremal polytope normis given by? = co(V, —V) with V = {vp, V1, V2,V3,V4, V5 },
where vy is the leading eigenvector d?, vi = A*vg, Vo = B*vp, v3 = A*vy,
V4 = B*vq, v5 = Afvs.
A=Es, B=D;.

See the illutrative example in Section 3.2. We find that A*B is an s.m.p.,
p(F) = p(P)Y/5> = (2++/3)"/% and an extremal polytope norm is give =
co(V,—V) withV = {vp, V1, V2, V3, V4, V5, Vs }, Wherevy is the leading eigenvector
of P, vi = A*vp, Vo = B*Vp, V3 = A*Vp, V4 = A"v3, V5 = A*Vy, Vg = B*vs.
A=E;,B=D;(j=1,3,6,8,9).

The family.Z is upper triangular withp(.#) = 1 andA andB are both s.m.p.s.
A=E7,B=D; (j =2,7,10).

Sincep(A) = p(B) = ||All; = ||B||x =1, we have thap(.#) = 1 and thaA and
B are both s.m.p.s.

A=E;,B=Dj (j=4,5).

We find thatP = ABis an s.m.p.p(.%) = p(P)¥/2 = /2 and an extremal poly-
tope norm is given by” = co(V, —V) with V = {vp, V1 }, wherey is the leading
eigenvector oP andv; = B*vp.

A=E7,B=D11.

17



Vo Vo

Fig. 2. Polytope norm for the paifsh = Es, B = D4} (left) and{A = Es,B = D11} (right).

1/2
We find thatP = ABis an s.m.p.p(.%) = p(P)¥/? = (%) /2 and an extremal

polytope norm is given by? = co(V,—V) with V = {vp,v1}, wherev is the
leading eigenvector d? andv; = B*vp.

The subcaseng, n1) = (3,3) (families of the typeZ# = {E;,E;}).

e A=—E;,BeE.
Sincep(A) = ||All2 = |[Bl|l2 = X2, we havep(.#) = /5 andAis an s.m.p..

e A=—E»; B=Es.
Using Lemma 3.1 we find th&= ABis an s.m.p. ang(.%) = p(P)1/2 = 15,

e A—Ey, B=E; (j = 4,13 16). Sincep(B) = [|A]|2 = ||Bl|l2 = 152, we have that
p(.F) = 15/5 and thaB is an s.m.p..

e A=Ep, B=E;j (j =5,10).
We find thatP = AB is an s.m.p.p(.%) = p(P)Y/* = (24 v/3)Y/4 and an ex-
tremal polytope norm is given by? = co(V, —V) with V = {vp, V1, V2, V3, V4, V5, Vs, V7 },
where g is the leading eigenvector d?, vi = A"vg, Vo = B*vp, V3 = A*vy,
Va4 = B*Vp, V5 = A"vy, Vg = B*Vvg, V7 = B vg.

e A=E»,B=Ej(j =6,9).
We find thatP = A?B® is an s.m.p.p(.#) = p(P)Y/®> = (2+1/3)/% and an ex-
tremal polytope norm is given by? = co(V, —V) withV = {vp, V1, V2, V3, V4, Vs, Vs },
where g is the leading eigenvector d?, vi = B*vp, Vo = B*vy, v3 = B*vy,
Va4 = A*vz, V5 = B*v3, Vg = A*vs.

e A=Ey,B=E; (j =7,12).
We find thatP = AB is an s.m.p.p(.#) = p(P)Y2 = (14 v/2)%/? and an ex-
tremal polytope norm is given by? = co(V,—V) with V = {vp,v1,v2}, where
\p is the leading eigenvector & vi = A*vg, Vo = B*vp.

e A=E;,B=E; (j =8,11,15).
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Sincep(A) = p(B) = |AlF = ||B||; = 1, we have thap(.#) = 1 and thaA and
B are both s.m.p.s.
e A=E,, B=Ea.
We find thatP = ABA’BAR is an s.m.p.p(.%) = p(P)Y8 = (7+4/3)/8and an
extremal polytope norm s given b = co(V, —V) with V = {vo, Vv1,V2,V3,Va, Vs, Vg, V7},
where g is the leading eigenvector d?, vi = B*vp, Vo = B*vy, v3 = A*vy,
V4 = B*v3, V5 = A*vy, Vg = A"Vs, V7 = B*vg.
Observe that this is the first of the two cases with the langestber of factors
in the s.m.p.. The essential vertices@fare just the leading eigenvectors.#f,
that is, the eigenvectors of all the cyclic permutation® of

1 £
1.J

Vo

1B 1B
L.J 1.I

Fig. 3. Polytope norm for the paifgA = Ez,B = Es} (left) and{A = E,B = Ejp} (right).

1 £ 1 £
1.9 L.J

Fig. 4. Polytope norm for the paifgA = E»,B = Eg} (left) and{A = E;,B = E14} (right).

e A=Es, B=E;j (j =3,15).

We find thatP = A3B? is an s.m.p.p(Z) = p(P)Y/5 = (2+ \/§)1/5 and an ex-
tremal polytope norm s given by? = co(V, —V) withV = {vo, v1, V2, V3,V4, V5, Vg },
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where g is the leading eigenvector d?, vi = A"vg, Vo = B*vp, v3 = B*vy,
Vg = B*vo, V5 = A*vy, Vg = A" s.

e A=Es5,B=Ej(j =4,1316).
Sincep(B) = [|A]|2 = [|B|l2 = 1522, we have thap(.#) = 152 and thaB is an
s.m.p..

e A=E5,B=E; (j =6,7,8).
The family % is upper triangular and defective with(.%) = 1 and bothA and
B are s.m.p’s.

e A=Es, B=Eq.
We find thatP = AB is an s.m.p.p(.#) = p(P)¥/2 = 145 and an extremal
polytope normis given by?” = co(V, -V ) with V = {vp, v1, V2, Vv3,Vv4}, wherevg
is the leading eigenvector &fandvy; = A*vp, Vo = B*Vvg, V3 = Av1, Vg = B*Vv».

e A=Es, B=Ej.
We find thatP = A*B*is an s.m.p.p(.F) = p(P)Y8 = (7+4/3) /8 and an ex-
tremal polytope norm is given by? = co(V, —V) withV = {vp, V1, V2, V3, V4, Vs, Vs, V7 },
where g is the leading eigenvector d?, vi = B*vp, Vo = B*vy, v3 = B*vy,
V4 = B*v3, V5 = A"y, Vg = A*vg, V7 = A V.

This is the second of the two cases with the largest numbexabdrfs in the

s.m.p.. Again, the essential vertices@fare just the leading eigenvectors.sf.

1 1 E
1O 1L.I

Vo

1B 1B
L.J i e

Fig. 5. Polytope norm for the paifA = Es, B = E3} (left) and{A = Es, B = Ej} (right).

o A=Es, B=E; (j =11,12).
1/4
We find thatP = A3B is an s.m.p.p(.%) = p(P)¥/4 = (%) / and an ex-

tremal polytope normis given by? = co(V, —V) with V = {vp, V1, V2, V3, V4, V5 },
where vy is the leading eigenvector d?, vi = A"vg, Vo = B*vp, v3 = B¥vy,
V4 = A"V, V5 = A*vy.

e A=Es, B=Ej4.
We find thatP = A3B is an s.m.p.p(F) = p(P)¥4 = (2+ \/3)1/4 and an ex-
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tremal polytope norm is given by? = co(V, —V) with V = {vp, V1, V2, V3, V4, V5, Vs, V7 },
where vy is the leading eigenvector d?, vi = A*vg, Vo = B*vg, v3 = A*vy,

V4 = B*vp, V5 = A"vg, Vg = B*v3, vz = B*vs.

A=E7;,B=Ej (j =3,1214).

Sincep(A) = p(B) = ||All; = ||B||x =1, we have thap(.#) = 1 and thaiA and

B are both s.m.p.s.

H
a
[HEN
a

L V,
O Vo 0

Fi

1 1
L.J L.J

g. 6. Polytope norm for the paifsh = Es,B = Ej1} (left) and{A = Es, B = E14} (right).

A=E7, B=E;j(j=4,1316).

Sincep(B) = ||All2=||B||2 = HT\G we have thap (.7 ) = “T\@ and thaB is an
s.m.p..

A=E7,B=E; (j =6,8).

The family .# is upper triangular and defective with(.%#) = 1 and bothA and
B are s.m.p’s.

A=E7, B=E; (j =9,10).

We find thatP = AB? is an s.m.p.p(.%) = p(P)¥/° = (”—ﬁ*) Y% and an ex-
tremal polytope normis given by? = co(V, —V) with V = {vp, V1, V2,V3,V4, V5 },
where g is the leading eigenvector d?, vi = B*vp, Vo = B*vy, v3 = B*vy,
V4 = B*vz, v5 = A*vg.

A=E7;,B=Ej1.

Using Lemma 3.1 we find th& = ABis an s.m.p.p(#) = p(P)Y/2 = 15,
A=E7, B=Ejs.

We find thatP = ABis an s.m.p.p(.# P)1/2 = <1+ \/_> and an ex-

tremal polytope norm is given by? = co(V —V) with V = {vp,Vv1,V2}, where
\p is the leading eigenvector & v1 = B*vg, vo = B*v;.
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Vo Vo

Fig. 7. Polytope norm for the paifA = E7, B = E;s5} (left) and{A = E7,B = Eg} (right).

The caseng =4
The subcaseng, n1) = (4,1) (families of the type# = {F,C;}).

e« A=F (i=13),BeC.
Sincep(A) = ||All2 = v/2 and||B||2 = 1, we have thap(.#) = /2 and thatA is
ans.m.p..
e« A=F5,B=Cj (j =1,4).
Sincep(B) = ||All; =|B|l; =1, we have thagp(.#) = 1 and thaBis an s.m.p..
o A=F5,B=C; (j =2,3).
Sincep(AB) = ||A|l; = ||B|ly =1, we have thap(.#) = 1 and thaP = ABis
ans.m.p..
e A=Fs,BeC.
Sincep(A) = ||A||1 = 2 and||B||1 = 1, we have thap(.#) = 2 and thatA is an
s.m.p..

The subcaséng, ny) = (4,2) (families of the type” = {F,D;}).

e A=F (i=1,3),BeD.
Sincep(A) = ||Al2 = V2 and||B||2 < v/2, we have thap(.#) = /2 and thaiA
isan s.m.p..
e A=F5,B=Dj (j=1,27,8,10).
Sincep(B) = ||A|; =|B||; =1, we have thap(.#) = 1 and thaB is an s.m.p..
e A=F5,B=Dj(j =34,56,9,11).
We find thatP = ABis an s.m.p.p(.%) = p(P)¥/2 = /2 and an extremal poly-
tope norm is given by” = co(V, —V) with V = {vp, V1 }, wherey is the leading
eigenvector oP andv; = B*vp.
e A=Fg,BeD.
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Sincep(A) = ||All2 = 2 and||B||2 < V2, we have thap(.#) = 2 and that\is an
s.m.p..

The subcaséng, n1) = (4,3) (families of the typeZ# = {F,E;}).

A=F,B=Ej(j=14).

Sincep(B) = [|Bl2 = 55 and||A|2 = V2, we have thap(.7) = 1£/5 and
thatB is an s.m.p..

A=F1,B=Ej(j=23]7).

We find thatP = Ais an s.m.p.p(.%) = p(P) = v/2 and an extremal polytope
norm is given by%? = co(V, —V) with V = {vp,Vv1,Vv2}, wherevy is the leading
eigenvector oP, v; = B*vp, Vo = A*vy.

A=F;,B=E; (j=5,6).

We find thatP = Ais an s.m.p.p(.%) = p(P) = v/2 and an extremal polytope
norm is given by%? = co(V,—-V) with V = {vp, Vi1, V2,V3,Vs,V5,Vs}, Wherevg
is the leading eigenvector ¢f, vi = B*vg, Vo = A*vy, v3 = B*vq, V4 = A*vs,
Vs = B*v3, Vg = A"Vs.

A=F;, B=Es.

We find thatP = ABis an s.m.p.p(.#) = p(P) = v/2 and an extremal polytope
norm is given by = co(V,—V) with V = {vp,v1}, wherevy is the leading
eigenvector oP andv; = B*vp.

A=F;,B=E; (j=14).

Sincep(B) = ||B||l2 = %5 and ||All2 = V2, we have thap(.%) = % and
thatBis an s.m.p..

A=F; B=E.

We find thatP = (AB)2A?Bis ans.m.p.p(F) = p(P)Y/7 = (4(2+ \/§))1/7 and
an extremal polytope norm is given By = co(V, —V) with V = {vp, V1, V2, V3, V4,
Vs, Ve, V7,Vs, Vo, V10}, Wherevy is the leading eigenvector &f, vi = A*vp, Vo =
B*vg, V3 = A*V1, Va4 = A*Vp, V5 = A*Vy, Vg = A*Vsg, V7 = B*vg, vg = A*v7, Vg =
A*Vg, V10 = B*vg.

A=F;, B=Es.

We find thatP = A>BA’Bis ans.m.p.p(.%) = p(P)Y/7 = (4 <2+ \/§>)1/7 and
an extremal polytope norm is given By = co(V, —V) with V = {vp, V1, V2, V3, V4,
Vs, Ve, V7}, Wherevy is the leading eigenvector &f, vi = A"V, Vo = B*vp, V3 =
AV, Va4 = A*V3, V5 = A"y, Vg = B*V5, V7 = A" vg.

A=F; B=E:.

We find thatP = A3B? is an s.m.p.p(.%) = p(P)¥/° = (2 <2+ \/§>>1/5 and an
extremal polytope norm is given by? = co(V, —V) with V = {vp, V1, V2, V3, Vs,
Vs, Ve, V7}, Wherevy is the leading eigenvector &f, vi = B*vp, Vo = A*vy, V3 =
B*v1, Va = A"V, V5 = A*V3, Vg = A*Vy, V7 = A"Vs.

A= F3, B=E;.
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Fig. 8. Polytope norm for the paif\ = F1, B = E3} (left) and{A = F3, B = E3} (right).

. . 1/3
We find thatP = AB? is an s.m.p.p(.%) = p(P)Y/3 = <2+ \/§> and an
extremal polytope norm is given by? = co(V, —V) with V = {vp, V1, V2, V3, Vs,
Vs, Ve, V7}, Wherevy is the leading eigenvector &f, vi = A"V, Vo = B*vp, V3 =
AV, Va = A*Vo, V5 = B*Vy, Vg = A*Vy, V7 = A" V.

1 1 £
1.J L.J

Vo

Vo

Fig. 9. Polytope norm for the paif\ = F3,B = Es} (left) and{A = Fs,B = Es} (right).
e A=F,B=Ej(j=7,8).

: . 1/3

We find thatP = A2B is an s.m.p.p(.%) = p(P)Y/3 = <1+ \/5> and an
extremal polytope norm is given by? = co(V,—V) with V = {vo,v1,Vo,v3},
wherevy is the leading eigenvector & vi = A*vg, Vo = B*vp, V3 = A" .

e A=F5,B=E; (j =1,4).
We find thatP = Bis an s.m.p.p(%#) = p(P) = ”T\@ and an extremal polytope
norm is given byZ? = co(V,—V) with V = {vp,v1}, wherevy is the leading
eigenvector oP andv; = A*v.



e A=F5,B=Ej(j =2,8).
We find thatP = ABis an s.m.p.p(.%) = p(P)¥2 = /3 and an extremal poly-
tope norm is given by” = co(V, —V) withV = {vp, V1 }, wherev is the leading
eigenvector oP andv; = B*vp.
e A=F5,B=E;(j=3,7).
Sincep(B) = ||All; =|B|l; =1, we have thap(.#) = 1 and thaBis an s.m.p..
e A=F;, B=Ej (j =5,6).
We find thatP = AB* is an s.m.p.p(.%#) = p(P)¥/® = 45 and an extremal
polytope norm is given by” = co(V, —V) with V = {vp, v1, V2, V3, V4, V5 }, where
Vo is the leading eigenvector &, vi = B*vg, Vo = B*v1, V3 = B*vy, v4 = B¥vg,
Vg = B*V4.

1 £ 1 £
1.9 L.J
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Fig. 10. Polytope norm for the paif$\ = Fs,B = E4} (left) and{A=Fs,B = Es} (right).

e A=F,BeE.
Sincep(A) = ||All1 = ||B||1 = 2, we have thap(.#) = 2 and thatA is an s.m.p..

The subcaséng, ny) = (4,4) (families of the type” = {F,F;}).

e A=Fg, BeF.
Sincep(A) = ||All1 = ||B||1 = 2, we have thap(.#) = 2 and thatA is an s.m.p..
e A=F,B=Fj(j =2,3,4).
Sincep(A) = p(B) = ||A|2 = ||B||2 = V2, we have thap(.#) = v/2 and that
bothA andB are s.m.p.s.
e A=F,B=Fs.
We find thatP = ABis an s.m.p.p(.%) = p(P)¥2 = /2 and an extremal poly-
tope norm is given by” = co(V, —V) with V = {vp,v1 }, wherev is the leading
eigenvector oP andv; = B*vp.
e A=F3,B=Fj(j =24).
Sincep(A) = p(B) = ||All2 = ||B|l2 = v/2, we have thap(.#) = v/2 and that
bothA andB are s.m.p.s.
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Fig. 11. Polytope norm for the paife\ = F1,B = Fs} (left) and{A = F3,B = Fs} (right).

e A=F3,B=Fs.
We find thatP = A?B is an s.m.p.p(.%#) = p(P)¥3 = 43 and an extremal
polytope norm is given by? = co(V, —V) with V = {vp,v1,Vv2,v3}, whereyy is
the leading eigenvector &, v = B*vp, Vo = A"V, V3 = A"vy.

e A=F,B=F.
We find thatP = AB? is an s.m.p.p(.%#) = p(P)¥/3 = 43 and an extremal
polytope norm is given by? = co(V, —V) with V = {vp,Vv1,V2,Vv3}, whereyg is
the leading eigenvector &, vi = B*vp, Vo = B*v1,v3 = B*wo.

e A=K, B=F,.
We find thatP = ABis an s.m.p.p(.%) = p(P)¥/2 = /2 and an extremal poly-
tope norm is given by” = co(V, —V) with V = {vp,v1 }, wherev is the leading
eigenvector oP andv; = B*vp.

e A=F,B=Fg.
Since||Al|1 = ||B||1 = 2 andp(AB) = 4, we have thap(.#) = 2 and thaP = AB
IS an s.m.p..

5 Conclusions and future work

We have proved the finiteness property for any pair af2sign-matrices. In most
non-trivial cases, this has been made possible by deteatirextremal real poly-
tope norm for the family constituted by the two sign-matsic€he finite conver-
gence of the procedure for constructing the unit ball of sualrm, carried out on
a case-by-case basis, implies the finiteness property.gamitiim for the construc-
tion of the unit ball is also provided and made publicallyital@de. Unfortunately,
it seems clear that such an approach can hardly be extenttezldeneral case of a
pair of sign-matrices of arbitrary dimension. The use ofraduction argument on
the dimension seems difficult. Nevertheless, we plan tocegpt in future.
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