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Abstract

This paper deals with the joint spectral radius of a finite set of matrices. We say that a set
of matrices has thefiniteness propertyif the maximal rate of growth, in the multiplicative
semigroup it generates, is given by the powers of a finite product.

Here we address the problem of establishing the finiteness property of pairs of 2× 2
sign-matrices. Such problem is related to the conjecture that pairs of sign-matrices fulfil
the finiteness property for any dimension. This would imply, by a recent result by Blondel
and Jungers, that finite sets of rational matrices fulfil the finiteness property, which would
be very important in terms of the computation of thejoint spectral radius. The technique
used in this paper could suggest an extension of the analysis ton×n sign-matrices, which
still remains an open problem.

As a main tool of our proof we make use of a procedure to find a so-calledreal extremal
polytope normfor the set. In particular, we present an algorithm which, under some suit-
able assumptions, is able to check if a certain product in the multiplicative semigroup is
spectrum maximizing.

For pairs of sign-matrices we develop the computations exactly and hence are able to
prove analytically the finiteness property. On the other hand, the algorithm can be used in
a floating point arithmetic and provide a general tool for approximating the joint spectral
radius of a set of matrices.

Key words: Joint spectral radius, extremal norm, real polytope norm, finiteness property,
sign-matrices.
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1 Framework

LetF = {A(i)}i∈I be a family ofn×n-matrices,I being a set of indices. Then, for
eachk = 0,1, . . ., consider the setΣk(F ) of all possible products of lengthk whose
factors are elements ofF , that isΣk(F ) = {A(i1) · · ·A(ik) | i1, . . . , ik ∈ I } and set
Σ(F ) =

⋃

k≥0
Σk(F ) (with Σ0(F ) = I ) the multiplicative semigroup associated with

F . Let ρ(·) denote the spectral radius of ann×n-matrix. Then consider

ρk(F ) = sup
P∈Σk(F )

ρ(P), k = 0,1, . . .

and define thegeneralized spectral radiusof F (see [8]) as

ρ(F ) = limsup
k→∞

ρk(F )1/k.

Recently it has been shown (see [2], [9], [28] and [27]) thatρ(F ) is equal to
the joint spectral radius defined in [26]. This allows to simply call ρ the spectral
radius of the family of matricesF . We introduce now a further characterization
of the joint spectral radius. Given a norm‖ · ‖ on the vector spaceCn and the
corresponding inducedn×n-matrix norm, we use the same notation to define

‖F‖ = sup
i∈I

‖A(i)‖,

where we assume that sup
i∈I

‖A(i)‖ < +∞, that is the familyF is bounded. The fol-

lowing result can be found, for example, in [26] and [9].

Theorem 1.1 The spectral radius of a bounded familyF satisfies the equality

ρ(F ) = inf
‖·‖∈N

‖F‖, (1)

whereN denotes the set of all possible induced n×n-matrix norms.

The actual computation ofρ(F ) is an important problem in several applications
(see e.g. [1,13,14,22,23]). The problem, however, appearsquite difficult in general
(see e.g. [29]). We are interested in using Theorem 1.1 as an actual computational
tool. For this we need that the inf in (1) is a min. This is true,for example, for
irreducible families of matrices (see [1,9]). Irreducibility means that the matrices
of the familyF do not admit any non-trivial common invariant subspace. A norm
‖ · ‖∗ satisfying the condition

‖F‖∗ = ρ(F )

is said to beextremalfor the family F (for an extended discussion see [31]). A
family which admits an extremal norm is said to benon-defective(see, e.g., [12]).
We are interested in establishing whether a familyF fulfils the following property.
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Definition 1.1 A finite familyF has the finiteness property if there exists a product
P∈ Σk (F ) such that

ρ (P) = ρ (F )k .

Such a product is called spectrum maximizing product (in short s.m.p.)

Although it was conjectured to be valid in all cases (see [21]), the finiteness prop-
erty does not hold for every finite family (see [7], [3], [18])but has been conjectured
to be true for some classes of matrices. Some approaches for the approximation of
the joint spectral radius have been recently considered (see for example [5,6] and
[24]). The problem we handle here, however, is that of an exact computation.

A way to compute exactly the joint spectral radius is based onthe following prop-
erty. If α > 0 then

ρ(F ) = αρ
(

1
α

F

)

.

So, ifQ∈Σk(F ) is a certain product andα = ρ(Q)1/k, then we have thatρ
( 1

α F
)

≥
1. Therefore, if we are able to find a norm such that‖ 1

α F‖ = 1, then we have that

α ≤ ρ(F ) ≤ α =⇒ ρ(F ) = α = ρ(Q)1/k.

That would mean that the finiteness property holds and the productQ is an s.m.p.
The key point is the search for an extremal norm.

The summary of the paper is the following. In Section 2, afterrecalling some defini-
tions and results on real polytope norms, we introduce the main ideas of a procedure
able to find an extremal norm in this class. It is obtained by applying the product
semigroup to a suitable initial vector. Then, in Section 3, we prove the finiteness
property for pairs of 2×2 sign-matrices on a case-by-case basis. Finally, in Section
5, we outline some conclusions. Section 4 contains an appendix with the details of
the analysis presented in Section 3.

2 Finding real extremal polytope norms

In this section we are concerned with the possible construction of the unit ball of
an extremal norm for a finite family. We focus our attention ona special class of
norms. Following [15], where the more general complex case has been treated, we
say that a bounded setP ⊂ Rn is abalanced real polytope(b.r.p.) if there exists a
finite set of vectorsX = {xi}1≤i≤m (with m≥ n) such that span(X ) = Rn and

P = co(X ,−X ), (2)

where co denotes the convex hull. Therefore

P =
{

x =
m

∑
i=1

λi xi + µi (−xi) with λi ,µi ≥ 0 and
m

∑
i=1

(λi + µi) ≤ 1
}

.
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Moreover, if co(X ′,−X ′)  co(X ,−X ) ∀ X ′  X , then the setX is called
an essential system of verticesfor P and any vectorxi is called avertexof P.
Clearly, the setP is the unit ball of a norm‖ · ‖P on Rn, which we call areal
polytope normand is characterized as follows.

Lemma 2.1 LetX = {xi}m
i=1 be a set of vectors spanningRn andP = co(X ,−X ).

Set‖ · ‖P the corresponding real polytope norm. Then,∀z∈ Rn, we have

‖z‖P = min
λi≥0,µi≥0

{ m

∑
i=1

(λi + µi)
∣

∣

∣ z=
m

∑
i=1

λi xi + µi (−xi)
}

. (3)

Note that (3) is a linear programming problem, which can be solved efficiently (see
e.g. [30]).

After choosingQ∈ Σk(F ) such thatα = ρ(Q)1/k > 0, it is convenient to consider
a scaling of the original familyF = {A(i)}i∈I by the scalarα so as to obtain

F
∗ =

{

α−1A(i)
}

i∈I
.

In such a way we automatically haveρ(F ∗) ≥ 1, an assumption which will be
useful in the forthcoming Theorem 2.1. Let us consider a (scaled) family F ∗ with
ρ(F ∗) ≥ 1. Then, for any vectorx∈ Rn, we define thetajectory

T [F ∗,x] = {Px | P∈ Σ(F ∗)}, (4)

i.e., the set obtained by applying all the productsP∈ Σ(F ∗) to the vectorx. The
following theorem, which is a slight variant of a result proved by Protasov [25],
illustrates the possible use of the trajectory to constructan extremal norm. For its
proof see also [16], where the more general case of complex matrices is considered.

Theorem 2.1 LetF ∗ be a family of real n×n-matrices such thatρ(F ∗) ≥ 1 and,
for a given x∈Rn, let the trajectoryT [F ∗,x] be a bounded subset ofRn such that

span
(

T [F ∗,x]
)

= Rn. ThenF ∗ is non-defective andρ(F ∗) = 1. Furthermore,

S [F ∗,x] = co(T [F ∗,x],−T [F ∗,x]) (5)

is the unit ball of an extremal norm‖ · ‖ for F ∗ (that is,‖F ∗‖ = 1).

Whenρ(F ∗) = 1, building the trajectory provides a tool for the construction of
the unit ball of an extremal norm and, hence, for the computation of the spectral
radius. Assume that the hypotheses of Theorem 2.1 hold. The possibility of actually
determining an extremal polytope norm, if any, is based on the search for asuitable
initial vector x to which it corresponds a trajectory such that the setS [F ∗,x] is
a balanced real polytope. Such a choice is suggested by the recent result in [11]
and is related to the knowledge (or the guess) of a spectrum maximizing product.
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In [11] it has been proved that under some suitable conditions, which we do not
discuss here, if a finite familyF ∗, such thatρ(F ∗) = 1, of realn× n-matrices
has an s.m.p.P having a unique leading eigenvectorx, then it admits an extremal
polytope norm. More specifically the set∂S [F ∗,x]

⋂

T [F ∗,x] is finite (see (4),
(5)). Hence there exists a finite number of products{P∗

k }s
k=1 ∈ Σ(F ∗) such that

S [F ∗,x] = co
(

X ,−X

)

, with X = {P∗
k x}s

k=1.

Although the existence of an s.m.p. does not imply the existence of an extremal
polytope norm (see [20]), such implication is true in several cases (see [11]).

2.1 A procedure for finding a real extremal polytope norm

We assume thatF is finite and irreducible (for the non-defective although reducible
case we can proceed as in [16] and still make use of the method we propose). The
following procedure is derived by a suitable development (restricted to the real
case) of previous algorithms (see [16], [17] and [25]). For asuitable initial vector
x, the idea is that of computing iteratively the trajectoryT [F ∗,x]. While iterating,
check whetherF ∗ maps the convex hull of the balanced trajectoryT [F ∗,x] into
itself. The idea of the following algorithm is that of applying recursively the scaled
family F ∗ in order to construct the trajectory step-by-step startingfrom an initial
vector.

Algorithm 2.1 (for the construction of the unit ball of a real extremal polytope
norm forF = {A(1), . . . ,A(`)})

1. LetF = {A(i)}i∈{1,2,...,`} be afinitefamily; choose a candidate s.m.p.P∈Σk(F ).
Let v0 be the leading eigenvector ofP.

2. Setϑ = ρ(P)1/k and define the scaled family

F
∗ = {ϑ−1A(i)}i∈{1,2,...,`} s.t. ρ(F ∗) ≥ 1.

3. Compute recursively the setT [F ∗,v0], that is define

T
(s+1) =F

∗
T

(s), s≥ 0 with T
(0) = {v0}.

4. LetP(s) = absco(T (s)). Check at any step ifP(s) is an invariant set forF ∗.

If the procedure halts for somes, then, due to the irreducibility assumption,P(s−1)

determines the unit ball of an extremal real polytope norm for F ∗. We remark that
the initial choice of the productP may be obtained, for example, by means of the
algorithm of Gripenberg [10], which provides candidate s.m.p.’s of progressively
higher length.
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A stopping criterion

A useful criterion to stop the iteration and eventually discard the candidate s.m.p.
P is given by the following theorem (again, see also [25]).

Theorem 2.2 LetF be a finite irreducible family of matrices. If, at some step s of
Algorithm 2.1, v0 lies strictly insideP(s), that is

v0 ∈
◦

P
(s), (6)

thenρ(F ∗) > 1. Viceversa, ifρ(F ∗) > 1, then there exists s such that (6) holds.

Proof. Assume that, at some steps, v0 ∈
◦

P
(s). This would mean that there ex-

ists xs ∈ ∂P(s) such thatxs = βsv0 with βs > 1. Let V (s) = {vi}m
i=1 be such that

{V (s),−V (s)} is an essential system of vertices ofP(s). Thus we can write

xs =
m

∑
i=1

λivi + µi(−vi) with
m

∑
i=1

(λi + µi) = 1, λi ≥ 0, µi ≥ 0.

Since, by construction, for alli there exists a finite productP(i) ∈ Σ(F ∗) such that
vi = P(i)v0, there must exist at least a productP∈ Σ(F ∗) such that‖Pv0‖P(s) = 1.
Using the fact that 1= ‖xs‖P(s) = βs‖v0‖P(s), we have

‖Pv0‖P(s) = βs‖v0‖P(s) > ‖v0‖P(s) =⇒ ‖P‖
P(s) ≥ βs > 1.

Thus‖F ∗‖
P(s) > 1. SinceP(s) ⊆ P(s+1), we would still havev0 ∈

◦
P

(s+1) and
the previous condition would occur for all subsequent values of s, with βs+1 ≥
βs. If ρ(F ∗) = 1, by the irreducibility assumption,P(s) would converge to some
centrally symmetric convex set ass→∞. As a consequence there would exist ˆssuch
that ‖P‖

P(r) < βs for all r > ŝ, which is not possible. Consequentlyρ(F ∗) > 1.
Viceversa, by the irreducibility assumption, ifρ(F ∗) > 1 then

lim
s→∞

P
(s) = Rn.

This implies that there existss such thatv0 ∈
◦

P
(s).

3 Finiteness property of pairs of matrices inM2(S)

Now we pass to consider the finiteness property of pairs of sign-matrices. We de-
note byMn(S) the set ofn×n matrices with entries inS= {−1,0,+1}. We recall
the following conjecture by Blondel and Jungers and Protasov(see [4] and [19]).

Conjecture 3.1 Every pair of n×n sign-matrices has the finiteness property.
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We consider here the case of a familyF = {A,B} whereA,B∈M2(S). The number
of ordered pairsNo = (34−3)(34−5) = 5928 (obtained discarding the zero matrix,
the identity and its opposite from the set and the cases wherethe second matrix
is equal to the first one or its opposite) is very large, but thenumber of cases to
examine is immediately reduced toNe = No/8, since the joint spectral radius of the
sets{±A,±B} does not change as well as it does not depend of the ordering of
the two matrices. HenceNe = 741, which is still a quite large number of cases. By
using suitable properties, we shall see that the actual number of essential cases to
examine is much lower. Mainly, the properties we shall use are based on suitable
similarity transformations, which do not change the joint spectral radius.

As in [19], in order to analyze the essential cases, we separate them into classes
(n0,n1), wheren0 is the number of non-zero entries ofA and n1 is the number
of non-zero entries ofB. By symmetry, we can assumen0 ≥ n1. Our approach
consists in showing the finiteness property of every considered case by determining
explicitly the associated s.m.p., in most cases through theconstruction of the unit
ball of a suitable real extremal polytope norm. This does notallow a unified proof
but, instead, requires to treat most of the essential cases separately.

Although all the pairs of binary matrices have already been considered in [19], here
we reconsider the most difficult cases because our procedureis quite different from
that used in [19] and does not rely on the possible non-negativity of the matrices.

The set ofrepresentativematrices (we exclude−A if we considerA) with a single
non-zero entry which has to be considered is given byC = {Ci}4

i=1 with

C1 =





1 0

0 0



 , C2 =





0 1

0 0



 , C3 =





0 0

1 0



 , C4 =





0 0

0 1



 .

The set of representative matrices with two non-zero entries which has to be con-
sidered is given byD = {Di}11

i=1 with

D1 =





1 1

0 0



 , D2 =





0 0

1 1



 , D3 =





1 −1

0 0



 , D4 =





0 0

−1 1



 ,

D5 =





1 0

1 0



 , D6 =





0 1

0 1



 , D7 =





1 0

−1 0



 , D8 =





0 −1

0 1



 ,
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D9 =





1 0

0 −1



 , D10 =





0 1

1 0



 , D11 =





0 1

−1 0



 .

The set of representative matrices with three non-zero entries which has to be con-
sidered is given byE = {Ei}16

i=1 with

E1 =





1 1

1 0



 , E2 =





1 −1

1 0



 , E3 =





1 1

−1 0



 , E4 =





1 −1

−1 0



 ,

E5 =





1 1

0 1



 , E6 =





1 −1

0 1



 , E7 =





1 1

0 −1



 , E8 =





1 −1

0 −1



 ,

E9 =





1 0

1 1



 , E10 =





1 0

−1 1



 , E11 =





−1 0

−1 1



 , E12 =





−1 0

1 1



 ,

E13 =





0 1

1 1



 , E14 =





0 −1

1 1



 , E15 =





0 1

−1 1



 , E16 =





0 −1

−1 1



 .

The set of representative matrices with four non-zero entries which has to be con-
sidered is given byF = {Fi}8

i=1 with

F1 =





−1 1

1 1



 , F2 =





1 −1

1 1



 , F3 =





1 1

−1 1



 , F4 =





1 1

1 −1



 ,

F5 =





1 1

−1 −1



 , F6 =





1 −1

1 −1



 , F7 =





1 −1

−1 1



 , F8 =





1 1

1 1



 .

Now consider the similarity transformations associated with the following matrices:
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P1 =





0 1

1 0



 , P2 =





1 0

0 −1



 , P3 =





0 1

−1 0



 ,

which are such thatP2
1 = I , P2

2 = I , P2
3 = −I . Clearly, fork = 1,2,3 we have that

PkCiP
−1
k ∈ ±C, PkDiP

−1
k ∈ ±D, PkEiP

−1
k ∈ ±E, PkFiP

−1
k ∈ ±F, (7)

so that these similarities do not change the finiteness property, nor the fact that the
matrices are sign-matrices. In detail, denoting by∼ a similarity relation, we get

D1 ∼ D2 ∼ D3 ∼ D4, D5 ∼ D6 ∼ D7 ∼ D8, (8)

E1 ∼ E4 ∼ E13 ∼ E16, E2 ∼ E3 ∼ E14 ∼ E15,

E5 ∼ E6 ∼ E9 ∼ E10, E7 ∼ E8 ∼ E11 ∼ E12,
(9)

F1 ∼ F4, F2 ∼ F3, F5 ∼ F6, F7 ∼ F8. (10)

As we have mentioned, in the sequel we shall denote by

F
∗ = (1/ρ(P))1/k

F for someP∈ Σk(F ) s.t.ρ(P) 6= 0

and call it the scaled family. Our aim will be that to prove that F has joint spectral
radius equal to 1 (which implies thatP is an s.m.p.). In several cases we shall
observe that one of the following standard norms,‖·‖1, ‖·‖2 and‖·‖∞, is extremal.
Some other cases are easily treated by observing that the real polytope norm‖ ·‖+

∗ ,
associated with the b.r.p.P+ = co(V,−V) with V = {v0,v1,v2}, where

v0 =





1

0



 , v1 =





1

1



 , v2 =





0

1



 ,

or ‖ · ‖−∗ , associated with the b.r.p.P− = co(V,−V) with V = {v0,v1,v2}, where

v0 =





1

0



 , v1 =





1

−1



 , v2 =





0

1



 ,

is extremal. The following lemma is also useful to treat somecases.

Lemma 3.1 Let |F | be the family of matrices obtained fromF as follows:

A = {ai j} ∈ F −→ |A| = {|ai j |} ∈ |F |.

If P ∈ Σk(F ) is such thatρ(P)1/k = ρ (|F |) then P is an s.m.p. forF .

All the other cases are treated by using Algorithm 2.1. Beforesummarizing the
results through different tables, we give an extensive proof of an illustrative case.
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3.1 Illustrative case

Consider the caseA = E2, B = D11.

We want to prove thatP= ABA2B is an s.m.p.,ρ(F ) = ρ(P)1/5 =
(

3+
√

5
2

)1/5
and

a real extremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,v5,v6},
wherev0 is the leading eigenvector ofP, v1 = A∗v0, v2 = B∗v0, v3 = A∗v2, v4 = A∗v3,
v5 = A∗v4, v6 = B∗v5. To this aim, setγ = 1

ρ(P)1/5 ≈ 0.825. Then we get

v0 =





1

2
1+

√
5



 , v1 = γ





2
1+

√
5

−1



 , v2 = γ2





3+
√

5
1+

√
5

2
1+

√
5



 ,

v3 = γ3





1

3+
√

5
1+

√
5



 , v4 = γ3





2
1+

√
5

−3+
√

5
1+

√
5



 , v5 = γ4





3+
√

5
1+

√
5

−1



 .

As illustrated in Figure 1, we analyze the transformed vectors F ∗(V). Some of
them are vertices themselves by construction ofP and, hence, do not need to
be analyzed. Here we report such vectors together with the minimizing convex
combinations of vertices ofP which determine their norms (see (3)):

A∗v0 = γ





√
5−1

1+
√

5

1



 = λv3 + µ(−v4), λ =
2(3+

√
5)

γ2(11+5
√

5)
, µ =

2

γ2(7+3
√

5)
,

‖A∗v0‖P = λ + µ ≈ 0.90;
A∗v1 = v2;
A∗v2 = v3;

A∗v3 = λ (−v1), λ = γ3, ‖A∗v3‖P = λ ≈ 0.56;

A∗v4 = γ4





5+
√

5
1+

√
5

2
1+

√
5



 = λv2 + µv5, λ =
4(2+

√
5)

7+3
√

5
γ2, µ =

2

7+3
√

5
,

‖A∗v4‖P = λ + µ ≈ 0.98;
A∗v5 = v0;

B∗v0 = v1;

B∗v1 = λ (−v0), λ = γ2, ‖B∗v0‖P = λ ≈ 0.68;
B∗v2 = v4;
B∗v3 = v5;

B∗v4 = λ (−v2), λ = γ2, ‖B∗v4‖P = λ ≈ 0.68;

B∗v5 = λv3, λ = γ2, ‖B∗v5‖P = λ ≈ 0.68.
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This proves the extremality of‖ · ‖P and thatP = ABA2B is an s.m.p..

−1.5 .0 1.5

−1.5

.0

1.5

v0

v1

v2

v3

v4

v5

−1.5 .0 1.5

−1.5

.0

1.5

Fig. 1. Polytope norm for the pair{A = E2, B = D11} (left) and the setF ∗(V) (right). Red
points indicate the vectors{A∗vi}5

i=0 and blue points indicate the vectors{B∗vi}5
i=0.

3.2 Summary of results

We show in the subsequent tables the s.m.p. (s.m.p.’s) for all significant cases, that
is for those matrix pairs whose analysis cannot be reduced tothat of another matrix
pair appearing in the tables. In the column we indicate the matrix A in the pair
F = {A,B} while in the row we indicate the matrixB. For a detailed analysis of
specific cases we refer the reader to the appendix in Section 4.

The casen0 = 1 (families of the typeF = {Ci,Cj}).

Recall that we supposen0 ≥ n1. The only possibility is(n0,n1) = (1,1), corre-
sponding to families of the typeF = {Ci,Cj} (i < j). The analysis is always triv-
ial. In fact, it is very easy to see thatρ(F ) = 1 and any among‖ · ‖1, ‖ · ‖2 and
‖ · ‖∞ is an extremal norm. Moreover, ifi = 1 or j = 4 an s.m.p. isP = C1 or C4,
respectively. Only if(i, j) = (2,3) an s.m.p. isP = C2C3.

A\B C2 C3 C4

C1 A A A

C2 AB B

C3 B

11



The casen0 = 2.

The subcase(n0,n1) = (2,1) (families of the typeF = {Di ,Cj}).

Since‖Cj‖1 = ‖Cj‖∞ = 1, ρ(Di) = 1 and either‖Di‖1 = 1 or‖Di‖∞ = 1, we have
thatρ(F ) = 1 and that an s.m.p. isP = Di.

The subcase(n0,n1) = (2,2) (families of the typeF = {Di ,D j}).

In view of (7) and (8), we can restrict the choice of the first matrix A to the set
D′ = {D1,D5,D9,D10,D11} and let the choice ofB be free inD.

In the sequel we mark by an asterisk (∗) or two asterisks (∗∗) equivalent columns.

A\B D2 D∗
3 D∗

4 D5 D6 D∗
7 D∗

8 D9 D10 D11

D1 A,B A,B A,B AB B A,B A,B A,B A,B A,B

D5 B A,B A,B A,B A,B A,B A,B A,B A,B

D9 A,B A,B A,B A,B A,B A,B A,B A,B

D10 A,B A,B A,B A,B A,B A,B A,B

D11 A,B A,B A,B A,B A,B A,B

The casen0 = 3.

In view of (7) and (9), we can restrict the choice of the first matrix A to the set
E′ = {E1,E2,E5,E7} and let the choice ofB to be free.

The subcase(n0,n1) = (3,1) (families of the typeF = {Ei,Cj}).

A\B C∗
1 C2 C3 C∗

4

E1 A A A A

E2 A,B A A A,B

E5 A,B A A4B A,B

E7 A,B A A A,B

12



The subcase(n0,n1) = (3,2) (families of the typeF = {Ei,D j}).

A\B D1 D2 D∗
3 D4 D5 D∗

6 D7 D8 D9 D10 D11

E1 A A A A A A A A A A A

E2 AB A2B A,B A,B A,B A,B AB A2B AB A,B ABA2B

E5 A,B A2B A,B A5B A2B A,B A5B A,B A,B A3B A4B

E7 A,B A,B A,B AB AB A,B A,B A,B A,B A,B AB

The subcase(n0,n1) = (3,3) (families of the typeF = {Ei,E j}).

A\B E2 E3 E∗
4 E5 E6 E7 E8 E9

E1 A A A,B A A A A A

E2 AB B AB3 A2B3 AB A,B A2B3

E5 A3B2 B A,B A,B A,B AB

E7 A,B B A,B A,B AB3

A\B E10 E11 E12 E∗
13 E14 E15 E∗

16

E1 A A A A,B A A A,B

E2 AB3 A,B AB B ABA(AB)2B A,B B

E5 A4B4 A3B A3B B A3B A3B2 B

E7 AB3 AB A,B B A,B AB B

We remark that in this case we find the longest spectrum maximizing products, of
length` = 8, namely forF = {E5,E10}, whereP= E4

5 E4
10 and forF = {E2,E14},

whereP = E2E14E2(E2E14)
2E14.

The casen0 = 4.

In view of (7) and (10), we can restrict the choice of the first matrix A to the set
F′ = {F1,F3,F5,F8} and let the choice ofB be free.
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The subcase(n0,n1) = (4,1) (families of the typeF = {Fi,Cj}).

A\B C∗
1 C∗∗

2 C∗∗
3 C∗

4

F1 A A A A

F3 A A A A

F5 B AB AB B

F8 A A A A

The subcase(n0,n1) = (4,2) (families of the typeF = {Fi,D j}).

A\B D∗
1 D∗

2 D∗∗
3 D∗∗

4 D∗∗
5 D∗∗

6 D∗
7 D∗

8 D∗∗
9 D∗

10 D∗∗
11

F1 A A A A A A A A A A A

F3 A A A A A A A A A A A

F5 B B AB AB AB AB B B AB B AB

F8 A A A A A A A A A A A

The subcase(n0,n1) = (4,3) (families of the typeF = {Fi,E j}).

It is useful observing thatP3F1P−1
3 = −F1, P3F3P−1

3 = F3, P1F5P−1
1 = −F5 and

that both the similarity transformations associated withP1 andP3 are one-to-one
applications between the sets of matricesE′′ = {E j | 1≤ j ≤ 8} andE′′′ = {E j | 9≤
j ≤ 16}. Consequently, whenA = Fi (i = 1,3,5), we can restrict the choice of the
matrix B within the setE′′.

A\B E∗
1 E2 E3 E∗

4 E5 E6 E7 E8 E9−E16

F1 B A A B A A A AB

F3 B (AB)2A2B A2BA3B B A3B2 AB2 A2B A2B

F5 B AB B B AB4 AB4 B AB

F8 A A A A A A A A A

The subcase(n0,n1) = (4,4) (families of the typeF = {Fi,Fj}).

If A = F8, B∈ F thenA is an s.m.p..
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Now it is useful to observe thatP3F1P−1
3 = −F1, P3F3P−1

3 = F3, P3F5P−1
3 = −F6

andP3F8P−1
3 = F7. Consequently, whenA = Fi (i = 1,3), we can restrict the choice

of the matrixB within the setF′′ = {F2,F3,F4,F5}.

A\B F2 F3 F4 F5 F6

F1 A,B A,B A,B AB

F3 A,B A,B A2B

F5 AB2 AB AB

4 Appendix: detailed analysis of specific cases.

In this section we provide a case-by-case analysis of the matrix pairs tabulated in
Section 3.2. In particular we provide explicitly the computed extremal polytope
norm in those cases where they have been used to determine an s.m.p..

The casen0 = 2

The subcase(n0,n1) = (2,2) (families of the typeF = {Di ,D j}).

• A = D1 andB = D j ( j = 2,3,4,9,10,11).
Sinceρ(A) = ρ(B) = ‖A‖1 = ‖B‖1 = 1, we have thatρ(F ) = 1 and thatA and
B are both s.m.p.s.

• A = D1 andB = D5.
We find thatP = AB is an s.m.p.,ρ(F ) = ρ(P)1/2 =

√
2 and an extremal poly-

tope norm is givenP = co(V,−V) with V = {v0,v1,v2}, wherev0 is the leading
eigenvector ofP, v1 = A∗v0, v2 = B∗v0.

• A = D1 andB = D6.
We find thatP= B is an s.m.p.,ρ(F ) = ρ(P) = 1 and an extremal polytope norm
is givenP = co(V,−V) with V = {v0,v1}, wherev0 is the leading eigenvector
of P, v1 = A∗v0.

• A = D1 andB = D j ( j = 7,8).
SinceA2 = A, B2 = B, ρ(AB) = ρ(BA) = 0 andρ(A) = ρ(B) = 1, we have that
ρ(F ) = 1 and thatA andB are both s.m.p.s.

• A = D5 andB∈ D.
SinceD5 = DT

1 andDT ⊆ ±D and since, ifP is an s.m.p. of the familyF =
{A,B}, thenPT is an s.m.p. of the familyF T = {AT,BT}, we are led again to
the previous cases.

• A = D j andB = Dk ( j = 9,10,11, k = 2,3,4,6,7,8).
Since P1D9P−1

1 = −D9, P2D9P−1
2 = D9, P3D9P−1

3 = −D9, P1D10P
−1
1 = D10,

P2D10P
−1
2 = −D10, P3D10P

−1
3 = −D10, P1D11P

−1
1 = −D11, P2D11P

−1
2 = −D11,
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P3D11P
−1
3 = D11 and sinceP1D2P−1

1 = D1, P2D3P−1
2 = D1, P3D4P−1

3 = −D1,
P1D6P−1

1 = D5, P2D7P−1
2 = D5, P3D8P−1

3 = −D5, by using the similarity trans-
formations associated withP1,P2 andP3 we are led to the previous cases.

• A = D j andB = Dk ( j,k = 9,10,11).
Sinceρ(A) = ρ(B) = ‖A‖∞ = ‖B‖∞ = 1, we have thatρ(F ) = 1 and thatA and
B are both s.m.p.s.

The casen0 = 3

The subcase(n0,n1) = (3,1) (families of the typeF = {Ei,Cj}).

• A = E1, B∈ C.
We find thatP= A is an s.m.p.,ρ(F ) = ρ(P) = 1+

√
5

2 and an extremal polytope
norm is given byP = co(V,−V) with V = {v0,v1}, wherev0 is the leading
eigenvector ofP, v1 = B∗v0.

• A = E5, B = Cj ( j = 1,2,4).
The familyF is upper triangular and defective withρ(F ) = 1 andA is an s.m.p..

• A = E5, B = C3.
We find thatP= A4B is an s.m.p.,ρ(F ) = ρ(P) = 41/5 and an extremal polytope
norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,v5}, wherev0 is the
leading eigenvector ofP, v1 = A∗v0, v2 = B∗v0, v3 = A∗v2, v4 = A∗v3, v5 = A∗v4.

• A = E2, B∈ C.
Sinceρ(A) = ‖A‖+

∗ = ‖B‖+
∗ = 1, we have thatρ(F ) = 1 and thatA is an s.m.p..

• A = E7, B∈ C.
Sinceρ(A) = ‖A‖−∗ = ‖B‖−∗ = 1, we have thatρ(F ) = 1 and thatA is an s.m.p..

The subcase(n0,n1) = (3,2) (families of the typeF = {Ei,D j}).

• A = E1, B∈ D.
Sinceρ(A) = ‖A‖2 = 1+

√
5

2 and‖B‖2 ≤
√

2, we have thatρ(F ) = 1+
√

5
2 and

thatA is an s.m.p..
• A = E2, B = D1.

We find thatP = AB is an s.m.p.,ρ(F ) = ρ(P)1/2 =
√

2 and an extremal poly-
tope norm is givenP = co(V,−V) with V = {v0,v1,v2}, wherev0 is the leading
eigenvector ofP, v1 = B∗v0, v2 = A∗v0.

• A = E2, B = D j ( j = 2,8).
We find thatP = A2B is an s.m.p.,ρ(F ) = ρ(P)1/3 = 21/3 and an extremal
polytope norm is givenP = co(V,−V) with V = {v0,v1,v2}, wherev0 is the
leading eigenvector ofP, v1 = B∗v0, v2 = A∗v1.

• A = E2, B = D j ( j = 3,4,5,6,10).
Sinceρ(A) = ρ(B) = ‖A‖+

∗ = ‖B‖+
∗ = 1, we have thatρ(F ) = 1 and thatA and

B are both s.m.p.s.
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• A = E2, B = D7.
We find thatP = AB is an s.m.p.,ρ(F ) = ρ(P)1/2 =

√
2 and an extremal poly-

tope norm is givenP = co(V,−V) with V = {v0,v1,v2}, wherev0 is the leading
eigenvector ofP, v1 = B∗v0, v2 = A∗v1.

• A = E2, B = D9.

We find thatP= AB is an s.m.p.,ρ(F ) = ρ(P)1/2 =
(

1+
√

5
2

)1/2
and an extremal

polytope norm is given byP = co(V,−V) with V = {v0,v1,v2}, wherev0 is the
leading eigenvector ofP, v1 = B∗v0, v2 = A∗v0.

• A = E2, B = D11.
See the illutrative example in Section 3.1.

• A = E5, B = D j ( j = 1,3,6,8,9).
The familyF is upper triangular and defective withρ(F ) = 1 and bothA and
B are s.m.p.s.

• A = E5, B = D j ( j = 2,5).
We find thatP = A2B is an s.m.p.,ρ(F ) = ρ(P)1/3 = 31/3 and an extremal
polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4}, wherev0

is the leading eigenvector ofP, v1 = A∗v0, v2 = B∗v0, v3 = A∗v1, v4 = A∗v2.
• A = E5, B = D j ( j = 4,7).

We find thatP = A5B is an s.m.p.,ρ(F ) = ρ(P)1/6 = 21/3 and an extremal
polytope norm is givenP = co(V,−V) with V = {v0,v1,v2,v3,v4,v5,v6}, where
v0 is the leading eigenvector ofP, v1 = A∗v0, v2 = B∗v0, v3 = A∗v2, v4 = A∗v3,
v5 = A∗v4, v6 = A∗v5.

• A = E5, B = D10.

We find thatP = A3B is an s.m.p.,ρ(F ) = ρ(P)1/4 =
(

3+
√

13
2

)1/4
and an ex-

tremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,v5},
where v0 is the leading eigenvector ofP, v1 = A∗v0, v2 = B∗v0, v3 = A∗v2,
v4 = B∗v1, v5 = A∗v3.

• A = E5, B = D11.
See the illutrative example in Section 3.2. We find thatP = A4B is an s.m.p.,

ρ(F ) = ρ(P)1/5 = (2+
√

3)1/5 and an extremal polytope norm is givenP =
co(V,−V) with V = {v0,v1,v2,v3,v4,v5,v6}, wherev0 is the leading eigenvector
of P, v1 = A∗v0, v2 = B∗v0, v3 = A∗v2, v4 = A∗v3, v5 = A∗v4, v6 = B∗v5.

• A = E7, B = D j ( j = 1,3,6,8,9).
The familyF is upper triangular withρ(F ) = 1 andA andB are both s.m.p.s.

• A = E7, B = D j ( j = 2,7,10).
Sinceρ(A) = ρ(B) = ‖A‖−∗ = ‖B‖−∗ = 1, we have thatρ(F ) = 1 and thatA and
B are both s.m.p.s.

• A = E7, B = D j ( j = 4,5).
We find thatP = AB is an s.m.p.,ρ(F ) = ρ(P)1/2 =

√
2 and an extremal poly-

tope norm is given byP = co(V,−V) with V = {v0,v1}, wherev0 is the leading
eigenvector ofP andv1 = B∗v0.

• A = E7, B = D11.
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Fig. 2. Polytope norm for the pairs{A = E5,B = D4} (left) and{A = E5,B = D11} (right).

We find thatP= AB is an s.m.p.,ρ(F ) = ρ(P)1/2 =
(

1+
√

5
2

)1/2
and an extremal

polytope norm is given byP = co(V,−V) with V = {v0,v1}, wherev0 is the
leading eigenvector ofP andv1 = B∗v0.

The subcase(n0,n1) = (3,3) (families of the typeF = {Ei,E j}).

• A = E1, B∈ E.
Sinceρ(A) = ‖A‖2 = ‖B‖2 = 1+

√
5

2 , we haveρ(F ) = 1+
√

5
2 andA is an s.m.p..

• A = E2, B = E3.
Using Lemma 3.1 we find thatP= AB is an s.m.p. andρ(F ) = ρ(P)1/2 = 1+

√
5

2 .

• A= E2, B= E j ( j = 4,13,16). Sinceρ(B) = ‖A‖2 = ‖B‖2 = 1+
√

5
2 , we have that

ρ(F ) = 1+
√

5
2 and thatB is an s.m.p..

• A = E2, B = E j ( j = 5,10).
We find thatP = AB3 is an s.m.p.,ρ(F ) = ρ(P)1/4 = (2+

√
3)1/4 and an ex-

tremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,v5,v6,v7},
where v0 is the leading eigenvector ofP, v1 = A∗v0, v2 = B∗v0, v3 = A∗v2,
v4 = B∗v2, v5 = A∗v4, v6 = B∗v4, v7 = B∗v6.

• A = E2, B = E j ( j = 6,9).
We find thatP = A2B3 is an s.m.p.,ρ(F ) = ρ(P)1/5 = (2+

√
3)1/5 and an ex-

tremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,v5,v6},
where v0 is the leading eigenvector ofP, v1 = B∗v0, v2 = B∗v1, v3 = B∗v2,
v4 = A∗v3, v5 = B∗v3, v6 = A∗v5.

• A = E2, B = E j ( j = 7,12).
We find thatP = AB is an s.m.p.,ρ(F ) = ρ(P)1/2 = (1+

√
2)1/2 and an ex-

tremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2}, where
v0 is the leading eigenvector ofP, v1 = A∗v0, v2 = B∗v0.

• A = E2, B = E j ( j = 8,11,15).
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Sinceρ(A) = ρ(B) = ‖A‖+
∗ = ‖B‖+

∗ = 1, we have thatρ(F ) = 1 and thatA and
B are both s.m.p.s.

• A = E2, B = E14.
We find thatP= ABA2BAB2 is an s.m.p.,ρ(F ) = ρ(P)1/8 = (7+4

√
3)1/8 and an

extremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,v5,v6,v7},
where v0 is the leading eigenvector ofP, v1 = B∗v0, v2 = B∗v1, v3 = A∗v2,
v4 = B∗v3, v5 = A∗v4, v6 = A∗v5, v7 = B∗v6.

Observe that this is the first of the two cases with the largestnumber of factors
in the s.m.p.. The essential vertices ofP are just the leading eigenvectors ofF ,
that is, the eigenvectors of all the cyclic permutations ofP.
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Fig. 3. Polytope norm for the pairs{A = E2,B = E5} (left) and{A = E2,B = E10} (right).
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Fig. 4. Polytope norm for the pairs{A = E2,B = E6} (left) and{A = E2,B = E14} (right).

• A = E5, B = E j ( j = 3,15).

We find thatP = A3B2 is an s.m.p.,ρ(F ) = ρ(P)1/5 =
(

2+
√

3
)1/5

and an ex-
tremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,v5,v6},
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where v0 is the leading eigenvector ofP, v1 = A∗v0, v2 = B∗v0, v3 = B∗v1,
v4 = B∗v2, v5 = A∗v4, v6 = A∗v5.

• A = E5, B = E j ( j = 4,13,16).

Sinceρ(B) = ‖A‖2 = ‖B‖2 = 1+
√

5
2 , we have thatρ(F ) = 1+

√
5

2 and thatB is an
s.m.p..

• A = E5, B = E j ( j = 6,7,8).
The familyF is upper triangular and defective withρ(F ) = 1 and bothA and
B are s.m.p’s.

• A = E5, B = E9.
We find thatP = AB is an s.m.p.,ρ(F ) = ρ(P)1/2 = 1+

√
5

2 and an extremal
polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4}, wherev0

is the leading eigenvector ofP andv1 = A∗v0, v2 = B∗v0, v3 = A∗v1, v4 = B∗v2.
• A = E5, B = E10.

We find thatP= A4B4 is an s.m.p.,ρ(F ) = ρ(P)1/8 =
(

7+4
√

3
)1/8

and an ex-
tremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,v5,v6,v7},
where v0 is the leading eigenvector ofP, v1 = B∗v0, v2 = B∗v1, v3 = B∗v2,
v4 = B∗v3, v5 = A∗v4, v6 = A∗v5, v7 = A∗v6.

This is the second of the two cases with the largest number of factors in the
s.m.p.. Again, the essential vertices ofP are just the leading eigenvectors ofF .
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Fig. 5. Polytope norm for the pairs{A = E5,B = E3} (left) and{A = E5,B = E10} (right).

• A = E5, B = E j ( j = 11,12).

We find thatP = A3B is an s.m.p.,ρ(F ) = ρ(P)1/4 =
(

3+
√

13
2

)1/4
and an ex-

tremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,v5},
where v0 is the leading eigenvector ofP, v1 = A∗v0, v2 = B∗v0, v3 = B∗v1,
v4 = A∗v2, v5 = A∗v4.

• A = E5, B = E14.

We find thatP = A3B is an s.m.p.,ρ(F ) = ρ(P)1/4 =
(

2+
√

3
)1/4

and an ex-
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tremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,v5,v6,v7},
where v0 is the leading eigenvector ofP, v1 = A∗v0, v2 = B∗v0, v3 = A∗v2,
v4 = B∗v2, v5 = A∗v3, v6 = B∗v3, v7 = B∗v5.

• A = E7, B = E j ( j = 3,12,14).
Sinceρ(A) = ρ(B) = ‖A‖−∗ = ‖B‖−∗ = 1, we have thatρ(F ) = 1 and thatA and
B are both s.m.p.s.
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Fig. 6. Polytope norm for the pairs{A = E5,B = E11} (left) and{A = E5,B = E14} (right).

• A = E7, B = E j ( j = 4,13,16).

Sinceρ(B) = ‖A‖2 = ‖B‖2 = 1+
√

5
2 , we have thatρ(F ) = 1+

√
5

2 and thatB is an
s.m.p..

• A = E7, B = E j ( j = 6,8).
The familyF is upper triangular and defective withρ(F ) = 1 and bothA and
B are s.m.p’s.

• A = E7, B = E j ( j = 9,10).

We find thatP = AB3 is an s.m.p.,ρ(F ) = ρ(P)1/5 =
(

3+
√

13
2

)1/4
and an ex-

tremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,v5},
where v0 is the leading eigenvector ofP, v1 = B∗v0, v2 = B∗v1, v3 = B∗v2,
v4 = B∗v3, v5 = A∗v4.

• A = E7, B = E11.
Using Lemma 3.1 we find thatP = AB is an s.m.p.,ρ(F ) = ρ(P)1/2 = 1+

√
5

2 .
• A = E7, B = E15.

We find thatP = AB is an s.m.p.,ρ(F ) = ρ(P)1/2 =
(

1+
√

2
)1/2

and an ex-

tremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2}, where
v0 is the leading eigenvector ofP, v1 = B∗v0, v2 = B∗v1.
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Fig. 7. Polytope norm for the pairs{A = E7,B = E15} (left) and{A = E7,B = E9} (right).

The casen0 = 4

The subcase(n0,n1) = (4,1) (families of the typeF = {Fi,Cj}).

• A = Fi (i = 1,3), B∈ C.
Sinceρ(A) = ‖A‖2 =

√
2 and‖B‖2 = 1, we have thatρ(F ) =

√
2 and thatA is

an s.m.p..
• A = F5, B = Cj ( j = 1,4).

Sinceρ(B) = ‖A‖−∗ = ‖B‖−∗ = 1, we have thatρ(F ) = 1 and thatB is an s.m.p..
• A = F5, B = Cj ( j = 2,3).

Sinceρ(AB) = ‖A‖−∗ = ‖B‖−∗ = 1, we have thatρ(F ) = 1 and thatP = AB is
an s.m.p..

• A = F8, B∈ C.
Sinceρ(A) = ‖A‖1 = 2 and‖B‖1 = 1, we have thatρ(F ) = 2 and thatA is an
s.m.p..

The subcase(n0,n1) = (4,2) (families of the typeF = {Fi,D j}).

• A = Fi (i = 1,3), B∈ D.
Sinceρ(A) = ‖A‖2 =

√
2 and‖B‖2 ≤

√
2, we have thatρ(F ) =

√
2 and thatA

is an s.m.p..
• A = F5, B = D j ( j = 1,2,7,8,10).

Sinceρ(B) = ‖A‖−∗ = ‖B‖−∗ = 1, we have thatρ(F ) = 1 and thatB is an s.m.p..
• A = F5, B = D j ( j = 3,4,5,6,9,11).

We find thatP = AB is an s.m.p.,ρ(F ) = ρ(P)1/2 =
√

2 and an extremal poly-
tope norm is given byP = co(V,−V) with V = {v0,v1}, wherev0 is the leading
eigenvector ofP andv1 = B∗v0.

• A = F8, B∈ D.
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Sinceρ(A) = ‖A‖2 = 2 and‖B‖2 ≤
√

2, we have thatρ(F ) = 2 and thatA is an
s.m.p..

The subcase(n0,n1) = (4,3) (families of the typeF = {Fi,E j}).

• A = F1, B = E j ( j = 1,4).

Sinceρ(B) = ‖B‖2 = 1+
√

5
2 and‖A‖2 =

√
2, we have thatρ(F ) = 1+

√
5

2 and
thatB is an s.m.p..

• A = F1, B = E j ( j = 2,3,7).
We find thatP = A is an s.m.p.,ρ(F ) = ρ(P) =

√
2 and an extremal polytope

norm is given byP = co(V,−V) with V = {v0,v1,v2}, wherev0 is the leading
eigenvector ofP, v1 = B∗v0, v2 = A∗v1.

• A = F1, B = E j ( j = 5,6).
We find thatP = A is an s.m.p.,ρ(F ) = ρ(P) =

√
2 and an extremal polytope

norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,v5,v6}, wherev0

is the leading eigenvector ofP, v1 = B∗v0, v2 = A∗v1, v3 = B∗v1, v4 = A∗v3,
v5 = B∗v3, v6 = A∗v5.

• A = F1, B = E8.
We find thatP = AB is an s.m.p.,ρ(F ) = ρ(P) =

√
2 and an extremal polytope

norm is given byP = co(V,−V) with V = {v0,v1}, wherev0 is the leading
eigenvector ofP andv1 = B∗v0.

• A = F3, B = E j ( j = 1,4).

Sinceρ(B) = ‖B‖2 = 1+
√

5
2 and‖A‖2 =

√
2, we have thatρ(F ) = 1+

√
5

2 and
thatB is an s.m.p..

• A = F3, B = E2.

We find thatP= (AB)2A2B is an s.m.p.,ρ(F ) = ρ(P)1/7 =
(

4
(

2+
√

3
))1/7

and
an extremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,
v5,v6,v7,v8,v9,v10}, wherev0 is the leading eigenvector ofP, v1 = A∗v0, v2 =
B∗v0, v3 = A∗v1, v4 = A∗v2, v5 = A∗v4, v6 = A∗v5, v7 = B∗v5, v8 = A∗v7, v9 =
A∗v8, v10 = B∗v9.

• A = F3, B = E3.

We find thatP= A2BA3B is an s.m.p.,ρ(F ) = ρ(P)1/7 =
(

4
(

2+
√

2
))1/7

and

an extremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,
v5,v6,v7}, wherev0 is the leading eigenvector ofP, v1 = A∗v0, v2 = B∗v0, v3 =
A∗v2, v4 = A∗v3, v5 = A∗v4, v6 = B∗v5, v7 = A∗v6.

• A = F3, B = E5.

We find thatP= A3B2 is an s.m.p.,ρ(F ) = ρ(P)1/5 =
(

2
(

2+
√

2
))1/5

and an

extremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,
v5,v6,v7}, wherev0 is the leading eigenvector ofP, v1 = B∗v0, v2 = A∗v1, v3 =
B∗v1, v4 = A∗v2, v5 = A∗v3, v6 = A∗v4, v7 = A∗v5.

• A = F3, B = E6.
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Fig. 8. Polytope norm for the pairs{A = F1,B = E3} (left) and{A = F3,B = E3} (right).

We find thatP = AB2 is an s.m.p.,ρ(F ) = ρ(P)1/3 =
(

2+
√

2
)1/3

and an

extremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4,
v5,v6,v7}, wherev0 is the leading eigenvector ofP, v1 = A∗v0, v2 = B∗v0, v3 =
A∗v1, v4 = A∗v2, v5 = B∗v2, v6 = A∗v4, v7 = A∗v6.
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Fig. 9. Polytope norm for the pairs{A = F3,B = E5} (left) and{A = F3,B = E6} (right).

• A = F3, B = E j ( j = 7,8).

We find thatP = A2B is an s.m.p.,ρ(F ) = ρ(P)1/3 =
(

1+
√

5
)1/3

and an

extremal polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3},
wherev0 is the leading eigenvector ofP, v1 = A∗v0, v2 = B∗v0, v3 = A∗v2.

• A = F5, B = E j ( j = 1,4).

We find thatP= B is an s.m.p.,ρ(F ) = ρ(P) = 1+
√

5
2 and an extremal polytope

norm is given byP = co(V,−V) with V = {v0,v1}, wherev0 is the leading
eigenvector ofP andv1 = A∗v0.
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• A = F5, B = E j ( j = 2,8).
We find thatP = AB is an s.m.p.,ρ(F ) = ρ(P)1/2 =

√
3 and an extremal poly-

tope norm is given byP = co(V,−V) with V = {v0,v1}, wherev0 is the leading
eigenvector ofP andv1 = B∗v0.

• A = F5, B = E j ( j = 3,7).
Sinceρ(B) = ‖A‖−∗ = ‖B‖−∗ = 1, we have thatρ(F ) = 1 and thatB is an s.m.p..

• A = F5, B = E j ( j = 5,6).
We find thatP = AB4 is an s.m.p.,ρ(F ) = ρ(P)1/5 = 41/5 and an extremal
polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3,v4, v5}, where
v0 is the leading eigenvector ofP, v1 = B∗v0, v2 = B∗v1, v3 = B∗v2, v4 = B∗v3,
v5 = B∗v4.
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Fig. 10. Polytope norm for the pairs{A = F5,B = E4} (left) and{A = F5,B = E5} (right).

• A = F8, B∈ E.
Sinceρ(A) = ‖A‖1 = ‖B‖1 = 2, we have thatρ(F ) = 2 and thatA is an s.m.p..

The subcase(n0,n1) = (4,4) (families of the typeF = {Fi,Fj}).

• A = F8, B∈ F.
Sinceρ(A) = ‖A‖1 = ‖B‖1 = 2, we have thatρ(F ) = 2 and thatA is an s.m.p..

• A = F1, B = Fj ( j = 2,3,4).
Sinceρ(A) = ρ(B) = ‖A‖2 = ‖B‖2 =

√
2, we have thatρ(F ) =

√
2 and that

bothA andB are s.m.p.s.
• A = F1, B = F5.

We find thatP = AB is an s.m.p.,ρ(F ) = ρ(P)1/2 =
√

2 and an extremal poly-
tope norm is given byP = co(V,−V) with V = {v0,v1}, wherev0 is the leading
eigenvector ofP andv1 = B∗v0.

• A = F3, B = Fj ( j = 2,4).
Sinceρ(A) = ρ(B) = ‖A‖2 = ‖B‖2 =

√
2, we have thatρ(F ) =

√
2 and that

bothA andB are s.m.p.s.
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Fig. 11. Polytope norm for the pairs{A = F1,B = F5} (left) and{A = F3,B = F5} (right).

• A = F3, B = F5.
We find thatP = A2B is an s.m.p.,ρ(F ) = ρ(P)1/3 = 41/3 and an extremal
polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3}, wherev0 is
the leading eigenvector ofP, v1 = B∗v0, v2 = A∗v0,v3 = A∗v1.

• A = F5, B = F2.
We find thatP = AB2 is an s.m.p.,ρ(F ) = ρ(P)1/3 = 41/3 and an extremal
polytope norm is given byP = co(V,−V) with V = {v0,v1,v2,v3}, wherev0 is
the leading eigenvector ofP, v1 = B∗v0, v2 = B∗v1,v3 = B∗v2.

• A = F5, B = F4.
We find thatP = AB is an s.m.p.,ρ(F ) = ρ(P)1/2 =

√
2 and an extremal poly-

tope norm is given byP = co(V,−V) with V = {v0,v1}, wherev0 is the leading
eigenvector ofP andv1 = B∗v0.

• A = F5, B = F6.
Since‖A‖1 = ‖B‖1 = 2 andρ(AB) = 4, we have thatρ(F ) = 2 and thatP= AB
is an s.m.p..

5 Conclusions and future work

We have proved the finiteness property for any pair of 2×2 sign-matrices. In most
non-trivial cases, this has been made possible by detectingan extremal real poly-
tope norm for the family constituted by the two sign-matrices. The finite conver-
gence of the procedure for constructing the unit ball of sucha norm, carried out on
a case-by-case basis, implies the finiteness property. An algorithm for the construc-
tion of the unit ball is also provided and made publically available. Unfortunately,
it seems clear that such an approach can hardly be extended tothe general case of a
pair of sign-matrices of arbitrary dimension. The use of an induction argument on
the dimension seems difficult. Nevertheless, we plan to explore it in future.
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